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Abstract

Whether for fraud detection or deanonymization, address clustering on Bitcoin
and its derivatives has been done for many years and is a valuable tool for on-chain
data analysis. Of course, there are similar incentives for clustering user addresses
on alternative blockchains like Ethereum. However, Ethereum’s account-based
model requires dedicated clustering heuristics, some of which have been intro-
duced in recent years.

In this thesis, we show how addresses can be clustered in Ethereum yielding
entities that are likely in control of multiple addresses. We enhance an exist-
ing method for clustering entities based on reused exchange deposit addresses.
Our results show that we can cluster 8.8% of all unique addresses ever used on
Ethereum, including internally owned addresses. In addition, we can identify
1’410’523 entities which control at least 2 and at most 1’000 addresses. We
observe that an average entity owns 4.81 user addresses, is active for 307 days
and holds 5.0ETH in all its addresses. Finally, we study their interaction and be-
haviour towards popular DeFi projects as well as layer-2 rollups and Eth2 staking
on the Ethereum Beacon Chain.
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Chapter 1

Introduction

The emergence of Bitcoin in 2008 [1] paved the way for an entire cryptocurrency
ecosystem. Ethereum, a blockchain proposed in 2013 [2] further expanded the
notion of a blockchain and enabled additional functionality on the base layer.
With a market dominance of roughly 18% at the time of writing [3], Ethereum
is a key driver of innovation in the ecosystem.

A growing number of daily active addresses using Ethereum is one metric
indicating a wider adoption of cryptocurrencies over the years [4]. This resulted
in a growing market cap of the entire space, reaching US$2.95 trillion at its last
peak in November 2021 [3]. The value increase in recent years also attracted
the interest of regulatory bodies around the world. The introduction of KYC
(Know Your Customer) verification on centralized exchanges can be seen as a
direct result. In combination with chain analysis tools, the authorities have the
possibility to deanonymize parts of the otherwise pseudonymous network.

In this thesis, we perform clustering of Ethereum addresses into entities. We
focus on addresses that have at some point interacted with a deposit address of
a centralized exchange. Addresses that belong to the same entity are likely to
be owned by the same person or group of people and their identity is likely to
be known to the authorities. After analyzing the entities themselves, we then
examine the behaviour and interaction of these entities with popular projects in
the recently emerged Decentralized Finance (DeFi) space to gain better insight
into the clustered entities.

In addition, we determine the funds held by these entities, which gives us a
view of the decentralization of funds in the network. For Ethereum, this metric
will be even more relevant after the transition from Proof of Work (PoW) to
Proof of Stake (PoS), as this change will give more power to entities with large
ETH holdings. Especially for on-chain governance on emerging layer-2 solutions,
the knowledge and observation of large entities is of importance.
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Chapter 2

Related Work

Clustering cryptocurrency addresses into entities has been performed in numerous
occasions. Due to its size and dominance in the space, the Bitcoin network has
received the most attention [5, 6, 7]. Ethereum did not inherit the UTXO model
of Bitcoin. Therefore, the clustering heuristics of Bitcoin cannot be applied to
Ethereum. Existing studies on Ethereum mainly focus on the address graph [8, 9],
without entity clustering.

In a recent paper [10], Bonifazi et al. discuss an automatic approach to classify
users based on their behaviour and interaction with Ethereum. However, they
do not cluster individual entities on a large scale.

Friedhelm [11] proposes heuristics that exploit patterns related to deposit ad-
dresses, multiple participation in airdrops and token authorization mechanisms.
To the best of our knowledge, Friedhelm was first to propose deposit address
reuse as a basis of entity clustering on Ethereum. The author shows that his
approach can cluster 17.9% of all active, externally owned account addresses. He
also finds that there are more than 340,000 entities that likely control multiple
addresses. In this thesis, we use his results as a guide for our own clustering
algorithm, and propose an enhanced method which also merges entities that do
not share a common transaction with the same deposit address.

User behaviour analysis was conducted primarily to understand the general
use of smart contracts and user relationships [8], as well as to understand specific
behaviours on a subset of popular DeFi projects [12]. However, we could not
find evidence for a work that performs analysis of clustered entities and their
interaction behaviour with the DeFi or layer-2 spaces on Ethereum.
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Chapter 3

Background

In this section we introduce terminologies and explain the basics of Ethereum
accounts and on-chain data handling. We also look at the user’s interaction with
centralized exchanges in terms of on-chain data.

3.1 Account Model

In contrast to the UTXO model of Bitcoin, many blockchains that support smart
contracts have adopted an account-based model, where a list of accounts, includ-
ing all balances, is stored in the global state. If the balance of the sending account
is larger than the amount sent, the sending account is debited while the receiving
account is credited with the corresponding transaction amount. Accounts in an
account-based model are thus similar to regular bank accounts. Two account
types exist in Ethereum:

3.1.1 Externally Owned Account

Externally Owned Accounts (EOAs) are controlled by the entity that controls the
respective private keys. EOAs can initialize transactions without any external
influence, while the transactions between EOAs are limited to value and message
transfers.

3.1.2 Smart Contracts

Smart contracts are accounts that are deployed to the network and controlled by
code. Unlike an EOA, a smart contract cannot initiate a transaction. To deploy
a contract account, on-chain storage space needs to be allocated, for which a fee
is charged at initialization.

3



3. Background 4

3.2 On-Chain Data

On-chain data, as the name suggests, can be classified as data stored on the
blockchain itself. This data is stored by a network of Ethereum nodes, computers,
which run a blockchain specific client software. This data includes the entire
history of every valid transaction performed on the network. Besides sender,
recipient and value of a transaction, the blockchain also stores metadata related
to the transaction.

3.2.1 Event Logs and Topics

If at least one party of a transaction is a smart contract, additional metadata is
stored on the blockchain. These so-called event logs provide information about
the nature of the interaction between the parties. A transaction can contain more
than one log, hence the name logs. Each log consists of both topics and data.
Topics are 32-byte (256 bit) “words” that are used to describe what happened in
an event. When looking at the topics of a transaction, you can find out what
the transaction was about. A block explorer like Etherscan is generally used to
translate the 32-byte topic to a concrete event such as a deposit [13], withdrawal
or swap.

3.2.2 Centralized Exchanges

Centralized exchanges, which are usually owned and operated by a company, have
played and continue to play a major roll as on and off ramps between the fiat
and cryptocurrency space. To use such an exchange, a user must open a trading
account on the exchange’s website. Depending on the volume to be traded, a
KYC verification procedure is required. The user then requests a unique deposit
address from the exchange, which is linked to the user’s account, and deposits
the funds. After this deposit, the exchange takes custody of the deposited funds.
This means that the user is not in possession of the private keys to the funds. A
best practice that is widely used in the industry is the subsequent transfer of the
funds by the exchange to a secure cold storage wallet owned by the exchange.
This reduces potential attack vectors. An exchange may have multiple addresses
where users’ funds are collectively stored. After this procedure, two transactions
can be found on the blockchain resembling the transfer from the user to cold
storage.

Some exchanges, such as Kraken, have taken a slightly different approach
where users send funds to a smart contract deployed by Kraken, which then
transfers the funds to cold storage. This method reduces transaction costs on
Kraken’s side. However, as we will see in Chapter 6.1.2, the majority of large
exchanges have not yet adopted this approach.



Chapter 4

Data Collection

In this chapter, we explain the hardware and software used for the data collection.
In addition, the different methods for the data acquisition are discussed.

4.1 Hardware

A computer equipped with an AMD Ryzen Threadripper 3960X (24 cores, 48
threads), 128GB of RAM, and a 4TB SSD is used for data collection. This com-
puter hosts the Ethereum client described in the next section. To reduce latency,
the code that requests data from the client is also executed on this machine. A
high core count for parallelization turned out to be beneficial throughout this
thesis.

4.2 Software

On top of Ubuntu Server, we use Erigon as the Ethereum client [14]. The Erigon
full node database containing the blockchain reached a size of about 2TB and
was synced with the rest of the network within 2 days. For the interaction with
Erigon the python package Web3.py is used [15]. Whenever possible, requests
made to the Erigon client via Web3 are parallelized. A separate database is not
required for this thesis but is recommended when dealing with more data. Future
blockchain growth should also not be neglected. Installation guides can be found
in the GitLab repository [16].

4.3 Data

Multiple separate datasets are created for clustering and subsequent behavioral
analysis. The underlying data originates from the Ethereum blockchain stored
by the Erigon node and multiple publicly accessible online sources.

5



4. Data Collection 6

4.3.1 Miner Addresses

First, we identify 5’585 addresses that have mined at least one block since
Ethereum’s inception. These addresses therefore belong to miners. The addresses
are collected by going through the blockchain from block 0 to block 14’699’999,
reading the address that has mined each individual block.

4.3.2 Transactions

By far the largest dataset created is a collection of all valid transactions recorded
on the blockchain, starting from block 0 and ending with block 14’699’999. We
parallelize the process, resulting in multiple files which are subsequently merged
into a single file of approximately 139GB in size. The final CSV file contains
three columns. One of them indicated the block number in which the transaction
was recorded. The other two indicate the address of the sending and receiv-
ing parties, respectively. No restrictions on the transaction volume, the sender,
or the recipient address are posed. In total, we detect and save 1’559’436’843
transactions which matches with secondary sources [17].

4.3.3 Smart Contract Addresses

For a subsequent analysis of entity behaviour in the DeFi space, we collect con-
tract addresses of the most popular projects in DeFi. We also study the interac-
tion of entities with layer-2 projects and the staking contract for staking on the
Ethereum Beacon Chain. A breakdown of all projects and the total number of
respective contract addresses can be seen in Table 4.1.

Decentralized exchanges (DEXs), in their current form, consist of many smart
contracts, each resembling a trading pair, also called a liquidity pool. Such a
pool can be created and used by any network participant. Once established
on the blockchain, it is immutable. A user can either interact directly with
a pool contract or use a routing contract instead. For our analysis we gather
pool and routing contract addresses from the decentralized exchange projects
UniswapV2, UniswapV3, SushiSwap, Curve and the exchange aggregator 1inch.
All UniswapV2, UniswapV3 and SushiSwap pool addresses can be found by
scanning all transaction event logs for the respective creation event topic. A
UniswapV2 or SushiSwap pool creation event possesses the same topic. There-
fore, separating these pools is not straightforward. For this reason, we do not dif-
ferentiate the two projects in terms of pools. Contract addresses belonging to the
1inch projects, an exchange aggregator that scans decentralized exchanges to find
the lowest cryptocurrency prices for traders, are collected from Etherscan [18].
All relevant Curve pools can be found on the project’s GitHub page [19].
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We also collect addresses of three lending protocol projects, namely Aave,
MakerDAO and Compound, open source and non-custodial liquidity protocols
for earning interest on deposits and borrowing assets. AaveV1 and AaveV2 con-
tract addresses are taken from their official documentation website [20]. The
MakerDAO project maintains a website that makes all active and inactive con-
tract addresses accessible [21]. We collect all addresses that have been active at
some point in time. Contract addresses belonging to the Compound project are
collected by Etherscan [22].

In addition, we add addresses belonging to the layer-2 rollups Arbitrum and
Optimism to the list to determine the ratio of entities already interacting with
layer-2. Rollups are Ethereum’s short-term scaling solution to increase transac-
tion throughput and a simultaneous reduction in transaction fees. The corre-
sponding addresses can be found on Etherscan [23, 24].

Finally, we are interested in the entity participation in staking on the Ethereum
Beacon Chain. By locking 32ETH, participants provide security to the Ethereum
network once it moves to its new Proof of Stake consensus mechanism. They earn
ETH as a reward and thus have a financial incentive. The Eth2 Deposit Contract
can be found on Etherscan [25].

Project Addresses

Eth2 Deposit Contract 1
Arbitrum 3
Optimism 3

1inch 4
AaveV1 18

Compound 21
AaveV2 36
Curve 102

MakerDAO 387
UniswapV3 6’686

UniswapV2 & SushiSwap 74’143

Table 4.1: Number of contract addresses collected for each project.

4.3.4 Centralized Exchange Addresses

Finally, we create a list of known centralized exchange addresses. An existing
list created by Friedhelm [11] in 2018 contains 243 addresses. We extend the list
with 191 additional EOA exchange addresses that can be found on Etherscan.



Chapter 5

Address Clustering

Ethereum addresses can be clustered in a variety of ways. In this thesis, we
explore a clustering method based on the reuse of exchange deposit addresses.
In this chapter, we explain the theory behind this clustering method. We also
describe in detail how entity clustering is performed. We start with the datasets
from Chapter 4.3 and end with a dataset containing all entities and their user
and deposit addresses, as well as the corresponding exchange addresses.

5.1 Deposit Address Reuse

When signing up on a centralized exchange, a user usually only receives one
unique Ethereum deposit address to send his funds to. Each time the user makes
a deposit to the exchange, the same deposit address is reused. When a user
makes deposits to the exchange from multiple personal addresses, a permanent
link between them remains in the blockchain. An outside observer looking at
all transactions made to the same deposit address can therefore assume that all
sender addresses are controlled by the same entity. In a next step, these entities
can be merged together if they have used at least one address that is equal.
This allows linking entities that use different accounts on the same exchange,
and even linking entities across multiple exchanges. This concept is illustrated
in Figure 5.1.

5.2 Triplet Extraction

In a first step, all transactions in the transaction dataset discussed in Chap-
ter 4.3.2 are analyzed. We look for traces consisting of two transactions that
happened a maximum of 100’000’000 transactions apart. Given an average daily
transaction count of about 800’000 [26], similar to Friedhelm [11], we assume
that exchanges collect funds sent to a deposit address within approximately four
months. Furthermore, the recipient of the second transaction has to be a known
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5. Address Clustering 9

0x1

0xd1

0x2

0xd2

0x3

0xd3

0x4

0xd4

0x2

0xd5

0x5

0xd6

Exchange A Exchange BEOA,
Exchange address

deposit address,
non-exchange

non-miner,
non-exchange

Figure 5.1: If 0xd1 to 0xd6 are forwarding deposit addresses controlled by the two
exchanges A and B, we cluster all addresses that use the same deposit addresses
and the same address when sending to different deposit addresses. Colors indicate
the same entity. We see 4 entities: 2 users [0x1], [0x2 - 0x5] and 2 exchanges with
their deposit addresses.

exchange address. It must be part of the exchange dataset mentioned in Chap-
ter 4.3.4. We call each of these traces a triplet. Thus, each triplet consists of a
user, a deposit, and an exchange address.

For user and deposit addresses, we only consider addresses that are neither
a known exchange nor a miner. Here, we compare each address with the ex-
change and miner datasets. This minimizes the likelihood of accidentally linking
two exchanges. We exclude miner addresses because mining pool participants
sometimes request their share to be sent directly to their exchange. This be-
haviour would cause mining pool addresses to be incorrectly clustered with their
participants’ deposit addresses.

Two types of transaction tuples are created, each containing two addresses
linked by a transaction. Each tuple resembles either a user → deposit or a
deposit → exchange transaction. When looking for said tuples, the above rules
are applied. Additionally, it is ensured that a user address is not a deposit
address.

In a final step, all transaction tuples are merged into triplets, ensuring that
both transactions have occurred within a maximum of 100’000’000 transactions,
as previously discussed. All 44’800’605 triplets are combined to a new triplets
dataset 5.38GB in size. The merging process is performed using the computer
described in Chapter 4.1.

It is important to note that at this point the uniqueness of addresses in the
triplet dataset is not given. However, the triplet dataset does not contain triplet
duplicates.
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5.3 Triplet Merging

In the next phase, the individual triplets are merged into entities with at least two
user addresses. In this phase, the deposit addresses play an important role. When
looking at all entities, deposit, and user addresses are the only addresses that are
likely to be unique in the dataset. The same exchange addresses are likely coupled
to multiple different deposit addresses and therefore also user addresses. However,
since we want to retain in the final entity dataset the information describing which
user address interacted with which exchanges, we choose a dataset structure that
does not allow user address uniqueness. Therefore, only the deposit addresses
will be unique. This allows us to use deposit addresses as a kind of fixed point
for the entire merging process.

We split the merging of triplets to entities into two phases: First, we extract all
10’466’065 unique deposit addresses from the triplets database. Multiple parallel
processes are created, in our case 300 processes. Each process receives a unique
chunk of unique deposit addresses. All processes simultaneously go through each
of their deposit addresses and look for triplets in the triplets dataset that con-
tain a transaction to their deposit address. Once at least 2 and at most 1’000
user addresses are found for a deposit address, they are combined to an entity
and stored in a new CSV file. Because of computational resource constrains we
use a lower limit of 2 and an upper limit of 1’000 user addresses as proposed by
Friedhelm [11]. We perform this first merger on the ETH Euler Cluster [27]. The
300 cores reduce the computation time to approximately 4 hours, instead of 1.5
months when using a single process. Each row in the entity dataset file resembles
an entity, each following the same structure. To be able to distinguish the ad-
dresses in an entity without consulting a deposit and exchange dataset each time,
we introduce the pipe symbol | as a positional reference. It is placed between the
deposit and exchange address of an entity. This pipe symbol plays a crucial role
after the next merging step. In the following example, deposit, exchange, and
user all resemble addresses linked to the same entity, where user1 and user2 are
two addresses the entity likely controls.

deposit, |, exchange, user1, user2, ...

Finally, it is possible that entities with the same user address interact with
multiple deposit addresses from the same exchange. This means that they are
likely to have multiple accounts on the same exchange. It is also possible that
users interact with multiple different exchanges. In order to detect such be-
haviour, the entities created in the previous step can be merged into a larger
entity. Here, entities that contain at least one equal user address are being
merged. Again, we drop entities that exceed the 1’000 user addresses per entity
limit.
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The following example illustrates the merger of two entities by concatenating
both entities.

deposit1, |, exchange1, user1, user2

deposit2, |, exchange2, user3, user2

The second row is appended to the firs which results in:

deposit1, |, exchange1, user1, user2, deposit2, |, exchange2, user3, user2

The pipe symbol | can now be used to navigate through the different parts
of an entity. All pipe symbols clearly indicate the position of the deposit and
exchange addresses.

Unfortunately, parallelizing this processing step results in merging opportu-
nities that are overlooked by the processes working independently. To achieve an
optimal result, this step needs to be performed by a single process. This will take
several weeks, as the currently implemented algorithm has a time complexity of
O(n2). However, the usage of hash maps could reduce the time complexity to
O(n). Neither of these merging algorithms are optimal in terms of runtime, but
are rather designed with easy verifiability in mind. Both algorithms should be
seen as a reference for future optimizations.



Chapter 6

Results

All in all, we find 44’800’605 triplets among the 1’559’436’843 transactions, which
we can merge to 1’410’523 entities with at least 2 and at most 1’000 user ad-
dresses. In a next step, we analyze the clustered entities themselves. Finally, we
investigate their behaviour against the projects introduced in Chapter 4.3.3. For
all further calculations, we use block 14’699’999 as a reference point.

6.1 Entity Analysis

We can see that all 1’410’523 entities collectively own 6’788’215 addresses, which
is approximately 3.48% of all 195’011’000 unique addresses ever used on Ethereum,
including internally owned addresses [28]. In addition, all entities collectively de-
posit to a total of 1’553’060 deposit addresses, representing approximately 0.8%
of all addresses. Out of the 434 exchange addresses we track, only 284 are used
by our entities. We assume the rest are used internally by exchanges and are
listed on Etherscan for transparency reasons. As a result, an average entity owns
4.81 user addresses and deposits funds on 1.1 deposit addresses on 1.09 exchange
addresses. For user addresses, the median is 3.0, suggesting that a few large
entities are skewing the picture. All results discussed above are summed up in
Table 6.1.

Count Average Entity Of all Addresses

Entities 1’410’523 - -
User Addresses 6’788’215 4.81 3.48%
Deposit Addresses 1’553’060 1.1 0.8%
Exchange Addresses 284 1.09 -

Table 6.1: This table shows the total number of entities, their user addresses,
interacting deposit addresses and unique exchange addresses. The number of
addresses belonging to an average entity, and finally a comparison of the combined
addresses with all active addresses in the network up to block 14’699’999.

12



6. Results 13

Furthermore, if we count the 284 exchanges and their 10’466’065 unique de-
posit addresses as clustered entities we end up with 1’410’807 entities which col-
lectively own 17’254’280 addresses. They account for approximately 8.8% of all
unique addresses ever used on Ethereum, including internally owned addresses.
Unfortunately, the total number of existing smart contracts is not easy to de-
termine. However, according to Schoellen [29] there existed 48’083’448 smart
contract addresses at block 14’000’000. If we take this value as a lower bound,
we know for certain that we cluster at least 11.7% of all unique EOA addresses.

6.1.1 Address Distributions

Looking at the distributions of user, deposit, and exchange address on a log-log
scale, we can clearly see a linear decrease in the number of entities that have
multiple addresses and users that have several deposit and exchange addresses.
We find a power-law behaviour with an exponent of approximately -2.7, -3.6, and
-4.2 for distributions of user, deposit, and exchange addresses. In Figure 6.1 the
x-axis ends at 1’000 addresses because we set an upper bound in Chapter 5.3.

Figure 6.1: This figure shows how many entities control X number of user ad-
dresses, where 43.6% of all entities control 2, 19% control 3, and 10.6% control 4
user addresses.

Figure 6.2: In this figure we see to how many deposit addresses an entity sends
funds, where 92% of all entities deposit to 1, 5% to 2, and 1.3% deposit to 3
deposit addresses.
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Figure 6.3: This figure shows the number of exchange addresses an entity interacts
with, where 93.3% of all entities interact with 1, 5% interact with 2, and only 1.1%
interact with 3 different exchange addresses. We find one entity that interacts
with 24 exchange addresses.

It is important to note that Figure 6.3 does not specify the number of unique
exchanges that an entity interacts with, but rather the number of unique exchange
addresses. In the next chapter we further analyze exchange addresses and the
number of deposit addresses that interact with exchanges.
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6.1.2 Popular Exchanges

In total, we identify 10’466’065 unique deposit addresses. In Figure 6.4 we il-
lustrate the 10 exchange addresses that we can link to the most unique deposit
addresses. When we combine all exchange addresses that belong to the same
exchange, we see that Binance owns 23.8% of all detected deposit addresses,
followed by ShapeShift and Coinbase with a 16.8% and 8.5% share respectively.

Figure 6.4: Illustrates
the 10 exchange ad-
dresses which we can
link to the most unique
deposit addresses.

In a next step, we again rank all exchange addresses with the most linked
deposit addresses, but this time we only count deposit addresses owned by our
entities with 2 to 1’000 user addresses. As we can see in Figure 6.5, they prefer a
different set of exchanges. Out of the 10 exchange addresses, 6 are new addresses.
Again, and more clearly this time, Binance tops the list with 59.2% of all deposit
addresses owned by entities, followed by two new exchanges, KuCoin and Bitfinex
with 7.4% and 2.4% respectively.

Figure 6.5: Illustrates
the top 10 exchange ad-
dresses by linked de-
posit addresses, where
all deposit addresses are
owned by entities with 2
to 1’000 user addresses.

We conclude that entities which have 1 or more than 1’000 addresses are more
likely to use Coinbase and ShapeShift, while Binance, KuCoin, and Bitfinex are
used less by said entities. Our findings reassemble the top five exchanges by daily
trading volume at the time of writing [30], Binance, Coinbase, FTX, Kraken, and
KuCoin. As discussed in Chapter 3.2.2, Kraken uses smart contracts instead of
regular deposit addresses and is therefore not visible in Figures 6.4 and 6.5.
ShapeShifts presence in Figure 6.4 is likely because of its popularity in the early
years of Ethereum.
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6.1.3 Entity Activity and Entity Age

Next, we look for the block numbers at which all entities made their first and last
transactions. Using this data, we visualize the number of entities that emerge or
vanish at any given time in Figure 6.6. For reference: 1’000’000 blocks are added
to the blockchain in approximately 10 months.

Figure 6.6: This figure shows the block heights at which entities perform their
first (green) and last (orange) transactions. The peaks around block 5’000’000
occurred during the bull market in late 2017, early 2018. The orange peak on
the far right originates from entities that have been active in recent weeks.

Subtracting the corresponding block numbers results in an entity age, de-
nominated in number of blocks. We measure an average entity age of 1’998’054
blocks, which corresponds to about 307 days, and a median of 589’604 blocks,
which is approximately 90 days. Figure 6.7 illustrates the age distribution of all
entities. Note, because of the log scale on the x-axis, the average age is not easy
to derive.

Figure 6.7: The age distribution of all entities on a logarithmic scale reveals an
accumulation around the age of approximately 45 blocks, or 10 minutes. Further-
more, 3% of all entities are active for only less than one hour, 7.4% for less than
a day, and 18.6% for less than one week. However, the average age is 1’998’054
blocks, which is not easy to see because of the log scale.
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6.1.4 Entity Funds

We are also interested in the total funds an entity controls. We add up all funds
held in an entity’s user addresses around block 14’924’000. Only the six most
frequently used currencies, ETH, WETH, WBTC, DAI, USDT, and USDC are
considered and converted to ETH.

On average, an entity controls 5.0ETH. The median is practically 0. However,
if we ignore all addresses that contain 0 funds, we observe an average of 13.2ETH
and a median of 0.02ETH. We assume that the reasons for the discrepancy be-
tween the average and the median are a few large holders and many addresses
with near-zero balances, coupled with high gas fees, that make it uneconomical
to accumulate all balances at a single address. Most of the wealth is held by a
minority of entities. The richest entity we detect owns 289’000ETH. However,
we must keep in mind that entities can also be companies and institutions.

We close this chapter with Figure 6.8, which relates all the metrics discussed
in the previous chapters.

Figure 6.8: In this figure we relate an entities size, resembled in the number of
user and deposit addresses, as well as the age of entity and the amount of funds.
Fund size correlates proportionally with bubble size. This is a slightly zoomed-in
view. A handful of small entities at the top of both axes are not visible.

We conclude, entities with multiple user addresses are more likely to also
interact with multiple deposit addresses. Apart from a few exceptions, many
wealthy entities with more than 10 user addresses tend to be older than 8 million
blocks. In combination with Figure 6.10 we see that many young entities only
interact with one deposit address.
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6.2 DeFi, Layer-2 and Eth2 Interaction Analysis

In this section, we show our results regarding the interaction of entities with
smart contracts introduced in Chapter 4.3.3. In total, we surface and analyze
15’400’116 interactions of 231’712 entities. We can thus say that 16.4% of all
entities interacted with DeFi at some point. Their interactions are responsible
for 1% of all transactions on Ethereum. An average entity makes 66.4 transactions
to a DeFi smart contract. The median is 11.0 transactions. The entity with most
interactions performed a total of 153’228 transactions.

6.2.1 DeFi Behaviour Analysis

First, we focus exclusively on DeFi. Figure 6.9 visualizes a comparison between
all DeFi projects in the smart contract dataset in terms of the number of trans-
actions sent by entities to the smart contracts. We detect a total of 11’112’068
interactions with the UniswapV2 routing contract, representing 73.6% of all inter-
actions. It is important to note that UniswapV2 was launched in May 2020 and
has a head start of approximately one year compared to UniswapV3. Moreover,
it benefited from favourable market conditions in its first year. As mentioned in
Chapter 4.3.3, we do not differentiate between UniswapV2 and SushiSwap pools.

Figure 6.9: A com-
parison of all 9 DeFi
projects in terms of
entity-initiated interac-
tions.

The dominance of UniswapV2 is expected, yet impressive. At the time of
writing, the ratios between the DEXs UniswapV2, UniswapV3 and SushiSwap
closely match the ratios of all time DEX activity on Etherscan [31]. We can
further deduce that about 8.0% of the total trading activity on UniswapV2 stems
from our clustered entities.

Except for the y-axis, Figure 6.10 is similar to Figure 6.8. It illustrates the
relationships between entity age, size, funds, and the number of transfers to DeFi
projects. It shows us that there is no clear trend in terms of age, assets and the
number of DeFi project interactions. However, a differentiation between old and
new entities with regards to the number of user addresses is more pronounced
than in Figure 6.8.
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Figure 6.10: This figure is similar to Figure 6.8, but with the number of inter-
actions with DeFi projects on the y-axis. With regards to age, assets, and the
number of DeFi project interactions no clear trend is observable. This is a slightly
enlarged view, some small entities are not visible. Additional plots, considering
each DeFi project individually, can be found in the Appendix A.1 and A.2.

Going one step further, we also analyze the nature of the interactions that
entities have with the DeFi protocols. For this, we examine all log topics that
specify the transaction between entity and smart contract. The ratio of all topic
occurrences is visible in Figure 6.11. We find a total of 12’847’152 swap topics.

Figure 6.11: A com-
parison of the occur-
rences of individual top-
ics in transactions be-
tween entities and DeFi
projects.

The logs of a transaction are likely to contain multiple topics. We use all
topics of the transaction for our comparison, except for duplicates. This means
that the sum of all displayed tropics is greater than all DeFi transactions. Addi-
tionally, but not visible in Figure 6.11, we find 327 liquidation calls initiated by
our entities.
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6.2.2 Layer-2 Interaction

With respect to Ethereum’s layer-2 rollups Arbitrum and Optimism, we mainly
track bridging activity. Overall, we can say that 2.6% of all entities have used
Arbitrum or Optimism at least once. A detailed comparison of the two rollups
can be seen in Table 6.2.

Arbitrum Optimism

Total Interactions 63’104 25’775
Total Entities 22’509 13’741
Entity Interactions Average 2.8 1.9
Entity Interactions Median 2.0 1.0

Table 6.2: This table shows a comparison of the two layer-2 rollups Arbitrum
and Optimism in terms of entity bridging activity.

We assume that the low average number transactions per entity is due to
users trying to avoid moving funds repeatedly between the base chain and layer-
2 because of the high gas fees. However, at the time of writing, both rollups had
only been in operation for approximately 9 months, which likely also contributes
to the low average interactions. For a further activity comparison, two figures
similar to Figure 6.10, but referring exclusive to the Arbitrum and Optimism
rollups can be found in Appendix A.3.

6.2.3 Eth2 Beacon Chain Staking

We find a total of 16’900 staking events performed by our entities initiated by
754 distinct entities. This means that only 0.05% of entities participate in solo
staking on the Beacon Chain. The five entities that have made the most deposits
are responsible for 13’230 of the 16’900 deposits. Furthermore, we can identify
the entity which accounts for 6’000 deposits as part of Binance. Each deposit
consists of exactly 32ETH, which results in a total of 540’800ETH staked. At
the time of data retrieval, which happened at block 14’850’043, approximately
12’700’000ETH were staked in the contract [32]. Therefore, all entities contribute
4.3% of the entire staked ETH amount. If we ignore all Binance deposits, we end
up with 2.8%. It is important to note that we only track solo staking. Many
users prefer to stake their funds via a staking protocol such as Lido or Rocket
Pool.
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Conclusion

In this thesis, we enhanced an existing method for clustering entities on Ethereum
based on reused exchange deposit addresses. Moreover, we merge entities that
do not share a common transaction with the same deposit address. Overall, we
are able to cluster 8.8% of all unique addresses ever used on Ethereum, including
internally owned addresses. We can identify 1’410’523 entities that control at
least 2 and at most 1’000 addresses.

In addition, we analyzed entity properties, such as their size, age, and total
funds held. We observed that an average entity owns 4.81 user addresses, is active
for 307 days, and holds 5.0ETH in all its addresses.

Finally, we examined their interaction and behavior towards popular DeFi
projects as well as Layer-2 rollups and Eth2 staking on the Beacon Chain. We
concluded that 16.4% of all entities interacted with DeFi projects and that 2.6%
bridged at least once onto Layer-2 rollups. Only 0.05% of said entities partici-
pated in solo-staking on the Ethereum Beacon Chain.

7.1 Future Work

Deposit address reuse is not the only applicable clustering method. Various other
heuristics, such as multiple participation in airdrops, can be used to cluster addi-
tional entities. The size of the Ethereum blockchain is growing daily. Optimizing
parts of the merging algorithms could simplify the process and future-proof this
method. Other usage patterns related to NFTs and on-chain governance can be
studied.

We believe it as likely that user activity will shift more and more from the
Ethereum base chain to its layer-2 rollups. However, getting the relevant trans-
action data from future rollups is likely to be more difficult and might increase
clustering complexity. Account abstraction, a topic currently discussed in the
Ethereum community, which allows a contract to be the top-level account that
pays the fees and initiates the execution of transactions, could further complicate
entity clustering.
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Appendix A

Individual Project Activities

We show some additional scatter plots similar to Figure 6.10 but for each DeFi
project and layer-2 rollup individually. Entities only change their position on the
y-axis, which makes tracking of single entities across multiple projects easier. All
figures have the same range on both x and y-axis. Because of that some small
entities can be cut off.

A.1 Decentralized Exchanges

Figure A.1: UniswapV2 entity interaction activity.

A-1
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Figure A.2: UniswapV3 entity interaction activity.

Figure A.3: SushiSwap entity interaction activity.
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Figure A.4: UniswapV2 and SushiSwap pool entity interaction activity.

Figure A.5: Curve entity interaction activity.
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Figure A.6: 1inch entity interaction activity.
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A.2 Lending Protocols

Figure A.7: MakerDAO entity interaction activity.

Figure A.8: Compound entity interaction activity.
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Figure A.9: AaveV1 entity interaction activity.

Figure A.10: AaveV2 entity interaction activity.



Individual Project Activities A-7

A.3 Layer-2

Figure A.11: Arbitrum entity interaction activity.

Figure A.12: Optimism entity interaction activity.
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