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Abstract
In this thesis, we aimed to combine existing results of Kastrati et al., 2021
to create a multi-task learning architecture which learns simultaneously on
multiple tasks with the goal of building an EEG based eye tracker. We used
this architecture as a pretraining pipeline for two of the original tasks Kastrati
et al., 2021 implemented, namely two tasks which consisted of predicting the
correct position and amplitude of a subject’s gaze using EEG data. While we
achieved that the unified model learned multiple tasks to some extent, the re-
sults do not bring us closer to the aforementioned goal because the pretraining
pipeline does not lead to better results than published in the original paper.

I



Contents

Contents

1 Introduction 1

2 Eye Based Text Entry Applications 3
2.1 Categories of Text Entry Applications . . . . . . . . . . . . . . . 3
2.2 Gaze Gesture Approaches . . . . . . . . . . . . . . . . . . . . . 4

3 Unified Architecture 5
3.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Simultaneous Training and Tuning . . . . . . . . . . . . . . . . 7

4 Results 9
4.1 Initial Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Unified Model as a Pretrainer . . . . . . . . . . . . . . . . . . . 9
4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Conclusion 12

Bibliography III

II



Introduction

1 Introduction
This thesis builds on previous work from Kastrati et al., 2021. We will briefly
outline some results that were achieved and how the data is structured.
The EEG data was recorded from 365 healthy adults between 18 and 80 years
of age. 190 of the 365 participants were females. All participants were re-
warded a monetary compensation for their participation. The EEG data itself
was recorded at a sampling rate of 500 Hz using a 128-channel EEG Geodesic
Hydrocel system. The data was preprocessed minimally and maximally using
the toolbox from Pedroni et al., 2019. In this thesis, we only use the mini-
mally preprocessed data as it showed better results in previous experiments of
Kastrati et al., 2021. In the same paper, more details regarding the data and
the exact results can be found.
In the following, we will explain some of the conducted benchmarks in more
detail because they are needed in the main part of this thesis. Kastrati et al.,
2021 propose multiple benchmarks which consist of four different tasks with
different difficulties. Multiple classical machine learning models which operate
on extracted features rather than the raw data and deep learning models were
used in the benchmarks. We can summarize the benchmark tasks into left-
right task, angle/amplitude task, and absolute position task. The left-right
task is the easiest task and consists of determining the horizontal direction of
a participant’s gaze. For example, the best model, Xception, predicts the hori-
zontal direction correctly with an accuracy of 98.8% with a standard deviation
of 0.1%. The second task, the angle/amplitude task consists of predicting the
angle and amplitude of a saccade. At times, we refer to these two tasks as
direction task since they use the same dataset. Simple deep-learning models,
such as CNN or Pyramidal CNN, perform best in these. The last task consists
of predicting the absolute position of a participant’s gaze on the screen, de-
scribed by XY-coordinates. This is the most difficult task and is best predicted
by the CNN model. In the next paragraph, the process which lead to the main
thesis topic is explained.
Initially, we planned to use the existing models developed by Kastrati et al.,
2021 and apply them to different time series datasets. Interestingly, a similar
paper was published at roughly the same time, and we decided to go a different
path. The project started with the question how good we can decode EEG
data. The goal was to maximize the information we get from EEG data, i.e.,

1



Introduction

to maximize the throughput. As an example, left-right gaze prediction with
EEG data is highly accurate but has only limited information per fixed time
unit as the transformation flow is very slow. In the following weeks, we worked
on some simple methods which can generate more throughput while being al-
most as accurate as left-right prediction. For text data, one could think of
letters in a circular arrangement, for example 5 letters. Similar models can be
found in the literature and will be briefly discussed in Section 2. The ultimate
goal was to develop path eye-tracking using EEG data. In other words, in-
stead of just predicting, for example, the fixed position of a subject’s gaze, we
wanted to predict the path a person follows on the screen. By achieving this,
an EEG based eye tracker could potentially replace traditional eye trackers in
situations where extremely high precision is not necessary. Next, we derived
a few statistical results and conducted some small simulations to gain a bit
more intuition how useful a 98.8% accuracy is in the left-right task using the
Xception model. In the following weeks, we dived deeper into the literature on
expressing language using eye trackers. The goal was to combine these meth-
ods and use them on our EEG eye tracker. This posed some challenges, as
traditional eye trackers are much more precise. Section 2 goes into more detail
on this first phase of roughly 6 weeks.. For the rest of the project, we decided
to focus more on a deep learning engineering task. We aimed to build a unified
architecture which could help achieve better performance in the simple tasks
and, therefore, a better chance of predicting the path of a subject’s gaze. As a
first task, we reproduced some benchmark runs of Kastrati et al., 2021 using
classical machine learning methods as well as using more sophisticated deep
learning methods. In the following, we aimed to combine the simple task pre-
dictions into one pipeline that outputs predictions for all tasks and learns on
all tasks simultaneously. The same architecture was then used as a pretraining
pipeline for the single tasks. The exact procedure is explained in more detail
in Section 3. Section 4 describes the results of a small simulation we conducted
with the unified architecture. Section 5 concludes.
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2 Eye Based Text Entry Applications
This section discusses selected parts of the literature on gaze-based speech.
Most papers use traditional eye trackers. Hence, this chapter serves to show
what types of text entry applications using eye trackers exist. Further, we
will briefly outline the limitations of using EEG based eye trackers on such
methods. We will mention some specific methods, but also remind the reader
that many more exist in the literature. In the following, we may refer to text
entry applications as speech applications.

2.1 Categories of Text Entry Applications

There exists a plethora of methods to let a person speak with its eyes. The
first thing that may come to mind is a screen with all letters displayed on
the screen. A person then may choose letter after letter by looking at it
with some mechanism to confirm that the chosen letter is correct. While this
approach may work with precise eye trackers, it will be slow compared to more
sophisticated methods. In this section, we will mention different types of eye
trackers for speech.

According to Chen et al., 2018, the literature often divides text entry ap-
plications into two major categories: Dwell-time selection and gaze gesture
selection. Dwell-time selection consists of fixating, for example, a point on
a screen for a certain amount of time. Most importantly, methods of this
kind need high accuracy to correctly identify where the subject’s gaze is fixed
on. Further, Chen et al., 2018 explain that gaze gestures methods consist of
applications that require that the subject generates gestures using their eyes
that resemble letters or follow some specific path. This approach is followed
by Kane et al., 2008 and their keyboard called EyeWrite. Another possibility
of gaze gesture methods require the subject to steer its gaze towards the in-
tended letter as with the implementation by Ward et al., 2000, called Dasher.
The final gaze gesture application Chen et al., 2018 mention is the so called
smooth-pursuit eye-movement as implemented by Lutz et al., 2015 in their
keyboard called SMOOVS.

We may point out that there exist many more methods of gaze spellers
which, for example, are based on direct gaze pointing or dynamic context
switching. As they need even more accurate gaze positions, they are not
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suitable for EEG based eye trackers and are not discussed in more detail here.
Further, the aforementioned papers do not mention exact requirements the
eye trackers need for the keyboard, but they rely on traditional eye trackers.
Hence, we can assume an implicit need for some precision for the keyboards
to accurately work.

2.2 Gaze Gesture Approaches

In this section, we will briefly discuss two approaches in more detail. They
are chosen as both utilize a gaze gesture approach. In these two methods,
participants follow some path to write a letter. In later sections, we will link
them to our EEG based methods. The SMOOVS keyboard implemented by
Lutz et al., 2015 consists of a hexagonal layout with hexagonal tiles. In more
detail, they implemented 6 clusters which consist of letters. As soon as a
person’s gaze is pointed towards a cluster, the cluster is selected. Immediately
following, the subject then selects the correct letter in a similar cluster as
before. They argue that such a hexagonal layout, i.e., choosing the correct
hexagonal tile, is a good trade-off between accuracy and speed. As they worked
with traditional eye trackers, they could rely on high accuracy which is not
guaranteed using EEG based eye trackers. Nonetheless, we believe that such
a selection is feasible with an eye tracker based on EEG data.
EyeWrite, the implementation of Kane et al., 2008, presents the user with a
square window with 4 corners. The subject then writes letters by following
some path with the eyes. For instance, the letter "t" is written by starting at
the top left corner and then going to the top right corner and then to the lower
right corner. Again, they use a precise eye tracker for this task. Similarly, we
think that this model is suitable for an EEG based eye tracker.
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3 Unified Architecture
This chapter describes the unified architecture we developed. It also outlines
some problems and difficulties we faced or potentially could face.

3.1 Challenges

There are different ways to build a unified architecture given continuous EEG
data and given all the already implemented models in Kastrati et al., 2021.
As a first step, we aimed to implement a unified architecture for the left-
right, angle, amplitude, and position task. The final unified architecture also
included these four tasks. There are a few things we needed to pay attention
to:

• Since there already exist pipelines to predict the specific tasks (left-right,
angle, amplitude, path), we should use these. For example, we could pre-
train data on a simple task, such as the left-right task, and then use these
weights as initialization weights for another task. We later discarded this
idea in favor of pretraining on multiple tasks simultaneously

• The end goal is to combine multiple single task prediction pipelines into
a single architecture which predicts eye position most correctly. We can
use this general architecture to pretrain weights, and later use these
pretrained weights on a single task. In this thesis, we pursued this idea.

• If we want to train on all tasks simultaneously, we need to create a merged
dataset. Depending on the implementation, we may need to change the
original dataset and include an additional column which indicates from
which dataset each datapoint originally stems. This is just one possible
solution.

• Currently, each of the pipelines has some different output. For example,
the left-right prediction pipeline outputs either a 0 or a 1 indicating a
left or right gaze. For the general architecture, we need multiple outputs.
Similarly, the tasks need different loss functions. Hence, we need to
implement a general loss function which applies different losses depending
on the origin of the datapoint. Further, a more general output is needed.
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3.2 Implementation

As mentioned in Section 3.1, we had multiple ideas such as pretraining on some
single task and then use these pretrained weights as initialization weights for
another task. This chapter outlines the two approaches we started imple-
menting and the way we implemented them. In the end, we opted for the
implementation where we trained simultaneously on all the data and all the
models.

We decided to implement a simultaneous architecture for the following 4
tasks; the left-right task, the angle task, the amplitude task, and the position
task. The angle and amplitude task use the same dataset, to which we refer to
as direction dataset. In the following, we may use direction task synonymously
for angle and amplitude task. The datasets corresponding to the left-right
task and the position task may be referred to as left-right dataset and position
dataset, respectively.

To implement the simultaneous architecture, some main changes in the
original code were necessary. The first approach was to change the data loader
such that the model trains, during each epoch, with batches from all the differ-
ent datasets. For example, if epoch 1 consists of 64 batches, 20 batches could
be from the left-right task dataset, 20 batches from the position task dataset
and so on. By doing so, it will eventually train on all datasets but every batch
will contain data from only 1 sample corresponding to only 1 task (apart from
the direction dataset which corresponds to the angle and the amplitude task).
First testing worked well, but together we opted for a different approach. In-
stead of training each batch on a different dataset, we included all the datasets
within each batch to have an even more “simultaneous training” architecture.
For this to work, we included an additional column in each dataset which
specifies from which dataset each datapoint comes from. Then, all 3 datasets
were concatenated and shuffled such that the data occur in a random fashion.
As a side note, both methods are viable and there is no indisputably better
architecture.

As discussed in Section 3.1, the 4 tasks have outputs of different sizes. In
the unified architecture, we needed to change the network such that it can
output predictions for all the tasks independent of where the datapoint stems
from. Hence, the output layer was transformed in the BaseNetTorch file. This
file contains the basic implementation of a neural network and acts as a parent
class to most other deep learning models Kastrati et al., 2021 implemented.
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Instead of giving just the needed output, the network will output 5 values
corresponding to 4 tasks. The left-right task needs a 1 value output while the
direction (angle and amplitude) and position tasks need 2 valued outputs. In
more detail, the left-right task outputs whether the subject’s gaze is pointed
toward the left side of the screen or the right side of the screen. The direction
task outputs the angle and amplitude of a subject’s gaze on the screen, and
the position task output outputs the XY-coordinates of a participant’s gaze on
the monitor. For the loss calculation, only the needed output is utilized and
the rest is discarded. Small implementation details are left out at this point as
they do not contribute to understanding the architecture but are necessary for
the multiple architecture to work. Nonetheless, they are documented in more
detail in the corresponding Google doc.

Further, we needed to create a custom loss function. For example, the
performance of the position task was measured with the mean squared error
while the left-right task used the binary cross entropy criterion. At first, the
task seemed trivial but it was not clear where we should ideally implement
this differentiation. This was the main reason for adding a new column to
each dataset and, hence, to the merged dataset. Then, every data point also
contains the information for which task it is needed. This means that the same
losses were used as in the original paper.

Finally, we want to point out that we only trained on the two deep learning
models, namely CNN and Xception. This is due to them showing the best
results as explained by Kastrati et al., 2021.

3.3 Simultaneous Training and Tuning

This section describes how we arrived at the tuning parameters and what
influence they have on the result. The unified architecture model was trained
without major hyperparameter tuning. We did some testing which is not
displayed here as it was of rudimentary nature. We wanted to get a feeling
how some parameters, such as the weights of the losses in the simultaneous
training, the number of epochs, and the batch size, have on the final result.
We may also underline that no extensive parameter tuning was conducted due
to time constraints on this thesis.

With this rudimentary hyperparameter testing we conducted, we did not
arrive at hugely different results. For instance, we implemented weight tuning
as shown by Lin et al., 2021. We took this choice because the loss of the
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position task and the amplitude task were much larger in absolute values than
for the angle task and the left-right task. Therefore, the model tries to decrease
the error of the position and amplitude task more, i.e., the model focuses more
on these tasks. The weight tuning did help with decreasing the test loss for all
the 4 tasks more uniformly but, consequently, the errors of the position and
amplitude task decreased less compared to the unweighted training procedure.
We do not desire this effect as the amplitude task and the position task are
of most interest and also the hardest to learn. Even though we aimed to
achieve good generalization performance of the unified model, we did not want
to neglect these two single tasks. The number of epochs and the batch size
barely changed the results, which is another reason why we quickly stopped
tuning them in more detail.
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4 Results
In the following two sections we will discuss the results of the unified archi-
tecture. In Section 4.1, we discuss how well the unified architecture can learn
on the single tasks simultaneously. Then, in Section 4.2, we discuss the re-
sults of using the unified architecture as a weight tuning procedure to obtain
initialization weights for the single tasks using the original architecture.

4.1 Initial Results

The first results, which were conducted using the CNN and Xception mod-
els, showed some sort of training. For example, the validation loss for the
amplitude task, a subtask of the direction task as well as the position task
decreased by roughly 50%. Absolutely speaking, these results are worse than
the documented results of Kastrati et al., 2021 when training on the single
tasks. Nonetheless, this is not a bad result per se because we aimed to use
the unified model as a pretraining procedure and not as a predictor for all the
tasks simultaneously. In the following, we will discuss the results of using the
unified architecture as a pretraining pipeline for the single tasks.

4.2 Unified Model as a Pretrainer

We decided to do a small simulation to gauge how well the unified architecture
acts as a pretrainer for the single tasks. The idea is that training the model
on all the tasks and then reusing these weights can help with generalization in
the single tasks and consequently decrease error on validation/test sets. This
small simulation consists of 10 pretrained models on the unified architecture
using the full dataset. As previously mentioned, we opted for the CNN and
Xception models. The weights of the 35 epoch training procedure were then
saved and used to initialize weights on single task models. In more detail, each
of the 10 weights was used for 2 tasks, the amplitude task (part of the direction
task and direction dataset) and the position task. We took this choice as these
two were the most difficult tasks but also the two tasks of most practical
interest. In comparison, we ran the same number of tests on the same single
task models without weight initialization. Further, the models (pretrained
and non-pretrained) on the single tasks were trained with early stopping, i.e.,
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if the validation didn’t decrease for 10 consecutive epochs, training was finished
early.

The results of this mini simulation can be found in Table 1. We can see that
the average best validation loss, at the time of convergence, is independent
of the fact that we used pretrained weights to initialize the models or not.
This indicates that the initialization itself did not change the final result in
terms of absolute validation loss. It is no surprise that the results of the
models using pretrained weights are at least as good as the results of the
models with random initialization since the network can always “forget” the
old weights if changing the weights provides an error decrease. This result does
not differ between the models CNN and Xception. Overall, the models using
the pretrained initialization weights performed better in 3 out of 4 cases in the
first few epochs. This indicates that the unified architecture captured some
structure which turns into better performance than random initialization in
the early stages of training. As training progresses, this effect diminished and
pretraining had no positive effect anymore. To add, convergence happened
faster twice for the pretrained model and twice for the non-pretrained models.
Hence, we cannot make a statement about convergence speed.

Table 1: This table presents the results of the conducted simulation. The
first three columns contain the averaged training losses at the cor-
responding epochs. The fourth column contains the best averaged
validation loss.

Epoch 1 Epoch 2 Epoch 30* Best Val-Loss Converged after

M1 112350 105288 31037 28098 39.5 Epochs
M2 123483 121399 31423 26261 47.5 Epochs
M3 122565 119683 31099 27834 50.8 Epochs
M4 119309 109095 26454 26009 38.75 Epochs
M5 139539 124308 36588 33198 39.25 Epochs
M6 81953 49376 35506 32548 33.2 Epochs
M7 149752 133178 35757 31347 48.4 Epochs
M8 113046 100473 34495 31347 30 Epochs

Note:
M1: CNN model on amplitude task with pretrained weights
M2: Xception model on amplitude task with pretrained weights
M3: CNN model on amplitude task with random initialization
M4: Xception model on amplitude task with random initialization
M5: CNN model on position task with pretrained weights
M6: Xception model on position task with pretrained weights
M7: CNN model on position task with random initialization
M8: Xception model on position task with random initialization
* if the model converged earlier, the loss at the last trained epoch was used
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4.3 Discussion

We have seen that our unified architecture does not improve performance in
such a way that an EEG based eye tracker built on top of our models could
replace a traditional eye tracker. While the unified architecture does capture
signal of all the tasks, it does not produce a better end results. Further, in
previous works of Kastrati et al., 2021, they have not implemented a task
in which subjects follow a path. Consequently, we cannot say with certainty
if the methods we saw in Section 2 can be used with our EEG based eye
tracker. Nonetheless, they do not need extremely high precision. This question
is best answered by conducting additional studies. Similar to the discussed
speech applications, most other eye tracking based text entry applications use
traditional eye trackers.
On the other hand, further studies may extend the unified architecture by new
models. For example, Wolf et al., 2022 have developed new pipelines which
could be used for extending the unified architecture and that could make EEG
based eye tracking more precise.
Finally, we point out that we cannot conclude whether a unified architecture
brings us closer replacing traditional eye trackers with EEG based systems for
speech.
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5 Conclusion
The unified architecture showed some interesting results. As expected, it was
possible to train and decrease the error metrics even when training simultane-
ously on multiple tasks, but training was not as fruitful as we desired. This
can possibly be improved upon by including the segmentation pipeline, im-
plemented by Wolf et al., 2022, as well. Using the unified architecture as a
pretraining pipeline showed mixed results. As we did not conduct extensive
parameter tuning or testing, we propose that further studies implement si-
multaneous architectures and try to achieve better performance. Further, we
suggest that using different structures may also show different results. Differ-
ent combination of the tasks, i.e., using the segmentation and the position task
in a unified architecture, may show different results as well. Finally, we did
not include all the deep learning models. Hence, other models, either for pre-
training or final prediction on single tasks, could possibly show better results.
We encourage further studies to analyze and develop these and other distinct
strategies with the goal of a better single task performance. Nonetheless, we
believe that the models discussed in Section 2 can be used using the archi-
tecture implemented by Kastrati et al., 2021. Further studies may conduct
experiments which analyze these models using EEG data. Finally, we remark
that it is uncertain whether achieving traditional eye tracking performance us-
ing EEG data is feasible using the models Kastrati et al., 2021 implemented.
It is possible that a completely different approach is needed for this goal.
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