
Distributed
 Computing

Towards Multi-Hop Open-Domain
Question Answering by Dense Retrieval

Bachelor’s Thesis

Jie Ji
jiejijie@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:

Zhao Meng
Prof. Dr. Roger Wattenhofer

August 11, 2022

Acknowledgements

First and foremost, I would like to express my deepest appreciation to my super-
visor Zhao Meng for guiding me through this entire journey, always being kind,
patient, and supportive when I encountered all kinds of difficulties. Without his
assistance and creative ideas, this thesis would have never been accomplished.

I would also like to thank Prof.Dr. Roger Wattenhofer and the Distributed
Computing Group for providing me the opportunity and also technical support
to complete this work.

Further, I am very grateful to my good friend Jinfan Chen for always being
by my side, helping me with the details of this thesis.

Lastly, I would like to thank my cat Aki for all the entertainment and emo-
tional support.

i

Abstract

One of the ultimate goals of AI is to design a technology that enables intelli-
gent systems to "think" independently like humans. The task of Open-Domain
Question Answering (OpenQA) [1] is exactly such an example: Given a question
in natural language, the system should return an exact answer to the question.
This can be realized through a two-stage process: A retriever will first output a
certain amount of relevant passages retrieved from an extensive collection of doc-
uments. Then a reader will identify and extract the final answer from the relevant
passages. However, the retrieval step is a bottleneck when facing a large-scale
resource of contexts and it becomes a particularly challenging task in case of
OpenQA. Furthermore, recent success on simple OpenQA tasks has shifted the
focus to more complex settings: the Multi-hop QA. Although this has been an
active research area, most existing works focused on maximizing model retrieval
accuracy with a fixed number of reasoning steps. In real-world scenarios, how-
ever, a system will not be informed of the number of reasoning steps required to
answer a question. We consider this as a problem that cannot be ignored and
intend to develop a uniform end-to-end trainable QA system using the dense re-
trieval setting. After various attempts, we conclude that such a system is hard to
realize by training a dense retrieval model on combined datasets. Nevertheless,
we provide an alternative solution based on our success in question hop classi-
fication, which can be further adapted for improvements but is generally more
complex.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 OpenQA . 1

1.1.1 Retriever . 2

1.1.2 Reader . 3

1.2 Multi-hop QA . 3

1.3 Task Description . 4

2 Related Work 5

2.1 Encoder Models . 5

2.1.1 BERT . 5

2.1.2 RoBERTa . 6

2.2 OpenQA Models . 7

2.2.1 DPR . 7

2.2.2 MDR . 8

2.3 Datasets . 10

2.3.1 Natural Questions . 10

2.3.2 SQuAD Open . 10

2.3.3 HotpotQA . 10

2.3.4 BeerQA . 10

3 Methodology 12

3.1 Pre-processing . 12

3.1.1 Wikipedia Pre-processing 12

3.1.2 Generation of hard negatives using TF-IDF 12

iii

Contents iv

3.1.3 Dataset construction . 13

3.2 Training . 14

4 Experiments and Results 18

4.1 Experiments on BeerQA . 19

4.2 Experiments on NQ-HotpotQA 21

4.3 Question Hop Classification . 23

4.4 Pipeline System . 24

5 Conclusion and Future Work 26

5.1 Conclusion . 26

5.2 Future Work . 27

Bibliography 28

Chapter 1

Introduction

Question answering (QA) is a computer science topic within the domains of in-
formation retrieval and natural language processing (NLP) that focuses on the
development of systems, which can provide precise answers in response to ques-
tions submitted by humans in natural language.

Compared to a search engine, the QA system tries to explicitly deliver the
ultimate answer to a query rather than presenting a list of relevant snippets
or hyperlinks, hence providing more user-friendliness and efficiency. Since hu-
man knowledge is commonly stored in vast text collections, QA is essential for
both human and intelligent systems to access such knowledge. Numerous web
search engines nowadays, such as Google and Bing, have also incorporated QA
approaches into their search functionality.

With these techniques, search engines may now provide exact responses to cer-
tain types of queries. According to the type of information source, QA tasks may
be roughly divided into two sectors: Knowledge Base (KB)-QA and Textual QA.
Compared to KB-QA, which extracts answers from a predefined structured KB,
Textual QA mines answers from unstructured text materials, such as Wikipedia,
news articles and science books, etc. In recent years, Textual QA is mainly stud-
ied under the task setting of Open-domain Question Answering (OpenQA) [1],
which we will be focusing on in this thesis.

1.1 OpenQA

OpenQA aims to answer a given question without any specified context. While
the traditional architecture of OpenQA systems is often complex and comprises
several components, a much simplified two-stage framework has been developed
for the modern OpenQA: 1) A context retriever retrieves the most relevant pas-
sages to a question from a large corpus. 2) A machine reader examines the
retrieved context and identifies the position of the correct answer. In the recent

1

1. Introduction 2

decade, deep learning techniques have been successfully applied to OpenQA,
which enables the system to be end-to-end trainable. In the following subsec-
tions, we would like to explain in detail the retriever and reader stages.

Figure 1.1: An illustration of "Retriever-Reader" architecture of OpenQA sys-
tems

1.1.1 Retriever

Current methods of Retriever may be broadly categorized into three groups:
Sparse Retriever, Dense Retriever, and Iterative Retriever.[2] Sparse Retriever
refers to systems that search for relevant documents using traditional Informa-
tion Retrieval techniques, such as BM25 [3] and TF-IDF, which will be detailed
in a later chapter. However, sparse retriever systems often suffer from “term-
mismatch”, i.e. synonyms or semantically similar words, consisting of completely
different tokens, will not be treated as similar, which results in low retrieval effec-
tiveness. Alongside the success of deep learning in recent years, neural retriever
models such as dense retrievers have been developed to perform better encoding
for latent semantics, resulting in vastly increased retrieval efficiency and accu-
racy. An example of the dense retriever we would like to consider in this thesis is
the Dense Passage Retriever (DPR) [4], which is a representation-based retriever
model consisting of two independent encoders like BERT [5]. However, the two
retriever models mentioned above are not capable of solving complex questions
like those requiring multi-hop reasoning. Iterative Retriever, also called Multi-
step Retriever, aims to tackle this problem while searching for the relevant doc-
uments from a large collection in multiple steps given a question. An example
related to our work would be the Multi-hop Dense Retriever (MDR) [6], which
was designed based on the architecture of DPR and introduced a new strategy
to retrieve contexts in multiple steps.

1. Introduction 3

1.1.2 Reader

Apart from the retriever, a reader is also required to build an end-to-end QA
system. The reader is commonly implemented in two different types: Extractive
readers and generative readers. Extractive readers presume that solutions can be
found in the context and attempt to anticipate the start and end tokens based
on the context [4]. In contrast, generative readers are not constrained by the
input context and may produce responses freely token by token utilizing the
complete vocabulary in an autoregressive way. [7] Although generative readers
have shown great performance on single-hop OpenQA tasks, extractive readers
slightly outperform them on multi-hop QA datasets.

1.2 Multi-hop QA

Recent accomplishments on simple QA tasks have turned the research emphasis
to more complicated contexts. Multi-hop QA has been extensively studied in
recent years. The notion of “multi-hop question” refers to questions requiring
multiple reasoning steps to retrieve the contexts containing the correct answer.

Figure 1.2: An example of open-domain multi-hop question from HotpotQA

It can be surprising that something that seems relatively trivial may be com-
pletely confusing for modern AI systems. The ability to respond to multi-hop
queries and execute multi-step reasoning may greatly enhance the usefulness of
NLP systems. It also has various practical applications in the real world: Cur-
rent web search engines often need multi-hop reasoning to locate relevant pages
in response to queries. Additionally, interactions between people and bots may
be more natural and instructive. By using multi-hop reasoning models, user sat-
isfaction may be significantly enhanced. Therefore we argue that solving the task
of Multi-hop QA is a crucial challenge, especially in the domain of OpenQA.

1. Introduction 4

1.3 Task Description

Despite the fact that Multi-hop QA has been an active research area in NLP in
recent years, most of the existing works only focus on improving the retrieval ef-
fectiveness while training and on datasets with a fixed number of reasoning steps.
Well-known models such as ORQA [8], DPR [4], PathRetriever [9] and SPARTA
[10] mainly focused on single-hop datasets, others such as GoldEn Retriever [11],
Graph Recurrent Retriever [9] and DrKIT [12] investigated 2-hop datasets. How-
ever, in practical usage, a QA system will normally not be informed of how many
reasoning steps it should take to answer a given question. Therefore in this the-
sis, we aim to tackle this problem by building an uniform retriever model trained
on both single- and multi-hop datasets. We decide to build our model based on
the dense retrieval method and make modifications to the model MDR, which
already achieved an overall good performance in the multi-hop QA setting. Fur-
thermore, we aim to identify the unknown number of question hops by training
a classifier based on the output context embeddings generated from our retriever
model.

Model NQ (1-hop)

BM25+BERT 26.5
ORQA 33.3
SPARTA 36.8
PathRetriever 32.6
DPR 41.5

Table 1.1: Comparison of end-to-end QA(Exact Match) Accuracy of different
models evaluated on NQ.

Model HotpotQA (2-hop)

GoldEn Retriever 26.5
Graph Recurrent Retriever 60.0
DrKIT 41.5
Transformer-XH 51.6
MDR 62.3

Table 1.2: Comparison of end-to-end QA(Exact Match) Accuracy of different
models evaluated on HotpotQA.

Chapter 2

Related Work

2.1 Encoder Models

The retriever model we employ in this thesis relies on third-party libraries for
encoder code implementations. Thus we would like to include a brief introduction
of the encoder models related to our work in the following subsections.

2.1.1 BERT

BERT (Bidirectional Encoder Representation from Transformers) [5] is a transformer-
based model, achieving state-of-the-art results in a wide variety of NLP tasks,
including Question Answering, Sentiment Analysis, Natural Language Inference,
and others. The key technical innovation of BERT is applying the bidirectional
training of Transformer, an attention mechanism that learns contextual relations
between words in a text, to language modeling. Unlike general transformers con-
sisting of an encoder and a decoder network, BERT only uses encoders and stacks
them on top of each other.

Training a BERT model is usually done in two phases: First, we pretrain
BERT to understand language. The second phase is fine-tuning it in a supervised
fashion using a relatively small amount of labeled training data. This process
enables BERT to learn specific tasks depending on the problem we want to solve.
During Pretraining Phase, Bert learns language by training on two unsupervised
tasks simultaneously: Masked Language Modeling (MLM) and Next Sentence
Prediction (NSP). For MLM, BERT converts a sentence into tokens and uses the
token representation as input and output. Then random tokens will be masked
during training and the objective is to learn a function that can predict the correct
identities of the masked tokens. In the case of NSP, BERT takes in two sentences
and determines if the second sentence actually follows the first. This helps BERT
understand context across different sentences themselves. Training MLM and
NSP objectives simultaneously allow BERT to obtain a good understanding of
language.

5

2. Related Work 6

Figure 2.1: An overview of the pre-training and fine-tuning procedures for BERT

2.1.2 RoBERTa

RoBERTa (Robustly Optimized BERT Pretraining Approach) [13] is a retraining
of BERT with improved training methodology, 1000% more data and compute
power. As stated above, BERT relies on randomly masking and predicting tokens.
The masking is only performed once during data preprocessing. RoBERTa claims
to improve MLM with a dynamic masking strategy, where a masking pattern
will be generated every time when a sequence is fed to the model. Additionally,
experiments and results from RoBERTa have shown that removing the NSP task
will slightly improve the downstream task performance. The training process was
also shown to be more effective with larger batch-training sizes and some modified
hyperparameters. Since RoBERTa has shown an overall better performance, also
on the dataset SQuAD Open [14] we include in our experiments, we decide to
maintain the encoder training in MDR with RoBERTa.

Model
SQuAD 2.0 (SQuAD Open)
EM F1

BERTLARGE 79.0 81.8
RoBERTa 86.5 89.4

Table 2.1: A comparison of results on SQuAD Open using BERT and RoBERTa
from [13]

2. Related Work 7

2.2 OpenQA Models

2.2.1 DPR

The retrieval step in the first stage is usually implemented with sparse vector
retrievers such as TF-IDF or BM25. In contrast, it would be difficult for these
term-based systems to retrieve contexts for questions containing latent seman-
tics. Synonyms or semantically similar words, consisting of completely different
tokens, will not be treated as identical. In this case, a dense retrieval system
outperforms a normal term-based system in matching synonyms and retrieving
the correct contexts. Therefore we would like to introduce the findings in DPR.

DPR [4] is implemented based on a two-stage framework: 1) A context re-
triever retrieves the most relevant passages to a question from a large corpus. 2)
A machine reader examines the retrieved context and identifies the position of
the correct answer. Research in DPR mainly focused on improving the retrieval
step in the first stage.

For the retriever, DPR uses a dense encoder EP (·), which maps all text pas-
sages p in d-dimensional real-valued vectors. Given a batch of input questions
q, DPR applies a different encoder EQ(·), which also maps the questions to d-
dimensional vectors. The similarity of the input question and each passage in
the corpus is defined as

sim(q, p) = EQ(q)
TEP (p) (2.1)

Passages with the top-k highest similarity score will be retrieved as results and
will be passed to the next stage. DPR relies on third-party libraries for encoder
code implementations. In this thesis, we would like to test DPR using two in-
dependent BERT networks (base, uncased) and take the representation at the
[CLS] token as the output vector, resulting in d = 768.

During inference, the similarity match could normally take hours to days due
to the large-scale corpus passages. Therefore we employ FAISS [15] offline for ef-
ficient similarity search and dense vector clustering. This helps us to significantly
speed up the inference process.

DPR aims to train the encoders by learning a better embedding function, that
generates a vector space in which relevant pairs of questions and passages have
a lower distance (i.e., higher similarity) than irrelevant pairs. During training,
DPR carefully designs the ways to select negative samples to a question. It uses
an in-batch-negative training method: Assume that we have n questions qi in a
batch, each associated with a relevant (positive) passage p+i . Let Q and P be
the (n × d) matrix of question and passage embeddings in batch. S = QPT is

2. Related Work 8

then a (n × n) matrix of similarity scores, whereas only the diagonal elements in
this similarity matrix correspond to the similarity score of the question qi and its
positive matching passage p+i . Formally speaking, any (qi, pj) pair is a positive
example when i = j, and negative otherwise.

2

6664

— q1 —
— q2 —

...
— qn —

3

7775
⇥

2

6664

| | |

p+1 p+2 · · · p+n

| | |

3

7775
=

2

6664

s11 s12 · · · s1n
s21 s22 · · · s2n
...

...
sn1 sn2 · · · snn

3

7775

For each question, we optimize the loss function as the negative log likelihood
of its positive passage:

L(qi, p
+
i , p

�
i,1, · · · , p

�
i,n�1) = �log

esim(qi,p
+
i)

esim(qi,p
+
i) +

Pn�1
j=1 e

sim(qi,p
�
i,j)

(2.2)

This strategy helps us to reuse computation and reduce computation com-
plexity while achieving great performance. DPR suggests that its best model uses
the in-batch negatives and one additional hard negative passage: A passage re-
trieved by BM25 for each question, which functions as a false adversarial passage.
Compared to the non-trainable traditional sparse retrievers, DPR can outperform
it by fine-tuning the question and passage encoders on existing question-passage
pairs from different datasets.

However, the DPR model is often trained and evaluated on exclusively single-
hop questions, whereas in practice, we would possibly encounter questions con-
taining multiple hops. Therefore we would like to introduce further findings from
MDR in the next subsection.

2.2.2 MDR

Since DPR has only been trained to answer simple questions requiring a single
piece of text evidence, MDR [6] suggests a new strategy base on the in-batch-
negative training method in DPR to answer multi-hop questions. Since the pro-
cess of answering such questions may be sequential, single-shot retrieval methods
are inadequate. Instead, iterative procedures are required to extract new infor-
mation recursively at each step.

Akin to DPR, the retrieval in MDR is implemented as the maximum inner
product search over the dense representations. Additionally, a new query repre-
sentation is constructed based on previous results at each retrieval step. At time

2. Related Work 9

step t > 1, MDR simply concatenates the question and the retrieved passages as
the new question. Then the new question will be fed into the encoder to generate
embeddings for the next retrieval step. Instead of using a bi-encoder architecture
with independent query and context encoders as in DPR, the results in MDR
have shown that a shared encoder for both query and context embedding gener-
ation would lead to better performance. Therefore a shared RoBERTa-base [13]
encoder is used during training and inference.

During training, MDR also applies the in-batch-negative method with one ad-
ditional hard negative passage for each question. Instead of using BM25, MDR
obtains hard negatives from TF-IDF retrieved passages. For inference, the entire
corpus will first be encoded and then indexed by FAISS. The inference is based
only on the dense passage index and the query representations. Explicit graph
creation with hyperlinks or entity linking is not required.

Another key aspect we can conclude from the experiments in MDR is that
the order of the passage chain is important for efficient retriever training. The
used dataset, HotpotQA [16], contains two different types of 2-hop questions:
1) bridge questions in which a certain intermediate passage must be retrieved
in order to reach the final passage containing the answer, and 2) comparison
questions in which two entities will be concurrently referenced and compared.
Results show it is necessary to obtain the correct retrieving order for bridge
questions. Nevertheless, there is still a gap in retrieval performance between
bridge and comparison questions. Since in comparison questions, both entities
needed for retrieval are present, it is generally easier to achieve a higher retrieval
accuracy.

Figure 2.2: An overview of the multi-hop dense retrieval approach

2. Related Work 10

2.3 Datasets

In this section, we would like to introduce some common datasets used in experi-
ments in OpenQA, which we will be focusing on later in our experiments as well.
The statistics of the datasets we use in our experiments will be presented in the
Methodology chapter since we will modify and create a new dataset consisting of
the following datasets.

2.3.1 Natural Questions

Natural Questions (NQ) [17] is a dataset designed for end-to-end question an-
swering. It consists of real anonymized, aggregated questions mined from the
Google search engine. The answers were spans in Wikipedia articles identified
by annotators. In our experiments we used preprocessed NQ from DPR, con-
taining the positive context, which refers to the Wikipedia article containing the
answer, and hard negative contexts generated by BM25 that do not contain the
answer. The hard negative contexts were paired with similarity scores and listed
in descending order.

2.3.2 SQuAD Open

Stanford Question Answering Dataset Open (SQuAD Open) [14] is a well-known
benchmark dataset for reading comprehension. Annotators were asked to write
questions that can be answered after reading a given Wikipedia article. Although
SQuAD Open was popular and often used in previous OpenQA research, it is not
ideal since most questions are relatively trivial and the data was collected from
only 500+ Wikipedia articles. The distribution is therefore fairly biased. For a
fair comparison to previous work, we still include this dataset in our experiments
since it is contained in BeerQA.

2.3.3 HotpotQA

HotpotQA [16] is a question-answering dataset featuring 2-hop questions, which
means that for each question, two passages must be retrieved to ensure enough
information for the answer. HotpotQA uses documents from Wikipedia and also
provides ground truth support passages for each question. This enables us to
also evaluate the intermediate retrieval performance.

2.3.4 BeerQA

BeerQA [18] has been designed for both single- and multihop training for OpenQA
systems. The training and the development dataset are a combination of SQuAD

2. Related Work 11

Open and HotpotQA. Due to an updated version of Wikipedia and consequently
title mismatch, 22,328 examples from SQuAD Open and 18,649 from HotpotQA
will be discarded. Furthermore, 530 newly annotated questions requiring at least
3 retrieval steps have been added as the new test set. This can be used to evaluate
the generalization capabilities of QA models with respect to unanticipated events.

Chapter 3

Methodology

3.1 Pre-processing

3.1.1 Wikipedia Pre-processing

For passage retrieval during inference, we use the English Wikipedia dump from
Aug.1, 2020, as the source documents. Since original Wikipedia pages may in-
clude useless links and other distracting information such as tables, info-boxes,
and lists, we use the code from WikiExtractor1 to extract clean text from the
entire Wikipedia corpus. Eventually, this results in 15,241,713 passages, each
also prepended with the title of the original Wikipedia article.

3.1.2 Generation of hard negatives using TF-IDF

Unlike the dataset HotpotQA, hard negative contexts were not provided in BeerQA.
Since we would like to make modifications to MDR, it is necessary to obtain
hard negatives using TF-IDF, the same method of hard negatives generation as
in MDR.

TF-IDF is an abbreviation for term frequency-inverse document frequency,
which is a numerical statistic that is meant to indicate a word’s importance to a
document in a corpus. The term TF stands for the relative occurrence of term t
within document d :

TF (t, d) =
ft,dP

t 02d ft 0,d
(3.1)

And IDF is the inverse of the document frequency which measures the infor-
mativeness of term t:

IDF (t,D) = log
N

|{d 2 D : t 2 d}| (3.2)

1https://github.com/attardi/wikiextractor

12

3. Methodology 13

N stands for the total number of documents in the corpus N = |D|. On the other
hand |{d 2 D : t 2 d}| refers to the number of documents in which the term t
appears. It is also common to adjust the denominator to 1 + |{d 2 D : t 2 d}|
to avoid division-by-zero. Due to the large scale of the Wikipedia corpus, we use
the code provided in [9] to efficiently generate hard negatives by TF-IDF.

3.1.3 Dataset construction

In order to maintain the overall training architecture from MDR, we adjusted
BeerQA to the same structure as HotpotQA used in MDR. As mentioned in the
previous chapter, the retrieving order is important for multi-hop questions, es-
pecially for bridge questions. Since the bridge title of the intermediate linking
ground-truth passage is not given in BeerQA, we try to match and identify bridge
titles from the same question in HotpotQA. Due to an updated version of the
Wikipedia corpus, we discarded 200+ and 50+ unidentified samples from the
training and development set respectively.

SQuAD Open (1-hop) HotpotQA (2-hop) 3+ Hop Total
Train 59,285 74,542 0 133,827
Dev 8,132 5,971 0 14,103
Test 8,424 5,978 530 14,932
Total 75,841 86,454 530 162,825

Table 3.1: Statistics of the modified BeerQA.

Since the content of the single-hop QA dataset SQuAD contained in BeerQA
is relatively biased, we also construct a new dataset, replacing SQuAD with the
cleaned, preprocessed NQ, provided in DPR. Same as above, we filter out uniden-
tified samples from the training and development set respectively, which results
in the following dataset. For simplicity, we call this dataset NQ-HotpotQA. Note
that we did not include 3+ hop questions from both datasets in our experiments,
since MDR was not designed to include the training of 3+ hop questions.

NQ (1-hop) HotpotQA (2-hop) Total
Train 58,644 74,542 133,422
Dev 6,515 5,971 12,486
Total 65,196 86,454 145,908

Table 3.2: Statistics of our newly generated dataset.

3. Methodology 14

Figure 3.1: Distribution of datasets contained in BeerQA and NQ-HotpotQA

3.2 Training

During training, we used the RoBERTa model provided by Hugging Face2 as a
shared encoder for both questions and passages embedding generation. Instead
of feeding the text directly into the model, we first use a matching tokenizer
from Hugging Face to preprocess text into a format that is understandable to the
model. The tokenizer will split the text into words called tokens. As the next
step, it will convert these tokens into numbers in order to construct a tensor as
the input to the model. The numerical representation of the tokens can be un-
derstood as the model’s vocabulary. Taking these as the input, the model returns
for each input sample a (1 × d) tensor, which is also called embedding. Using
the RoBERTa model mentioned above results in d = 768.

For the 1st-hop we compute the cross entropy loss of all samples in the batch.
Let Q be a (n × d) matrix of question embeddings {q1, q2, · · · , qn}, each with
shape (1 × d). We construct a (2n × d) matrix P, which concatenates the
embeddings of 1st-hop and 2nd-hop positive passages paired to each question.
We use the notation p+m,j to denote the embedding of mth-hop positive passage
to the j th question. Applying the matrix multiplication S = QPT, the result is
a (n × 2n) matrix of similarity scores. The notation sm,ij is defined as sm,ij =
sim(qi, pm,j). Any similarity score sm,ij is a result of a correctly paired example
only when i=j. For clarity we also marked these examples with s+m,ij .

2https://huggingface.co/roberta-base

3. Methodology 15

2

6664

— q1 —
— q2 —

...
— qn —

3

7775
⇥

2

6664

| | | | | |

p+1,1 p+1,2 · · · p+1,n p+2,1 p+2,2 · · · p+2,n

| | | | | |

3

7775
=

2

6664

s+1,11 s1,12 · · · s1,1n s+2,11 s2,12 · · · s2,1n
s1,21 s+1,22 · · · s1,2n s2,21 s+2,22 · · · s2,2n

...
...

...
...

s1,n1 s1,n2 · · · s+1,nn s2,n1 s2,n2 · · · s+2,nn

3

7775

For each question qi we also select two hard negative passages {p�i,1, p
�
i,2} and

compute the similarity score of them. This results in a (n × 2) matrix. We
denote the similarity score of the ith question and j th hard negative passage
with s�i,j . As next step, we concatenate this matrix with the matrix S mentioned
above, resulting in the following matrix representation:

2

6664

s+1,11 s1,12 · · · s1,1n s+2,11 s2,12 · · · s2,1n s�1,1 s�1,2
s1,21 s+1,22 · · · s1,2n s2,21 s+2,22 · · · s2,2n s�2,1 s�2,2

...
...

...
...

...
...

s1,n1 s1,n2 · · · s+1,nn s2,n1 s2,n2 · · · s+2,nn s�n,1 s�n,2

3

7775

The loss function can then be written as:

LCE = �
nX

i=1

ti
es

+
1,i=j

P2
m=1

Pn
j=1 e

sm,ij + es
�
i,1 + es

�
i,2

(3.3)

where ti = {1, 2, · · · , n} denotes the truth label.

For the second hop, we filter out single-hop questions and will only consider
the multi-hop questions in our batch. In order to reformulate the question repre-
sentation to account for previously retrieved contexts, we concatenate the original
question qi and the first-hop positive passage p+1,j=i as the new question represen-
tation q0i for second-hop retrieval and will be fed into the encoder model. Again
we construct a similarity matrix based on these new reformulated multi-hop ques-
tions only and compute the loss function the same as before. In the end, we add
up the first-hop and the second-hop loss together as the final loss. For all our
experiments we trained the encoder for up to 10 epochs with a learning rate of

3. Methodology 16

10�5 using Adam optimizer, linear scheduling with warm-up and dropout rate 0.1.

Since the retrieval accuracy will be strongly influenced by the quantity and
the quality of the negative contexts provided in the same batch, the in-batch-
negative setting requires a relatively large batch size for efficient encoder training.
Note that gradient accumulation will not result in greater performance in this
case. In order to increase the batch size without running out of memory, we
came up with the idea to decrease the "max_c_len" parameter, which indicates
the maximum length of the context to be tokenized. The part of the context
that exceeds this maximum length will then be truncated. However, we should
not select this parameter too small since this could possibly cause information
loss and affect training performance. Therefore, we took a few experiments using
MDR training on HotpotQA. For evaluation, we used the metric Mean Reciprocal
Rank (MRR) defined as:

MRR =
1

Q

QX

i=1

1

ranki
(3.4)

For a single query q, the reciprocal rank 1
rank refers to the position of the

positive passage paired to q among all retrieved passages. If the positive passage
does not appear in the retrieved passages, the reciprocal rank is then 0. For
multiple queries Q, MRR is the mean of the Q reciprocal ranks.

Based on the result shown in Figure 3.1, we claim that a slightly reduced
maximum length of tokenization from 300 to 250 will not have much impact on
the overall training performance. Hence we reduced 50 for both context and the
reformulated second question maximum tokenization length. The largest batch
size we could achieve using our modified MDR is 90 and we decide to conduct all
our experiments with this fixed batch size.

3. Methodology 17

Figure 3.2: MRR evaluation on HotpotQA development set during training

The model will first be trained using 8 Geforce RTX 3090 GPUs. As the
next step, we generate embeddings and FAISS index using the trained model
for all articles from the preprocessed Wikipedia corpus. Lastly, we will encode
each question in the development set and perform the similarity match between
questions and contexts by applying the IndexFlatIP from FAISS and evaluate
the result using our predefined metrics. The entire process will normally take
one or one and a half days.

Chapter 4

Experiments and Results

We conduct our experiments on both BeerQA and our new dataset NQ-HotpotQA.
The following metrics are defined for retrieval performance evaluation

P (Average Precision): whether one of the supporting passages is included in
all retrieved passages;
P-EM (Average Path Exact Match): whether both supporting passages are
included in all retrieval passages;
1-R (Average 1-Recall): whether 1st-hop retrieved passage match the ground
truth supporting passage;
PR (Average Path Recall): whether any of the top-k retrieved chain extract
match the ground-truth supporting passages.

During Inference, we compute the retrieval accuracy of top-k retrieved docu-
ments with fixed k = 2 in percentage. For efficient similarity search, we apply the
exact inner product search index (IndexFlatIP) from FAISS to index the embed-
dings of the questions and our preprocessed Wikipedia corpus.To better visualize
our results, we also provide for each experiment a bar chart including the result
of the two most important metrics: The 1-R (Average 1-Recall) and the PR (Av-
erage Path-Recall), representing the retrieval accuracy for the 1st-hop and both
hops respectively. Note that in this case, we choose PR instead of P-EM, since
the order of the retrieved documents is essential for the downstream tasks.

18

4. Experiments and Results 19

4.1 Experiments on BeerQA

We first keep the original code provided by MDR unmodified. This means, re-
gardless of the different types of questions, we compute the loss as the sum of
first-hop and second-hop loss of all the samples. For single-hop questions, we
simply concatenate the question and its positive passage as the new question for
second-hop retrieval. Since in single-hop samples only one positive passage is
provided, we treat this passage as both the first- and the second-hop positive
passage paired to the question.

During inference, we evaluate the retrieval performance on the development
set according to the question types: comparison, bridge, and single-hop. Com-
pared to the result of MDR trained on HotpotQA only, we observe a slight fall
in all metrics evaluated on 2-hop questions. We also notice that the case of com-
parison questions proves easier in general. This can be explained by the fact that
both entities needed for the retrieval are present in comparison questions. On
the other hand, MDR achieved a remarkably low accuracy in single-hop question
retrieval.

Figure 4.1: Bar chart of results from Table 4.1

MDR trained on HotpotQA MDR trained on BeerQA
Type Comparison Bridge Comparison Bridge Single-hop
P 98.8. 73.4 96.9 67.5 –
P-EM 90.9 47.9 82.8 41.1 –
1-R 92.7 65.4 86.3 60.0 3.3
PR 90.5 47.5 82.4 40.8 –

Table 4.1: A comparison of retrieval performance of MDR trained on HotpotQA
and BeerQA

4. Experiments and Results 20

The next step is modifying MDR as introduced in section 3.2. During training,
single-hop questions will only be accounted for while computing the first-hop loss,
whereas multi-hop questions will be considered in both cases as usual. Although
the result has slightly improved for all kinds of questions, single-hop retrieval
accuracy still remains low. The improvement is far worse than anticipated and
almost negligible.

Figure 4.2: Bar chart of results from Table 4.2

MDR trained on BeerQA Modified MDR trained on BeerQA
Type Comparison Bridge Single-hop Comparison Bridge Single-hop
P 96.9 67.5 – 98.4 71.1 –
P-EM 82.8 41.1 – 88.9 44.0 –
1-R 86.3 60.0 3.3 92.4 63.5 4.3
PR 82.4 40.8 – 88.7 43.5 –

Table 4.2: A comparison of retrieval performance of the original MDR and our
modified MDR trained on BeerQA

After excluding other potentially relevant factors, we speculate that the choice
of the dataset may have contributed to such a result. The single-hop questions in
BeerQA were selected from SQuAD Open, in which most questions are compar-
atively trivial and based on only 500+ Wikipedia articles. This also means that
multiple questions are made from the same article, which makes the distribu-
tion fairly biased and could greatly influence the final retrieval result. To better
simulate real-life scenarios, we conduct further experiments on our new dataset
NQ-HotpotQA, which we introduced in the previous chapter.

4. Experiments and Results 21

4.2 Experiments on NQ-HotpotQA

Again, we train the original MDR model and our modified MDR model on the new
dataset NQ-HotpotQA and evaluate their performance on the development set.
Surprisingly, the Average 1-Recall of single-hop data declines under our modifica-
tion. In contrast, the Average Path Recall of multi-hop data experienced a slight
growth. Nevertheless, the single-hop question retrieval accuracy still remains low.

Figure 4.3: Bar chart of results from Table 4.3

MDR trained on Modified MDR trained on
NQ-HotpotQA NQ-HotpotQA

Type Comparison Bridge Single-hop Comparison Bridge Single-hop
P 95.6 62.4 – 96.3 67.5 –
P-EM 78.8 35.7 – 84.3 37.9 –
1-R 82.2 52.5 6.3 87.9 59.9 2.5
PR 78.1 35.3 – 83.8 37.3 –

Table 4.3: The retrieval performance of the original MDR trained on our new
dataset (NQ-HotpotQA), taking the loss of both retrieval steps into account,
compared to taking only the first-hop loss into account.

Based on previous results, we decide to further investigate whether it is caused
by our modifications on MDR or if it is simply not feasible to train MDR with a
mixed dataset. Hence we designed another experiment to train MDR to retrieve
only once, i.e. computing only the first-hop loss in our loss function for all kinds
of question samples. We then compare its results with the original MDR. As fig-
ure 4.4 illustrated, 1-R increases, and as the consequence of training the model to
only retrieve once, PR falls drastically. Even then, single-hop retrieval accuracy

4. Experiments and Results 22

remains low as always.

Figure 4.4: Bar chart of results from Table 4.4

MDR (retrieving twice) MDR (retrieving once)
Type Comparison Bridge Single-hop Comparison Bridge Single-hop
P 95.6 62.4 – 92.1 69.0 –
P-EM 78.8 35.7 – 41.5 5.3 –
1-R 82.2 52.5 6.3 91.8 68.2 3.4
PR 78.1 35.3 – 3.3 1.6 –

Table 4.4: The retrieval performance of the original MDR compared to MDR
trained to retrieve only once.

To ensure that MDR also works well on single-hop datasets, we trained MDR
on NQ only, computing only the first-hop loss as the overall loss. Furthermore,
we also trained MDR on NQ-HotpotQA, however this time only taking the first-
hop loss into account. We compare the single-hop retrieval results in table 4.5
and discover that the single-hop retrieval performance will strongly deteriorate
if we use the embeddings computed from the model trained on a mixed dataset
(i.e. containing both single-hop and multi-hop data), no matter in which way
we design the training procedure. Therefore we conclude that it is unfeasible to
train a uniform model as we presumed.

4. Experiments and Results 23

MDR trained on NQ-HotpotQA MDR trained on NQ only
retrieving twice retrieving once modified all retrieving once

1-R 6.3 3.6 2.5 23.1

Table 4.5: A comparison of single-hop retrieval performance of MDR trained on
NQ-HotpotQA under different types of modification, and MDR trained on NQ,
taking only the 1st-hop retrieval loss into account. "Modified" represents our
modification of MDR introduced in the previous chapter

4.3 Question Hop Classification

During Inference, the system needs to first identify the number of reasoning steps
required to answer the question and then adjust the number of its retrieving steps.
In this case, we propose to train a classifier that can identify the number of hops
in a given question. Since we only focused on datasets consisting of questions
up to 2 hops, we decide to design a binary classifier to tackle this problem. We
trained our classifier taking the question embeddings generated from our uniform
model as inputs, and using binary cross entropy loss as the loss function. After
some attempts, we find out that a simple Multi-Layer Perceptron can achieve
significantly high classification accuracy using only 1/30 of the data for training.

Figure 4.5: Accuracy of our Binary Classifier evaluated on development set within
200 training Steps (1/30 Epoch).

After training one entire epoch, we get the following result evaluated on the
development set of BeerQA and NQ-HotpotQA:

4. Experiments and Results 24

BeerQA NQ-HotpotQA
Classification Accuracy 96.4 99.8

Table 4.6: Question hop classification accuracy evaluated on BeerQA and NQ-
HotpotQA development set after training 1 epoch.

4.4 Pipeline System

Although our attempt of creating an end-to-end QA system by training a uniform
model proves unsuccessful, we created an alternative solution based on our previ-
ous findings: A pipeline system illustrated in figure 4.6. The system first encodes
a given question using our uniform model trained on the “mixed-hop” dataset.
Next, the question embedding will be fed into a binary classifier which decides
whether the question is single-hop or multi-hop. If the question is classified as
single-hop, it will be fed into Model A, which stands for a dense retriever model
trained on single-hop datasets only. Otherwise, it will be transferred into Model
B, which was trained on 2-hop datasets. Finally, the top-k most matching docu-
ments will be retrieved after the similarity match between the encoded question
and Wikipedia articles.

Figure 4.6: An illustration of our pipeline system and the desired end-to-end
system. Model A refers to the model trained on single-hop dataset only. Model
B refers to the model trained on multi-hop dataset only.

4. Experiments and Results 25

An Advantage of our pipeline system is that we can freely choose model A
and model B. Since the performance of dense retrieval rises with increased batch
size, we trained model A and B using MDR with batch size 140, which is the
largest batch size we can achieve on our machines. The single-hop retrieval may
possibly be further improved by using independent encoders for questions and
contexts instead of the shared encoder suggested in MDR. Table 4.7 shows our
final result compared to the previous result we get using the original MDR.

Original MDR Pipeline System
1-R (Single-hop) 6.3 29.1
PR (Multi-hop) 44.5 49.1
Total 24.8 38.8

Table 4.7: A comparison of retrieval performance of the original MDR and our
pipeline system, both trained on NQ-HotpotQA, using the metric 1-R (Average
1-Recall) for single-hop questions and PR (Path Recall) for multi-hop questions

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we have made attempts on a topic that has been rarely researched:
We aim to develop an end-to-end trainable QA system, which can provide pre-
cise answers to both single- and multi-hop questions without predefining a fixed
number of reasoning steps. Since the retrieval step in the first stage is crucial
for the downstream reader task and requires further improvements, we decide to
focus on the retriever part.

The main objective is to train the encoder in our retriever model by learning a
better embedding function, that generates a vector space in which relevant pairs
of questions and passages have a lower distance. Unfortunately, our experiments
have proved that it is impossible to create such a vector space that meets our
expectations for both single- and multi-hop questions. Prioritizing any one of
them will degrade the performance of the other. Consequently, we argue that it
is currently unfeasible for us to develop a uniform model for all kinds of questions
using dense retrieval.

On the other hand, we achieved success in identifying the number of required
reasoning steps to answer a question. Based on this, we provide an alternative
solution: A pipeline system containing a binary classifier to identify the number
of question hops and two separate models trained on single-hop and multi-hop
datasets respectively. Although this solution greatly outperforms our original
end-to-end system, its training and inference procedure is in general much more
complicated and time-consuming. Therefore, we would not consider further de-
velopments on this system.

26

5. Conclusion and Future Work 27

5.2 Future Work

For future investigations, we would suggest exploring possibilities in other end-to-
end multi-hop reasoning methods. Apart from the Query Reformulation setting
we introduced in this thesis, another popular workflow of the Iterative Retriever
is the Retrieval Stopping Mechanism: The retriever terminates its retrieval pro-
cess when it detects that a sufficient amount of relevant documents are already
present. We believe further effective models can be designed based on this archi-
tecture. As we only conducted experiments on 1-hop or 2-hop datasets, it is also
necessary to extend the model functionality to answer 3+ hop questions.

Bibliography

[1] E. M. Voorhees, “The TREC-8 question answering track report,” in TREC,
volume 99, pages 77-82, 1999.

[2] F. Zhu, W. Lei, J. Z. Chao Wang, S. Poria, and T.-S. Chua, “Retrieving and
reading: A comprehensive survey on open-domain question answering,” in
arXiv:2101.00774, 2021.

[3] S. Mussmann and S. Ermon, “Learning and inference via maximum inner
product search,” in International Conference on Machine Learning (ICML),
pages 2587-2596, 2016.

[4] V. Karpukhin, B. Oğuz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and
W. tau Yih, “Dense passage retrieval for open-domain question answering,”
in EMNLP. Association for Computational Linguistics, pages 2587-2596,
2020.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in North
American Association for Computational Linguistics (NAACL), 2019.

[6] W. Xiong, X. L. Li, S. Iyer, J. Du, P. Lewis, W. Y. Wang, Y. Mehdad, W. tau
Yih, S. Riedel, D. Kiela, and B. Oğuz, “Answering complex open-domain
questions with multi-hop dense retrieval,” in arXiv:2009.12756, 2020.

[7] C. Raffel, N. M. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” in arXiv:1910.10683, 2020.

[8] K. Lee, M.-W. Chang, and K. Toutanova, “Latent retrieval for weakly su-
pervised open domain question answering,” in arXiv:1906.00300, 2019.

[9] A. Asai, K. Hashimoto, H. Hajishirzi, R. Socher, and C. Xiong, “Learning
to retrieve reasoning paths over wikipedia graph for question answering,” in
Proceedings of ICLR, 2020.

[10] Q. Guo, F. Juefei-Xu, C. Zhou, Y. Liu, and S. Wang, “Sparta: Spatially
attentive and adversarially robust activation,” in arXiv:2105.08269, 2021.

[11] P. Qi, X. Lin, L. Mehr, Z. Wang, and C. D. Manning, “Answering complex
open-domain questions through iterative query generation,” in Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing

28

Bibliography 29

and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2590–2602., 2019.

[12] B. Dhingra, M. Zaheer, V. Balachandran, G. Neubig, R. Salakhutdinov, and
W. W. Cohen, “Differentiable reasoning over a virtual knowledge base,” in
Proceedings of ICLR, 2020.

[13] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert pre-
training approach,” in arXiv:1907.11692, 2019.

[14] D. Chen, A. Fisch, J. Weston, and A. Bordes, “Reading wikipedia to answer
open-domain questions,” in Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics, 2017.

[15] J. Johnson, M. Douze, and H. Jégou., “Billion-scale similarity search with
gpus,” in arXiv:1702.08734, 2017.

[16] Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov,
and C. D.Manning, “Hotpotqa: A dataset for diverse, explainable multi-hop
question answering,” in EMNLP, pages 2369–2380, 2018.

[17] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti,
D. Epstein, I. Polosukhin, M. Kelcey, J. Devlin, K. Lee, K. N. Toutanova,
L. Jones, M.-W. Chang, A. Dai, J. Uszkoreit, Q. Le, and S. Petrov, “Natural
questions: A benchmark for question answering research,” in Transactions
of the Association of Computational Linguistics (TACL), 2019.

[18] P. Qi, H. Lee, T. Sido, and C. Manning, “Answering open-domain questions
of varying reasoning steps from text,” in Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pages 3599–3614,
2021.

