
Distributed

 Computing

Node-level Prediction Tasks with
Agent-based Graph Neural Networks

Bachelor’s Thesis

Jannek Ulm

janulm@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Karolis Martinkus

Prof. Dr. Roger Wattenhofer

January 13, 2023

Acknowledgements

First, I want to thank my supervisor Karolis Martinkus for his incredible support,
help, and inspiring ideas during the last few months. Further, I want to thank
Prof. Dr. Roger Wattenhofer, the Distributed Computing Lab (ETH DISCO),
and the D-ITET Computing facility for making this thesis possible and providing
the necessary computational power and technical assistance. Last but not least,
I want to thank my girlfriend, my friends, and my family for their emotional
support throughout this thesis.

ii

Abstract

Martinkus et al. [1] recently published a novel graph neural network model
called AgentNet. This model was tailored for graph-level prediction tasks. We
modified AgentNet for node-level prediction tasks such as node classification and
regression. Different readout and propagation strategies were investigated, and
results were discussed and compared to a baseline graph neural network model.
We showed that the modified AgentNet works well and can even outperform the
baseline model on a really hard PageRank dataset.

iii

Contents

Acknowledgements ii

Abstract iii

1 Introduction 1

1.1 Introduction . 1

1.2 AgentNet . 1

1.3 PageRank . 1

1.4 Our Contributions . 2

2 Related Work 3

3 Models 4

3.1 AgentNet . 4

3.1.1 Parameters . 6

3.2 Baseline-GCN Model . 10

3.2.1 Parameters . 10

4 Datasets 11

4.1 Node Classification . 11

4.2 PageRank . 11

4.2.1 Random Surfer Model . 12

5 Node Classification 13

5.1 Experiment Setup . 13

5.2 Baseline-GCN . 13

5.3 AgentNet . 14

5.4 Comparision of Baseline-GCN and AgentNet 17

iv

Contents v

6 Node Regression - PageRank 18

6.1 Experiment Setup . 18

6.2 Baseline-GCN . 19

6.3 AgentNet . 19

6.4 Comparison of Baseline-GCN and AgentNet 23

7 Conclusion 25

7.1 Conclusion . 25

7.2 Future Work . 25

Bibliography 26

A Implementation A-1

B List of Model Arguments B-1

B.1 Baseline-GCN . B-1

B.2 AgentNet . B-2

C Results - Node Classification C-1

C.1 Baseline-GCN . C-1

C.2 AgentNet . C-3

D Results - Node Regression - PageRank D-1

D.1 Baseline-GCN . D-1

D.2 AgentNet . D-3

Chapter 1

Introduction

1.1 Introduction

Most of the world and the data surrounding us in our daily life can be modeled
as graphs. A graph consists of nodes and edges connecting these nodes and can
represent various things such as molecules, social networks, or even the internet.
Gaining insight into this data and the real world is a crucial task impacting
our daily lives. One of the tasks that comes with graphs naturally is predicting
node-level properties. Two possible tasks are classifying a node or predicting a
numerical value (regression). For node classification, each node in the graph is
assigned a category from a predefined set of classes [2]. The task is to be able to
learn to classify the nodes of the graph correctly. Node Property Regression is
computing a numerical value assigned to each node in the graph. Many model
architectures, such as the traditional message-passing graph neural networks,
work well for these task.

1.2 AgentNet

For graphs, not only node-level predictions are essential tasks but also predictions
on the graph level, i.e., predicting or classifying the graph as a whole. Just
recently, Martinkus et al. [1] presented a novel graph neural network architecture
called AgentNet. AgentNet uses a group of trained agents that all walk the graph
in parallel and collectively decide on the output together. Martinkus et al. [1]
were able to achieve good results and classify graphs in sub-linear time (sub-linear
in the number of nodes in the graph).

1.3 PageRank

PageRank, a widely-used algorithm developed by Page et al. [3], measures the
importance of webpages on the internet by utilizing the Random Surfer Model.

1

1. Introduction 2

This model simulates the behavior of a “random” user browsing the web, following
links between pages (or "nodes" in the web graph, transitioning over edges).
The movement of information through the connections in a graph is known as
“diffusion." Just like in the case of the Random Surfer Model, AgentNet “diffuses”
through the graph, spreading information to nodes as it goes. Because PageRank
is a random walk model [3], and AgentNet can perform random walks, AgentNet
should, in theory, be able to simulate PageRank. Given this natural relationship
between AgentNet and PageRank, we will investigate whether AgentNet is indeed
capable of simulating the PageRank algorithm.

1.4 Our Contributions

We adapted AgentNet to solve node-level classification and regression tasks.
Then we tested the adapted AgentNet on real-world graph regression and classifi-
cation tasks. The results achieved by AgentNet were compared to those achieved
by a baseline message-passing graph neural network. Furthermore, we inves-
tigated how well different strategies for AgentNet work and if AgentNet can
simulate PageRank.

Chapter 2

Related Work

AgentNet is a novel approach for agent-based graph prediction problems. For
node-level predictions, however, there are no other publications available that
are really similar to AgentNet. We already noted the relation between AgentNet
and random walks in the introduction.

Gasteiger et al. [4] developed a model called PPNP, which stands for person-
alized propagation of neural predictions. The model’s training time was on par
or faster, and the number of parameters was on par or lower than comparable
models [4]. Their model "utilizes a propagation scheme derived from personalized
PageRank [4]." Their model also adds a chance of teleporting back to the root
node, which provides a balance between preserving locality and leveraging the
information from a large neighborhood [4]. This functionality is closely related
to resetting the agent’s position to its starting node, a feature we also introduced
to AgentNet.

In a follow-up paper, Gasteiger et al. [5] “remove the restriction of using only
the direct neighbors by introducing a powerful, yet spatially localized graph con-
volution: Graph diffusion convolution (GDC). GDC leverages generalized graph
diffusion, examples of which are the heat kernel and personalized PageRank”.
Their work shows that replacing “plain” message passing with GDC leads to sig-
nificant performance improvements across a wide range of models and a variety of
datasets [5]. PRGo, a model “which utilizes an efficient approximation of informa-
tion diffusion in GNNs” [6] resulted in significant speed gains while maintaining
“state-of-the-art prediction performance. They also demonstrate that PPRGo
outperforms baselines” [6]. Generally, there are many improvements over [4], and
the achieved state-of-the-art performance in node-classification [5, 6].

Another related model to AgentNet is DeepWalk, introduced in 2014 by Per-
ozzi et al. [7]. DeepWalk works by first sampling random walks from a starting
node. These walks are then used as input to a Skip-Gram model to learn node
representation that can lateron be used for tasks such as node classification [7].
AgentNet is closely related to this idea of sampling random walks from a starting
node, especially if agent reset is used, which is a feature we added to AgentNet.

3

Chapter 3

Models

3.1 AgentNet

AgentNet was initially designed to work on graph-level predictions [1]. The model
uses a group of agents (each assigned a unique identifying id) that intelligently
or randomly walk a fixed amount of steps on the graph. Note that we only show
how the model works without edge data since the datasets we considered did not
include any.

Table 3.1: Notation

vti node embedding of node with id i at time-step t

ati agent embedding of agent with id i at time-step t

A(vti) set of agents that visit node i at time-step t

N(vi) set of nodes reachable from vi by an incident edge

V (ati) node that the agent i is visiting a time-step t

oi output for node i

Consider this high-level overview of how the model operates:

1. Initialization: The agents get placed according to the selected initializa-
tion strategy on the nodes. More detail for this and the other strategies are
below in the parameters section

2. For each step of the agents, the model performs the following operations
(for the final iteration, the last step (Agent Transition) is omitted since the
agent’s next position will not be used):

(a) Node Update: Each active node (i.e., all nodes currently visited by
an Agent.) gets updated using a skip connection. Here fv is a 2-Layer

4

3. Models 5

MLP that takes the current node embedding and all currently visiting
agents embeddings as input.

vti = vt−1
i + fv

vt−1
i ,

∑
at−1
j ∈A(vi)

at−1
j

 if |A (vi)| > 0 else vt−1
i .

(b) Neighborhood Aggregation: Each active node gets updated using
a skip connection. Here fn is a 2-Layer MLP that takes the cur-
rent node embedding and all neighboring node embeddings as input.
Please note that this update is performed separately and after the
Node Update step.

vti = vti + fn

vti ,
∑

vtj∈N(vi)

vtj

 if |A (vi)| > 0 else vti

(c) Agent Update: Update all agents embedding using the current
node’s embedding and the aggregated neighborhood information. Here
the model also uses a skip connection, fa being a 2-Layer MLP taking
the old’s agent state and its currently visiting node embedding as an
input.

ati = at−1
i + fa

(
at−1
i , vtV (ai)

)
(d) Agent Transition: The agents either travel to an adjacent node

or stay on the current one. The method for choosing the next node
uses probabilities the transition strategy assigns for each possible next
node. Since this depends on the transition strategy, we cover this in
more detail below. Assume the transition strategy returns the values
zai→vj for all vtj ∈ N t (ai). The model samples the next node from
this distribution using GumbelSoftmax. GumbelSoftmax outputs a
stochastic one-hot sample of the input distribution while remaining
gradients for backpropagation [8, 9].

V (ai)← GumbelSoftmax
({

zai→vj for vtj ∈ N t (ai)
})

3. Readout: Output prediction for either classification or regression. The
model either uses node or agent embeddings to output the final prediction.
The behavior is controlled by the selected readout strategy and depends on
the node and agent embeddings.

oi = readout-strategy(agent_embedding, node_embedding)

3. Models 6

Figure 3.1: “AgentNet architecture. We have many neural agents walking the
graph (a). Each agent at every step records information on the node,
investigates its neighborhood, and makes a probabilistic transition to another
neighbor (b). If the agent has walked a cycle (c) or a clique (d) it can notice.”
(Source: [1])

3.1.1 Parameters

For this thesis, we modified AgentNet by making a more apparent distinction
between what strategies the agents use. Further, we added a specialized ini-
tialization strategy, reset-transition functionality, and all the different readout
strategies introduced below. The model’s high-level behavior depends on the se-
lected initialization strategy, transition strategy, and readout strategy. Of course,
many more parameters change the model’s performance. Here we will focus on
the most important ones. A complete list is given in the Appendix B.2.

Initialization Strategy

The AgentNet model [1] contained a random initialization strategy, and we added
the one_to_one initialization strategy.

• random: All the agents are placed uniformly at random nodes. Note that
multiple agents on one starting node are possible.

• one_to_one For each node, precisely one agent is starting on it. We
added this strategy since we wanted to follow the thought of one agent
being responsible for predicting exactly one node’s output.

3. Models 7

Transition Strategy

The transition strategy is one of the listed below. Please note that all nodes of the
graph the model operates on always have self-loops. The self-loops ensure that
at least one incident edge will always exist that an agent can use to transition to
the next node. Therefore an agent may stay for multiple steps at the same node.

• random: Each agent decides uniformly at random which incident out-
going edge it will take. U(0,1) is the distribution that draws a number
uniformly at random from [0, 1].

zai→vj = U(0, 1) for vtj ∈ N t (ai)

• random_reset: This strategy is equivalent to the "random" strategy,
but after a fixed number of steps (reset_neighbourhood_size), the agent’s
position gets reset to its initial starting position. This reset forces an agent
only to see other nodes that are at most reset_neighbourhood_size-steps
away from the agent’s initial starting position.

• attention: In this strategy, the model computes standard self-attention
[10] for all possible next nodes. Martinkus et al. [1] state that the query
vector Q(ati) is a linear projection of the agent embedding, and the key vec-
tor K(vti , v

t
j) is a linear projection of the start and end node of the used edge

for the transition. Where h is the size of the hidden dimension, Vaswani
et al. [10] state that division by sqrt(h) scales down the dot product and
thus keeps the gradient bigger. This strategy’s linear projections for the
query and key are trainable. Therefore the model can learn to which nodes
to transit next.

zai→vj =
Q
(
ati
)T

K
(
vti , v

t
j

)
√
h

for vtj ∈ N t (ai)

• attention_reset: This strategy is equivalent to the "attention" strategy,
but after a fixed number of steps (reset_neighbourhood_size), the agent’s
position gets reset to its initial starting position. For this step, GumbelSoft-
Max isn’t used, and no gradients are attached to the trainable parameters
such as key and query in model training.

• bias_attention: This strategy is an extension of the attention strategy.
First, the model keeps track of which agents visited which node in the
past. The implementation of this tracking is really memory intensive and
puts a constraint on the number of agents the model will work with, with
current GPU memory availability. Let x(ai, vj) ∈ [0, 1] denote the tracking,
which indicates if or how recently an agent visited a specific node. If an

3. Models 8

agent i is placed on a new node j, then x(ai, vj) = 1; initially, this value is
0. After each step, there is a decay applied to this value (x(at+1

i , vt+1
j) =

x(ati, v
t
j)∗0.9). To compute the desired bias-attention coefficient, the model

combines the dot product attention from above with a bias for each node.
This bias is a weighted sum of trainable parameters and indicator variables.

Table 3.2: Notation for bias_attention

gprevious bias for the agents last node

gcurrent bias for the agents current node

gexplored, gunexplored bias for explored and unexplored nodes

1vj = V t−1 (ai) indicator variable for previous node

1vj = V (ai) indicator variable for current node

fattention
(
ati, v

t
j

)
=

Q
(
ati
)T

K
(
vti , v

t
j

)
√
h

fbias
(
ati, v

t
j

)
= gp

(
ati
)
· 1vj=V t−1(ai) + gc

(
ati
)
· 1vj=V (ai)

+ ge
(
ati
)
· x (ai, vj) + gu

(
ati
)
· (1− x (ai, vj))

zai→vj = fbias
(
ati, v

t
j

)
+ fattention

(
ati, v

t
j

)
for vtj ∈ N t (ai)

• bias_attention_reset: This strategy is equivalent to the "bias-attention"
strategy, but after a fixed number of steps (reset_neighbourhood_size), the
agent’s position gets reset to its initial starting position. For this step, Gum-
belSoftMax isn’t used, and there are no gradients attached to the trainable
parameters such as query, key, and bias parameters in training.

AgentNet [1] initially already contained random, attention, and bias-attention
transition strategies. We added the reset functionality for each of these strategies.

Readout Strategy

The selected readout strategy can be one of the following choices and determines
how and when the prediction for each node is made. Since the model initially only
contained readout strategies for graph-level tasks, all of the readout strategies are
new.

3. Models 9

• node_embedding: This strategy is the most obvious one. Here the out-
put for each node is computed using fout, a 2-Layer MLP that uses the
same node’s final embedding as the input.

oi = fout(vi)

• agent_start: Using this strategy, the model remembers the starting posi-
tion of each agent. Note that this readout strategy requires the one_to_one
initialization strategy. This is to ensure that for every node, an agent exists
starting on it. Now the model uses the final agent embedding of the agent
that started on the node and the 2-Layer MLP fout to compute the output.

oi = fout(a
num_steps
j) with V (a0j) = i

• last_agent_visited: The above strategies always use the final (after the
last step) node or agent embedding. In this strategy, we update an inter-
mediate output vector for each step after the agent_update is complete.
The current agent embedding and a 2-Layer MLP fout are used to compute
the output for the node the agent is visiting.

in each step t: oi = fout(a
t
j) with V (atj) = i

If the prediction task is node classification and not node regression, we added a
LogSoftMax-layer to normalize the output for each node.

oi = LogSoftMax(oi)

Please note that not all combinations of strategies are valid. E.g., selecting
to use readout=agent_start requires initialization=one_to_one to ensure that
for each node, there exists an agent starting on this node.

Other Parameters

The behavior and performance of AgentNet not only depends on the listed strate-
gies above but also on other arguments. Here we list the most important ones.
The complete list can be found in the Appendix B.2.

3. Models 10

Table 3.3: AgentNet Model Arguments

num_agents number of agents that travel the graph

num_steps number of steps that each agent takes

reset_neighbourhood_size (only used when transition reset is used)
number of steps -1 on which the agents position
gets reset

classification flag that indicates if LogSoftMax is used on the
final output

hidden_units size of embedding for each agent, node, and
width of MLP middle-layer (factor 0.5)

3.2 Baseline-GCN Model

To compare the results, we will achieve with AgentNet, we need a baseline model
that can be used for both node classification and node regression. For this pur-
pose, we implemented a configurable GCN Model we will call Baseline-GCN.
The model uses PyTorch’s GCNConv-Layers, a convolutional/message-passing
layer introduced by Kipf et al. [11]. By stacking up r layers, the model gets
messages containing information about all the nodes in its r-hop neighborhood.
After each layer (except the last one), we used a normalization layer. If the task
is classification, we apply Softmax on the output to get class probabilities.

3.2.1 Parameters

Here we list the three most important arguments to the model. An exhaustive
list can be found in the Appendix B.1.

Table 3.4: Baseline-GCN Model Arguments

num_layers number of layers to control depth of the model
and observable neighborhood

hidden_units depth of the convolution layers

classification flag that indicates if output gets passed trough
a LogSoftMax-layer

Chapter 4

Datasets

4.1 Node Classification

We decided to use three different datasets to test both models. The datasets of
choice are Cora [12], PubMed [12], and OGB-Arxiv [13], which all are citation
networks in which each node is a scientific paper. Two directed edges represent
a citation between two papers (i.e., for each citation, the datasets contain two
edges, one from the citing paper to the cited paper and vice versa). The table
below shows the number of nodes, edges, classes, and features. It also contains
the training set proportion, which is the number of nodes in the training mask
divided by the total number of nodes and the average number of outgoing edges
per node. The average number of outgoing edges is also the average number of
neighboring nodes observed by an agent in neighborhood aggregation or by a
GCN message passing layer.

Table 4.1: Dataset statistics

Dataset Nodes Edges Classes Features Training prop. Avg. Out

Cora 2708 10,556 7 1,433 0.052 3.90

PubMed 19,717 88,648 3 500 0.003 4.49

OGB-Arxiv 169,343 1,116,243 40 128 0.537 6.59

4.2 PageRank

We decided to focus on PageRank for the node regression task because AgentNet
should be able to simulate the Random Surfer Model. Therefore we need different
datasets. We reused the inherited graph structure from the datasets previously
used (Cora, PubMed, OGB-Arxiv) and recomputed the missing parts. Missing is
the correct PageRank weight and the feature vector for each node. We assigned

11

4. Datasets 12

each node the initial vector v = [1] as the feature vector. The PageRank weight,
introduced by Page et al. [3], was computed using NetworkX PageRank power
iteration implementation with a damping factor of 0.85 [14].

Figure 4.1: Histogram of PageRank values for each dataset.

We looked at the histograms to understand how the PageRank distribution
differs between the datasets. Please note that most of OGB-Arxiv’s nodes are
distributed much tighter than in the other two datasets.

4.2.1 Random Surfer Model

The PageRank weights can also be modeled and computed using the Random
Surfer Model [3]. This notion corresponds to a group of “randomly” surfing agents
that walk on the webpages and randomly decide on which link to click next. The
damping factor is used to model a switch of search interest or the start of a new
search. For each next step, the random surfer either takes any outgoing link
randomly with probability of the damping factor and with the probability of (1 -
damping factor), the surfer goes to a new randomly selected node in the graph.
Each time a surfer goes to a node, he increments a node’s counter, starting at
0. These counters and their total sum can be used to compute the PageRank
values. The notion of a randomly surfing agent is close to how AgentNet can
operate using the random transition_strategy. How well this works is covered
below in the chapter for node regression.

Chapter 5

Node Classification

In this chapter, we will see how well each model does on the selected datasets
and how well AgentNet’s different strategies work.

5.1 Experiment Setup

Both models got trained using the AdamW optimizer with multiple possible val-
ues for the learning rate and a negative log-likelihood loss function. AgentNet
was trained for a maximum of 4000 epochs, with early stopping enabled after
1500 epochs with a window size of 400. Baseline-GCN was trained for at most
2000 epochs, with early stopping enabled after 1000 epochs with a window size
of 200. For every epoch, we logged the validation and test classification accuracy
(i.e., how many percent of all nodes got classified with the correct category) and
returned the test accuracy of the epoch with the highest validation accuracy.

5.2 Baseline-GCN

The model was trained as described above for 53 total combinations of param-
eters. A more detailed list can be found in the Appendix C.1. The possible
number of layers were = [1, 2, 3]. We only report the test accuracy for the best
combination of arguments besides the number of layers here. The best-achieved
accuracy is highlighted.

Table 5.1: Baseline-GCN test accuracy node classification

Num. layers Cora PubMed OGB-Arxiv

1 0.748 0.733 0.644

2 0.772 0.767 0.717

3 0.739 0.750 0.720

13

5. Node Classification 14

5.3 AgentNet

The model was trained as described above with a selection of possible argument
combinations. This is due to the high number of parameters and the large search
space of parameter combinations. We used the one_to_one initialization strat-
egy for all three datasets and set the number of agents equal to the number of
nodes. Due to PubMed and OGB being much larger graphs (in terms of the
number of nodes), we could not run all transition strategies on every dataset.
The visited tracking, used in bias_attention and bias_attention_reset, memory
consumption depends on the (number of agents · number of nodes). Due to this,
using bias_attention on PubMed and OGB was not feasible with the available
GPU Memory. We also excluded the random transition strategy and focused on
the remaining transition strategies where the model "actively" decides on which
node to proceed. All possible readout strategies were considered.

Here we visualize the resulting accuracies in parallel lines plots on a selection
of all considered arguments. The best argument combination is highlighted in
green. A more detailed list of all computation results can be found in the Ap-
pendix C.2. Please note that if the lines collide, the one with the highest achieved
accuracy gets drawn on top. This is to get a better insight into the maximum
achievable accuracy per selected arguments.

Figure 5.1: Node classification test accuracy of AgentNet on Cora

5. Node Classification 15

Figure 5.2: Node classification test accuracy of AgentNet on PubMed

Figure 5.3: Node classification test accuracy of AgentNet on OGB-Arxiv

5. Node Classification 16

The parallel coordinate plots gave insight into the spread of outcomes achieved
by selecting different strategies. Here we highlight across all datasets and across
all other arguments using node_embedding as the readout strategy gives a con-
sistent and good result. Using last_agent_visited as the readout strategy has a
vast spread ranging from 4% to 69% achieved accuracy for the OGB dataset (Fig-
ure 5.3). Using agent_start for readout consistently has a much tighter spread in
achieved accuracy and performs par on par or even better than last_agent_visited.
This means that node_embedding and agent_start are less dependent on the
choice of the other arguments and result in a more robust achieved result, whereas
last_agent_visited heavily depends on a good choice of the other arguments. We
only consider the best-achieved accuracy, achieved by selecting each transition
and readout strategy.

Table 5.2: AgentNet test accuracy node classification - Transition-Strategy

Transition-Strategy Cora PubMed OGB-Arxiv

attention 0.740 0.767 0.667

attention_reset 0.763 0.770 0.686

bias_attention 0.765 - -

bias_attention_reset 0.756 - -

Transition-Strategy: (Table 5.2) For Cora and OGB, attention_reset has
about a 2% accuracy advantage over attention. For PubMed, this advantage
is negligible. Due to memory limitations, bias_attention was not available for
PubMed and OGB. On Cora, bias_attention got the best results, but what was
on par with attention_reset. Hence adapting attention and introducing the extra
reset step improved the model’s architecture and performance.

Table 5.3: AgentNet test accuracy node classification - Readout-Strategy

Readout-Strategy Cora PubMed OGB-Arxiv

node_embedding 0.765 0.770 0.670

last_agent_visited 0.756 0.768 0.686

agent_start 0.748 0.757 0.682

Readout-Strategy: (Table 5.3) We note that for all datasets the “right”

5. Node Classification 17

choice of the readout-strategy gains about 1.5% better accuracy. For Cora and
PubMed, node_embedding works best, and last_agent_visited performs worst.
Surprisingly for OGB, it is the other way around, and last_agent_visited is the
best and node_embedding the least good one. Due to that, the results for each
strategy are just slightly different. That gives some insight into how Agent-
Net must learn to classify nodes. Both for agent_start and last_agent_visited,
AgentNet accumulates the “important” information for classification in the agent’s
embeddings. For node_embedding this information is accumulated in the nodes
embeddings. These results show that AgentNet can successfully accumulate the
necessary information for node classification in both agents and nodes.

5.4 Comparision of Baseline-GCN and AgentNet

Table 5.4: AgentNet vs Baseline-GCN - Node Classification

Model Cora PubMed OGB-Arxiv

AgentNet 0.765 0.770 0.686

Baseline-GCN 0.772 0.767 0.720

For Cora and PubMed, AgentNet and the Baseline-GCN’s performance are al-
most identical. On OGB-Arxiv, the Baseline-GCN model had an advantage of
3.4% greater accuracy. The results of this experiment show that AgentNet can
achieve great results on graph-classification tasks [1] but also of working reason-
ably well for the node-classification task and can keep up with our Baseline-GCN
model.

Chapter 6

Node Regression - PageRank

In this chapter, we will see how well each model does on the modified PageRank
datasets and how well AgentNet’s different strategies work.

6.1 Experiment Setup

Both models were trained using the AdamW optimizer with multiple possible
values for the learning rate and a MSE-loss function (Mean Squared Error).
AgentNet was trained for a maximum of 4000 epochs, with early stopping enabled
after 1000 epochs with a window size of 200. Baseline-GCN was trained for at
most 5000 epochs, with early stopping enabled after 1000 epochs with a window
size of 200.

The MSE-loss works well for training this task but has no intuitive inter-
pretation. We use Spearman’s rank correlation coefficient to have a comparable
metric, such as accuracy, for the classification task. The Spearman coefficient
measures the ranking of two variables and can be computed as follows [15]. The
function get_rank(x) takes the input vector x of size n of unique numbers and
returns the vector containing the indices of all the numbers (from 1 to n) if x
were to get sorted.

spear(x, y) = 1− 6
∑

d2i
n (n2 − 1)

, where di = get_rank(x) - get_rank(y)

The Spearman rank correlation coefficient ranges from -1 to +1 and intuitively
expresses how the two input vectors, x and y rank’s, are correlated.

• spear(x,y) = +1 ⇐⇒ x and y are perfectly associated

• spear(x,y) = 0 ⇐⇒ x and y are not associated

• spear(x,y) = -1 ⇐⇒ x and y are perfectly negatively associated

18

6. Node Regression - PageRank 19

For training, we stick to using the MSE-loss. However, for the evaluation of
results, we use Spearman’s coefficient to get a sense of how well the computed
PageRank weights are associated with the ground truth values. For every epoch,
we logged the validation and test Spearman coefficient and returned the test
Spearman coefficient of the epoch with the highest validation Spearman coeffi-
cient.

6.2 Baseline-GCN

The model was trained as described above for 71 total combinations of parame-
ters. A more detailed list can be found in the Appendix D.1. The possible number
of layers was = [1, 2, 3, 4]. Here we only report the Spearman coefficient for the
best combination of arguments besides the number of layers. The best-achieved
coefficient is highlighted.

Table 6.1: Baseline-GCN Spearman rank correlation coefficient - PageRank

Num. layers Cora PubMed OGB-Arxiv

1 0.741 0.491 0.285

2 0.963 0.957 0.325

3 0.983 0.967 0.319

4 0.986 0.950 0.320

For Cora and PubMed, the model works well. The results of OGB-Arxiv,
on the other hand, are poor. A Spearman coefficient of 0.3 is considered a low
correlation. As we saw in the histograms (Figure 4.1), the distribution of OGB’s
PageRank values for the nodes is much tighter and hence harder to separate.
Furthermore, the number of average neighbors per node is higher than in the
other two datasets (Table 4.1). Potentially that is why the model is having more
trouble with this dataset.

6.3 AgentNet

The model was trained as described in the experimental setup section and only
with a selection of all possible argument combinations. The high number of
parameters and choices results in a vast search space.

For all three datasets, we used the random initialization strategy and used
the following choices for the number of agents (n = the number of nodes in the
dataset): [0.25n,0.5n,n,1.5n,2n]. We tested the following choices for transition

6. Node Regression - PageRank 20

strategy: [random, attention, attention_reset]. Readout strategies got limited
to [node_embedding,last_agent_visited]. We cut the choices of transition and
readout strategy since we drastically increased the possible number of agents
and still had to keep a feasible computation time. A more detailed list of other
computation results can be found in the Appendix D.2. The results below were
visualized in a parallel coordinate plot displaying the most relevant parameter
choices. Please note that if the lines collide, the one with the highest achieved
Spearman coefficient gets drawn on top. This is to get a better insight into the
maximum achievable coefficient per selected argument. The green line marks the
best overall achieved Spearman coefficient.

Figure 6.1: PageRank Spearman coefficient of AgentNet on Cora

6. Node Regression - PageRank 21

Figure 6.2: PageRank Spearman coefficient of AgentNet on PubMed

Figure 6.3: PageRank Spearman coefficient of AgentNet on OGB-Arxiv

6. Node Regression - PageRank 22

The parallel coordinate plots gave insight into the spread of outcomes achieved
by selecting different strategies. Across all datasets, using the last_agent_visited
readout strategy gave poor results. Reading out the nodes embedding gave much
better results, although the spread is high. This big spread means that the
node_embedding strategy only works well with the right choice of other parame-
ters. Now let us investigate the impact of each choice of the following parameters:
number of agents, transition, and readout strategy.

Table 6.2: PageRank Spearman coefficient of AgentNet - Number of Agents (n
= number of nodes)

Number of Agents Cora PubMed OGB-Arxiv

0.25n 0.532 0.679 0.156

0.5n 0.647 0.721 0.317

1n 0.793 0.796 0.491

1.5n 0.695 0.736 0.353

2n 0.853 0.817 0.397

Number of Agents: For Cora and PubMed, one can see (Table 6.2) that
with an increasing number of agents, the achieved Spearman coefficient increases
(almost linearly). For OGB, on the other hand, the choice of “the number of
agents” = “the number of nodes” gives the best result. This parameter had a
significant effect on the achieved coefficient for all datasets.

Table 6.3: PageRank Spearman coefficient of AgentNet - Transition-Strategy

Transition-Strategy Cora PubMed OGB-Arxiv

random 0.669 0.796 0.476

attention 0.745 0.817 0.491

attention_reset 0.853 0.773 0.397

Transition-Strategy: (Table 6.3) For PubMed and OGB attention gives
about a 2% increase over the random transition-strategy and even more over at-
tention_reset. For Cora, on the other hand, attention_reset has a 10% advantage
over the attention strategy.

6. Node Regression - PageRank 23

Table 6.4: PageRank Spearman coefficient of AgentNet - Readout-Strategy

Readout-Strategy Cora PubMed OGB-Arxiv

node_embedding 0.853 0.817 0.491

last_agent_visited 0.395 0.565 0.109

Readout-Strategy: On all datasets, the readout-strategy node_embedding
worked better by consistently providing a minimum 44% increase in Spearman
rank coefficient over the last_agent_visited strategy. This is a different result
than the tests in node classification achieved (Table 5.3), where node_embedding
and last_agent_visited had almost identical results. This difference shows a fun-
damental difference in how AgentNet learns to classify nodes vs. how AgentNet
computes PageRank coefficients. We can also conclude that for node classifica-
tion, AgentNet was able to store the “important” information for classification in
the agents and the nodes-embeddings (due to that, both strategies work well).
For computing PageRank weights, on the other hand, AgentNet seems to be
better capable of storing the “important” information for PageRank estimation
in the nodes embedding instead of the agent’s embeddings. One can wonder
if AgentNet possibly similarly computes the PageRank weights as the Random
Surfer Model by storing something similar as a counter on each node embedding.

6.4 Comparison of Baseline-GCN and AgentNet

Table 6.5: AgentNet vs Baseline-GCN - PageRank Spearman coefficient

Model Cora PubMed OGB-Arxiv

AgentNet 0.853 0.817 0.491

Baseline-GCN 0.986 0.967 0.325

For Cora and PubMed, the Baseline-GCN performed great and even had a pretty
good (13%) advantage over AgentNet’s poorer performance. For OGB, both mod-
els struggled to achieve even a mediocre Spearman rank coefficient, but Agent-
Net outperforms Baseline-GCN by a significant margin. The results of this ex-
periment show that AgentNet is not only capable of achieving good results on
graph-classification tasks [1]. While AgentNet is somewhat worse on the “easier”

6. Node Regression - PageRank 24

datasets, maybe due to the stochasticity and worse exploration, it was able to
better deal with the “hard” case of OGB-Arxiv than the baseline model was.

Chapter 7

Conclusion

7.1 Conclusion

The focus of this work was to modify graph-level AgentNet to work for node level
prediction task. This has been successfully implemented building on the initial
work of Martinkus et al. [1]. On this basis we asked ourselves the following
questions:

• How well do different readout strategies work?

• Is AgentNet able to simulate the PageRank algorithm?

First, we successfully showed that all three readout strategies work reasonably
well for node classification and are on par with our baseline model.

The second central insight was that AgentNet indeed can simulate the PageR-
ank algorithm. We discovered that reading out the node embeddings works well
while trying to read out using the accumulated information of the agents only
works poorly.

7.2 Future Work

A problem we faced during testing was the implementation of tracking required
for bias_attention. As a first step, it could be made more memory efficient to
make the model feasible for many agents for larger datasets. Since agent based
node-level prediction is a novel approach and the results were promising, we are
convinced that further research and investigation will be rewarding. A start
could be adapting AgentNet even more. For example, one could study transition
and readout strategies that are not implemented yet. Furthermore, one could
also investigate the dependence of the number of agents for node classification to
potentially reduce prediction cost while maintaining accuracy. Also even higher
number of agents could be tested for computing PageRank.

25

Bibliography

[1] K. Martinkus, P. A. Papp, B. Schesch, and R. Wattenhofer, “Agent-based
graph neural networks,” 2022. [Online]. Available: https://arxiv.org/abs/
2206.11010

[2] L. Wu, P. Cui, J. Pei, and L. Zhao, Graph Neural Networks: Foundations,
Frontiers, and Applications. Singapore: Springer Singapore, 2022.

[3] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Technical Report
1999-66, November 1999, previous number = SIDL-WP-1999-0120. [Online].
Available: http://ilpubs.stanford.edu:8090/422/

[4] J. Gasteiger, A. Bojchevski, and S. Günnemann, “Predict then propagate:
Graph neural networks meet personalized pagerank,” 2018. [Online].
Available: https://arxiv.org/abs/1810.05997

[5] J. Gasteiger, S. Weißenberger, and S. Günnemann, “Diffusion improves
graph learning,” 2019. [Online]. Available: https://arxiv.org/abs/1911.05485

[6] A. Bojchevski, J. Klicpera, B. Perozzi, A. Kapoor, M. Blais,
B. Rózemberczki, M. Lukasik, and S. Günnemann, “Scaling graph
neural networks with approximate pagerank,” in Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, ser. KDD ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 2464–2473. [Online]. Available:
https://doi.org/10.1145/3394486.3403296

[7] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk,” in Proceedings
of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, aug 2014. [Online]. Available:
https://doi.org/10.1145%2F2623330.2623732

[8] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-
softmax,” 2016. [Online]. Available: https://arxiv.org/abs/1611.01144

[9] W. Joo, D. Kim, S. Shin, and I.-C. Moon, “Generalized gumbel-softmax
gradient estimator for various discrete random variables,” 2020. [Online].
Available: https://arxiv.org/abs/2003.01847

26

https://arxiv.org/abs/2206.11010
https://arxiv.org/abs/2206.11010
http://ilpubs.stanford.edu:8090/422/
https://arxiv.org/abs/1810.05997
https://arxiv.org/abs/1911.05485
https://doi.org/10.1145/3394486.3403296
https://doi.org/10.1145%2F2623330.2623732
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/2003.01847

Bibliography 27

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017. [Online].
Available: https://arxiv.org/abs/1706.03762

[11] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016. [Online]. Available: https://arxiv.org/abs/
1609.02907

[12] P. G. Team. [Online]. Available: https://pytorch-geometric.readthedocs.io/
en/latest/_modules/torch_geometric/datasets/planetoid.html

[13] C. O. Team. [Online]. Available: https://ogb.stanford.edu/docs/nodeprop/

[14] N. Team. [Online]. Available: https://networkx.org/documentation/
stable/reference/algorithms/generated/networkx.algorithms.link_analysis.
pagerank_alg.pagerank.html

[15] Wikipedia contributors, “Spearman’s rank correlation coefficient —
Wikipedia, the free encyclopedia,” 2022, [Online; accessed 11-January-
2023]. [Online]. Available: https://en.wikipedia.org/w/index.php?title=
Spearman%27s_rank_correlation_coefficient&oldid=1125564582

[16] Jannek Ulm, “Agentnet bachelor thesis - jannek ulm - implementation,”
2023, [Online; accessed 11-January-2023]. [Online]. Available: https:
//gitlab.ethz.ch/disco-students/hs22/janulm_agent_nodes

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/datasets/planetoid.html
https://pytorch-geometric.readthedocs.io/en/latest/_modules/torch_geometric/datasets/planetoid.html
https://ogb.stanford.edu/docs/nodeprop/
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.link_analysis.pagerank_alg.pagerank.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.link_analysis.pagerank_alg.pagerank.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.link_analysis.pagerank_alg.pagerank.html
https://en.wikipedia.org/w/index.php?title=Spearman%27s_rank_correlation_coefficient&oldid=1125564582
https://en.wikipedia.org/w/index.php?title=Spearman%27s_rank_correlation_coefficient&oldid=1125564582
https://gitlab.ethz.ch/disco-students/hs22/janulm_agent_nodes
https://gitlab.ethz.ch/disco-students/hs22/janulm_agent_nodes

Appendix A

Implementation

The modified implementation of AgentNet, Baseline-GCN, and all the code we
used to run the experiments on ITET’s computing facility can be found in the
Gitlab repository [16]. Furthermore, the code used to generate the parallel lines
plot and the code for creating the tables is also in the appendix.

A-1

Appendix B

List of Model Arguments

B.1 Baseline-GCN

Table B.1: Baseline-GCN - List of Model Arguments

Argument Default value

total num layers -

training dropout -

learning rate -

weight decay 0.01

in channels -

hidden channels -

out channels -

classification flag -

B-1

List of Model Arguments B-2

B.2 AgentNet

Table B.2: AgentNet - List of Model Arguments

Argument Default value

init strat -

transition strat -

readout strat -

classification (flag) -

hidden units -

num agents -

num steps -

reset neighbourhood size -

training dropout rate -

reduce function ’sum’

use time embedding true

weight decay 0.01

activation function leaky-relu

leakyRELU_neg_slope 0.01

visited decay 0.9

use_mlp_input True

post_ln False

global_agent_node_update False

global_agent_agent_update False

Appendix C

Results - Node Classification

We decided to only list the best resulting runs when selecting unique combinations
of parameters and omitting the other parameters such as learning rate or dropout.

For Baseline-GCN the best unique combinations of [’hidden units’,’num lay-
ers’] are listed. For AgentNet the best unique combinations of [’agent steps’,’neighborhood
reset’,’transition strat.’,’readout strat.’] are listed.

C.1 Baseline-GCN

Cora

The model was trained with all possible combinations of these arguments:

• dims = [16,32,64]

• dropout rate in GCN Layer:= [0.0,0.3]

• learning rates:= [0.01,0.001,0.0001]

• num_layers:= [1,2,3]

Table C.1: Computation results of Baseline-GCN on Cora

hidden units dropout lr num layers test acc
11 16.0 0.3 0.010 3.0 0.680
13 16.0 0.3 0.001 2.0 0.703
20 32.0 0.0 0.010 3.0 0.713
38 64.0 0.0 0.010 3.0 0.739
48 64.0 0.3 0.001 1.0 0.748
3 16.0 0.0 0.001 1.0 0.748
30 32.0 0.3 0.001 1.0 0.748
19 32.0 0.0 0.010 2.0 0.750
46 64.0 0.3 0.010 2.0 0.772

C-1

Results - Node Classification C-2

PubMed

The model was trained with all possible combinations of these arguments:

• dims = [16,32,64]

• dropout rate in GCN Layer:= [0.0,0.3]

• learning rates:= [0.01,0.001,0.0001]

• num_layers:= [1,2,3]

Table C.2: Computation results of Baseline-GCN on PubMed

hidden units dropout lr num layers test acc
10 16.0 0.3 0.0100 2.0 0.718
29 32.0 0.3 0.0100 3.0 0.724
17 16.0 0.3 0.0001 3.0 0.729
21 32.0 0.0 0.0010 1.0 0.733
39 64.0 0.0 0.0010 1.0 0.733
0 16.0 0.0 0.0100 1.0 0.733
47 64.0 0.3 0.0100 3.0 0.750
31 32.0 0.3 0.0010 2.0 0.752
46 64.0 0.3 0.0100 2.0 0.767

OGB-Arxiv

The model was trained with all possible combinations of these arguments:

• dims = [256, 32,64,128]

• dropout rate in GCN Layer:= [0.0,0.3,0.5]

• learning rates:= [0.01,0.001,0.0001]

• num_layers:= [1,2,3]

Table C.3: Computation results of Baseline-GCN on OGB

hidden units dropout lr num layers test acc
0 256.0 0.5 0.010 1.0 0.643931
90 128.0 0.3 0.010 1.0 0.643931
72 64.0 0.0 0.010 1.0 0.643931
36 32.0 0.3 0.010 1.0 0.643931
46 32.0 0.0 0.010 2.0 0.695904
47 32.0 0.0 0.010 3.0 0.704627
73 64.0 0.0 0.010 2.0 0.705471

Continued on next page

Results - Node Classification C-3

Table C.3: Computation results of Baseline-GCN on OGB

hidden units dropout lr num layers test acc
82 128.0 0.5 0.010 2.0 0.712014
74 64.0 0.0 0.010 3.0 0.713392
13 256.0 0.3 0.001 2.0 0.717096
92 128.0 0.3 0.010 3.0 0.717898
5 256.0 0.5 0.001 3.0 0.720635

C.2 AgentNet

Cora

For this dataset the model was trained with all possible combinations of these
arguments:

• dims = [16,32,64]

• training dropout rate = [0.0,0.3]

• learning rates = [0.01,0.001,0.0001]

• steps = [3,6,9,18]

• num agents = [n] (n = number of nodes in graph)

• learning rates = [0.01,0.001,0.0001]

• readout strategies = [node_embedding,last_agent_visited,agent_start]

• transition strategies = [attention, attention_reset, bias_attention, bias_attention_reset]

• initialization strategies = [one_to_one]

• neighborhood_reset_sizes = [1,2,3]

Table C.4: Computation results of AgentNet on Cora

transition strat. readout strat. agent steps n.hood reset test acc
108 bias_attention last_agent_visited 6.0 1.0 0.593
32 attention last_agent_visited 3.0 1.0 0.613
674 attention_reset agent_start 6.0 2.0 0.625
682 attention_reset last_agent_visited 6.0 2.0 0.628
673 attention_reset agent_start 6.0 1.0 0.636
681 attention_reset last_agent_visited 6.0 1.0 0.638
1393 attention_reset agent_start 18.0 1.0 0.638
678 bias_attention_reset agent_start 6.0 2.0 0.645

Continued on next page

Results - Node Classification C-4

Table C.4: Computation results of AgentNet on Cora

transition strat. readout strat. agent steps n.hood reset test acc
686 bias_attention_reset last_agent_visited 6.0 2.0 0.646
1191 bias_attention_reset last_agent_visited 3.0 3.0 0.650
1248 attention agent_start 6.0 1.0 0.654
677 bias_attention_reset agent_start 6.0 1.0 0.654
1263 bias_attention_reset last_agent_visited 6.0 3.0 0.655
679 bias_attention_reset agent_start 6.0 3.0 0.656
1256 attention last_agent_visited 6.0 1.0 0.656
828 bias_attention last_agent_visited 18.0 1.0 0.656
1181 bias_attention_reset agent_start 3.0 1.0 0.657
685 bias_attention_reset last_agent_visited 6.0 1.0 0.662
611 attention_reset last_agent_visited 3.0 3.0 0.663
245 bias_attention_reset agent_start 18.0 1.0 0.668
1401 attention_reset last_agent_visited 18.0 1.0 0.672
1402 attention_reset last_agent_visited 18.0 2.0 0.672
1251 attention_reset agent_start 6.0 3.0 0.673
1185 attention_reset last_agent_visited 3.0 1.0 0.676
1392 attention agent_start 18.0 1.0 0.678
253 bias_attention_reset last_agent_visited 18.0 1.0 0.678
676 bias_attention agent_start 6.0 1.0 0.679
1190 bias_attention_reset last_agent_visited 3.0 2.0 0.682
242 attention_reset agent_start 18.0 2.0 0.685
824 attention last_agent_visited 18.0 1.0 0.685
1178 attention_reset agent_start 3.0 2.0 0.686
1329 attention_reset last_agent_visited 9.0 1.0 0.690
1189 bias_attention_reset last_agent_visited 3.0 1.0 0.691
1320 attention agent_start 9.0 1.0 0.692
1395 attention_reset agent_start 18.0 3.0 0.693
827 attention_reset last_agent_visited 18.0 3.0 0.694
1625 attention_reset node_embedding 9.0 1.0 0.695
1332 bias_attention last_agent_visited 9.0 1.0 0.696
1186 attention_reset last_agent_visited 3.0 2.0 0.696
1330 attention_reset last_agent_visited 9.0 2.0 0.698
1183 bias_attention_reset agent_start 3.0 3.0 0.698
1396 bias_attention agent_start 18.0 1.0 0.699
1476 bias_attention last_agent_visited 3.0 1.0 0.700
1321 attention_reset agent_start 9.0 1.0 0.700
1398 bias_attention_reset agent_start 18.0 2.0 0.701
1182 bias_attention_reset agent_start 3.0 2.0 0.707
1624 attention node_embedding 9.0 1.0 0.709
1322 attention_reset agent_start 9.0 2.0 0.709
1179 attention_reset agent_start 3.0 3.0 0.710
1176 attention agent_start 3.0 1.0 0.711
1630 bias_attention_reset node_embedding 9.0 2.0 0.711
1627 attention_reset node_embedding 9.0 3.0 0.713
1482 attention_reset node_embedding 3.0 2.0 0.714
1177 attention_reset agent_start 3.0 1.0 0.716
1325 bias_attention_reset agent_start 9.0 1.0 0.716
831 bias_attention_reset last_agent_visited 18.0 3.0 0.716
1323 attention_reset agent_start 9.0 3.0 0.717
1399 bias_attention_reset agent_start 18.0 3.0 0.717
1631 bias_attention_reset node_embedding 9.0 3.0 0.718
1558 bias_attention_reset node_embedding 6.0 2.0 0.719
1626 attention_reset node_embedding 9.0 2.0 0.721
1485 bias_attention_reset node_embedding 3.0 1.0 0.721

Continued on next page

Results - Node Classification C-5

Table C.4: Computation results of AgentNet on Cora

transition strat. readout strat. agent steps n.hood reset test acc
1331 attention_reset last_agent_visited 9.0 3.0 0.721
1628 bias_attention node_embedding 9.0 1.0 0.721
1406 bias_attention_reset last_agent_visited 18.0 2.0 0.722
1333 bias_attention_reset last_agent_visited 9.0 1.0 0.724
1700 bias_attention node_embedding 18.0 1.0 0.724
1487 bias_attention_reset node_embedding 3.0 3.0 0.726
1486 bias_attention_reset node_embedding 3.0 2.0 0.727
1324 bias_attention agent_start 9.0 1.0 0.729
1699 attention_reset node_embedding 18.0 3.0 0.729
1259 attention_reset last_agent_visited 6.0 3.0 0.730
1180 bias_attention agent_start 3.0 1.0 0.730
1552 attention node_embedding 6.0 1.0 0.731
1696 attention node_embedding 18.0 1.0 0.732
1326 bias_attention_reset agent_start 9.0 2.0 0.733
1698 attention_reset node_embedding 18.0 2.0 0.734
1328 attention last_agent_visited 9.0 1.0 0.735
1702 bias_attention_reset node_embedding 18.0 2.0 0.736
1335 bias_attention_reset last_agent_visited 9.0 3.0 0.737
1701 bias_attention_reset node_embedding 18.0 1.0 0.739
1480 attention node_embedding 3.0 1.0 0.740
1629 bias_attention_reset node_embedding 9.0 1.0 0.740
1554 attention_reset node_embedding 6.0 2.0 0.742
1483 attention_reset node_embedding 3.0 3.0 0.745
1555 attention_reset node_embedding 6.0 3.0 0.745
1481 attention_reset node_embedding 3.0 1.0 0.745
1484 bias_attention node_embedding 3.0 1.0 0.747
1327 bias_attention_reset agent_start 9.0 3.0 0.748
1559 bias_attention_reset node_embedding 6.0 3.0 0.748
1703 bias_attention_reset node_embedding 18.0 3.0 0.748
1557 bias_attention_reset node_embedding 6.0 1.0 0.751
1334 bias_attention_reset last_agent_visited 9.0 2.0 0.756
1553 attention_reset node_embedding 6.0 1.0 0.761
1697 attention_reset node_embedding 18.0 1.0 0.763
1556 bias_attention node_embedding 6.0 1.0 0.765

PubMed

For this dataset the model was trained with all possible combinations of these
arguments:

• dims = [16,32,64]

• training dropout rate = [0.0,0.3]

• learning rates = [0.01,0.001,0.0001]

• steps = [3,6,9,18]

• num agents = [n] (n = number of nodes in graph)

• learning rates = [0.01,0.001,0.0001]

Results - Node Classification C-6

• readout strategies = [node_embedding,last_agent_visited,agent_start]

• transition strategies = [attention, attention_reset]

• initialization strategies = [one_to_one]

• neighborhood_reset_sizes = [1,2,3]

Table C.5: Computation results of AgentNet on PubMed

transition strat. readout strat. agent steps n.hood reset test acc
595 attention_reset last_agent_visited 3.0 3.0 0.677
699 attention_reset last_agent_visited 18.0 1.0 0.688
412 attention last_agent_visited 18.0 1.0 0.697
630 attention_reset last_agent_visited 6.0 2.0 0.716
628 attention last_agent_visited 6.0 1.0 0.717
697 attention_reset agent_start 18.0 2.0 0.719
76 attention last_agent_visited 9.0 1.0 0.719
396 attention agent_start 18.0 1.0 0.720
626 attention_reset agent_start 6.0 2.0 0.722
187 attention_reset last_agent_visited 6.0 3.0 0.723
836 attention_reset node_embedding 18.0 3.0 0.725
36 attention agent_start 6.0 1.0 0.725
414 attention_reset last_agent_visited 18.0 2.0 0.727
592 attention last_agent_visited 3.0 1.0 0.727
589 attention_reset agent_start 3.0 1.0 0.728
308 attention node_embedding 3.0 1.0 0.729
701 attention_reset last_agent_visited 18.0 3.0 0.730
372 attention agent_start 9.0 1.0 0.734
377 attention_reset last_agent_visited 9.0 1.0 0.735
625 attention_reset agent_start 6.0 1.0 0.736
375 attention_reset agent_start 9.0 3.0 0.737
373 attention_reset agent_start 9.0 1.0 0.739
634 attention_reset node_embedding 6.0 2.0 0.739
591 attention_reset agent_start 3.0 3.0 0.740
590 attention_reset agent_start 3.0 2.0 0.743
629 attention_reset last_agent_visited 6.0 1.0 0.745
93 attention_reset node_embedding 9.0 1.0 0.747
155 attention_reset node_embedding 3.0 3.0 0.749
310 attention_reset node_embedding 3.0 2.0 0.749
662 attention_reset agent_start 9.0 2.0 0.749
761 attention node_embedding 6.0 1.0 0.749
696 attention_reset agent_start 18.0 1.0 0.749
799 attention_reset node_embedding 9.0 2.0 0.750
379 attention_reset last_agent_visited 9.0 3.0 0.750
191 attention_reset node_embedding 6.0 3.0 0.751
726 attention_reset node_embedding 3.0 1.0 0.752
627 attention_reset agent_start 6.0 3.0 0.755
588 attention agent_start 3.0 1.0 0.756
593 attention_reset last_agent_visited 3.0 1.0 0.757
835 attention_reset node_embedding 18.0 2.0 0.757
666 attention_reset last_agent_visited 9.0 2.0 0.757
698 attention_reset agent_start 18.0 3.0 0.757
774 attention_reset node_embedding 6.0 1.0 0.761

Continued on next page

Results - Node Classification C-7

Table C.5: Computation results of AgentNet on PubMed

transition strat. readout strat. agent steps n.hood reset test acc
809 attention node_embedding 9.0 1.0 0.764
227 attention_reset node_embedding 9.0 3.0 0.765
845 attention node_embedding 18.0 1.0 0.767
294 attention_reset last_agent_visited 3.0 2.0 0.768
846 attention_reset node_embedding 18.0 1.0 0.770

OGB-Arxiv

For this dataset the model was trained with all possible combinations of these
arguments:

• dims = [32,64,128]

• training dropout rate = [0.0,0.3]

• learning rates = [0.01,0.001,0.0001]

• steps = [3,6,9,18]

• num agents = [n] (n = number of nodes in graph)

• learning rates = [0.01,0.001,0.0001]

• readout strategies = [node_embedding,last_agent_visited,agent_start]

• transition strategies = [attention, attention_reset]

• initialization strategies = [one_to_one]

• neighborhood_reset_sizes = [1,2,3]

Table C.6: Computation results of AgentNet on OGB

transition strat. readout strat. agent steps n.hood reset test acc
110 attention last_agent_visited 18.0 1.0 0.037385
88 attention last_agent_visited 9.0 1.0 0.485711
52 attention last_agent_visited 6.0 1.0 0.531099
55 attention_reset last_agent_visited 6.0 3.0 0.570520
77 attention_reset last_agent_visited 9.0 1.0 0.570582
238 attention last_agent_visited 3.0 1.0 0.571117
241 attention_reset last_agent_visited 3.0 3.0 0.590663
203 attention_reset last_agent_visited 9.0 3.0 0.594408
220 attention agent_start 18.0 1.0 0.614077
109 attention node_embedding 18.0 1.0 0.620970
239 attention_reset last_agent_visited 3.0 1.0 0.621237

Continued on next page

Results - Node Classification C-8

Table C.6: Computation results of AgentNet on OGB

transition strat. readout strat. agent steps n.hood reset test acc
95 attention_reset node_embedding 9.0 3.0 0.632842
194 attention_reset node_embedding 9.0 2.0 0.633233
184 attention agent_start 9.0 1.0 0.634632
192 attention node_embedding 9.0 1.0 0.637101
1 attention agent_start 6.0 1.0 0.637759
186 attention_reset agent_start 9.0 2.0 0.639035
193 attention_reset node_embedding 9.0 1.0 0.640783
151 attention_reset agent_start 6.0 3.0 0.643643
159 attention_reset node_embedding 6.0 3.0 0.645598
4 attention node_embedding 6.0 1.0 0.646688
150 attention_reset agent_start 6.0 2.0 0.648581
185 attention_reset agent_start 9.0 1.0 0.649013
245 attention_reset node_embedding 3.0 3.0 0.652799
269 attention node_embedding 3.0 1.0 0.653252
158 attention_reset node_embedding 6.0 2.0 0.654651
187 attention_reset agent_start 9.0 3.0 0.658972
157 attention_reset node_embedding 6.0 1.0 0.660926
154 attention_reset last_agent_visited 6.0 2.0 0.662325
282 attention_reset node_embedding 3.0 1.0 0.665597
190 attention_reset last_agent_visited 9.0 2.0 0.666626
261 attention agent_start 3.0 1.0 0.667099
244 attention_reset node_embedding 3.0 2.0 0.670761
2 attention_reset agent_start 6.0 1.0 0.671605
264 attention_reset agent_start 3.0 3.0 0.677057
263 attention_reset agent_start 3.0 2.0 0.678353
153 attention_reset last_agent_visited 6.0 1.0 0.680493
262 attention_reset agent_start 3.0 1.0 0.682345
267 attention_reset last_agent_visited 3.0 2.0 0.685986

Appendix D

Results - Node Regression -
PageRank

We decided to only list the best resulting runs when selecting unique combinations
of parameters and omitting the other parameters such as learning rate or dropout.

For Baseline-GCN the best unique combinations of [’hidden units’,’num lay-
ers’] are listed. For AgentNet the best unique combinations of [’number of
agents’,’neighborhood reset’,’transition strat.’,’readout strat.’] are listed.

D.1 Baseline-GCN

For all datasets the model was trained with all possible combinations of these
arguments:

• dims = [4,8,16]

• dropout rate in GCN Layer:= [0.0,0.3]

• learning rates:= [0.01,0.001,0.0001]

• num_layers:= [1,2,3,4]

Cora

Table D.1: Computation results of Baseline-GCN on Cora

hidden units dropout lr num layers test loss spear coeff.
15 4.0 0.3 0.0100 4.0 8.054900e-08 0.3454
59 16.0 0.0 0.0001 4.0 1.200000e-03 0.3880
44 8.0 0.3 0.0001 1.0 2.950000e-02 0.7409
56 16.0 0.0 0.0001 1.0 2.950000e-02 0.7409

Continued on next page

D-1

Results - Node Regression - PageRank D-2

Table D.1: Computation results of Baseline-GCN on Cora

hidden units dropout lr num layers test loss spear coeff.
0 4.0 0.0 0.0100 1.0 1.768300e-08 0.7409
1 4.0 0.0 0.0100 2.0 8.214400e-08 0.8585
2 4.0 0.0 0.0100 3.0 6.343300e-07 0.9199
25 8.0 0.0 0.0100 2.0 3.110600e-07 0.9597
65 16.0 0.3 0.0010 2.0 2.926400e-05 0.9632
38 8.0 0.3 0.0100 3.0 4.206000e-08 0.9666
54 16.0 0.0 0.0010 3.0 1.972600e-05 0.9826
39 8.0 0.3 0.0100 4.0 6.895500e-07 0.9864

PubMed

Table D.2: Computation results of Baseline-GCN on PubMed

hidden units dropout lr num layers test loss spear coeff.
64 16.0 0.3 0.0010 1.0 4.911100e-07 0.4905
16 4.0 0.3 0.0010 1.0 4.911100e-07 0.4905
36 8.0 0.3 0.0100 1.0 6.244000e-10 0.4905
15 4.0 0.3 0.0100 4.0 2.194300e-07 0.5138
63 16.0 0.3 0.0100 4.0 3.401600e-06 0.6007
1 4.0 0.0 0.0100 2.0 1.164100e-06 0.8387
38 8.0 0.3 0.0100 3.0 1.524300e-06 0.8922
45 8.0 0.3 0.0001 2.0 6.000000e-04 0.9333
47 8.0 0.3 0.0001 4.0 1.100000e-03 0.9497
65 16.0 0.3 0.0010 2.0 4.164500e-05 0.9565
14 4.0 0.3 0.0100 3.0 6.914700e-07 0.9642
50 16.0 0.0 0.0100 3.0 8.628800e-06 0.9673

OGB-Arxiv

Table D.3: Computation results of Baseline-GCN on OGB

hidden units dropout lr num layers test loss spear coeff.
48 16.0 0.0 0.0100 1.0 2.691100e-11 0.2852
4 4.0 0.0 0.0010 1.0 2.353600e-08 0.2852
44 8.0 0.3 0.0001 1.0 8.240000e-02 0.2852
1 4.0 0.0 0.0100 2.0 1.234300e-06 0.2901
15 4.0 0.3 0.0100 4.0 1.550000e-07 0.2957
42 8.0 0.3 0.0010 3.0 1.138800e-06 0.3104
25 8.0 0.0 0.0100 2.0 1.294400e-08 0.3136
70 16.0 0.3 0.0001 3.0 5.000000e-04 0.3169
71 16.0 0.3 0.0001 4.0 3.000000e-04 0.3174
14 4.0 0.3 0.0100 3.0 9.915900e-09 0.3193
35 8.0 0.0 0.0001 4.0 3.800000e-03 0.3198

Results - Node Regression - PageRank D-3

61 16.0 0.3 0.0100 2.0 3.157400e-07 0.3248

D.2 AgentNet

For all datasets the model was trained with all possible combinations of these
arguments:

• dims = [8,16]

• training dropout rate = [0.3]

• learning rates = [0.01,0.001,0.0001]

• steps = [5,10,20]

• num agents = [0.25n,0.5n,n,1.5n,2n] (n = number of nodes in graph)

• learning rates = [0.01,0.001,0.0001]

• readout strategies = [node_embedding,last_agent_visited]

• transition strategies = [attention, attention_reset, random]

• initialization strategies = [random]

• neighborhood_reset_sizes = [2,3,4]

Cora

Table D.4: Computation results of AgentNet on Cora

transition strat. readout strat. agent steps num agents n.hood reset spear coeff.
6 random last_agent_visited 5.0 677.0 3.0 0.3433
193 random last_agent_visited 10.0 1354.0 3.0 0.3747
200 random last_agent_visited 20.0 2708.0 3.0 0.3948
56 attention_reset node_embedding 10.0 1354.0 3.0 0.5053
93 random node_embedding 20.0 677.0 3.0 0.5315
204 attention_reset node_embedding 10.0 1354.0 4.0 0.5687
107 attention_reset node_embedding 20.0 5416.0 3.0 0.6125
197 attention_reset node_embedding 10.0 2708.0 2.0 0.6201
382 random node_embedding 5.0 1354.0 3.0 0.6319
196 attention_reset node_embedding 10.0 1354.0 2.0 0.6447
96 attention node_embedding 20.0 1354.0 2.0 0.6470
255 attention_reset node_embedding 20.0 5416.0 4.0 0.6510
138 attention_reset node_embedding 20.0 4062.0 3.0 0.6568
95 random node_embedding 20.0 2708.0 3.0 0.6693
142 attention_reset node_embedding 20.0 4062.0 4.0 0.6695

Continued on next page

Results - Node Regression - PageRank D-4

Table D.4: Computation results of AgentNet on Cora

transition strat. readout strat. agent steps num agents n.hood reset spear coeff.
102 attention_reset node_embedding 20.0 4062.0 2.0 0.6907
242 attention node_embedding 20.0 4062.0 2.0 0.6947
109 attention_reset node_embedding 20.0 2708.0 4.0 0.7176
195 attention node_embedding 10.0 5416.0 2.0 0.7404
97 attention node_embedding 20.0 2708.0 2.0 0.7448
105 attention_reset node_embedding 20.0 2708.0 3.0 0.7931
247 attention_reset node_embedding 20.0 5416.0 2.0 0.8528

PubMed

Table D.5: Computation results of AgentNet on PubMed

transition strat. readout strat. agent steps num agents n.hood reset spear coeff.
38 random last_agent_visited 20.0 19717.0 3.0 0.4656
325 random last_agent_visited 5.0 9858.0 3.0 0.5048
90 random last_agent_visited 20.0 4929.0 3.0 0.5648
252 attention_reset node_embedding 20.0 9858.0 4.0 0.6413
0 attention node_embedding 5.0 9858.0 2.0 0.6569
270 attention_reset node_embedding 20.0 29575.0 4.0 0.6633
250 attention_reset node_embedding 20.0 29575.0 3.0 0.6779
315 random node_embedding 20.0 4929.0 3.0 0.6786
105 attention_reset node_embedding 20.0 19717.0 3.0 0.6828
364 random node_embedding 20.0 9858.0 3.0 0.6972
8 attention_reset node_embedding 5.0 9858.0 3.0 0.7050
109 attention_reset node_embedding 20.0 19717.0 4.0 0.7059
5 attention_reset node_embedding 5.0 19717.0 2.0 0.7159
4 attention_reset node_embedding 5.0 9858.0 2.0 0.7210
198 attention_reset node_embedding 10.0 29575.0 2.0 0.7269
159 attention_reset node_embedding 5.0 39434.0 4.0 0.7299
242 attention node_embedding 20.0 29575.0 2.0 0.7363
251 attention_reset node_embedding 20.0 39434.0 3.0 0.7513
241 attention node_embedding 20.0 19717.0 2.0 0.7531
199 attention_reset node_embedding 10.0 39434.0 2.0 0.7734
419 random node_embedding 20.0 19717.0 3.0 0.7961
243 attention node_embedding 20.0 39434.0 2.0 0.8166

OGB-Arxiv

Table D.6: Computation results of AgentNet on OGB

transition strat. readout strat. agent steps num agents n.hood reset spear coeff.
42 random last_agent_visited 20.0 42335.0 3.0 0.0666
362 random last_agent_visited 20.0 169343.0 3.0 0.1073
295 random last_agent_visited 10.0 84671.0 3.0 0.1090
0 attention node_embedding 5.0 84671.0 2.0 0.1444
45 random node_embedding 20.0 42335.0 3.0 0.1555

Continued on next page

Results - Node Regression - PageRank D-5

Table D.6: Computation results of AgentNet on OGB

transition strat. readout strat. agent steps num agents n.hood reset spear coeff.
88 random node_embedding 10.0 84671.0 3.0 0.2104
54 attention_reset node_embedding 20.0 84671.0 2.0 0.2746
76 attention_reset node_embedding 10.0 84671.0 4.0 0.2777
52 attention node_embedding 20.0 254014.0 2.0 0.3076
56 attention_reset node_embedding 20.0 84671.0 3.0 0.3171
106 attention_reset node_embedding 20.0 254014.0 3.0 0.3188
71 attention_reset node_embedding 5.0 169343.0 2.0 0.3214
48 attention_reset node_embedding 5.0 254014.0 4.0 0.3285
15 attention_reset node_embedding 10.0 169343.0 4.0 0.3318
59 attention_reset node_embedding 5.0 169343.0 3.0 0.3337
65 attention_reset node_embedding 5.0 338686.0 4.0 0.3499
102 attention_reset node_embedding 20.0 254014.0 2.0 0.3534
107 attention_reset node_embedding 20.0 338686.0 3.0 0.3593
99 attention node_embedding 20.0 338686.0 2.0 0.3625
103 attention_reset node_embedding 20.0 338686.0 2.0 0.3970
293 random node_embedding 10.0 169343.0 3.0 0.4759
49 attention node_embedding 10.0 169343.0 2.0 0.4912

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Introduction
	1.2 AgentNet
	1.3 PageRank
	1.4 Our Contributions

	2 Related Work
	3 Models
	3.1 AgentNet
	3.1.1 Parameters

	3.2 Baseline-GCN Model
	3.2.1 Parameters

	4 Datasets
	4.1 Node Classification
	4.2 PageRank
	4.2.1 Random Surfer Model

	5 Node Classification
	5.1 Experiment Setup
	5.2 Baseline-GCN
	5.3 AgentNet
	5.4 Comparision of Baseline-GCN and AgentNet

	6 Node Regression - PageRank
	6.1 Experiment Setup
	6.2 Baseline-GCN
	6.3 AgentNet
	6.4 Comparison of Baseline-GCN and AgentNet

	7 Conclusion
	7.1 Conclusion
	7.2 Future Work

	Bibliography
	A Implementation
	B List of Model Arguments
	B.1 Baseline-GCN
	B.2 AgentNet

	C Results - Node Classification
	C.1 Baseline-GCN
	C.2 AgentNet

	D Results - Node Regression - PageRank
	D.1 Baseline-GCN
	D.2 AgentNet

