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Abstract

Graph Neural Networks (GNNs) are a powerful variations of classical neural
network models that are suited for learning on graph structured data. However,
as is the case for other neural networks, GNNs are not transparent and their
internal logic cannot be readily interpreted by humans.

In this thesis we built on top of an existing interpretable Decision Tree GNN
architecture (DT-GNN) that acts as a surrogate for the underlying GNN. This
architecture however struggles with high dimensional datasets.

The aim of the thesis is twofold: First we facilitated the transfer from GNN
to DT-GNN by using dimensionality reduction as well as L1-orthogonal regu-
larization. Second, we provided an extension to the DT-GNN approach, which
allows us to keep the generically trained GNN architecture in place, without
requiring training with Gumbel Softmax. This extension could lead to down-
the-line benefits when working with high dimensional datasets and facilitates the
implementation of an interpretable alternative in existing models.
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Chapter 1

Introduction

Graph Neural Networks (GNNs) are a class of powerful artificial neural network
structures that, similar to other neural networks, learn on input data-sets by op-
timizing model parameters for downstream predictions [1, 2]. In contrast to other
neural networks however, Graph Neural Networks make use of the inherent graph
structures of their input data-sets. In particular, the Graph Neural Network uses
the data’s underlying graph to create a framework where nodes are embedded
into a feature space based on the data of surrounding nodes. This framework
is known as the message passing framework which aggregates the node-states
of surrounding nodes along the edges of its underlying graph and then adjusts
model parameters to update node embeddings. This allows GNNs to make deci-
sions that are closely related to the graph structure of the input data and makes
GNNs uniquely suited for data that has a complex interdependent structure. Un-
fortunately however, as it is the case for many other neural networks, GNNs are
not transparent and their internal logic cannot be readily interpreted by humans.

The starting point of this thesis was the Master thesis of Peter Müller [3] in
which an important step was made towards making the decision process of graph
neural networks fully transparent so that the decision sequence could be followed
in a human readable format. This is a very challenging feat since the decision
process of Graph Neural Networks, like many other Neural Network decision
processes, remain inside the black box model. Techniques have been used and
implemented to create post hoc explanations of GNN models [4, 5], however,
none of them can truly follow the decision process. Peter Müller together with
his supervisors, Karolis Martinkus and Lukas Faber, developed a process in which
a Graph neural Network was built that allowed a transfer from the GNN to a
Decision Tree model called DT-GNN that, on a set of benchmark datasets, could
be understood by humans and where it was possible to follow the decisions at a
node level while the model retained accuracy.

The developments described in this thesis aim to generalize GNN interpretabil-
ity to a wider range of problems compared to the existing DT-GNN model. One
aspect where this model fell short is in maintaining the accuracy level for data
sets with higher dimensionality per node embedding such as citation datasets that
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1. Introduction 2

often have a large amount of feature dimensions. We can see in the figure bellow
how for most Citation datasets the accuracy significantly drops as we move from
the GIN to the interpretable alternative, DT-GNN 1.1. An additional limitation
is the fact that that GNN needs to be trained using Gumble-Softmax at the end
of each GNN layer. This makes it difficult to implement and, in some instances,
can limit the models ability to be expressive.

DT+GNN
Dataset Features GIN Diff. No pruning Lossless pruning
CORA 1433 0.87 0.82 0.69 0.68
CiteSeer 3703 0.77 0.70 0.61 0.61
PubMed 500 0.88 0.87 0.85 0.85
OBGN-Arxiv 128 0.68* 0.68 0.28 -

Table 1.1: DT+GNN results for citation datasets with high dimensionality.
*Since the dataset has 40 classes, we use a state-size of 50 for DT+GNN variants
and 128 wide embeddings for GIN.

We address these limitations by exploring the following strategies:

One approach we pursued is to reduce dimensionality on the original dataset
while preserving essential feature information that is discriminative during the
prediction process. Additionally, this dimensionality reduction itself must be
understandable in order to keep every step in the GNN to DT-GNN model fully
interpretable. This approach would spare the DT model from not having to work
with overly large feature spaces, which should facilitate the transfer from GNN
to DT-GNN.

Additionally, we explored to use of regularizers to constrain the GNNs weights
in a favorable way to promote a better GNN to DT-GNN transfer. An essential
part in the GNN to DT-GNN conversion process is approximating the Multi
Layer Perceptron (MLP) layers as a decision tree equivalent. Considering the
importance for Neural Networks to be understandable when applied to real world
tasks, it was reported that Decision Trees can be used as a surrogate model
for some MLP structures as a interpretable alternative [6]. Often however the
accuracies and fidelities of these surrogate models are unsatisfactory compared
to that of the original Neural Network. To overcome this problem Scheff et al.
suggested the use of L1-Orthogonal regularization of the MLP weight which is
favorable for the generation of decision trees [7]. It allows for the axis-parallel
decision boundaries to be more expressive and lets the Decision Tree to fit the
data within a smaller tree.

Lastly, we explored clustering as an alternate approach to discretize GNNs for
their ultimate transfer to the DT-GNN model. Our goal was to keep the original
GNNs untouched allowing us to retain the generically trained GNN architecture
and avoid having to train using Gumble-Softmax and simply using clustering as



1. Introduction 3

a way to discretize inputs and outputs. This process also removes some of there
hurdles of implementation on different GNNs and might lead to some improve-
ments when dealing with high dimensional datasets since a cluster considers all
feature components at once while a decision tree is forced to perform k steps to
analyze k features.

We tested the performance of all of these developed computational approaches
using benchmark datasets Cora [8] and CiteSeer [9], which consists of one-hot
encodings of words in paper abstracts as binary feature values. By default, each
abstract constitutes a node with 1433 (Cora) and respectively 3703 (CiteSeer)
feature dimensions. In the this thesis most of the experiments are done on these
data sets since they serves as excellent examples to test the limitation of the GNN
to DT-GNN transfer process when applied to high dimensional datasets 1.1.



Chapter 2

Background

2.1 Architecture of Graph Neural Networks

The Graph Neural Network updates node embeddings at each of its layers. In
contrast to some other Neural Networks, the Graph Neural Network builds its
Neural Network Architecture in a way that resembles the underlying graph [2].
Layers are defined in a unique way by degree of removal from the node that
is to be updated. Simultaneously every node is updated in an iteration step
across the graph with each node having a unique computational graph based on
the surrounding graph structure. This process can be visually represented as a
message passing step on the input graph with nodes that are to be updated hl

i

being offered with the node embeddings of its surrounding neighbors N (hli) as
seen in figure 2.1. The messages are passed to the central node, where they
are aggregated in a preferable way. The central node state, becomes updated
by an activation function, which as an input takes the aggregated node states
of its surroundings as well as its own node state. In the next iterative step this
updated embedding hl+1

i can be used by its own neighborhood N (hl+1
i ) to further

update the node embeddings in the graph. Eventually each graph node becomes
embedded in a learned way and can perform graph and node level predictions on
the input graph.
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2. Background 5

Figure 2.1: Updating a singular node during one iteration of the embedding
framework in Graph Neural Networks

hl+1
i = update(hl

i, aggregation(N (hli))) (2.1)

2.2 The path from GNN to a Decision Tree-GNN

To translate the GNN to a fully interpretable model as proposed by P. Müller et
al. [3], the GNN needs to be designed in a unique way. This is achieved by im-
plementing a Graph Neural Network structure to accurately perform predictions
on evaluation data sets, and then use the outputs and inputs of the GNNs layers
to fit decision trees (DT) that emulate the GNNs internal decisions. To make
this process interpretable, the Graph Neural Networks layer outputs need to be
categorical, so that explicit node state decisions can be made. This is achieved
by designing the GNN with Gumble-Softmax function at the end of each layer to
force categorical states between layers that can then be used by the DT model to
fit the categorical inputs and outputs. This allows humans to follow the decision
process throughout the DT.

The GNN to DT-GNN model performed comparably to the Graph Isomor-
phism Network(GIN) [10] on most of GINs commonly used benchmarks. Using
pruning, the decision trees become humanly readable and offer straight forward
interpretation and insight into many GNN decisions [3]. This was a great step
forward in advancing interpretability while keeping performance accuracy.
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Figure 2.2: transfer from the discrete version of GNN to the DT-GNN for inter-
pretability



Chapter 3

Dimensionality reduction and
regularization approaches to im-
prove GNN to DT-GNN transfer

3.1 Principle Component Analysis dimensionality re-
duction

Principal Component Analysis (PCA) is a widely used linear dimensionality re-
duction technique that allows identification of the most expressive features in the
dataset. It can mathematically be understood as linear combination of the fea-
ture components in the original data, that retains maximum variance [11]. In that
sense PCA can be seen as linear superposition which is considered interpretable.
Naturally, this lends itself well to reducing the number of components in datasets
with a lot of features, such as Cora, while retaining the overall interpretability of
the GNN to DT-GNN model.

We implemented the PCA dimensionality reduction and tested the effects of
this process on the GNN to DT-GNN conversion when applied to Cora as well as
CiteSeer datasets. The dimensionality reduction was applied as the a dataset gets
loaded initially. Different extents of reductions were evaluated across a 10-fold
validation and compared with the control where no dimensionality reduction was
applied. The results for Cora as well as CiteSeer are listed in the tables 3.2 and
3.2. For readability purposes the data is reduced to the most essential parameters
used for out evaluations.

For CiteSeer the results show there are visible improvements of the relative
performance in the discrete GNN to DT-GNN transfer, contrary to Cora where we
have no clear improvements in the performance of the DT-GNN. Both GNNs seem
to improve in accuracy with dimensionality reduction. This can be attributed to
fact that the PCA contributes to a more regularized space for the weight vectors.
Eventually the dimensionality reduction weakens the signal in the datasets too
much and both the GNN accuracy and the DT accuracy are reduced.

7



3. PCA and L1-ortho reg for improved model transfer 8

Table 3.1: 10 fold cross-validation of accuracies for the Cora dataset across dif-
ferent dimensions following PCA dimensionality reduction

Test Acc
Dimensions after PCA GNN DT-GNN DT-GNN pruned
2 0.631 0.506 0.489
5 0.734 0.632 0.624
16 0.811 0.680 0.645
48 0.840 0.661 0.630
128 0.850 0.673 0.644
no dim reduction 0.814 0.694 0.675

Table 3.2: 10 fold cross-validation of accuracies for the CiteSeer dataset across
different dimensions following PCA dimensionality reduction

Test Acc
Dimensions after PCA GNN DT-GNN DT-GNN pruned
2 0.507 0.507 0.494
5 0.685 0.650 0.632
16 0.698 0.642 0.633
48 0.724 0.652 0.637
128 0.718 0.621 0.614
no dim reduction 0.700 0.610 0.610

3.2 Orthogonal weight regularization in MLP layers

L1-orthogonal regularization has two main objectives; inducing sparsity in the
weight vectors of MLP layers, as well as aligning weight vectors orthogonally in
every MLP layer. Schaaf et al. [7] showed that L1-orthogonal regularization helps
prime MLP layers leading to a better DT conversion. This is the case because
it allows the DTs Axis-parallel Decision Boundaries to be more expressive, and
allows fitting of the data within a smaller DT structure.

L1 norm is defined as the sum of absolute values of vectors components. Com-
binations of vector components that reduce this norm have fewer components.
Due to that often the norm is often used as a regularizer of model weights given
by ∥w∥1 =

∑p
j=1 |wj | in order induce sparsity in the weight vectors.

In order to orthogonally align the weight vectors it is important to realize
that if two weight vectors are ortho-normal, their scalar product is zeros and
their individual L2 norms are close to one. To promote orthogonal aligning, we
compute the Gram matrix expressed as Gi,j = wT

i wj . If the weight vectors are
close to being ortho-normal the gram matrix is close to the identity matrix. With
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these considerations, we created a regularizing term as 3.1.

Lortho-L1 =

l∑
i=1

∥Gl − I∥1 (3.1)

We extracted the weights from the MLP layers in the discrete GNN and calcu-
lated the regularizing factor according to 3.1 multiplied with a constant lambda.
Based on the accuracy results of calculations carried out when some MLP layers
were kept in place and transferring others to the DT- GNN, we hypothesized that
the bottleneck in the transfer between discrete GNN and the DT-GNN might be
the input layer. Considering the given hypothesis the implementation was done
in two different variants. In one case every layer was regularized, whereas in the
other only the input layer was regularized. For both cases lambda was varied
according to logarithmic increments from 0.05 to 0.000005 and ran across the
two different implementations. The evaluation was done on both the datasets
Cora 3.3 and CiteSeer 3.4. The results of the regularization of the input layer
are shown side by side with the results from the implementation that covers all
layers in table.

For both datasets, the results of the all-layer implementation shows that de-
pending on how strong the regularizer is applied, there is a tradeoff between how
much the regularizer promotes a better transfer from GNN to DT-GNN and how
much the regularizer act as a limiting factor in the GNNs ability to train. This is
evident from the observation, that the performance of the DT-GNN approaches
the performance of discrete GNN at higher lambda values. The optimal DT-GNN
accuracy for Cora is 0.766 at lambda=0.0005 and the optimal DT-GNN accuracy
for CiteSeer is 0.639 at lambda=0.005. Interestingly the accuracy of the discrete
GNN seems to improve as well with the right choice of regularizer. This is most
likely due to the fact that the regularization stabilizes the behavior of MLP layers
in the model similar to the way PCA stabilized the optimization of GNN in the
previous section.

In line with our hypothesis, the results for the input-layer implementation
show a very similar distribution of datapoints when the regularizer was applied
across all layers. We also observe that the same tradeoff between the efficiency
of model transfer to the DT layer and the GNNs learning ability. As for the
all-layer implementation, the highest DT-GNN accuracy of 0.769 for Cora is also
observed at lambda 0.0005, whereas the highest DT-GNN accuracy for CiteSeer
is 0.649 respectively observed at lambda 0.005.
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Table 3.3: 10 fold cross-validation test accuracies on Cora across different lambda
values for the L1-orthogonal regularizer applied only to the input layer and for
the L1-orthogonal regularizer applied to all layers

Input Layer Reg All Layer Reg
Lambda GNN DT-GNN GNN DT-GNN
0 0.812 0.683 0.812 0.683
0.000005 0.793 0.676 0.806 0.699
0.00005 0.825 0.704 0.837 0.700
0.0005 0.858 0.766 0.861 0.769
0.005 0.788 0.709 0.782 0.737
0.05 0.724 0.666 0.696 0.644

Table 3.4: 10 fold cross-validation test accuracies on CiteSeer across different
lambda values for the L1-orthogonal regularizer applied only to the input layer
and for the L1-orthogonal regularizer applied to all layers

Input Layer Reg All Layer Reg
Lambda GNN DT-GNN GNN DT-GNN
0 0.700 0.610 0.700 0.610
0.000005 0.704 0.619 0.697 0.613
0.00005 0.703 0.617 0.700 0.610
0.0005 0.703 0.629 0.705 0.612
0.005 0.731 0.649 0.716 0.639
0.05 0.385 0.376 0.332 0.328



Chapter 4

Developing a GNN to DT-GNN
Architecture that works with

natural GIN node embeddings

4.1 Extension of DT-GNN architecture with Cluster-
ing process in GIN layers

To discretize the GNN model, while preserving the standard GIN architecture,
we applied a clustering approach. In every GIN layer, all the data points were
embedded in a unique way in the embedding space. To find discrete embeddings,
we clustered the datapoints according to different clustering algorithms. When
the data points are needed in a discrete way, based on their cluster association
the data points become one-hot encoded as visible in the figure bellow 4.1. This
process should serve as an alternative to creating a discretized GNN version of our
model to be interpreted, while keeping the GNN to DT-GNN transfer accuracy
high. This clustering process provides a lot of freedom to the embeddings while
eventually still generalizing to the Decision Tree. This approach could also help
with more complex high-dimensional data sets such as Cora since a cluster is able
to considers all feature components at once whereas a decision tree is forced to
perform k steps to analyze k features.
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4. DT-GNN extension for natural node embeddings 12

Figure 4.1: Clustering process between GNN layers

The new architecture with GIN node embeddings requires a model transfer
from GNN to DT-GNN as shown schematically for one layer in figure 4.2. In
this regard, the new architecture is the same as in the previous architecture
that did not include clustering, however, in the new implementation, the GNNs
discrectizing architecture using Gumbel-Softmax is removed and the nodes are
free to embed without restrictions 4.2). In a second step after the model has been
trained, the clustering process is performed on every data point in every layer
(step 2 in the figure 4.2). As a result, this gives a unique cluster association to
each datapoint in a particular layer. In the transfer step from GNN to DT-GNN,
instead of directly copying the node embeddings from the inputs and outputs
of the GNN layers, they are one-hot encoded based on their cluster association
(step 3 in the figure 4.2). These one-hot encoded vectors make up the categorical
states that are passed to the DT layer as inputs and outputs (step 4 in the figure
4.2).



4. DT-GNN extension for natural node embeddings 13

Figure 4.2: Novel architecture uses clustering to discretize GNN for DT-GNN
transfer

Next, we compared the performances of three different clustering algorithms
4.1. Spectral Clustering and k-means clustering outperformed DBSCAN. The
k-means and spectral clustering algorithms featured very similar accuracies that
are comparable to the discrete GNN to DT-GNN architecture. To analyze the
performance of the clustering algorithms we used the t-distributed stochastic
neighbor embedding (t-SNE) method [12] on all data points in every layer to
reduce the dimensionality. This allowed plotting and coloring the points based
on their cluster association both for the k-means clustering 4.3, Spectral cluster-
ing 4.4 as well as DBSCAN clustering 4.5. The analysis shows that, in general,
the points are distributed cohesively. Prior to clustering, in the input layer, the
distribution of points appears to be more isometric compared to the later layers
where the distribution of points seems elongated. The Spectral algorithm visually
appears to be the most accurate at identifying clusters in the embedding space as
can be seen in the t-SNE plots in Figures 4.4with k-means being close second in
Figure 4.3. However, this should be taken with caution since the 2-dimensional
representation can be misleading.
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Table 4.1: 10 fold cross-validation across different clustering alternatives
Test Acc

Clustering Type GNN DT-GNN DT-GNN pruned
Spectral clustering 0.792 0.666 0.659
k-means clustering 0.794 0.640 0.641
DBSCAN clustering* 0.786 0.573 0.560
original GNN to DT-GNN 0.814 0.694 0.675

*Since the input layer did not cluster well with DBSCAN. it was clustered by
k-Means instead of DBSCAN. All other layers are clustered with DBSCAN
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Figure 4.3: Scatter plot of all Cora datapoints projected by t-SNE to 2 dimensions
colored according to k-means-cluster association
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Figure 4.4: Scatter plot of all Cora datapoints projected by t-SNE to 2 dimensions
colored according to Spectral-cluster association
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Figure 4.5: Scatter plot of all Cora datapoints projected by t-SNE to 2 dimensions
colored according to DBSCAN-cluster association



Chapter 5

Discussion

5.1 Discussion and Conclusions

In this thesis I explored different strategies to improve the conversion of a GNN
architecture to make it interpretable when applied to a broader range of machine
learning tasks. To this account I have introduced modifications to the procedures
to make the discrete GNN to DT-GNN model transfer better for datasets that
are high in feature dimensions.

The strategy to reduce the dimensionality of the data using principal compo-
nent analysis improved the performance of the DT-GNN such that it approached
the performance of the GNN when applied to the CiteSeer dataset, however no
apparent improvements could be observed when the Cora dataset was processed.
This is most likely because the tradeoff between the extent of used features and
the success of GNN to DT-GNN transfer is too steep for the Cora dataset. As
a consequence, too much signal is lost when the features are reduced to a small
enough number that it could have a positive impact on the GNN to DT-GNN
transfer. It appears that the PCA dimensionality reduction is a process that
should always be tested, as it has the potential to yield good results depending
on the given dataset.

Orthogonal-L1 regularization proved to be a great way to improve the accu-
racy of DT-GNN towards that of discrete GNN. The results indicated substantial
improvements for both datasets that the procedure was applied to. Orthogonal-
L1 regularization appears to be the more consistent approach in dealing with
high dimensional datasets compared to PCA. We have discovered that the MLP
structure in the input layer is difficult to emulate with the DT and, consequently,
the regularizer significantly helps the transfer in the input layer for both datasets
since it allows for better axis-parallel decisions.

In the last approach, we implemented a novel GNN to DT-GNN conversion
architecture as an alternative to the existing implementation with the aim to
make it more generally applicable to different types of problems and data com-
plexities. Although the results did not outperform the existing GNN model for

18



5. Discussion 19

the Cora dataset, the procedure remains to be tested on other datasets with high
dimensionality such as ogbn-arxiv [13], CiteSeer or PubMed. The current imple-
mentation provides an excellent starting point for future exploration of strategies
aimed at improving the DT-GNN so that it could provide similarly accurate
predictions on high dimensional data sets as GIN does.

5.2 Future research

In the presented novel clustering GNN to DT-GNN architecture, the original
neural network is not trained to work with categorical embeddings. Because
of this, error propagation likely occurs when changing to the categorical cluster
states in the DT. In a possible continuation of the work presented this thesis, one
could add an intermediate training step where the GNN is trained in a categorical
way following the initial training phase using Slot Attention [14], which would
bring the data points to categorical states in a probabilistic way. This would
allow for the model to maintain freedom in its embedding structure while adding
a step in which it is forced to learn to fully rely on categorical inputs. This could
reduce the error propagation between the models resulting in a more accurate
transfer from GNN to DT-GNN.
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