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Abstract

Focusing on the semantic information in code has been a key challenge for NLP
based models when solving code related machine learning tasks such as code
search. State of the art models still rely heavily on the syntactic information such
as the naming of variables. This does not only make such models weak to variable
naming attacks but also worsens the performance greatly when the target data
is anonymized. In this work we explore an approach we call Canonical Identifier
Naming where the model is trained on transformed data that does not contain
any lexical variable information hoping to make it resilient against lexical attacks
and achieve good performance on anonymized data. We test this approach on a
number of baseline and state of the art models on a set of different programming
languages.
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Chapter 1

Introduction

Machine learning has enabled machines to do many tasks that in the past only
humans could do. While they tend to be mostly simple tasks it has allowed us
humans to become more efficient and focus on the more important tasks. In the
software industry a lot of time and effort goes into reading and understanding
existing code as well as writing code that has already been written many times
before. Machine learning tasks such as code search, completion, explanation etc.
aim to either help a developer to do such tasks more efficiently or take them over
completely.

1.1 Code Search

In this work we will focus on the task of code search. In code search we input a
search query describing a desired functionality and the model then has to pick a
suitable option out of a set of code pieces. Solving this task requires the model
to get an understanding of the relation between the structure of code as well as
the structure of the search query.

With the popularity of natural language processing (NLP) models in the past
years researchers have successfully adapted NLP models to do well on code related
machine learning tasks. However, programming code has some key differences
compared to natural languages. One key difference is source code can be written
in many different ways while doing the exact thing. Further, one may choose
the naming of variables however they want. As a result, a key to understanding
the functionality of some piece is to understand the data flow, i.e. the semantic
information, in code. Using NLP models this has always been been a challenge.

1.2 Issues With Current Models

In software it is very common to reuse certain identifiers for certain variables in
the source code. Developers often use the variables i, j, k often as indexes to
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1. Introduction 2

name an example. The variable name normally suggests the use or role of the
variable. So when training a NLP model to understand what a certain piece of
source code is doing it is only natural that the model will start to retrieve code
information based on the variable names. As a result we get a model that relies
less on understanding the structure of the code.

This issue has been analyzed in much more detail in the Challenging the
Lexical Focus of Code Search work by Frederik Markus [1]. There he found that
removing or obfuscating lexical clues such as the variable identifiers reduced the
performance of all tested models regardless of the data sets. This was underlined
by the fact that removing the comments alone had a significant effect on the
performance of the model.

In the past years researches have tackled this issue mainly by supplying the
model with more semantic information such as data flow. One example is the
GraphCodeBERT model [2] that makes use of data flow in the pretraining stage
of the model.

1.3 Goal Of This Work

In this work we explore an approach where the model does not have any infor-
mation about the name of a variable. To be more precise we rename all variable
names to canonical identifiers. The goal is to force the model into learning the
inherent structure of code instead of relying on variable names thus creating a
model that is robust against lexical attacks and achieves similar performance on
anonymized data. The questions we want to answer are: Does training a model
with this approach make it outperform itself when trained with normal data be-
cause it better learns to understand the structure of code? Does this approach
allow us to train models that work well on anonymized data, i.e. data that has
their variable names removed? We will try to answer those questions using a
number of baseline as well as state of the art models on a number of different
programming languages.



Chapter 2

Canonical Identifier Naming

As mentioned before the goal of this work is to try to force the model into learn-
ing the inherent structure of code by removing any lexical clues. Our approach
is to use normal data and transform it by replacing all variable identifiers with
canonical identifiers as well as removing all comments. We further shuffle the
identifiers randomly such that the order in which the variables appear is ob-
fuscated as well. We call this approach Canonical Identifier Naming (CIN). A
benefit of this approach is that we can also take any anonymized data, i.e. data
that has the variable names changed, and turn it into cin data.

2.1 Implementation

The implementation is slightly different for every programming language we use
but the main idea is the same for all of them.

1. Remove any comments: Comments can be identified and deleted easily
using regular expressions.

2. Search the variables: This is the most difficult step which also differs the
most between programming languages. For all languages except PHP the
idea is to parse the piece of code into an abstract syntax tree which then
shows you all variables. The library used to parse is specific to every lan-
guage and normally written in this exact language. In PHP every variable
starts with a $ character so we use this information to get the variables.

3. Create the canonical identifiers and shuffle them: Once we have
collected the variable we create a canonical identifier for each different vari-
able name. We choose to use the canonical identifiers var0, var1 etc. The
new identifiers are further shuffled randomly to remove any information
regarding the order in which the variables appear in the code.

4. Rename the variables: Finally we have to replace the old variable names
with the new canonical identifiers.

3



2. Canonical Identifier Naming 4

def countByValueAndWindow(self, windowDuration, slideDuration, numPartitions=None):
    keyed = self.map(lambda x: (x, 1))
    counted = keyed.reduceByKeyAndWindow(operator.add, operator.sub,
                                         windowDuration, slideDuration, numPartitions)
    return counted.filter(lambda kv: kv[1] > 0)

def var3(var7, var2, var9, var4=None):
    var8 = var7.map(lambda var6: (var6, 1))
    var1 = var8.reduceByKeyAndWindow(var0.add, var0.sub,
                                     var2, var9, var4)
    return var1.filter(lambda var5: var5[1] > 0)

Canonical Identi�er Naming

Figure 2.1: Example of Canonical Identifier Naming on a Python function.

Figure 2.1 shows in a small example the differences between the original code
and the transformed code. We see that both the name of the function as well as
all variables are replaced with the canonical identifiers var0, var1, ..., var9. The
new identifiers are further shuffled so for example the function identifier is now
var3.



Chapter 3

Experiment Setup

A lot of this work is build on top of the infrastructure that was established in
the work on Challenging the Lexical Focus of Code Search from Frederik Markus
[1]. As a result we will use of the same models and data sets as well as the same
implementation pipeline.

3.1 Experiment Pipeline

The implementation pipeline, i.e. a collection of various shell scripts, was de-
signed to test different attacks on code search models. Its purpose is to automate
the steps required to train and evaluate different combinations of modified data
sets and machine learning model. To be more precise this includes the steps of
generating a modified data set base using an attack, training a model on a data
set, evaluating a model on a data set and recording the scores.

We will use this implementation pipeline as it is build modular by design and
all we need to do is to add our transformation in the form of another attack to
repurpose the pipeline. More on the implementation of the pipeline as well as
information on how to use it can be found in detail in [1].

3.2 Data

We use a cleaned version of the CodeSearchNet corpus from the CodeSearchNet
challenge [3]. The corpus is collected from publicly available open-source GitHub
repositories sorted by their popularity. Using the pipeline certain elements from
the original corpus are removed as they are not suitable for our models. We
remove elements that...

• ... cannot be parsed into an abstract syntax tree.

• ... contain functions with very few (< 3) or very many (> 256) tokens.

5



3. Experiment Setup 6

• ... contain special characters.

• ... have a function description that is not written in English.

This leaves us with the following data sets:

Language Train Valid Test
Python 251,820 13,914 14,918
PHP 241,241 12,982 14,014
Java 164,923 5,183 10,955
Javascript 58,025 3,885 3,291
Go 167,288 7,325 8,122

Table 3.1: The data sets and their sizes.

It is important to mention that by using this corpus containing scraped data
sets it is unclear to which extend the documentation string accurately describes
the function. Further as the documentation string is normally written by the
same person that has also wrote the code it tends to be written using the same
vocabulary and not necessary the vocabulary some would use in a code search
query.

3.2.1 Modifying The Data

From each data set we create four modified versions that are then used to train
the models. For the first version we simply remove all the code comments from
the original data set. We call this version the nocomment data sets. For the
other three versions we remove all the code comments and apply the canonical
identifier naming transformation. For the cin 1 data set we do not augment the
code examples. For the cin 2 and cin 4 data sets we create two respectively four
code examples for every original example each having their canonical identifier
names reshuffled. Hence the cin 2 data set is augmented by a factor of two and
the cin 4 data is augmented by a factor of four.

3.3 Models

We evaluate our approach on different NLP based models. All models were
already implemented in the pipeline [1]. Hence, we will only briefly describe each
of them. To get more implementation details refer to the Challenging the Lexical
Focus of Code Search paper [1] or the model’s original papers.

The general approach for all models is to compute an encoding for both the
search query as well as the code snippets. Similar code snippets as well as their
accompanying documentation should share similar encodings.
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3.3.1 CodeSearchNet Models

As a baseline we use four different models from the CodeSearchNet paper [3].

• Neural Bag of Words: each (sub)token is simply embedded to a learnable
embedding

• 1D Convoluational Neural Network: the input sequence of tokens is
passed through a 1 dimensional neural network

• Self-Attention: multi-head attention is used to compute representations
of each token in the sequence

• Convoluational Self-Attention: a variant of the self-attention model
employing convolutions

3.3.2 GraphCodeBERT

GraphCodeBERT [2] is a more sophisticated model that is based on the Trans-
former technology [4]. It uses data-flow, a sematic-level structure of code, instead
of a syntactic structure like the abstract syntax tree in the pre-training stage.
This makes the GraphCodeBERT model consider the inherent structure of the
code which enhances the code understanding.

3.3.3 SynCoBERT

SynCoBERT [5] employs a combination of different ideas not found in other
models to achieve state-of-the-art performance on the CodeSearchNet bench-
mark. What stands out is the usage of Cross Momentum Contrastive Learning
(xMoCo) [6] which allows the separation of encoders for the documentation and
code as well as providing some mechanisms to stabilize training. It further makes
use of a Barlow loss.

3.4 Experiment Details

All experiments are conducted on the TIK Arton cluster at ETH Zurich. The
models are all written in Python based primarily on the PyTorch [7] and Tensor-
Flow [8] frameworks.

There is a policy employed on the TIK Arton cluster which forces jobs to have
a maximum runtime of two days Having this restriction we were unable to collect
the experiment results for the GraphCodeBert and SynCoBert models using the
cin 4 data sets as the training time exceeded the maximum runtime by a large
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margin. We also have an issue with the GraphCodeBERT model in combination
with the cin modified Go data sets that we were unable to resolve in time.



Chapter 4

Results

In this chapter we will glance over some of the key observations in the experiment
results. All results can be found under appendix A.

4.1 CIN versus No Comment

In this section we want to analyze the performance difference between using data
that contains the original variable identifiers and data that has this information
removed, i.e. is using canonical identifiers. To be more precise we compare the
results of the models trained and tested on the no comment data set, i.e. the
original data with only the comments removed, to the models trained and tested
on the cin data sets.

Generally we cannot see a clear pattern that emerges for each model or
dataset. In fact we notice that the results are very different for each of the
five programming languages we analyze as well as the models. As a result we
will analyze patterns for both the models as well as the languages. We evaluate
the languages in the three groups suggested in the prior work on Challenging the
Lexical Focus of Code Search [1] which are:

1. Languages that are (nearly) averse to any modification (Go and PHP)

2. Languages that are not impacted by mild modifications but are affected by
severe modifications (Java and Python)

3. Languages that are impacted even by small modifications (JavaScript)

Further we group the models according to the patterns that they exhibit.

Neural Bag of Words (NBow) Model

The NBoW model performs well on the Python and PHP data sets but fails
dramatically for the other data sets. This applies for both the no comment and

9



4. Results 10

Figure 4.1: The Mean Reciprocal Rank (MRR) for all models trained and evalu-
ated on no comment data (blue) and cin data with an augmentation factor of 1
(gold), 2 (goldenrod) and 4 (darkgoldenrod). Values for the GraphCodeBert and
SynCoBert models on cin 4 are missing.
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the cin data sets. Regarding the effect of cin modified data compared to the
no comment data we cannot spot any pattern that stands out. For Python the
results improve while for Go the results deteriorate and all other languages do
not seem to show any change of performance.

1dCNN, SelfAtt and ConvSelfAtt Models

The 1D convolutional network (1dCNN), self-attention based (SelfAtt) and con-
volution self-attention based (ConvSelfAtt) models are by far the models that
benefit most from the cin modification. The results generally improve for all
languages with the exception of the PHP data set in combination with the Self-
Att model. The improvements are only marginal for the PHP and Go languages
which for both types of data sets generally show good performance. For the other
languages the improvements are rather significant.

GraphCodeBert and SynCoBert Models

The two far more sophisticated models benefit the least from the cin modifica-
tions. The results for the GraphCodeBert model are significantly worse for each
language we test. The same applies to the SynCoBert model though the perfor-
mance loss is far less drastic yet still significant with the exception of the Python
data set with even shows a marginal improvement.

Go and PHP Languages

The Go and PHP data sets show only minor changes in performance for all models
when comparing the no comment and cin data set versions. The sole exception is
the GraphCodeBert model which has deteriorating scores for the cin data sets.
The two languages also achieve the best overall scores which the exception of the
NBoW model which completely fails for the Go data set.

Java and Python Languages

Generally the Java and Python languages show good improvements for the cin
data sets for all the baseline models. The sole exception is once again the NBoW
model which completely fails for the Java data set. For the two more sophisticated
models, i.e. GraphCodeBert and SynCoBert, the cin data sets tend to worsen
the performance of the models.
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JavaScript Language

The JavaScript data sets generally show the worst performance throughout all
models. While the NBoW model fails for all data set variants, the other baseline
models achieve some performance gain with the cin modifications. However, the
more sophisticated models again loose performance.

4.2 No Comment models evaluated on CIN data

In this section we analyze the performance of models that have been trained on
data that contains the original variable identifiers (no comment data) when they
are evaluated on data that has this information removed, i.e. cin data. We will
further analyze the performance difference of those models compared to models
that are trained on cin data.

As compared to the previous section here we can identify some clearer trends
though again not one that is true for every model and language. We will again
focus on groups of languages and models instead.

Baseline Models

For the baseline models we notice that the scores for the model trained on no
comment data but evaluated on anonymized data, i.e. cin data, is either around
equal or really bad where the model fails completely. For the Java, JavaScript
and Go languages no baseline model trained on the no comment data works for
cin data.

GraphCodeBert and SynCoBert Models

For the GraphCodeBert model we first notice that the models evaluated on
anonymized data, i.e. cin data, always perform worse than evaluated on no
comment data. Second, we notice that the model being trained on cin data per-
forms better than the model being trained on the no comment data. The one
exception being the Python programming language where the performance is
marginally better for the model trained on the no comment data.

For the SynCoBert model the trend is the same. The scores for the models
evaluated on cin data are generally worse or equally good compared to the models
evaluated on no comment data. The difference to the GraphCodeBert model is
that the scores for all three types of training and evaluation data are equal for
the Python and PHP languages.
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Python and PHP Languages

The Python and PHP data sets are the only two languages for which some of the
baseline models achieve meaningful results when being trained on normal (i.e. no
comment) data and evaluated on anonymized (i.e. cin) data. Meanwhile when
we train those models on cin data as well they all achieve results similar to the
results achieved using no comment data for training and testing or even surpass
them. For the same two languages we also notice the results for the SynCoBert
model is almost identical for all three approaches.

Java, JavaScript and Go Languages

The results for the Java, JavaScript and Go languages are poor for all models
trained on normal (i.e. no comment) data and evaluated on anonymized (i.e. cin
data). The more sophisticated models are a lot worse compared to when they
are trained on cin data while the base line models fail completely.

4.3 Augmentation Factor

In this section we analyze the performance difference of the augmentation factors
we used.

We see the smallest difference for the NBoW model where the differences are
only marginal throughout all languages. The 1dCNN model works best with an
augmentation factor of four throughout all languages. The differences between a
factor of one or two appears to be rather random though. The SelfAtt and Con-
vSelfAtt models tend to improve slightly with a factor greater than one though
there are once again multiple exceptions. Using the GraphCodeBert we get the
biggest differences but they are both negative and positive. Last but not least,
SynCoBert shows small improvements when using a factor of two compared to a
factor of one.

To summarize, we notice that there is no general performance increase nor de-
crease that is true for all models or languages when using different augmentation
factors. The differences are rather small too.
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Conclusion

The questions to which we wanted to find answers in this work where: First,
does training an existing model with our cin approach make it outperform itself
as compared to training it with normal data? And second, does this approach
allow us to train models that work well on anonymized data, i.e. data that has
its variable names removed?

In section 4.1 we can see that many baseline models generally get a small
boost in performance when training them with cin data sets. However, we also
notice that the more sophisticated models, i.e. GraphCodeBert and SynCoBert,
do not improve with our approach. Especially the GraphCodeBert model shows
rather significant performance drops instead. Because those more sophisticated
models are the ones that achieve the best overall scores we cannot say that our
approach achieves better overall results.

When there is only anonymized data available our approach becomes more
interesting. First, as seen in section 4.2, we can see that in most cases the model
trained on cin data outperforms the same model trained on no comment data.
As we can transform any type of data that has its variables anonymized into cin
data we can use this approach to train models that work better on such data.
Second, as seen in figure 4.1 using our approach as enough data, i.e. the bigger
Python and PHP data sets, we can get some of the baseline models to reach
similar scores as the more sophisticated GraphCodeBert and SynCoBert models.

Regarding the use of an augmentation factor, we see only small differences
without a real tendency to improve or decrease the performance of all models.
We think that the randomized order of the canonical identifiers itself already does
enough to remove any left over patterns in the order of the identifiers. Having
multiple versions of the same code snippets with different orders of canonical
identifiers does not seem to really change anything for the models. More inter-
esting are the significant differences for the GraphCodeBert model for which we
do not have an explanation.
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Appendix A

Experiment Results

MRR, Trained and Evaluated on no comment
Models Python PHP Java Js Go
nbow 0.537 0.679 0.011 0.010 0.062
1dcnn 0.310 0.615 0.253 0.059 0.757
selfatt 0.454 0.693 0.273 0.143 0.804
convselfatt 0.455 0.669 0.326 0.193 0.804
GraphCodeBert 0.763 0.756 0.637 0.564 0.850
SynCoBert 0.711 0.701 0.673 0.480 0.888

Table A.1: The results of all models trained and evaluated on the no comment
data sets. The results are taken from [1].
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