
Distributed

 Computing

Exploring Trading on Decentralized
Exchanges using Reinforcement

Learning
Master’s Thesis

Jaye Danéa Plüss

jpluess@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Ye Wang, Benjamin Estermann
Prof. Dr. Roger Wattenhofer

May 4, 2023

Acknowledgements

I would like to extend my genuine gratitude to those who have offered invaluable
assistance and support throughout the course of my thesis completion. Firstly,
I would like to thank Ye Wang and Benjamin Estermann for their consistent
guidance and support in the areas of decentralized finance and machine learning
implementation, respectively. Their expertise and insight have been instrumental
in shaping my research and its final outcome. I would also like to thank Prof. Dr.
Wattenhofer for his guidance and redirection of my thesis at the midterm, which
helped me to refine my research and achieve better outcomes. Additionally, I
would like to acknowledge the contributions of the present Ph.D. candidates at
the midterm, whose valuable input and feedback have helped me to improve my
work. Their suggestions and comments have been instrumental in shaping the
final outcome of my research.

i

Abstract

In this thesis, we investigated the use of reinforcement learning for trading on
decentralized exchanges, with a particular focus on the Uniswap V2 platform. To
facilitate this exploration, a simulation was developed to replicate the transac-
tion dynamics of such an exchange. Experiments were initially conducted using
artificial blockchain data, followed by the incorporation of real historical data.

A multi-stage learning pipeline was designed to optimize performance, address-
ing the challenges related to hyperparameter tuning in reinforcement learning
and offering insights into effective and less effective approaches. Experiments
incorporated both short-term and long-term rewards, with the latter integrating
customized preferences into the agent’s policy concerning liquidity provision and
risk readiness.

Furthermore, a method for handling action spaces requiring both continuous and
discrete values was proposed by encoding the discrete actions. Two approaches
for dealing with variable-sized observation spaces were also presented, employing
either a padding layer or an attention layer as the network’s initial layer.

The experiments involved a stable coin pair (USDC-USDT) and an unstable
coin pair (ETH-USDC), highlighting the distinct approaches associated with each
dataset. The performance achieved with the stable coin pair was linked to a
trading strategy that combined cryptocurrency swapping and liquidity provision.
The unstable coin setting posed greater complexity, and insights were provided
into potential difficulties when training an RL agent for trading in such a setting.

Overall, the findings illustrate the potential of reinforcement learning in cryp-
tocurrency trading, attaining positive results for both stable and unstable coin
pairs.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Background and Related Work 3

2.1 Decentralized Finance . 3

2.2 Decentralized Exchanges . 3

2.3 Trading Strategies . 4

2.4 Reinforcement Learning . 5

3 Material and Methods 7

3.1 Simulation Environment . 7

3.1.1 Blockchain Environment 8

3.1.2 Cryptocurrency Wallet . 8

3.1.3 Uniswap . 8

3.1.4 Miner . 10

3.1.5 Network . 10

3.2 Data Collection . 10

3.3 Reinforcement Learning . 12

3.3.1 Architecture . 12

3.3.2 Algorithm . 13

3.3.3 Reward . 14

3.4 Performance analysis . 14

3.5 Risk assessment . 14

iii

Contents iv

4 Experiments and Results Simulation Environment 16

4.1 Trader modelling . 16

4.2 Price modeling . 17

4.3 Liquidity pool modeling . 17

4.4 Observation Space . 17

4.5 Action space . 18

4.6 Discrete Model . 19

4.6.1 Reward shaping . 20

4.6.2 Network Architecture . 20

4.6.3 Hyperparameter Choice 20

4.6.4 Learning Pipeline . 20

4.6.5 Results . 21

4.7 Continuous model . 21

4.7.1 Reward shaping . 23

4.7.2 Network architecture . 24

4.7.3 Hyperparameter Choice 24

4.7.4 Learning Pipeline . 25

4.7.5 Results . 25

5 Experiments and Results Historical Data 27

5.1 Spaces . 28

5.1.1 Observation Space . 28

5.1.2 Action Space . 28

5.2 Reward shaping . 29

5.2.1 Short Time Rewards . 29

5.2.2 Long Time Rewards . 29

5.3 Network Architecture . 30

5.3.1 Data Padding Architecture 30

5.3.2 Attention architecture . 30

5.4 Stable Coin Experiment . 31

5.4.1 Hyperparameter Choice 31

5.4.2 Data Pipeline . 31

Contents v

5.4.3 Baselines . 32

5.4.4 Experiments and Results 33

5.5 Unstable Coin Experiment . 35

5.5.1 Hyperparameter Choice 35

5.5.2 Learning Pipeline . 36

5.5.3 Baselines . 36

5.5.4 Experiment and Results 36

6 Discussion 39

6.1 Simulated Data Environment . 39

6.1.1 Performance Discrete Model 39

6.1.2 Performance Continuous Model 39

6.2 Historical Data Environment . 40

6.2.1 Stable coins . 40

6.2.2 Unstable coins . 43

7 Conclusion and Outlook 46

7.1 Conclusion . 46

7.2 Outlook . 47

Bibliography 48

A Additonal Data A-1

Chapter 1

Introduction

Decentralized Finance (DeFi) has emerged as a powerful force in the financial in-
dustry, providing an alternative to centralized financial systems by offering trust-
less, permissionless, and decentralized access to financial services. DeFi protocols
are built on blockchain networks and are characterized by their transparency, se-
curity, and accessibility. These protocols enable anyone with an internet connec-
tion to participate in various financial activities, such as lending, borrowing, and
trading, without the need for intermediaries like banks and financial institutions.
Uniswap [1], one of the leading DeFi protocols, has seen massive growth in the
past year, reaching over 2 billion USD in daily trading volume [2]. Uniswap is
a decentralized exchange that operates on the Ethereum blockchain and enables
users to trade cryptocurrencies in a permissionless and non-custodial manner.

Machine learning techniques have demonstrated a substential potential in enhanc-
ing the performance of trading strategies in the financial domain [3, 4]. Specif-
ically, reinforcement learning (RL) is being researched to achieve this goal [5].
By allowing an agent to learn decision-making based on rewards and penalties
received from its environment, RL is ideal for developing intelligent trading strate-
gies that can adapt to fluctuating market conditions and maximize returns.

In this thesis, the primary objective is to investigate the potential of RL in
enhancing the performance of trading strategies. The research will focus on
Uniswap, which is one of the most widely used decentralized exchanges (DEX) in
the market. The first step will be to build a simulation of the Uniswap liquidity
pool that will accurately reflect its behavior under different market conditions.
On top of the simulation, a reinforcement learning pipeline will be developed to
interact with the simulation, commonly referred to as the environment, with the
goal to learn how to optimize trading strategies.

Initially, experiments will be conducted using artificial blockchain data to as-
sess the implementation’s behavior and identify the potential benefits of various
approaches. After ensuring a stable implementation, a real dataset based on
historical data will be generated to evaluate the strategies’ performance in a
more realistic context. The agent will then be trained on this real simulation to
develop strategies that have the potential to perform well in real-world scenar-

1

1. Introduction 2

ios. The performance of the developed strategies will be compared with those
of traditional market-making and arbitrage strategies. The ultimate goal is to
identify new trading strategies that can outperform traditional methods in terms
of returns, liquidity provision, and risk management.

Chapter 2

Background and Related Work

2.1 Decentralized Finance

Decentralized finance, commonly known as DeFi, is a rapidly expanding move-
ment that aims to create a more open, accessible, and transparent financial sys-
tem. This shift was enabled through the introduction of smart contracts on the
Ethereum blockchain [6]. A smart contract is a self-executing program that con-
tains a set of pre-defined conditions and instructions governing the execution of
the contract. These conditions and instructions are encoded in the smart con-
tract code and stored on the blockchain. When certain conditions are met, the
smart contract is triggered, and the instructions are executed automatically. For
example, a smart contract for a peer-to-peer lending platform may have condi-
tions that specify the amount of the loan, the rate of interest, and the repayment
conditions. Once these conditions are met, the smart contract automatically
transfers the funds to the borrower and enforces the repayment schedule [7, 8].
Ethereum’s programming language, Solidity [9], allows developers to create cus-
tom smart contracts that can be used in a variety of DeFi applications such
as decentralized exchanges, lending platforms, and insurance protocols. The un-
derlying blockchain technology ensures the transparency and immutability [10] of
the transactions, while smart contracts automate the execution of the agreements
between parties.

2.2 Decentralized Exchanges

Decentralized exchanges, commonly referred to as DEXs, have become increas-
ingly popular in recent years due to their ability to offer trustless, transparent,
and secure transactions. Traders sell and buy assets on DEXes by interacting
with smart contracts [7] on the blockchain without the involvement of central-
ized authorities. One of the most established DEXs is Uniswap [1], which has
gained a significant following since its launch in 2018. In essence, Uniswap is a
liquidity pool. Liquidity providers (LPs) deposit two different tokens in a pool,

3

2. Background and Related Work 4

and the ratio of these tokens determines the price at which the pool’s assets can
be traded. Whenever a user wants to trade one token for another, they simply
swap tokens with the pool at the current exchange rate. The user pays a fee for
the transaction, which is distributed to the LPs as a reward for providing liquid-
ity to the pool. Uniswap is based on an automated market maker (AMM) DEX,
where the exchange rate of each trade is determined by predefined algorithms and
market liquidity reserves [11]. Uniswap V2 [12, 13], launched in 2020, functions
as a constant product market maker (CPMM), where liquidity providers supply
liquidity on the entire price range.

2.3 Trading Strategies

Decades of asset trading on traditional exchanges have brought a collection of
market manipulation techniques, such as front-running [14], pump and dump
schemes [15], and wash trading [16]. These trading strategies used on centralized
exchanges bear the potential to be used on their decentralized counterpart. The
transparency of blockchain transactions allows for the emergence of a new oppor-
tunity for arbitrageurs on decentralized exchanges (DEX) [17]. The emergence
of potential trading opportunities is especially evident when dealing with pend-
ing transactions on a blockchain network. Once a user initiates a transaction,
it is transmitted to network nodes for validation and then propagated to min-
ers. At this point, the transaction is visible to all, yet it remains unconfirmed.
This provides an opportunity to deploy trading strategies based on this infor-
mation, which can lead to advantageous outcomes once the transaction is finally
confirmed.

When front-running, a trader takes advantage of the knowledge of a pending
transaction to profit from it before the transaction is executed. For example, if
a trader knows that a large buy order is going to be executed soon, they may
buy the same asset beforehand and then sell it to the original buyer at a higher
price [14]. Similar to this strategy, back-running [18] entails taking advantage
of the knowledge of a pending transaction to profit from it. For example, if a
trader knows that a large transaction will be executed, they might be able to
take advantage of price discrepancies arising shortly after the completion of this
transaction. Pump-and-dump trading [15] strategies involve artificially inflating
the price of an asset and then selling their positions at a profit once the price has
risen. Wash trading [16] is a form of market manipulation in which a trader buys
and sells the same asset repeatedly in order to create the illusion of increased
trading activity. The goal is to attract other traders to the market and drive
up the price. Cyclic arbitrage [11, 19] is a trading strategy in which a trader
exploits price discrepancies between three different currencies in order to make
a profit. Boonpeam et al. [20] analyzed the most profitable trading routes to
perform cyclic arbitrage. Based on these trading routes they build a trading bot

2. Background and Related Work 5

that monitors the price discrepancies of a certain token pair within one DEXs as
well as between multiple DEXs and exploits them to make a profit.

2.4 Reinforcement Learning

Machine learning can be divided into three learning methods, namely supervised
learning, unsupervised learning, and reinforcement learning [21]. Reinforcement
learning (RL) involves an agent learning how to make decisions in an environment
by interacting with it and receiving feedback in the form of rewards or penalties.

One of the main advantages of RL is its ability to learn optimal behavior in
complex environments where it is difficult to define heuristics for decision-making.
RL can learn to play games, navigate robots, optimize resource allocation, and
even develop new strategies for trading in financial markets [22, 23, 24]. One
of the challenges that arise in reinforcement learning is the trade-off between ex-
ploration and exploitation [25]. To obtain high rewards, a reinforcement learning
agent must prefer actions that it has tried in the past and found to be effective in
producing rewards. But to discover such actions, it has to try actions that it has
not selected before and therefore oftentimes might encounter negative rewards.
The agent has to exploit what it already knows in order to obtain reward, but it
also has to explore in order to make better action selections in the future [26].

Reinforcement learning has become a popular approach in trading research
in recent years. Its application has been explored in various branches such as
portfolio management, automated trading, and other areas of quantitative finance
[27, 28, 29] . For instance, researchers have investigated the use of RL for portfolio
management, as demonstrated in the study by Huang et al. (2022) [30] on
deep RL for portfolio management. The study proposes a deep RL algorithm
to optimize asset allocation, which takes into account the complex interactions
between different assets and their dynamic relationships.

The use of reinforcement learning (RL) in automated trading has emerged
as a promising approach to developing trading strategies that can effectively re-
spond to dynamic market conditions. One such example is the use of an adaptive
Q-learning algorithm for automated trading in equity stock markets, as demon-
strated by Chakole et al. [31]. This algorithm is capable of dynamically adjust-
ing to non-stationary market conditions and incorporates risk management in its
decision-making process. Furthermore, RL has been employed in other areas of
quantitative finance, such as option pricing and risk management [32].

Although research on employing reinforcement learning (RL) specifically for
trading within decentralized finance systems remains limited, RL has shown great
promise in a wide range of applications, demonstrating its potential as a powerful
tool for learning optimal behavior in complex environments. With the contin-
ued advancements in machine learning and artificial intelligence, particularly in

2. Background and Related Work 6

the domain of deep reinforcement learning, it is expected that RL will play an
increasingly important role in the development of intelligent systems, including
potential applications in decentralized finance trading.

Chapter 3

Material and Methods

3.1 Simulation Environment

In order to train a reinforcement agent, it’s necessary to create a simulation of
a decentralized exchange system, which is based on an abstracted version of a
blockchain mechanism. The purpose of this simulation is to include only the
necessary elements for specific experiments, allowing for faster simulation and
reducing the complexity that could result in errors. This simulation serves as
the learning environment for the agent and forms the basis for evaluating its
performance. The simulation is programmed using Python and aims to replicate
the functioning of real DEXs by simplifying their processes.

The upcoming section will provide an explanation of the various components of
the simulation.

Figure 3.1: Graph of the simulation environment

7

3. Material and Methods 8

3.1.1 Blockchain Environment

The blockchain environment constitutes the central module in the simulation,
responsible for initializing all critical elements. This environment not only su-
pervises the simulation reset process, which involves reestablishing the reserve
values of the liquidity pool and the agent’s personal wallet but also controls the
simulation’s advancement. By processing the agent’s state action input, the en-
vironment calculates the subsequent simulation state and communicates this to
back to the agent. Furthermore, the environment computes the rewards to be
allocated to the agent at each simulation iteration. Additionally, it serves as the
point of origin for either simulating block data or incorporating real data, both
of which comprise transactions from other market participants. The simulation
requires several components, including a cryptocurrency wallet, a Uniswap class,
a miner class, and a network class.

3.1.2 Cryptocurrency Wallet

In decentralized finance, wallets play a critical role in managing and accessing
financial assets. DeFi wallets are non-custodial, meaning that the user maintains
full control over their private keys and assets. However, to facilitate the simula-
tion, we will introduce a centralized unit that manages all the wallets. This will
be simulated by a cryptocurrency wallet class, which will oversee and execute
cryptocurrency transfers throughout the simulation.

3.1.3 Uniswap

The availability of Uniswap v2’s smart contract code on the Ethereum blockchain
allows us to reconstruct a simulation of the platform. By analyzing the code, we
can gain a thorough understanding of how the platform operates and then create
a simplified version of it. First, we will define the key parameters of the protocol,
such as the liquidity pools, the token pairs, and the fees. Secondly, the Uniswap
class must simulate the behavior of the protocol, including the process of adding
liquidity, swapping tokens, and calculating fees. The subsequent formulas are
derived from the paper [11].

Constant product formula

The constant product formula is a widely used pricing mechanism that determines
the exchange rate of two tokens in a liquidity pool . The formula states that the
product of the number of units of each token in the pool remains constant. The
following equation holds during the transaction:

3. Material and Methods 9

a× b = (a+∆a × r1)× (b−∆b × r2) (3.1)

where a and b represent the number of units of the two tokens in the pool, and
∆a and ∆b represent the amount of tokens to be added or removed from the pool.
r1 and r2 are values use to calculate the fees of the transaction.

r1 and r2 are defined as 0.997 and 1 respectively, indicating that the token
added to the pool will experience a 0.3% loss in value and the other token will
not experience any change in value. This value is the transaction fee paid to the
liquidity providers.

Swapping Coins Swapping means exchanging an amount of cryptocurrency a
for the resulting amount of cryptocurrency b or vice-versa. The amount received
follows the constant product formula as well as the liquidity fee deduction.

Swap a for b :

deltab =
r1 ∗ r2 ∗ b ∗ deltaa
a+ r1 ∗ deltaa

(3.2)

Swap b for a:

deltaa =
r1 ∗ r2 ∗ a ∗ deltab
b+ r1 ∗ deltab

(3.3)

Adding Liquidity Adding liquidity to the DEX means becoming a liquidity
provider of the specific liquidity pool by depositing coins from both cryptocur-
rencies involved. The amount of coins added will be proportional to the reserves
in the liquidity pool. The computation follows the formula:

deltal = l ∗ deltaa
a

(3.4)

l =
√
ab (3.5)

When a trade is executed in a liquidity pool, a fee is charged, which is split be-
tween the liquidity providers who deposited tokens in the pool. This incentivizes
liquidity providers to deposit funds and receive shares of the fees generated by
trading activity.

When a liquidity provider is involved in a specific liquidity pool, they are able
to withdraw their amount of liquidity tokens from the pool. The percentage of
liquidity to be given to the trader is determined by the variable δl. To calculate
the balance of the two coins received, the following formula can be used:

δl = l · δa
a

(3.6)

3. Material and Methods 10

Here, l represents the current balance of liquidity tokens in the pool, a rep-
resents the current balance of one of the tokens in the pool, and δa represents
the desired change in the balance of that token. The same formula applies to the
second coin in the pool, denoted by b.

3.1.4 Miner

The miner is a crucial component of the Ethereum blockchain. It verifies and adds
new transactions to the blockchain, and in return receives rewards in the form
of Ether. In the simulation, the pool of miners for the Ethereum blockchain is
fused to just a single miner, who handles the transactions of the specific liquidity
pool being invested in. This miner is responsible for ordering the execution of the
transactions using a greedy sorting algorithm, which assumes that the miner seeks
to maximize their profits without regard for the long-term health and stability
of the network. While real-world miners may have other ordering strategies,
limited resources, and knowledge of the network, this simplifying assumption is
still feasible [33].

3.1.5 Network

The network class has a specific role, which is to hold the pending transactions
for each step. These transactions are created in the blockchain environment and
then added to the network. The miner class is responsible for removing the
transactions from the network and mining them into a block.

3.2 Data Collection

To train a model that accurately reflects real-world dynamics, comprehensive
real-world data is essential for generating simulations. This requires a large col-
lection of historical data, which can be readily accessed due to the transparency
of blockchain technology. The data needed to simulate the interaction with a
specific liquidity pool are the following:

• The historical swap, add, remove transactions of the specific liquidity pool

• The historical sync value of the specific liquidity pool (reserves)

• The historical centralized market prices

The decentralized data is already gathered on a database server of ETH and
could be queried from there directly. The data encoded in hex values then needed
to be split into the relevant parts as well as encoded into the different types of

3. Material and Methods 11

transactions. We opted to analyze a range of blocks from 6,000,000 to 12,000,000
as this time period corresponds to when Uniswap V2 was the predominant ex-
change platform. This decision was made because we wanted to exclude Uniswap
V3 and focus solely on the use of Uniswap V2. The centralized data which con-
sists of the centralized coin price at specific time steps can be downloaded from
Yahoo Finance using the timestamp from the block mining process. The dataset
has been divided into two separate files. The first file comprises transaction data,
which includes the type of transaction and the corresponding gas price 3.1. The
type is encoded directly using the encoding scheme that will be employed in
the simulation. The transactions are represented by an array containing vari-
ous values such as block number, amount, reserve0, and reserve1. The second
file consists of balance data, which is represented by an array containing block
numbers, truncated timestamps, priceC0, priceC1, reserveC0, and reserveC1 3.2.
The centralized market prices of the selected coins were collected using the block
mining timestamps.

Transaction Type Amount Gas Price Block Nbr
1 (swap0f1) 16800000000 13000000000 10092378
-1 (swap1f0) 22000000 33000000000 10094587

2 (add) 2661682 19000000000 10096242
-2 (remove) 162488585 13000000000 10098471

Table 3.1: First Data File

Block Nbr PriceC0 PriceC1 ReserveC0 ReserveC1
10092378 1.001 1.001 16801112910 16798896494
10093076 0.995 0.996 16803677185 16796340640
10093368 0.995 0.996 16624266862 16978170165

Table 3.2: Second Data File

The dataset comprises data of different types depending on the category or
coin represented. The gas price is always in GWEI, and the amount is expressed
in the specific unit of the cryptocurrency, with a value of 10e-6 for USDT and
USDC and 10e-18 for ETH. Upon generating the dataset, essential aspects were
examined, such as the maximum number of transactions per block, which is vital
for defining an accurate observation space. Additionally, the mean number of
transactions per block is utilized to determine the query size in the attention
network implementation, as referenced in 5.3.2. This value is 18 for the stable
coin dataset and 64 for the unstable coin dataset.

3. Material and Methods 12

3.3 Reinforcement Learning

This section consists of three key components: architecture, algorithm, and re-
ward. The architecture refers to the overall framework of the system that will
perform the backpropagation. The algorithm section outlines the specific learning
methods and techniques used to optimize the system. Finally, the reward section
defines the objective of the system, as well as the specific rewards or penalties
that will be used to guide the learning process.

3.3.1 Architecture

The basic architecture of a reinforcement learning model consists of three main
components: the environment, the agent, and the reward structure. The environ-
ment is an external system that the agent interacts with and receives feedback
from. The agent is the learning system that takes actions based on the current
state of the environment and the feedback received from the environment in the
form of a reward signal. The reward signal is a value that the agent receives from
the environment after each action, which indicates the quality of the action in
terms of how well it aligns with the agent’s objective. The agent’s goal is to learn
a policy, which maps states to actions while maximizing the cumulative reward
signal over time. For our specific use case, we will use an Actor-Critic architec-
ture consisting of two components for modeling the agent. The functioning of
these two components will be explained in more detail in the next section.

Figure 3.2: Actor-Critic Architecture PPO

3. Material and Methods 13

3.3.2 Algorithm

A popular RL algorithm is Proximal Policy Optimization (PPO) which was pub-
lished by OpenAI in 2017 [34]. PPO is a policy gradient algorithm that is designed
to strike a balance between sample efficiency and ease of implementation. PPO
has been shown to outperform several other state-of-the-art RL algorithms on
a wide range of benchmark tasks. It is based on the actor-critic architecture,
where the actor learns to map states to actions and the critic learns a value func-
tion to predict the expected reward [35]. PPO aims to simplify the approach of
Trust Region Policy Optimization (TRPO) [36] while achieving similar perfor-
mance. Compared to other policy gradient algorithms, TRPO shows favorable
data efficiency. However, solving higher-order optimization problems is compu-
tationally expensive. To tackle this issue, PPO introduced a clipped surrogate
objective only requiring first-order optimization and thus reaching higher sample
efficiency.

Actor Optimization:
maximize

θ
LCLIP
θ (D) (3.7)

where:

θ is the parameter of the policy D is the set of transitions (st, at, rt, st+1)
collected during training LCLIP

θ is the clipped surrogate objective function for
the policy, defined as:

LCLIP θ(D) =
1

|D|
∑

(st, at, rt, st+1) (3.8)

∈ Dmin
(πθ(at|st)
πθold(at|st)

At, g(ϵ, At)
πθ(at|st)
πθold(at|st)

)
(3.9)

where:

πθold is the policy used to generate the data during the previous iteration
g(ϵ, At) is a function that clips the advantage estimate At to be within the range
[1− ϵ, 1 + ϵ]. ϵ is a hyperparameter that controls the extent of the clipping.

The actor optimization aims to maximize the clipped surrogate objective
function LCLIP

θ , which encourages the policy to increase the probability of actions
that lead to higher advantage estimates At, while limiting the size of policy
updates using the clipping function g(ϵ, At).

Critic Optimization:
minimize

ϕ
LV F
ϕ (D) (3.10)

where:

3. Material and Methods 14

ϕ is the parameter of the value function D is the set of transitions (st, at, rt, st+1)
collected during training LV F

ϕ is the mean squared error loss for the value func-
tion, defined as:

LV Fϕ(D) =
1

|D|
∑

(st, at, rt, st+1) ∈ D
(
Vϕ(st)− V̂t

)2
(3.11)

where:

Vϕ(st) is the estimated value of state st. V̂t is a target value for the state-value
function, typically set to the discounted sum of future rewards.

3.3.3 Reward

In this system, the reward for the agent is calculated based on the change in its
wealth resulting from taking an action. The cryptocurrency wallet and liquidity
tokens held by the agent are evaluated before and after the action, and the
difference between their values is computed. To standardize the comparison, all
assets are converted into USD using the historical centralized market price. This
change in wealth is then used to determine the agent’s reward.

reward = (pc0cex ·∆(wc0 + lpc0)) + (pc1cex ·∆(wc1 + lpc1)), (3.12)

where ∆(x) = xnew−xold is the change in value of a variable x, and wc0, lpc0,
wc1, lpc1 are the wallet and liquidity pool balances of tokens c0 and c1.

3.4 Performance analysis

The main metric for performance analysis is the summed numerical reward re-
ceived by the agent. This value tells us how much profit the agent generated
over the testing time span. The performance of our agent needs to be compared
to specific baselines to assess its relative performance. The computation of the
baselines will be explained in the section 5.4.3.

3.5 Risk assessment

The assessment of risk for the assets held by the agent, both in the liquidity
pool and in its possession, is essential. A significant risk associated with being a
liquidity provider is the potential for imbalances in the liquidity pool, where one
asset has considerably more liquidity than the other. Such imbalances can lead
to slippage between the two assets, possibly affecting the agent’s profitability, as

3. Material and Methods 15

it might receive less value than initially invested. This risk is commonly known
as impermanent loss for liquidity providers [37].

Another risk that the agent encounters concerns the balance of its portfolio
after a specific period in the simulation. If the agent begins with equal amounts
of both coins, any shifts in the coin ratios observed after the testing period can
be seen as a loss in diversification. This loss in diversification is known to be
riskier, as it increases the market risk associated with the particular coin that
is receiving a higher allocation in the portfolio [38]. It is worth noting that the
risk assessment carried out in this thesis has limitations. Additional risks, such
as those arising from trading bots, miner extraction, or operational risk, are not
covered in this thesis.

Chapter 4

Experiments and Results
Simulation Environment

The first set of experiments was conducted on a down-scaled version of the simu-
lation which entailed artificially generated block data. This first range of exper-
iments is done in order to test the functionalities of the reinforcement learning
algorithm before using real data. The simplification consists of :

• Trader modeling

• Centralized price modeling

• Liquidity pool reserve modeling

4.1 Trader modelling

In the context of trader modeling, a key assumption is made: traders do not en-
gage in actions or respond to the agent’s actions. This simplification is adopted
to minimize complexity, as training active traders would extend beyond the scope
of this thesis. The transaction data model is grounded in real-world data. Trans-
action type distribution is ascertained through weighted sampling 4.1, while the
transaction amount is uniformly sampled from the observed ranges in actual data
4.2 .

Actions SWAP0F1 SWAP1F0 ADD REMOVE
Probabilty 0.4 0.4 0.1 0.1

Table 4.1: Sampling probability of actions.

16

4. Experiments and Results Simulation Environment 17

Actions amount gas price
Range 0.1 - 100000 USD 0.1- 280 USDC

Table 4.2: Ranges for the transaction amount and gas price

4.2 Price modeling

The centralized price is derived from a modeling method incorporating historical
data, using Geometrical Brownian motion [39]. Wiener process [40], also called
Brownian motion, is a stochastic process that models the random fluctuations
in the price of an asset over time. It assumes that the asset’s price changes are
independent and identically distributed, with a normal distribution and a mean of
zero. Geometric Brownian motion extends the Wiener process by adding a drift
component, representing the asset’s expected growth rate. The drift component
is multiplied by the current price of the asset, resulting in a process that is
proportional to the asset price. The formula for Geometric Brownian Motion is
given by:

dSt = µStdt+ σStdWt (4.1)

Wt ∼ N (0, t)

where St represents the stock price at time t, µ is the drift parameter, σ is the
volatility parameter, Wt is a Wiener process, and dt represents a small change in
time.

4.3 Liquidity pool modeling

The liquidity pool is modeled by employing the inversely proportional ratio of
the simulated centralized market price (refer to Section 4.2) and a quantity that
resembles the one associated with the selected Uniswap pair (in this case, using
a value on the order of 108).

reservedexa

reservedexb

=
pricecexb

pricecexa

(4.2)

4.4 Observation Space

The observation space, also known as the state, represents the current network
status provided to the agent at each step. It contains the necessary information
for the agent to determine its next action based on its policy. This information
is essential for the learning process and typically includes:

4. Experiments and Results Simulation Environment 18

• LP Reserve Information: This refers to the liquidity pool (LP) reserves,
which the agent must consider when calculating the correct pricing for
transactions.

• Centralized Market Prices: These are the current market prices of cryp-
tocurrencies outside of the decentralized exchange. This information is
crucial for the agent to evaluate the liquidity pool’s pricing and determine
whether a given trade is profitable.

• Pending Transactions Information: This refers to all the transactions
that are currently in the queue waiting to be processed. The agent needs
this information to determine the optimal timing for placing a trade.

The full observation, therefore, contains the following information :

o = (pcenc0 , pcenc1 , pdecc0 , pdecc1 , t1,type, t1,gas, t2,type, t2,gas, . . . , tn,type, tn,gas)

where pcenc0 and pcenc1 represent the centralized prices of assets c0 and c1, respec-
tively, and pdecc0 and pdecc1 represent the decentralized prices of assets c0 and c1,
respectively. The remaining variables ti,type and ti,gas represent the type and
gas price of each pending transaction i, with n representing the total number of
pending transactions.

By incorporating all of this information into the observation space, the agent
is equipped to make informed decisions about when and how to execute trades
on the decentralized exchange.

4.5 Action space

The actions involved in a transaction consist of the type of transaction and the
positioning of the transaction relative to the pending transactions. The transac-
tion type can be easily represented using a categorical value, while the positioning
is based on the gas price attached to the transaction, which is a continuous value.
The graphic below illustrates the positioning possibilities at each step.

Figure 4.1: Visualization of position encoding

In Reinforcement Learning (RL) algorithms, the action space can be either
discrete or continuous, depending on the nature of the task. However, since our

4. Experiments and Results Simulation Environment 19

model requires both continuous and discrete components, a specific encoding is
necessary to enable the use of a fully discrete or a fully continuous model. As
a result, we conducted two sets of experiments, one using discretized actions
and the other using only continuous actions to encode the components. The
first approach involved discretizing the continuous gas price variable into a set
of distinct values which mirror the positioning. This resulted in a fully discrete
action space that could be easily used with standard RL algorithms. The second
approach involved using a continuous gas price variable and encoding the type of
the transaction into a continuous variable resulting in a fully continuous action
space.

4.6 Discrete Model

For our first experiment, we employed a discrete action space to encode infor-
mation. Specially, we used a multidiscrete action space where the components
are represented as a tuple a = (a1, a2) with a1 and a2 taking on discrete val-
ues. Specifically, a1 encoded five different transaction types, while a2 encoded
the agent’s transaction positions relative to other transactions which for n trans-
action translates to n + 1 possible positions. As a simplification, we will work
with a constant number of transactions and set n = 4 for all experiments in the
simulation environment experiments.

a = (a1, a2) where a1 ∈ 0, 1, 2, 3, 4, a2 ∈ 0, 1, 2, ...n

Figure 4.2: Action space mapping of the discrete model.

The encoding of the type variable is optimal since it represents a categorical
value, while the encoding of the position is not ideal, particularly for a larger
number of pending transactions. The positioning requires a fixed number of
transactions and expands with the transaction count, making this model imprac-
tical for variable transaction numbers and increasing transaction volumes.

4. Experiments and Results Simulation Environment 20

4.6.1 Reward shaping

The initial reward, which reflects the post-action wealth difference of the agents,
is shaped using the arctan function with chosen parameters. One reason to use
the arctan function for reward shaping is that it can provide a smooth, continuous
reward signal that can be easily scaled and shifted to reinforce a certain behavior.
Another reason to use the arctan function for reward shaping is that it has a
natural saturation point which helps to stabilize the reward back-propagation
to the agent. This saturation can also increase exploration of the agent as the
reward differences will be flattened out. A disadvantage is that the distinction
between receiving good rewards versus excellent rewards becomes diminished.

4.6.2 Network Architecture

The network architectures used for the discrete model experiments are small-
scale neural networks. The actor-network and the critic-network utilize a [64,
64] fully connected layer architecture with a tanh activation function.

Figure 4.3: Network architecture visualization discrete model

4.6.3 Hyperparameter Choice

The hyperparameter tuning was conducted using the rlzoo implementation from
stable-baselines-3 [41]. The final hyperparameters can be found in this table A.1.
After figuring out the most rewarding parameter some minor manual changes
were conducted concerning the entropy coefficient. These minor changes will be
explained in the learning pipeline below 4.6.4.

4.6.4 Learning Pipeline

To prevent the agent from getting stuck in one particular behavior (non-optimal),
it is necessary to train the reinforcement model in several stages. The learning
pipeline comprises four stages. The first stage utilizes a masking mechanism that

4. Experiments and Results Simulation Environment 21

restricts the agent from using the withhold action, which promotes more thor-
ough exploration. During the initial training phase, the agent may encounter
strong negative rewards that hinder optimal learning. Therefore, the agent tends
to converge to the action where it does not receive negative rewards. The second
stage involves an increase in entropy and reintroducing the withhold action. In
the third stage, the objective is to eliminate any remaining negative reward be-
havior. To achieve this, the penalty for negative rewards is upscaled by a factor
of 10. The final stage involves selecting the model state that exhibits the de-
sired behavior. This is accomplished by evaluating each saved model state on 20
random data batches.

4.6.5 Results

Using the learning pipeline above multiple experiments were conducted. Initially,
the simulation was initiated with a liquidity pool balance that matched the CEX
prices, which was then modified by the behavior of the traders and agents. In
this setting, the agent’s behavior shows a strong ability to learn about reserve
imbalances, but no ability to learn about pending transactions 4.4a . This be-
havior is motivated by the fact that the traders create strong imbalances due to
their randomness which then allows the agent to focus on exploiting them eas-
ily. To counteract this unwanted behavior a second experiment was conducted
which consisted in resetting the balances after each step. Therefore the agent
is compelled to focus exclusively on the pending transaction to produce favor-
able rewards. Although the agent’s actions type aligns with types of pending
transactions, the positioning is still sub-optimal 4.4b . The third experiment
overcame this limitation by encoding traders’ transactions with position indexes
based on their gas prices in descending order. This allowed the agent to un-
derstand the optimal trading behavior and streamline the learning process for
optimal positioning 4.4c . In Figure 4.4, we compare the results of three different
experiments.

4.7 Continuous model

Conversely, we have developed a model that employs a continuous action space.
To simplify the process, the number of transactions is held constant at 4. These
action values are depicted as continuous values, which can be formulated using
the following equations:

a = (a1, a2) where a1 ∈ [−1, 1], a2 ∈ [−1, 1]

In this case, a1 denotes the action type, which is modeled using three categories: a
range for swap0f1, a range for swap1f0, and a range for withhold. The range [−1, 1]
is employed to represent these categories, where the range [−0.1, 0.1] signifies

4. Experiments and Results Simulation Environment 22

(a) Experiment 1: no placement learned

(b) Experiment 2: random placement learned

(c) Final Experiment: semi-optimal positioning
learned (green=optimal placement, yellow=sub-
optimal placement)

Figure 4.4: Comparison of experiment results. The reward analysis is visualized
using a plot that combines several types of information at each step: the reward
value of the agent, the transaction type of the agent, and the transactions of
other parties and their types. To display all this information in a clear way,
the following visual encoding is used: the x-axis represents the step number,
the y-axis represents the reward value, and colors are used to differentiate the
transaction types (swap0f1, swap1f0, add, remove, withhold), and the shape of
the scattered points is used to indicate whether the transaction came from the
agent or the traders (Dot = Agent, Star = Trader).

4. Experiments and Results Simulation Environment 23

withholding, (0.1, 1] corresponds to swap0f1, and [−1,−0.1) represents swap1f0.
The second component a2 encodes the action positioning using a direct prediction
of the gas price. Again, the range [−1, 1] is used to represent this component,
where -1 represents a low gas price and 1 represents a high gas price. To map the
first continuous value to 3 discrete actions, we can use the following function:

f(a1) =


s1f0, if a1 ∈ [−1,−0.1)

withhold, if a1 ∈ [−0.1, 0.1]

s0f1, if a1 ∈ (0.1, 1]

For the second continuous variable, we can interpolate it to a value between 0
and 10 using the following formula:

gasprice =
a2 + 1

2
× 10

This maps the range of [-1, 1] to [0, 10].

Figure 4.5: Visualization of the action space mapping continuous model

The encoding is optimal for the positioning as it is able to directly output the
gas price whereas it becomes ambiguous for the type choice. The encoding of the
types using a spectrum that associates specific ranges to actions might encumber
the optimization process.

4.7.1 Reward shaping

To shape the rewards, an arctanh function was applied to the wealth difference
in cases where negative rewards were required, while a simple identity mapping
was used for positive rewards. The rationale behind this approach was to enable
the agent to distinguish between moderate and good actions. Therefore, it was
crucial that positive rewards did not saturate to allow the agent to perceive the
differences in quality between different positive outcomes.

4. Experiments and Results Simulation Environment 24

Figure 4.6: Reward shaping continuous model

4.7.2 Network architecture

The architecture of the continuous network is similar to that of the discrete one,
with the only difference being an additional layer of depth in the neural network.

Figure 4.7: Network architecture visualization of the continuous model

4.7.3 Hyperparameter Choice

Due to the continuous model stagnating at a moderate performance level, a more
comprehensive analysis of feasible parameter/hyperparameter is required. In the
process of tuning hyperparameters, we employed a combination of grid search and
insights from relevant papers [42, 43]. An aspect left unexplored in the discrete
model experiment is space normalization. Space normalization is a vital aspect of
reinforcement learning [44], as it ensures that observations, actions, and rewards
are scaled within a consistent range of -1 to 1. This facilitates the learning process
of the agent by allowing the neural network to better capture relevant features
and gradients, enabling the agent to learn a good policy. Normalization also aids
in generalizing the learned policy to new tasks or environments, as the agent
can adapt more effectively without requiring a complete retraining. The final
hyperparameters can be found in this table A.1.

4. Experiments and Results Simulation Environment 25

Additionally the gSDE (generalized State-Dependent Exploration) is a power-
ful tool that can enhance stability and performance during reinforcement learn-
ing [45].

at = πθ(st) + σ(st)⊙ ϵt (4.3)

Here, the different variables represent:

• at: The action taken by the agent at time t.

• πθ(st): The deterministic policy function, which maps the current state st
to an action, parameterized by θ.

• σ(st): The state-dependent exploration noise function, which maps the
current state st to a noise scaling factor.

• ⊙: The element-wise (Hadamard) product.

• ϵt: A noise vector sampled from a zero-mean Gaussian distribution at time
t.

In this formula, the deterministic policy function πθ is used to determine the ac-
tion to take in a given state, while the state-dependent exploration noise function
σ adds randomness to encourage exploration. The element-wise product of σ(st)
and ϵt allows the agent to explore more effectively by adapting the noise scale
based on the current state. By adding noise to the gradient update step, gSDE
can regularize the updates, prevent overfitting, and encourage exploration of the
action space.

Furthermore, increasing the batch size can lead to better results [46], as it
enables the agent to learn from a larger and more diverse set of experiences.
Larger batch sizes can also provide more stable updates to the neural network
parameters, preventing overfitting to small batches of data.

4.7.4 Learning Pipeline

The learning pipeline used for the continuous model is the same as for the discrete
model 4.6.4.

4.7.5 Results

The continuous model was subjected to a series of comprehensive hyperparameter
tuning experiments to evaluate its performance. The final hyperparameters can
be viewed in this table A.1. As a result of these experiments, it was observed

4. Experiments and Results Simulation Environment 26

that the model exhibited an trading accuracy of around 90 percent. This level
of performance was deemed sufficient and paved the way for the model to be
upscaled to train on real historical data in a simulation environment. This would
allow the model to be trained and evaluated using actual market data, which is
critical for establishing its real-world applicability and effectiveness.

Figure 4.8: Visualisation of the evaluation output of the continuous model

Chapter 5

Experiments and Results
Historical Data

Although semi-randomized data is useful for experimenting with the simulation’s
structure and developing a training pipeline, it is common practice to use histor-
ical data to prepare the agent for real-life trading situations [47]. This procedure
is called back-testing [34] and is frequently used to evaluate investment and trad-
ing strategies. While the motivation behind this method is to apply a trading
behavior that was successful in the past to future data, it is important to be cau-
tious about assuming that strategies that worked on past data will perform well
on future data. One should also be mindful of the survivorship bias that can arise
when using historical data. Survivorship bias occurs when the focus is placed on
the surviving entities in the historical data while disregarding those that have
failed [48]. In our case, this can manifest as only considering traders’ trans-
actions that were successfully mined into the blockchain, while ignoring those
that were not mined due to factors such as network congestion, insufficient gas
price or gas limit, sender-initiated cancellations, or other issues [49, 50]. This
bias can lead to an inaccurate understanding of the market dynamics and an
overestimation of the potential for success of the RL agent.

To integrate historical data with reinforcement learning, it is essential to
assume that the actions of our agent will not influence the actions of other traders.
We will call this the zero impact assumption. To uphold this assumption, it is
imperative to restrict the amount of money traded by the agent to prevent any
substantial impact on the liquidity pool balances. If the agent’s trades alter the
balances significantly, other traders may exploit any arbitrage opportunities that
arise as a result. Therefore, keeping the agent’s trades low is essential to minimize
the chances of such potential exploitation. The assumption of zero impact has
implications for the gas price set in the simulation. It is not feasible to assume
zero impact and use actual gas prices at the same time since high gas fees [51]
for a small amount traded would render any margin for profit non-existent. To
overcome this issue, the gas fees for all liquidity pool transactions are divided by a
factor of 100, which enables the agent to receive a positive reward and facilitates

27

5. Experiments and Results Historical Data 28

learning.

5.1 Spaces

5.1.1 Observation Space

The observation space is constructed using the pending transaction (type, amount,
gas price) and the ratio of the DEX (decentralized exchange) reserves, as well as
the inverse ratio of the CEX (centralized exchange) prices. This can be formu-
lated in the following equation:

o = (pcenc0 /pcenc1 , resdecc1 /resdecc0 , t1,type, t1,amount, t1,gas, . . . , tn,type, tn,amount, tn,gas)

Due to the variability of transactions per block, the observation space needs to be
flexible enough to handle variable shapes. To address this issue, two approaches
were experimented with: data padding 5.3.1 and using a network with an at-
tention mechanism 5.3.2, [52]. In addition to handling variable shapes, it is
important to normalize the observation space to reduce the variability in trans-
action amount and allow for optimal performance of the agent. Moving average
normalization is a common technique used in reinforcement learning for this pur-
pose [53, 54]. Moving average normalization involves calculating a rolling average
of the input data over a fixed window of time. The size of the window is set to
the common choice of 100 time steps. The rolling average is then subtracted
from each data point, and the result is divided by the rolling standard deviation.
Compared to traditional normalization techniques that scale input data to have
a mean of zero and a standard deviation of one, moving average normalization
is more effective when input data is highly skewed or contains outliers. This
can be encountered in the dataset as the amount involved in the transaction can
vary significantly. Furthermore, the rolling average and standard deviation are
calculated only over the training data and are applied to the validation and test
sets using the same values to ensure that the normalization process does not
introduce any bias into the evaluation of the model.

5.1.2 Action Space

The action space is continuous, as in the continuous model of the simulated data
environment. Nevertheless, the model must be scaled up to accommodate not
only swap and withhold actions but also add and remove actions. Additionally
we want the agent not just to be able to predict a value for the gas price but
also to set the amount it wished to proceed in the transaction. We opted for an
approach, which maps the action types onto two separate ranges within [−1, 1];
one for the swaps and another for the add-remove actions which we will call
the liquidity provision (lp) range. This doubling of action space variable needs

5. Experiments and Results Historical Data 29

to be processed for both the transaction gas price and the transaction amount,
resulting in an action space predicting 6 values. Consequently, our agent is able
to place two transactions per block, allowing for all the actions to be chosen.
Withholding is achieved by selecting an amount of zero and, therefore, does not
need to be encoded within the type ranges.

Therefore at each step the action choice of the agent will contain:

a = (typeswap, amountswap, gasPriceswap, typelp, amountlp, gasPricelp)

The encoded values for the amount and the gas price need to be interpo-
lated to the real data ranges. The gas price is mapped from the interval [−1, 1]
to [0,max(gas price in dataset)], where max(gas price in dataset) represents the
highest gas price found in the dataset. This decision is made to enable the agent
to potentially front-run any transaction. In a similar manner, the transaction
amount is transformed from the range [−1, 1] to [0, 100 USD] (zero impact as-
sumption 5).

5.2 Reward shaping

5.2.1 Short Time Rewards

The short-time reward is the reward collected at each step. It is based on the
wealth difference of the agent before and after the action as in 4.7.1.

5.2.2 Long Time Rewards

In addition to the regular rewards, the historical data implementation can include
long-time rewards that are given to the agent after a certain number of steps.
The first such reward was given to encourage more liquidity provision when the
model was focused solely on swap strategies. This reward was given after n steps
and reflected the increase in wealth due to fees earned over that time span.

A second long-time reward is used to incorporate risk considerations into the
training process. An imbalance in the agent’s portfolio can decrease diversity and
increase market risk. Therefore, after 16 steps, an additional negative reward
is computed to penalize the agent if the balance of its wallet is imbalanced.
This reward is calculated by taking the negative value of the absolute difference
between the ratio of the wallet coins and the inverse ratio of the centralized prices
of the coins.

Risk Penalization = −
∣∣∣∣AgentC1Wealth
AgentC0Wealth

− CurrentPriceC0
CurrentPriceC1

∣∣∣∣

5. Experiments and Results Historical Data 30

5.3 Network Architecture

The network structure can be implemented using two approaches to accommodate
dynamically changing input sizes. Both networks utilized in this study are based
on a neural network with depths of [128, 128, 128] and a tanh activation function.
However, they differ in the implementation of their first layers.

5.3.1 Data Padding Architecture

One straightforward approach is to employ a large input that can accommodate
the highest count of transactions observed in the training/test data. Specifically,
in the case of the USDT-USDC cryptocurrency pair, this count is limited to 18,
whereas for the ETH-USDC pair, the count can reach up to 64. The value holders
which do not contain a pending transaction are set to 0. The expectation is that
the neural network is able to discern the padded data from the relevant data.

5.3.2 Attention architecture

To better handle fluctuations in the length of input data, a more sophisticated
approach is to use an attention mechanism that is invariant to input length. This
approach involves training a query mechanism in parallel, which selects a fixed
number of transactions at each step that is most relevant for the agent to make
decisions based upon [52]. The concept behind selecting relevant data using the
multihead attention layer is to identify the transactions that have the greatest
impact on the agent’s potential profit. This means that the network would, for
instance, prioritize selecting transactions with a higher amount over those with
a smaller amount. By employing multiple heads, the model can learn various
connections between the input components, generating diverse attention scores
that are subsequently merged. This approach assures a more comprehensive and
varied depiction of the input, enhancing the model’s ability to capture essential
features.

Typically, the initial step in utilizing attention networks involves generating
an embedding. However, in cases where the input is already a numerical en-
coding, this step can be skipped. After this, we need to define the format of
the embedding. This was chosen to be of the form [BATCH_SIZE, NBR_HEADS,
3]. The last dimension (3) encapsulates the number of elements needed for each
pending transaction, the BATCH_SIZE is the same as set in the network training
hyperparameters and the number of heads (NBR_HEADS) will be chosen to be a
minimum of 4 and then upscaled in further experiments for more complex in-
formation grasping. The rationale for selecting 4 as the number of heads is to
ensure that the network receives information from at least 4 transactions.

5. Experiments and Results Historical Data 31

Figure 5.1: Attention Network

This is feasible as most historical data
consist of 2-3 transaction per block with
only a small fraction containing more
than 4 transactions per block. This
length will be the dimension of the query
vector which will be used to filter out
the most relevant data for decision mak-
ing. Only the transaction data, which
is dynamically changing in number, will
undergo the query mechanism. On the
other hand, the fixed parameters con-
taining the ratios of centralized prices
and decentralized prices will be fed di-
rectly to the neural network without any
modifications.

5.4 Stable Coin Experiment

In the initial set of experiments, a trading pair was used which comprised two
stablecoins - USDC and USDT. Stablecoins are digital currencies that are de-
signed to maintain a stable value by being linked to a fiat currency. In this case,
both USDC and USDT are pegged to the US dollar, ensuring that their value
remains stable relative to the dollar. The decision to conduct experiments on
stablecoins was driven by the fact that they are less susceptible to fluctuations
caused by centralized market movements. This makes them an ideal candidate
for in-depth analysis of trading strategies that involve block-specific arbitrage.

5.4.1 Hyperparameter Choice

Hyperparameter tuning involved using grid search to find the optimal values
within predefined ranges. In addition, the entropy coefficient was manually ad-
justed based on the learning behavior of the agent. The remaining hyperpa-
rameters were retained as in the continuous model of the simulated data section
4.7.3.

5.4.2 Data Pipeline

To achieve good generalization, the dataset is divided into training and testing
data using an 80/20 split. The training data must be both sequential and di-
versified at the starting index. This is accomplished by randomly selecting the
starting index of each block from a uniform distribution after each reset. Fol-
lowing blocks are executed during the training process until a new starting index

5. Experiments and Results Historical Data 32

is chosen. This method allows the agent to learn from interconnected data and
prevents overfitting to specific imbalances within a particular time span. It is
crucial to note that the start-index frequency results in reshuffling the dataset’s
start-index and resetting all balances, including the liquidity token balance and
the agent’s wallet balance. This factor is important to consider, as it influences
the rewards generated by liquidity pool tokens, with shorter reset frequencies
permitting less liquidity provision per reset.

5.4.3 Baselines

To effectively evaluate the agent’s performance, we need to compare its results
against baseline metrics. These baselines are computed one our simulation and
are based on well-known trading strategies 2.3. To ensure the comparability of
their performance with that of the agent, these baselines will be given the same
amount of currency to invest at each step.

A strategy commonly used on Uniswap is to provide liquidity, as depicted in
Figure 5.4c. To accurately compare the rewards for liquidity provision, a baseline
was established where the maximum permitted amount of 100 USD was added to
the liquidity pool at each step. The resulting reward structure will be employed
to evaluate the agent’s behavior especially its liquidity provision behaviour.

Building on prior research, an additional trading strategy involves front-running
transactions when the balance is favorable for swaps in either direction, as il-
lustrated in Figure 5.4a. This strategy optimizes on the CEX/DEX values to
determine the most profitable type of swap and the corresponding amount.

The optimized swapping baseline 5.4b is a swap-based baseline that has been
optimized to incorporate the best possible positioning relative to pending trans-
actions. It not only optimizes on the CEX/DEX values but also computes the
potential rewards by artificially computing the intermediary states occurring after
pending transactions get mined.

(a) Front-running (b) Optimized (c) Liquidity provision

Figure 5.2: Computed Baselines: (a) Result of front-running strategy, (b) Result
of optimized swapping strategy, (c) Result of liquidity provider strategy (on cho-
sen test batch)

5. Experiments and Results Historical Data 33

5.4.4 Experiments and Results

During our research, we conducted several experiments to gain a better under-
standing of our model’s behavior. Out of all the experiments conducted, we
identified four primary experiments that had the most significant impact 5.1.
All the additional hyperparameter not mentioned in the table or the text can
be viewed in this table A.2. They result from the hyperparameter tuning and
insights from the previous sections.

Model Reward Elements Normalization Network Architecture Training steps Start-index Frequency
trained model 1 short no padding 3’000’000 256
trained model 2 short no attention 5’000’000 256
trained model 3 short + long (LP) yes padding 3’000’000 512
trained model 4 short + Long (LP + Risk) yes padding 3’000’000 512

Table 5.1: Overview stable coin experiments

In the initial trial, we utilized hyperparameters that had been fine-tuned,
employed short-term rewards without reward normalization, and employed a
padding network architecture (Trained Model 1). The training was carried
out in two stages: initially, the network was trained for 3,000,000 steps, resulting
in nearly optimal outcomes but with a few instances of small negative rewards.
Consequently, the network was retrained, with the negative reward being penal-
ized by a factor of ten, which eliminated the negative rewards entirely from our
model. Despite the model demonstrating outstanding performance in swaps, be-
ing able to learn the optimal positioning we noted that there was a limited level
of liquidity provision.

Simultaneously, we conducted a parallel experiment using the attention net-
work (Trained Model 2). The model training was exceptionally steady and
generated desirable results, even with a moderate number of steps. However,
upon closer inspection, we noticed that the model did not experience negative
rewards but failed to capitalize on positioning opportunities. Despite extending
the training time, the positioning did not achieve the expected level of optimiza-
tion. As a result, we pursued experimentation with the padding network in the
stablecoin context and halted further exploration of the attention network.

In order to overcome the insufficient liquidity provision, we extended the
reset frequency 5.4.2 and implemented a long-term reward system to capture the
prolonged advantages of such a provision. As a consequence, we introduced a
long-term reward component in our third experiment (Trained Model 3)that
accounted for the fees earned from liquidity provision over a specified time frame.
This supplementary reward (long time reward) 5.2.2 was added to the step-wise
reward structure after 16 training steps, resulting in a more diversified transaction
choice and a significant improvement in the overall reward generated by the
model. Again, to achieve a state of no negative rewards during training and
testing, it was necessary to implement a two-stage process, with the second stage

5. Experiments and Results Historical Data 34

involving a 10-fold increase in the penalization of negative rewards.

As a final experiment, we wanted to explore risk incorporation into the agent’s
behavior(Trained Model 4). The objective is to explore the agent’s capability
to incorporate risk versus profit assessment into its strategy through learning.
To achieve this, we included an extra long-term reward 5.2.2 that penalizes the
overall reward if the agent’s personal wallet becomes imbalanced due to previous
actions. Similar to the long-term liquidity provision reward, this penalty is added
to the step reward after 16 steps. It is subtracted from the reward to penalize
instances where the coin ratio deviates from 1, resulting in an imbalanced wallet.

The average metrics for all testing sets are displayed in the table below, as
referenced by 5.2. Additionally, a visualization illustrating the resulting agent
behavior across different models is available at A.1. This visualization highlights
the overall reward distribution and offers a more detailed view of the agent’s
decisions with respect to pending transactions.

Model Profit Amount uniswap c0 Amount uniswap c1 Ratio c0/c1 Reward from LP [usd] Reward from swap [usd]
lower bound random -76.31708 1052.60 1054.49 1.01 0.29 -76.61
baseline liquidity provider 17.46 51231.01 51141.51 1.00 18.85 0.0
baseline front-running 20.47 0.0 0.0 0.85 0.0 20.47
baseline optimized swapping 22.92 0.0 0.0 0.82 0.0 22.92
trained model 1 13.57 16510.33 16538.10 0.76 3.85 9.71
trained model 2 18.50 50591.95 50679.39 0.75 8.70 9.80
trained model 3 33.66 32043.12 32012.82 0.74 12.78 20.88
trained model 4 20.82 47331.80 48260.44 0.79 14.16 6.66

Table 5.2: Stable coins experiment results

The evaluation of the resulting models involves the use of various metrics.
The primary ranking metric used is profit, which is also the reward the agent
is optimizing for. Among the trained models, models 3 and 4, as well as the
optimized swapping baseline, have achieved the highest profit. The columns
indicating the amount of liquidity tokens show the amount remaining in the pool
after the testing sequence, which can be used to analyze potential risks taken.
The ratio of c0/c1 indicates the coin ratio in the personal wallet, with a ratio
over 1 indicating more c0 than c1, and vice versa. For all models allowed to
swap, the ratio is below one. The reward decomposition, showing the reward
from liquidity provision and the reward due to swapping, helps to understand
the strategy used by the agent to generate profit. The reward decomposition
provides a useful means of comparing the reward generated by the model with
those of the baselines, which either involve adding liquidity or solely swapping.
The model’s reward value for the swapping strategy can be seen to approach the
optimized or front-running swapping baseline value. A similar observation can
be made for the liquidity provision strategy. Although the rewards for both the
swap and liquidity provision strategies are marginally lower than their respective
baselines, the model’s overall performance surpasses traditional trading strategies
when these two strategies are combined.

5. Experiments and Results Historical Data 35

5.5 Unstable Coin Experiment

In this section, we will explore additional experiments conducted on a different
coin pair consisting of Ether, an unstable coin, and the stablecoin USDC. Due to
the inherent volatility of unstable coins, coin pairs including them exhibit greater
variation in centralized market prices and more significant movements in liquidity
pool reserves.

(a) Stable coin pair

(b) Unstable coin pair

Figure 5.3: Ratio CEX vs Ratio DEX

5.5.1 Hyperparameter Choice

Due to the greater variation in the ratio of coins in the unstable dataset, the
hyperparameter choices must be adjusted accordingly. The longer ranges of im-
balance could potentially cause the agent to overfit behaviors that are effective
only for specific imbalances. To address this issue, we increased the number of
environments to 20, each starting the simulation at a different index, which helps
to stabilize the training process. Initially, we considered using both the padding
and attention architectures, but the padding architecture yielded poor results
and was therefore excluded. The selection of hyperparameters was performed in
a similar manner as described in Section 4.7.3 and can be viewed in this table
A.3 .

5. Experiments and Results Historical Data 36

5.5.2 Learning Pipeline

During the training process for the unstable coin experiment, the model experi-
enced negative average rewards for an extended period. It was only after training
the model for five times longer than the stablecoin model (3,000,000 steps for the
stable-coin experiments, 15,000,000 steps for unstable coin experiments) that no-
ticeable performance improvement was observed. This could be attributed to the
greater diversity of the data, which requires the agent to be exposed to more data
before developing a reliable trading strategy.The significance of the start-index
frequency in the unstable coins experiments is the same as in the stable coins
experiments 5.4.2.

5.5.3 Baselines

The baselines used for performance assessment are the same as for the stablecoin
experiments 5.4.3.

(a) Front-running (b) Optimized (c) Liquidity Provision

Figure 5.4: Computed Baselines: (a) Result of front-running strategy, (b) Result
of optimized swapping strategy (c) Results of liquidity provider strategy

5.5.4 Experiment and Results

Model Reward Elements Normalization Network Architecture Training steps Start-index Frequency Attention parameters
trained model 1 short + long (LP) yes padding 10’000’000 512 -
trained model 2 short + long (LP) yes attention 15’000’000 512 nbr heads = 4
trained model 3 short + long (LP) yes attention + gumble 15’000’000 512 nbr heads = 4
trained model 4 short + long (LP) yes attention + gumble 15’000’000 512 nbr heads = 12
trained model 4 short + long (LP) yes attention + gumble 15’000’000 16 nbr heads = 12

Table 5.3: Overview unstable coin experiments

The hyperparameters for the models were optimized using grid search, while
some parameters were carried over from previous implementations due to their
proven good performance. The values of these hyperparameters are listed in
Table A.3.

5. Experiments and Results Historical Data 37

Upon initial experimentation (Trained Model 1), we observed that the
padding network architecture failed to perform adequately. It appears that the
increased frequency of pending transactions per block introduced a high degree of
variance in the zero and non-zero values presented to the network. Consequently,
we discontinued the use of this approach and focused solely on the attention
network architecture for subsequent experiments.

Following the rejection of the padding network approach, we opted to rein-
state the attention model (Trained Model 2). This model’s filtering technique
ensures that the neural network always receives a consistent number of matched
transactions, resulting in a reduced variance in the information content. How-
ever, the training performance of this model improves at a slower rate compared
to the model used for stablecoins, taking at least 10 million steps before reaching
a positive reward. Additionally, the process is highly sensitive to the randomness
of the starting indexes of the dataset, which can have a substantial impact on
the model’s overall performance. Two models having the same parameters can
exhibit completely different learning behavior. The outcome is not optimal, as it
leads to negative reward outputs, inadequate exploitation of imbalances, and a
lack of positioning.

In the standard multi-head attention implementation, the softmax function
normalizes attention scores, which are then utilized to compute a weighted sum
of input values. During this process, input values from all transactions are im-
plicitly combined to a certain extent. For instance, given three transactions with
attention scores of 0.9, 0.1, and 0.1, the final output remains influenced by all
three transactions, even though the first transaction has a substantially higher
attention score. This could be a factor contributing to the stagnation of our RL
agent’s performance at a lower level. Gumbel Softmax [55] serves as an alterna-
tive approach that can offer a clearer separation between different transactions.
It is a continuous relaxation of the discrete argmax function, enabling it to ap-
proximate a hard (i.e., one-hot) assignment of attention scores. Consequently,
Gumbel Softmax can generate attention scores closer to binary values (e.g., [1, 0,
0]), leading to a more distinct selection of a single transaction rather than blend-
ing values from multiple transactions. In the subsequent experiment (Trained
Model 3), the softmax function from the basic attention implementation was
replaced with Gumbel Softmax.

As part of an additional experiment (Trained Model 4), the multihead-
attention layer of the network was modified to increase the number of attention
heads. This adjustment allows the model to capture more nuanced relationships
between input tokens, providing a higher degree of granularity. Furthermore, the
increased number of attention heads is anticipated to improve the model’s gen-
eralization capacity, which is particularly vital for managing the diverse dataset
encountered in the unstable coin implementation. The performance of the model
improved slightly when increasing the number of heads from 4 to 12. However,

5. Experiments and Results Historical Data 38

upon a higher increase (20 heads), the performance dropped significantly.

In a final experiment, referred to as (Trained Model 5), the reset value was
substantially decreased from 512 to 16, while other parameters and hyperparam-
eters from the previous model were retained. This was done as the motivation for
liquidity provision was proven not to be adopted by prior models and therefore
the long reset ranges were not needed anymore and This change was driven by
the hypothesis that having 20 environments with different starting indices might
not offer sufficient diversity for the model to further enhance its performance. As
a result, the model’s performance improved to the extent that it now matches
the front-running baseline.

The average metrics across all testing sets are presented in the table below
5.4. Furthermore, a visualization of the resulting agent behavior for various
models can be found here: A.2. This visualization displays the overall reward
distribution and provides a closer look at the agent’s actions concerning pending
transactions.
Model Profit Amount uniswap c0 Amount uniswap c1 Ratio c0/c1 Reward from LP [usd] Reward from swap [usd]
lower bound random -76.31708 1052.60 1054.49 1.01 0.29 -76.61
baseline liquidity provider 0.8162 50003.24 145.40 1.00 0.8162 0.0
baseline front-running 592.66 0.0 0.0 0.49 0.0 592.66
baseline optimized swapping 594.35 0.0 0.0 0.49 0.0 594.35
trained model 2 567.91 1633.77 4.60 0.56 0.045 567.86
trained model 3 577.72 0.0 0.0 0.56 0.0 577.72
trained model 4 587.67 3530.12 9.99 0.55 0.043 587.62
trained model 5 592.38 215.98 0.60 0.51 0.002 592.378

Table 5.4: Unstable coin experiments results

The outcomes of the padding network experiment will not be incorporated
into subsequent analyses, as the performance failed to achieve positive reward
values during training. The evaluation metrics for the other models are identical
to those employed in the stable coin implementation; thus, their rationale will
not be reiterated here. Notably, the trained models do not outperform the opti-
mized baselines, but the performance of the last model (Trained Model 5) is
comparable with the one of the front-running baseline. In contrast to the sta-
ble coin experiments, the profitability of liquidity provision is considerably lower,
contributing only a minimal portion of the total profit. In terms of the cryptocur-
rency ratios held in the personal wallet following testing, significant deviations
from 1 are observed for both the agent and the swapping baselines (optimized
and front-running), indicating a substantial loss of portfolio diversification. To
provide further insights, we will examine the agent’s behavior in greater detail
within the discussion section 6.2.2.

Chapter 6

Discussion

In the discussion of the results, a comprehensive analysis of various model outputs
will be conducted, which will involve comparing them with each other and the
established baselines. The discussion will focus on evaluating performance as well
as assessing risk factors. We will begin by promptly examining the initial results
obtained from the simulated data, followed by a comprehensive analysis of the
historical data results.

6.1 Simulated Data Environment

Since the simulated data experiments served as a preliminary step before moving
on to real data experiments, their discussion will be brief.

6.1.1 Performance Discrete Model

The discrete model performs well for a limited number of trading transactions.
However, as the number of transactions increases and their variability grows, this
approach becomes impractical. The main reason is that with more transactions,
the number of possible positions grows exponentially, which cannot be accommo-
dated by a fixed discrete action space. Furthermore, since the action space must
be predetermined, it cannot be adjusted dynamically to accommodate varying
transaction numbers.

6.1.2 Performance Continuous Model

The continuous model successfully addresses the issue of the increasing and fluctu-
ating action space encountered in the discrete model, while achieving comparable
performance results. By using a continuous gas price value, managing position-
ing with a larger or varying number of transactions becomes simpler as only one
value is needed. However, it is important to note that the experiment in this

39

6. Discussion 40

section solely focused on modeling the gas price and did not include modeling
the amount or the agent’s liquidity provider role.

6.2 Historical Data Environment

The performance of the agent in the historical data setting can be more thor-
oughly assessed especially with the help of performance baselines. Additionally,
the aspect of risk will be looked at.

6.2.1 Stable coins

Performance and Risk

The assessment of performance and risk will mainly concentrate on the top-
performing model, referred to as (Trained Model 3), while also including in-
sights on (Trained Model 4) within the risk analysis.

Figure 6.1: Plot of Reward, Ratio dex (reserveC1
reserveC0), Ratio cex (PriceC0

PriceC1), and Trans-
action Amount (USD) for the LP actions and the Swap actions

By examining the agent’s behavior in relation to the centralized (cex) and
decentralized (dex) ratios, and considering the amount invested by the agent,
we can observe that the agent’s actions and therefore its rewards are closely
aligned with fluctuations in the ratios. The agent effectively executes swaps
when significant imbalances arise, utilizing the maximum permitted amount for
such actions and provides liquidity when the price discrepancies are smaller.

After comparing the agent’s performance to various baselines, it is evident
that the agent outperforms all of them by utilizing a mixed strategy. This strategy
involves both swapping with a pattern similar to that of the front-running or

6. Discussion 41

optimized baselines and providing liquidity simultaneously. Furthermore, the
agent’s swapping performance is superior to that of the front-running baselines.
This is because the agent has access to information about pending transactions
and does optimize its positioning accordingly. By leveraging this information, the
agent is able to make more informed decisions about its positioning, resulting in
better performance.

(a) Reward (b) Reward Deviation (c) Profit Decomposition

Figure 6.2: (a) shows the summed reward distribution overall test set for agent
and baselines, (b) shows the reward deviation of our agent regarding each baseline
over the whole test set, (c)shows the agents profit decomposition for each test set
into profit generated by the liquidity provision and the one from swapping

The optimized baseline outperforms other baselines in terms of profit, with
a higher number of high-profit pinnacles. However, it also exhibits the greatest
variability in profit distribution over the testing set, highlighting the instability
of this trading strategy. Conversely, the liquidity provider baseline yields lower
step-wise profit but a more stable accumulation of profit over time, resulting in a
moderate overall profit sum. This baseline also has the narrowest range of profit
distribution across different testing intervals, indicating a more consistent per-
formance. Analyzing the agent’s profit plot, we can observe that its distribution
of profit across the testing set falls between that of the optimized and liquidity
provider baselines. This suggests that the agent adopts a strategy that balances
the stability of the liquidity provision approach with the volatility of the opti-
mized swapping baseline, resulting in a profitable yet stable trading approach.
The observation is strengthened by examining both the agent’s reward deviation
and the breakdown of its reward into swapping and liquidity provision compo-
nents. The reward obtained from liquidity provision is more stable, providing a
foundation with lower variance. Conversely, the reward obtained from swapping
exhibits greater variability across different testing sets, despite yielding higher
returns overall.

In order to evaluate risk, we will differentiate between two types of risks: the
risk associated with the agent’s personal wallet and the risk associated with pro-
viding liquidity in the pool 3.5. The agent’s strategy depends on the underlying
data, and thus the mix of swapping or adding will be adapted to the specific

6. Discussion 42

(a) LP Risk (b) Wallet Risk (c) Wallet Ratio (d) LP Amount

Figure 6.3: (a) shows a test batch where the risk dominating is the liquidity
provision risk, (b) Shows a test batch where the wallet risk is prevalent, (c)
shows the ratio of coin 0 to coin 1 that the agent possesses after the test trading
which can be linked to the wallet risk, and (d) shows the amount of coins in the
liquidity pool which can be linked to the liquidity provision risk.

situation. In Figure 6.3a, the dominant strategy is providing liquidity, which
can be observed by the increasing liquidity token balances shown in the red line.
Therefore, this test batch is more strongly affected by liquidity provider risk. In
contrast, in Figure 6.3b, the increase in the liquidity pool is less prevalent, but
the gap between the amount of coin 0 and coin 1 becomes larger, indicating a
higher level of personal wallet risk for this test batch. If we analyze the wallet
ratio of our agent over the entire testing set 6.3c, we can observe that the ratio is
consistently below 1, indicating that the agent frequently trades coin 0 for coin
1. Similar behavior can be observed in the front-running/optimized baselines, al-
though their imbalance is lower than that of our agent. Assuming that the price
movements of each cryptocurrency are independent, this suggests that the agent
has a higher risk due to a less diversified cryptocurrency portfolio. To analyze
the risk associated with the liquidity pool asset, we can plot the amount of coins
the agent has in the liquidity pool 6.3d. The agent faces the risk of liquidity
slippage, which can affect the amount of coins they provided into the liquidity
pool and, therefore, can be viewed as the agent’s value at risk.

In the experiment involving long-term rewards based on personal wallet im-
balances ((Trained Model 4), an interesting pattern emerges. The ratio of
wallet coins gravitates marginally closer to one in comparison to all other trained
models. The average profit derived from liquidity provision is higher than the
model without risk embedding, while the profit from swaps decreases substan-
tially, leading to a reduction in overall profit. This behavior could be attributed to
the long-term rewards that penalize excessive swaps in a single direction. Despite
the relatively minor reduction in imbalance compared to the decline in profits,
this experiment provides important insights into the potential of incorporating
tailored rewards to guide agent behavior toward a particular objective. This area
of research could be more thoroughly explored in future experiments.

6. Discussion 43

6.2.2 Unstable coins

The assessment of performance and risk will mainly concentrate on the most
successful model, which utilizes an attention layer network, the Gumbel-softmax,
and 12 heads and the start-index frequency of 16 steps (referred to as Trained
Model 5). Due to its inability to achieve satisfactory performance, the model
employing the padding network will not be discussed further in this evaluation.

Performance and Risk

(a) (b)

(c)

Figure 6.4: Plot of Reward, Ratio dex (reserveC1
reserveC0), Ratio cex (PriceC0

PriceC1), and Trans-
action Amount (USD) for the LP actions and the Swap action (on three different
testing sets)

Upon evaluating the agent’s performance across three distinct testing sets, we
can assess its effectiveness and pinpoint both the aspects contributing to optimal
performance and the shortcomings. In the plot 6.4a, it is evident that the agent
capitalizes on the substantial price disparity between the cex and dex markets.
The reward structure and investment amounts closely align with the differences

6. Discussion 44

in market ratios. In plot 6.4b, the liquidity pool reserve ratio exhibits a decline
around the middle of the testing set, with a minor ratio crossing, before rising
again. The agent reacts to the price discrepancy as it approaches the crossing
point, choosing to cease investments in swaps and withhold instead. This decrease
in investment amounts aligns with the ratio plot, indicating optimal behavior.
Nevertheless, the short interval where ratio CEX is larger than the DEX ratio
is not capitalized upon. The results from the third testing set, as seen in 6.4c,
present a scenario where an abrupt decrease in the CEX ratio occurs. The agent
deals well with the crossing itself but gets a reward below zero when the ratios
are in close proximity to one another.

This challenge can be partially understood by examining the fluctuations be-
tween CEX and DEX ratios, as demonstrated in Figure 5.3.For the stable coin
implementation, the CEX and DEX ratios experienced fewer significant fluctua-
tions in overall value but had a higher frequency of crossing points. The increased
occurrence of ratio crossings in the training dataset might have contributed to the
stable model’s superior ability to learn appropriate responses in these situations.
For future experiments, an additional training dataset could be constructed to
focus on the condensed ratio crossings.

The second limitation relates to the agent’s struggle to learn optimal posi-
tioning strategies A.2. This issue may be due to the relatively small increase in
reward when comparing the optimized baseline with the front-running baseline.
The incremental reward obtained by the agent for using gas price values to de-
termine positioning may be so subtle at each step that the policy update process
fails to adequately capture these changes. As a result, the agent has difficulty
understanding the significance of positioning based on gas price values.

(a) Reward (b) Reward Deviation (c) Profit Decomposition

Figure 6.5: (a) Summed reward distribution for agent and baselines across the
test set, (b) reward deviation of the agent with respect to each baseline over the
entire test set, and (c) profit decomposition for each test set, separating profits
from liquidity provision and swapping.

As depicted in Figure 6.5, the visual representations provide evidence that the
agent’s performance aligns with the front-running agent, as indicated by a reward
deviation approaching zero, with occasional deviations represented by outliers.

6. Discussion 45

The comparison between the two swapping baselines in terms of reward distri-
bution and deviations from the agent supports the earlier statement regarding
the small increase in profit when utilizing positioning. On the other hand, the
liquidity provider baseline is significantly lower compared to the other baselines,
as demonstrated in the reward distribution and reflected in the profit decompo-
sition of the agent. This explains partly why the agent cannot outperform the
baselines using a simple mixed strategy

Figure 6.6: Wallet Ratio Unstable

The risk analysis will concentrate exclusively on the risk associated with
the agent’s personal wallet, given that the trained policy results in a negligi-
ble amount of liquidity provision. Both the model and the baselines exhibit
imbalances in the end ratio of the personal wallet. Interestingly, the optimized
and front-running baselines demonstrate a slightly more pronounced imbalance
in the personal wallet over the testing set, leading to a higher risk exposure.

Chapter 7

Conclusion and Outlook

7.1 Conclusion

In this thesis, we demonstrated that a reinforcement learning (RL) agent can
achieve positive trading results on both stable and unstable coin pairs. For
the stablecoin implementation, a mixed strategy of swap and liquidity provision
was employed, resulting in higher performance compared to baseline approaches.
However, in the case of the unstable coin implementation, stronger imbalances
made liquidity provision more challenging, thus upper-bounding the agent’s per-
formance to an optimized swapping strategy.

We gained insights into constructing an RL agent for trading purposes and exper-
imented with various hyperparameters to observe their influence on the agent’s
behavior. A multi-stage training pipeline was developed that includes multi-
ple entropy coefficient resets and penalization of negative rewards to enhance
performance. An approach for designing the action space was devised to accom-
modate actions requiring both discrete and continuous elements, using an encod-
ing scheme. Regarding the observation space, experiments were conducted with
variable-length observations employing different techniques. Initially, a padding
network was used to handle a smaller variance in the number of observations,
which was later replaced with a more sophisticated attention layer approach.
Additionally, performance improvement was achieved by replacing the softmax
layer with a Gumbel-softmax layer, which helps in avoiding information loss.

Additionally, we showcased that customized reward structures can be integrated
into the training process, fostering desired behavior. By emphasizing liquidity
provision within the reward structure, the agent can be encouraged to select
actions prioritizing this aspect. Furthermore, incorporating risk management
into the network using targeted rewards can help the agent learn to minimize
risk in its actions, leading to more informed decisions.

The training challenges encountered with the unstable coin pair highlight the
complexities in developing an RL agent capable of generalizing across various
coin types, as evidenced by the contrasting performance on the two coin pairs.

46

7. Conclusion and Outlook 47

This study emphasizes the potential of reinforcement learning (RL) in cryp-
tocurrency trading and offers valuable insights into effective training strategies
for RL agents within this domain. Although no outstanding strategies were dis-
covered, crucial design decisions were identified, showcasing how to effectively
train an RL agent to navigate the intricate landscape of cryptocurrency trading.

7.2 Outlook

The performance analysis of the unstable model suggests that the agent faces
challenges in achieving optimal performance when the price discrepancies between
dex and cex market prices approach crossing points. As mentioned earlier, this
behavior could stem from the dataset lacking sufficient crossings, resulting in
the agent’s inability to optimize its policy. A possible future approach might
include developing a training pipeline that emphasizes a higher frequency of data
containing crossings during the training process.

The simulation developed in this thesis presents an opportunity to expand the
investigation of trading strategies to a wider range of coin pairs beyond those
studied in this research. Notably, the approach of combining two unstable coin
pairs has not yet been investigated and represents an area of potential exploration.

Another potential area of exploration is to enhance the versatility of the RL agent
by allowing it to trade on multiple liquidity pools simultaneously. This can be
achieved by scaling up the simulation environment to enable multipool trading.
By learning diverse strategies across various markets, the agent can improve its
performance and robustness in different market conditions.

Furthermore, there is potential for the research on custom long-term rewards to
be expanded upon in order to integrate more complex trading preferences into
the agent’s behaviour.

Bibliography

[1] “Uniswap v1 smart contracts,” Available at: https://docs.uniswap.org/
contracts/v1/overview, accessed: [12.12.22].

[2] DefiLlama, “DEXs on BSC - defillama,” https://defillama.com/dexs, ac-
cessed: April 23, 2023.

[3] B. F. K. Y. R. Z. Deng, Y. and Q. Dai, “Deep direct reinforcement learning
for financial signal representation and trading,” 2017.

[4] L. Z. L. X. Wen, Y. and J. Wang, “Ensemble learning based reinforcement
learning for stock trading strategy,” 2021.

[5] Y. Zhang and Y. Zhou, “Multi-objective reinforcement learning-based trad-
ing strategy optimization for cryptocurrencies,” 2021.

[6] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,”
2014.

[7] B. V. et al, “A next-generation smart contract and decentralized application
platform.” 2014.

[8] L. F. G.-G. C. e. a. Khan, S.N., “Blockchain smart contracts: Applications,
challenges, and future trends,” 2021.

[9] J. Zakrzewski, “Towards verification of ethereum smart contracts: a formal-
ization of core of solidity,” 2019.

[10] D. Meijer, “Defi and regulation: the european approach,” 2021.

[11] Y. Wang, Y. Chen, H. Wu, L. Zhou, S. Deng, and R. Wattenhofer, “Cyclic
arbitrage in decentralized exchanges,” 2022.

[12] “Uniswap interface v2,” https://v2.info.uniswap.org/, accessed: April 21,
2023.

[13] N. Z. Hayden Adams and D. Robinson, “Uniswap v2 core.” 2020.

[14] “Front running,” https://www.nasdaq.com/glossary/f/front-running.

[15] J. Xu and B. Livshits, “The anatomy of a cryptocurrency pump-and-dump
scheme.” 2019.

[16] O. G. B. P. Forum, “Blockchain transparency report,” 2019.

48

https://docs.uniswap.org/contracts/v1/overview
https://docs.uniswap.org/contracts/v1/overview
https://defillama.com/dexs
https://v2.info.uniswap.org/
https://www.nasdaq.com/glossary/f/front-running

Bibliography 49

[17] L. Zhou, K. Qin, C. F. Torres, D. V. Le, and A. Gervais, “High-frequency
trading on decentralized on-chain exchanges,” 2020.

[18] S. Byrne, “An exploration of novel trading and arbitrage methods within
decentralised finance,” 2021.

[19] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach,
and A. Juels, “Flash boys 2.0: Frontrunning, transaction reordering, and
consensus instability in decentralized exchanges,” 2019.

[20] N. Boonpeam, W. Werapun, and T. Karode, “The arbitrage system on de-
centralized exchanges,” in 2021 18th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and Information
Technology (ECTI-CON), 2021.

[21] M. A. Samsuden, N. M. Diah, and N. A. Rahman, “A review paper on
implementing reinforcement learning technique in optimising games perfor-
mance,” in 2019 IEEE 9th International Conference on System Engineering
and Technology (ICSET), 2019.

[22] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics:
A survey,” 2013.

[23] Y. Zeng, J. Sun, X. Li, X. Gao, X. Yang, and J. Ren, “Deep reinforcement
learning for supply chain optimization: A review,” 2020.

[24] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al.,
“Mastering the game of go with deep neural networks and tree search,” 2016.

[25] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,
2018.

[26] B. H. Rui Nian, Jinfeng Liu, “A review on reinforcement learning: Introduc-
tion and applications in industrial process control,” 2020.

[27] P. Wei, S. Chen, J. Zheng, B. Yang, and Y. Zhou, “Graph reinforcement
learning for portfolio management,” 2021.

[28] X. Gao, W. Chen, and W. Liu, “Reinforcement learning for asset manage-
ment,” 2021.

[29] X. Cao, Y. Luo, W. Chen, and S. Kou, “Reinforcement learning for option
pricing, hedging, and trading,” 2020.

[30] G. Huang, X. Zhou, and Q. Song, “Deep reinforcement learning for portfolio
management,” 2022.

Bibliography 50

[31] G. D. M. A. Y. M. P. K. Jagdish Bhagwan Chakole, Mugdha S. Kolhe, “A
q-learning agent for automated trading in equity stock markets,” 2021.

[32] L. Zhao, H. Liu, Y. Xu, and J. Wu, “Deep reinforcement learning for option
pricing and risk management,” 2021.

[33] S. Quinteiro dos Santos, C. Chukwuocha, S. Kamali, and R. Thulasiram, “An
efficient miner strategy for selecting cryptocurrency transactions,” 2019.

[34] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” 2017.

[35] V. Konda and J. Tsitsiklis, in Advances in Neural Information Processing
Systems, 1999.

[36] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust region
policy optimization,” 2015.

[37] A. Aigner and G. Dhaliwal, “Uniswap: Impermanent loss and risk profile of
a liquidity provider,” 2021.

[38] G. V. Nartea and Y. Wu, “The diversification benefits of cryptocurrencies:
Evidence from bitcoin and ethereum,” 2021.

[39] M. F. L. Siti Nur Iqmal Ibrahim, Masnita Misiran, “Geometric fractional
brownian motion model for commodity market simulation,” 2021.

[40] T. Szabados, “An elementary introduction to the wiener process and stochas-
tic integrals,” 2010.

[41] Z. Ding, T. Yu, Y. Huang, H. Zhang, G. Li, Q. Guo, L. Mai, and H. Dong,
“Efficient reinforcement learning development with rlzoo,” 2021.

[42] M. Andrychowicz, A. Raichuk, P. Stańczyk, M. Orsini, S. Girgin,
R. Marinier, L. Hussenot, M. Geist, O. Pietquin, M. Michalski, S. Gelly, and
O. Bachem, “What matters in on-policy reinforcement learning? a large-scale
empirical study,” 2020.

[43] M. Kiran and M. Ozyildirim, “Hyperparameter tuning for deep reinforcement
learning applications,” 2022.

[44] F. Gogianu, T. Berariu, M. Rosca, C. Clopath, L. Busoniu, and R. Pascanu,
“Spectral normalisation for deep reinforcement learning: an optimisation
perspective,” 2021.

[45] A. Raffin, J. Kober, and F. Stulp, “Smooth exploration for robotic reinforce-
ment learning,” 2021.

[46] F. Gao and H. Zhong, “Study on the large batch size training of neural
networks based on the second order gradient,” 2020.

Bibliography 51

[47] L. Zhang, T. Wu, S. Lahrichi, C.-G. Salas-Flores, and J. Li, “A data science
pipeline for algorithmic trading: A comparative study of applications for
finance and cryptoeconomics,” 2022.

[48] E. J. Elton, M. J. Gruber, and C. R. Blake, “Survivorship bias and mutual
fund performance,” 1996.

[49] B. F. Arnaud Laurent, Luce Brotcorne, “Transaction fees optimization in
the ethereum blockchain,” 2022.

[50] Gürcan, A. Ranchal-Pedrosa, and S. Tucci-Piergiovanni, “On cancellation
of transactions in bitcoin-like blockchains,” 2018.

[51] YCharts, “Ethereum average gas price,” https://ycharts.com/indicators/
ethereum_average_gas_price, 2023, accessed on April 21, 2023.

[52] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.

[53] Z. Cai, A. Ravichandran, S. Maji, C. Fowlkes, Z. Tu, and S. Soatto, “Expo-
nential moving average normalization for self-supervised and semi-supervised
learning,” 2021.

[54] A. Bhatt, M. Argus, A. Amiranashvili, and T. Brox, “Crossnorm: Normal-
ization for off-policy td reinforcement learning,” 2019.

[55] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-
softmax,” 2017.

https://ycharts.com/indicators/ethereum_average_gas_price
https://ycharts.com/indicators/ethereum_average_gas_price

Appendix A

Additonal Data

Table A.1: Hyperparameters for the discrete and continuous models

Hyperparameter Discrete Model Continuous Model
activation_fn th.nn.Tanh th.nn.Tanh
net_arch [vf=[64, 64], pi=[64, 64])] [(vf=[64, 64, 64], pi=[64, 64, 64])]
batch_size 128 128
n_steps 1024 1024
gamma 0.99 0.9
learning_rate exp. decay (1e-3, 0.9) exp.decay (0.0012, 0.9)
ent_coef 0.03 0.003
clip_range 0.25 0.4
n_epochs 10 10
gae_lambda 0.9 0.8
max_grad_norm 5 0.6
vf_coef 0.5 0.8
use_sde - True
normalization - Moving average

A-1

Additonal Data A-2

Table A.2: Hyperparameters for stable models

Hyperparameter Model 1 Model 2 Model 3, 4
activation_fn th.nn.Tanh th.nn.Tanh th.nn.Tanh
net_arch [128, 128, 128] [128, 128, 128] [128, 128, 128]
batch_size 128 64 256
n_steps 2048 2048 2048
LR - exp.decay(start, decay) 0.01 ,0.9 0.002, 0.9 0.002, 0.9
ent_coef - exp.decay(start, decay) 0.003, 0.9 0.003, 0.9 0.003, 0.9
clip_range 0.2 0.4 0.4
n_epochs 10 5 10
gae_lambda 0.8 0.92 0.92
max_grad_norm 1 0.9 0.9
vf_coef 0.8 0.63 0.75
use_sde True True True
normalization Moving average Moving average Moving average

Table A.3: Hyperparameters for unstable models

Hyperparameter Model 1 Model 2, 3, 4, 5
activation_fn th.nn.Tanh th.nn.Tanh
net_arch [128, 128, 128] [128, 128, 128]
batch_size 256 256
n_steps 2048 2048
LR - exp.decay(start, decay) 0.01 ,0.9 0.1, 0.9
ent_coef - exp.decay(start, decay) 0.003, 0.9 0.003, 0.9
clip_range 0.3 0.3
n_epochs 10 15
gae_lambda 0.89 0.92
max_grad_norm 1 0.8
vf_coef 0.82 0.71
use_sde True True
normalization Moving average Moving average

Additonal Data A-3

(a) Trained Model 1 - Full (b) Trained Model 1 - Close

(c) Trained Model 2 - Full (d) Trained Model 2 - Close

(e) Trained Model 3 - Full (f) Trained Model 3 - Close

(g) Trained model 4 - Full (h) Trained Model 4 - Close

Figure A.1: Stable coins: The images denoted on the left show the full reward
output of the specific model, and the images on the right side show a close-up of
the result where the positioning is shown. (x-axis = rewards, y-axis=steps)

Additonal Data A-4

(a) Trained Model 2 - Full (b) Trained Model 2 - Close

(c) Trained Model 3 - Full (d) Trained Model 3 - Close

(e) Trained Model 4 - Full (f) Trained Model 4 - Close

(g) Trained Model 5 - Full (h) Trained Model 5 - Close

Figure A.2: Unstable coins: The images denoted on the left show the full reward
output of the specific model, and the images on the right side show a close-up of
the result where the positioning is shown. (x-axis = rewards, y-axis=steps)

	Acknowledgements
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Decentralized Finance
	2.2 Decentralized Exchanges
	2.3 Trading Strategies
	2.4 Reinforcement Learning

	3 Material and Methods
	3.1 Simulation Environment
	3.1.1 Blockchain Environment
	3.1.2 Cryptocurrency Wallet
	3.1.3 Uniswap
	3.1.4 Miner
	3.1.5 Network

	3.2 Data Collection
	3.3 Reinforcement Learning
	3.3.1 Architecture
	3.3.2 Algorithm
	3.3.3 Reward

	3.4 Performance analysis
	3.5 Risk assessment

	4 Experiments and Results Simulation Environment
	4.1 Trader modelling
	4.2 Price modeling
	4.3 Liquidity pool modeling
	4.4 Observation Space
	4.5 Action space
	4.6 Discrete Model
	4.6.1 Reward shaping
	4.6.2 Network Architecture
	4.6.3 Hyperparameter Choice
	4.6.4 Learning Pipeline
	4.6.5 Results

	4.7 Continuous model
	4.7.1 Reward shaping
	4.7.2 Network architecture
	4.7.3 Hyperparameter Choice
	4.7.4 Learning Pipeline
	4.7.5 Results

	5 Experiments and Results Historical Data
	5.1 Spaces
	5.1.1 Observation Space
	5.1.2 Action Space

	5.2 Reward shaping
	5.2.1 Short Time Rewards
	5.2.2 Long Time Rewards

	5.3 Network Architecture
	5.3.1 Data Padding Architecture
	5.3.2 Attention architecture

	5.4 Stable Coin Experiment
	5.4.1 Hyperparameter Choice
	5.4.2 Data Pipeline
	5.4.3 Baselines
	5.4.4 Experiments and Results

	5.5 Unstable Coin Experiment
	5.5.1 Hyperparameter Choice
	5.5.2 Learning Pipeline
	5.5.3 Baselines
	5.5.4 Experiment and Results

	6 Discussion
	6.1 Simulated Data Environment
	6.1.1 Performance Discrete Model
	6.1.2 Performance Continuous Model

	6.2 Historical Data Environment
	6.2.1 Stable coins
	6.2.2 Unstable coins

	7 Conclusion and Outlook
	7.1 Conclusion
	7.2 Outlook

	Bibliography
	A Additonal Data

