
Distributed

 Computing

Understanding Peer-Discovery in ETH
2.0

Master’s Thesis

Samuel Käser

skaeser@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Dr. Lucianna Kiffer, Yann Vonlanthen

Prof. Dr. Roger Wattenhofer

August 10, 2023

Acknowledgements

I am heartily thankful to my supervisors, Dr. Lucianna Kiffer and Yann Vonlan-
then, whose encouragement, guidance, and support from the initial to the final
stages enabled me to develop an understanding of the subject. Their expertise
in the realm of Ethereum and P2P networks proved invaluable in shaping this
research work.

I would like to express my gratitude to the DISCO. Their resources and an
intellectually stimulating environment have contributed immensely to the suc-
cessful completion of my thesis. The discussions, brainstorming sessions, and
thoughtful critiques provided by the team were truly beneficial in refining the
scope and depth of my work.

Lastly, I acknowledge my peers for their unwavering support and for chal-
lenging me to continually enhance the quality of my work. Their camaraderie
made the journey towards the completion of this master’s degree an enriching
experience.

i

Abstract

In recent years, the blockchain domain has witnessed significant advancements,
with the Ethereum 2.0 network emerging as a focal point of interest. This re-
search delves deeply into the intricate behaviors exhibited by nodes within the
network operating under the discv5 discovery protocol. As Ethereum under-
goes a pivotal transition from the traditional Proof-of-Work (PoW) model to the
more sustainable Proof-of-Stake (PoS) paradigm, understanding the underlying
dynamics of its peer-to-peer (P2P) network becomes increasingly vital.

To capture a comprehensive picture of this environment, this thesis employed
a specialized P2P crawler, a significant contribution built by the author. This
tool was instrumental in gathering granular data on Beacon nodes, as well as
their associated routing tables, painting an unprecedented and comprehensive
picture of the networking layer. One of the standout findings from this research
is the remarkable adaptability of these nodes. This adaptability is most evident
in the nodes’ propensity for frequent updates to their Ethereum Node Records
(ENRs), suggesting a network in constant flux and evolution.

Furthermore, the research brings to the fore the significance of the Node
Discovery Protocol version v5.1. This protocol, as the data suggests, plays a
central role in bolstering node discovery and facilitating seamless communication
within the Ethereum 2.0 framework.

In conclusion, this research not only underscores the complexities and nuances
of the Ethereum 2.0 network but also highlights the imperative for continuous
monitoring, research, and adaptation. The author’s contributions in develop-
ing the P2P crawler and elucidating the networking layer dynamics are pivotal.
As Ethereum 2.0 continues to carve its niche in the blockchain ecosystem, un-
derstanding and optimizing node behavior will be paramount in ensuring the
network’s long-term resilience, scalability, and success.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Motivation . 1

2 Background 2

2.1 P2P . 2

2.2 Proof of Work . 3

2.3 Proof of Stake in Ethereum 2.0: The Beacon chain 4

2.4 Ethereum Node Record (ENR) 5

2.5 Networking Stack . 7

2.5.1 Discovery domain . 7

2.5.2 Gossip domain . 9

2.5.3 Req/Resp domain . 10

3 Gathering Network Data 12

3.1 Network Crawler . 12

3.2 Assessing Node Connectivity . 13

4 Results 14

4.1 ENR and Node Monitoring Insights 14

4.2 Analysis of Node and ENR Continuity Across Crawls 14

4.3 ENR analysis . 17

4.3.1 eth2 key-value distribution 21

4.4 Routing table analysis . 22

4.4.1 Routing table size and reactivity 24

4.5 Ipv6 . 27

iii

Contents iv

5 Discussion/Outlook 29

Bibliography 31

Chapter 1

Introduction

1.1 Motivation

The motivation for this thesis stems from the need to understand the behavior
trends in nodes running discv5, a discovery protocol used in Ethereum 2.0. By
building a P2P crawler to gather information about nodes in the Beacon network
and their routing tables, we aim to answer several key questions. These include
understanding the total count of nodes/IPs, the percentage of nodes that can be
reached and confirmed as online, the statistics on the response of FINDNODE
requests, and the duration for which "old" information stays in node’s routing
tables.

Furthermore, we aim to delve into the behavior of high churn ENRs from
single IPs, the longevity of node responsiveness to pings, and the overlap of ENR
and IPs between routing tables. We also intend to investigate the reasons behind
the changes in ENRs associated with the same IP.

In conclusion, the motivation for this thesis lies in the need to understand
the dynamics of the P2P network that underpins the Ethereum 2.0 system. By
exploring the behavior trends in nodes running discv5, we hope to contribute to
the ongoing evolution of blockchain technology and its transition towards more
structured and secure network models.

1

Chapter 2

Background

2.1 P2P

Peer-to-Peer (P2P) networks are one of the fundamental aspects of blockchain
technology and more specifically Ethereum. In the context of blockchains, a
P2P network refers to a decentralized network of nodes (individual machines),
where each node has equal authority and operates in a non-hierarchical way. In
contrast to a traditional client-server model, where the server has a superior role
and clients interact mainly with the server, in a P2P network, all nodes interact
directly with the other nodes without the need of an intermediate authority.

Ethereum and other networks leverage the numerous advantages of P2P net-
works to maintain copies of the distributed ledger:

Decentralization: Decentralization is the main principle of Ethereum. A
P2P network makes sure that no single authority has control over the entire
network. Each machine (node) in the network can validate transactions and
blocks, allowing for a democratized and transparent system.

Resilience and Redundancy: Because of its distributed nature, a P2P
network is highly resilient to failures. If a node goes offline, it does not affect
the overall functioning of the network because other nodes maintain copies of the
distributed ledger. This redundancy also enhances the security of the network,
as manipulating the ledger would require altering more than half of all the copies
across the network – with thousands of nodes distributed all over the world, the
costs of achieving this far outweigh the potential gains.

Scalability: P2P networks can scale horizontally, which means new nodes
can be added to the network without the need for substantial reconfiguration or
central planning.

Privacy and Anonymity: While all transactions are transparent and trace-
able on the distributed ledger, the P2P nature of the network can provide a degree
of privacy and anonymity. A user’s identity is often represented by their public
key, decoupling their real-world identity from their actions on the network.

2

2. Background 3

In the P2P network of a distributed ledger, nodes validate new transactions,
propose the next blocks, and confirm the validity of other blocks according to
a consensus algorithm (like Proof-of-Work or Proof-of-Stake). This way, the
distributed ledger maintains its integrity and immutability, rendering it a robust
solution for decentralized applications, cryptocurrencies, smart contracts, and
many other uses.

2.2 Proof of Work

Consensus algorithms are used to confirm and validate transactions and therefore
play a crucial role in maintaining the integrity and security of the network. Proof
of Work (PoW) is a consensus algorithm still used by Bitcoin and previously also
by Ethereum. Its primary purpose is to deter cyber-attacks, such as Distributed
Denial of Service (DDoS) attacks, which exhaust a system’s resources by sending
numerous fake requests.

The PoW mechanism operates by requiring network participants (miners) to
perform complex computational tasks. These tasks involve finding a nonce (an
arbitrary number used only once) that, when hashed with the block content,
produces a hash value that meets certain predefined conditions. Typically, the
condition is that the hash value is less than a specific target value. The difficulty
of finding such a nonce is adjustable and is what determines the computational
effort needed.

This process is often termed as solving a mathematical puzzle, but in reality,
it’s more of a trial-and-error operation, given the one-way nature of cryptographic
hash functions. The node that first finds a valid nonce (a solution to the “puzzle”)
broadcasts the new block and its solution to the network. The other nodes can
easily verify the solution by hashing the proposed combination of nonce and block
content and checking if it meets the target condition.

Once a valid block is proposed and accepted by the network, the miner is
rewarded with a certain amount of cryptocurrency. This incentivizes miners to
contribute their computational resources to the network.

The name “Proof of Work” comes from the fact that nodes prove they have
expended computational work by solving the required task. This computational
work serves the two main purposes of confirming transactions and adding them
to the distributed ledger as well as deterring malicious activity by making it
computationally and thus financially costly to attack the network. [1]

2. Background 4

2.3 Proof of Stake in Ethereum 2.0: The Beacon chain

Launched in 2020, the Beacon chain serves as the prototype for Ethereum’s transi-
tion from a proof-of-work to a proof-of-stake consensus mechanism. This pioneer-
ing proof-of-stake blockchain was designed to confirm the viability and stability
of proof-of-stake consensus prior to its integration into the Ethereum Mainnet,
thus operating concurrently with the original proof-of-work Ethereum blockchain.

Constructed from “empty” blocks, the Beacon Chain needed to be reconfig-
ured to import transaction data from execution clients. The data is then assem-
bled into blocks, which are subsequently organized into a blockchain using the
proof-of-stake consensus protocol. Concurrently, the original Ethereum clients
relinquished their mining, block propagation, and consensus functionalities, en-
trusting these critical tasks to the Beacon Chain. This significant transition is
referred to as “The Merge”.

Following the Merge, the Ethereum client underwent a significant transfor-
mation, now consisting of two distinct layers. This separation becomes especially
pivotal in the context of the Merge.

The first is the Consensus-layer, which is responsible for the consensus, specif-
ically block seal validity, and the fork choice rule. With The Merge enabling PoS
consensus driven by the Beacon chain, this layer is represented by a modified
Beacon chain client. As it stands now, the Beacon chain functions as this con-
sensus layer, forming a peer-to-peer network of consensus clients that manage
block gossip and consensus protocols. The Consensus-layer is tasked with main-
taining the consensus chain (Beacon chain) and the fork choice rule by processing
consensus blocks (Beacon blocks) and attestations received from other peers con-
nected to the attestation sub-network, a part of the beacon chain network. Each
Beacon block contains an execution payload, which has a list of transactions and
other necessary data for execution and validation. If the payload is invalid, then
the Beacon block is also considered invalid. To verify this validity condition, the
consensus-layer sends the payload to the execution-layer.

The second is the Execution-layer, responsible for transaction bundling, exe-
cution, and state management. This layer is represented by modified pre-merge
PoW clients. The original clients now form this execution layer, which handles
gossiping and executing transactions, as well as managing the state of Ethereum.
The Execution-layer is responsible for assembling an execution block (a former
PoW block with stubbed ethash fields), verifying pre-conditions, executing trans-
actions, and verifying post-conditions. After execution, the block is inserted into
the execution chain (the execution-layer blockchain, or the pre-merge Ethereum
chain) and the post-block state is stored in the execution state storage (the
Ethereum state storage as we know it today).

Intercommunication between these two layers is facilitated via the Engine

2. Background 5

API. Unlike PoW, where block creation probability is tied to a miner’s compu-
tational power, PoS determines this probability based on the number of tokens
(in Ethereum’s case, ETH) a participant holds or "stakes", effectively acting as
virtual mining power.

In Ethereum’s PoS, to become a validator, a node must stake a certain amount
of Ether into the network as collateral. It can do so by transferring a minimum
of 32 Ether to the staking smart contract. The staking-process is divided up
into slots of 12 seconds, where each slot produces one block and every 32 slots
starts a new epoch with a checkpoint to attest to. Checkpoints that reach at
least 2

3 of all the attestations are considered justified. If the next checkpoint of a
justified checkpoint becomes justified too, the older checkpoint reaches finality.
If the validator engages in slashable offenses such as double-proposing, up to
100% of the stake can be deducted from the validator’s account and result in
the validator losing his ability to participate in the staking-process. If a staker
wants to participate in the staking-process with less than 32 ETH, you can send
your ETH to a staking pool and let the pool operate the node. The pool takes a
percentage of the accumulated staking rewards for his services.

The benefits of PoS include:

Energy Efficiency: PoS requires significantly less computational power and
hence, less energy compared to PoW. This makes the blockchain more sustainable
in the long run.

Security: PoS secures the network through the financial commitment of val-
idators. The potential loss of their staked ETH discourages malicious actions.

Scalability: By reducing the need for computational power, PoS potentially
allows for a higher transaction throughput, improving the scalability of the net-
work. [2]

2.4 Ethereum Node Record (ENR)

Ethereum Node Records (ENRs) are a fundamental component of Ethereum’s
networking protocol, providing a mechanism for nodes to share and discover
information about each other. As defined in EIP-778 [3], an ENR is a signed
key-value record that contains the following components:

• A sequence number: This is incremented whenever the record changes,
allowing nodes to keep track of the most recent information.

• The node’s public key: This is used for identification and cryptographic
operations.

• A signature: This is created using the node’s private key and serves to
verify the authenticity of the record.

2. Background 6

• Additional key-value pairs: These hold arbitrary node metadata and can
include a variety of information.

The key-value pairs can include the following keys:

• “id”: This specifies the name of the identity scheme, such as “v4”.

• “secp256k1”: This holds the compressed secp256k1 public key of the node,
which is 33 bytes long.

• “ip”: This holds the IPv4 address of the node, which is 4 bytes long.

• “tcp”: This holds the TCP port of the node, represented as a big-endian
integer.

• “udp”: This holds the UDP port of the node, represented as a big-endian
integer.

• “ip6”: This holds the IPv6 address of the node, which is 16 bytes long.

• “tcp6”: This holds the IPv6-specific TCP port of the node, represented as
a big-endian integer.

• “udp6”: This holds the IPv6-specific UDP port of the node, represented as
a big-endian integer.

• “eth2”: This field encapsulates an ENRForkID object. This object is SSZ
encoded and comprises three primary components: fork_digest, next_fork_version,
and next_fork_epoch. The fork_digest is a 4-byte value derived from the
compute_fork_digest function, which takes into account the node’s current
fork version and the genesis_validators_root. The genesis_validators_root
is a static value found in state.genesis_validators_root.

The next_fork_version is a 4-byte value representing the version of the up-
coming planned hard fork. If there’s no impending fork, this value mirrors
the current fork version, indicating the absence of any future forks.

The next_fork_epoch, an 8-byte value, signifies the epoch when the next
planned fork will take place. In scenarios where no future fork is on the
horizon, this value is set to FAR_FUTURE_EPOCH, signaling the indef-
inite postponement of any forks.

For seamless network operations, clients are encouraged to connect with
peers whose fork_digest, next_fork_version, and next_fork_epoch match
their local values. While clients have the discretion to connect with peers
sharing the same fork_digest but differing in next_fork_version or next_fork_epoch,
they must be cautious. If the ENRForkID isn’t updated to match before
the earlier next_fork_epoch of the two clients, their interaction will be
disrupted from that epoch onward.

2. Background 7

• “attnets”: This key is used to discover peers participating in particular at-
testation gossip subnets. The current initial phase 0 of ETH 2.0 is distinct
because it doesn’t have shard committees, leaving the attestation subnets,
identified as beacon_attestation_subnet_id, without a stable foundation.
To counteract this instability, each beacon node is advised to maintain
a subscription to a predetermined number of subnets, known as SUB-
NETS_PER_NODE, for a duration set by EPOCHS_PER_SUBNET_SUBSCRIPTION
(default value =256, 27h) epochs.

The selection of these subnets isn’t random but is determined by the node’s
ID. A specific function named compute_subscribed_subnets(node_id, epoch)
has been provided to facilitate this selection. This function uses a prefix of
the node’s ID and a permutation seed, which is derived from the current
epoch combined with the node’s unique offset. This combination ensures
that each node’s subnet selection is both deterministic and shuffled.

All keys except “id” are optional, and a record can still be valid without
endpoint information as long as its signature is valid. The ENR is encoded using
Recursive Length Prefix (RLP) encoding, and its textual form is the URL-safe
base64 encoding of its RLP representation, prefixed by “enr:”. [4]

2.5 Networking Stack

In order to be able to run a full node on the Ethereum 2.0 network, it’s required
to run two different clients concurrently, one for the execution layer and one for
the consensus layer. Both clients connect to their own set of peers and participate
therefore in two distinct networks. Let’s dig deeper into the three domains of a
consensus layer client, visualized in figure 4.1.

2.5.1 Discovery domain

The Beacon chain’s discovery domain, underpinned by the discv5 protocol, is a
sophisticated mechanism for node discovery and communication, drawing inspi-
ration from the Kademlia distributed hash table (DHT) and tailoring it to its
specific needs.

Central to discv5 is the Ethereum Node Record (ENR), which holds essential
information about each node. For a node to be relayed within the network, it
must minimally provide an IP address and a UDP port. The protocol employs a
unique method to determine the “distance” between two node IDs, through the
logarithmic distance, using a bitwise XOR operation.

The Kademlia protocol’s distance metric is employed to identify the node
“closest” to a given target node ID. When a node is queried for a target ID, it

2. Background 8

Figure 2.1: The networking stack of a consensus client.

responds with the contact details of the nodes it knows that are closest to the
target based on this XOR distance metric. The querying node then continues
the lookup process iteratively, querying these closer nodes until the target node
is found or no closer nodes are identified.

A significant aspect of the protocol is its messaging system. The FINDNODE
message, for instance, is sent by a node (Node A) to another (Node B) to discover
nodes close to a target. Node B responds with NODES messages containing the
nodes at the queried distance. If the response is insufficient, Node A varies
the distance to retrieve more nodes from adjacent k-buckets on Node B. This
iterative process, inspired by Kademlia’s lookup mechanism, ensures efficient
node discovery.

Kademlia’s influence is further evident in the organization of data within the
DHT. Nodes maintain “k-buckets”, array-like data structures that store contact
information for other nodes. The number of k-buckets a node manages is de-
termined by the bit length of node IDs. Beacon nodes have a 256-bit node ID,
resulting in 256 k-buckets. The position of a node within the k-bucket array is
determined by the bit difference between its ID and the managing node’s ID. The
index of the k-bucket in which a node resides corresponds to the position of the
leftmost differing bit between the two IDs. Each k-bucket can hold a maximum
of “k” entries.

2. Background 9

Beyond these functionalities, discv5 places a strong emphasis on security
through its handshake and encryption mechanisms. Discovery communication
is encrypted and authenticated using session keys, established in a handshake
process. This handshake can be initiated by either side of communication at any
time. The handshake process involves several steps, starting with a node sending
a message packet. If the receiving node doesn’t recognize the session keys, it
responds with a WHOAREYOU packet, challenging the initiator. The initiator
then sends a handshake message packet containing its identity proof and other
essential details. Once the handshake is successful, both nodes establish new
session keys for encrypted communication. This ensures that only nodes that
have successfully completed the handshake can communicate, providing a layer
of security against potential adversaries.

In essence, the Beacon chain’s discovery domain, with its discv5 protocol,
offers a robust mechanism for node discovery, communication, and security. It
seamlessly integrates the principles of the Kademlia DHT while adapting it to
its unique requirements and adding layers of encryption and authentication for
enhanced security. [5, 4, 6]

2.5.2 Gossip domain

[7] The gossip-domain, which is part of the libp2p framework, consists of the
gossipsub-protocol. This domain is responsible for the distribution of various
types of messages across the network. Each node is connected to multiple peers
for different topics it’s subscribed to.

There are six different topics that nodes can subscribe to: beacon_block, bea-
con_aggregate_and_proof, voluntary_exit, proposer_slashing, attester_slashing
and beacon_attestation_{subnet_id}. Each of these topics serves a specific pur-
pose in the network.

The beacon_block topic is used to distribute new signed beacon blocks, and
every node is subscribed to that topic. There are a bunch of requirements the
block must pass in order for the node to propagate the message to its peers.

To distribute aggregated attestations to subscribed nodes, such as validators,
the beacon_aggregate_and_proof topic is used. The voluntary_exit topic is
used to propagate messages about signed voluntary validator exits. To prop-
agate proposer or attester slashings, nodes use the proposer_slashing or at-
tester_slashing topics.

Nodes can also propagate unaggregated attestations to their peers in a specific
subnet before they are being aggregated, by using the beacon_attestation_{subnet_id}
topic. This topic is used to share attestations only among the subnet-members
such that attestation-aggregation only happens on the subnet level. The subnet-
membership is defined in the attnets entry of the ENR.

2. Background 10

Once the node has peers with valid session keys, it can initiate full connec-
tions in the gossip-domain by sending GRAFT messages to them. This means
that the node adds them to the mesh for a specific topic and will forward any
valid messages of that topic to them. If the node exceeds its target range for
connections, it disconnects from older peers by sending them a PRUNE message,
which informs the peer that the full connection has been disbanded. To help the
disconnected peer find new peers, the PRUNE PX message allows the node to
append a list of node IDs as alternatives that the receiver can connect to.

The IHAVE and IWANT messages are the gossip that our node can send to
any peer that it is aware of, independent from whether they are in one of the
topic meshes or not. IHAVE lets other nodes know about messages that the node
has received and could be shared upon the IWANT request.

Overall, the gossip domain is used to propagate information that has to be
spread quickly over the entire network. It plays a crucial role in maintaining the
health and efficiency of the network.

2.5.3 Req/Resp domain

The Request/Response (Req/Resp) domain is a key component of peer-to-peer
interactions in a Beacon chain client, facilitating specific information exchanges
such as Beacon blocks associated with distinct root hashes. This domain is based
on the principles of the libp2p framework, which outlines a detailed structure for
constructing a Req/Resp protocol.

A fundamental operation in this domain is the ’status’ handshake request,
initiated by the dialing client. This operation includes the exchange of the cur-
rent version of the Beacon chain, comprising several components: fork_digest,
finalized_root, finalized_epoch, head_root, and head_slot. This mutual shar-
ing of status information serves as the foundation for further interactions. At the
beginning of every full connection, the nodes have to synchronize first, by send-
ing a status message where they inform each other about their current version of
the chain called fork_digest. In case the two chains are irreparably disjoint, the
nodes won’t proceed with the connection process.

In scenarios where there is an agreement between the nodes’ states or one
node is slightly lagging, the less updated node can send a BeaconBlocksByRange
request. This request aims to retrieve all the blocks that the more updated node
possesses, thereby aligning the nodes’ states.

Another notable request message is BeaconBlocksByRoot, enabling requesters
to ask for specific blocks. Here, the requester sends a list of missing block roots,
aiding in precise and efficient information retrieval.

Further enhancing the robustness of the Req/Resp domain is the ’ping’ pro-
tocol, which allows a node to check the responsiveness of a peer by sending their

2. Background 11

MetaData.seq_number. If a response is not received, the requesting node dis-
connects from the peer, ensuring the overall network’s reliability. Furthermore, if
the MetaData.seq_number implies that the local record of the peer’s metadata
is outdated, the requester can use the GetMetaData message to fetch the most
recent metadata from its peer.

This dynamic interaction mechanism of the Req/Resp domain ensures a con-
sistently updated and efficient beacon chain. It enables nodes to maintain a
coherent state and facilitates swift recovery in case of any discrepancies, thus sig-
nificantly contributing to the overall performance and reliability of the Ethereum
2.0 network.

Chapter 3

Gathering Network Data

To delve deeper into the discovery layer of the Beacon chain network’s intricacies,
our objective was to compile a comprehensive dataset comprising Ethereum Node
Records (ENRs) and the routing tables of all accessible nodes. Our approach
involved the creation of a crawler capable of accessing the routing tables of every
reachable node within a span of 70 minutes. This crawler was then scheduled
to operate weekly to identify new nodes. Additionally, to gather connectivity
metrics, we initiated a ping to all identified ENRs on an hourly basis.

3.1 Network Crawler

Initiating its operations, the crawler establishes a connection with a predeter-
mined bootnode, subsequently accessing its routing table. As delineated in the
preceding chapter, nodes maintain the ENRs of their associated peers across 256
distinct buckets. The placement of a peer’s Node Id within these buckets is de-
termined by its XOR distance, with greater distances corresponding to higher
bucket numbers. Notably, the initial 240 buckets for most nodes remain unoccu-
pied. This characteristic enabled us to focus our queries on the final 16 buckets to
obtain a complete routing table for a node. Upon successfully connecting with a
node via the discv5 protocol, we dispatch a FINDNODE message for each bucket.
It’s worth noting that nodes provide the content of only one bucket in response
to each FINDNODE message. Consequently, we can retrieve a maximum of 16
unique ENRs from the responding node. Post-crawl, we possess the routing table
of every responsive node. This implies that the utilized ENR for addressing the
node was current, the node wasn’t obstructed by a NAT, and it acknowledged
the FINDNODE message. Collating data from these routing tables, we generate
a list of unique ENRs, termed as "discovered nodes." Our crawler was configured
to operate weekly, hosted on an AWS EC2 instance situated in the us-east-1
region. Presented below is the crawler’s pseudocode, where the active tasks list
represents a queue of newly identified ENRs awaiting routing table queries:

Create log file and directory for routing tables

12

3. Gathering Network Data 13

Initialize boot node from hardcoded ENR
Initialize data structures for storing nodes and listening ports
Loop:

If number of active tasks is less than limit
If there is a node to be processed

Spawn a new thread to get routing table for the node
Send node and its routing table to another thread via channel
Save routing table to a file and update index file
Add new nodes from routing table to queue of nodes to be processed

End If
End If

End Loop if no new nodes have been encountered in the last 60 seconds

3.2 Assessing Node Connectivity

Post-crawl, the nodes identified are subsequently monitored by our connectivity
verification system. On an hourly basis, each ENR undergoes a ping via the
discv5 protocol. If a connection is successfully established during this process,
the ENR is deemed active. This methodology allowed us to produce hourly
connectivity metrics for every ENR. Notably, with each new crawl yielding a
fresh set of ENRs, the previously monitored set is discarded in favor of tracking
the newly identified ENRs.

Chapter 4

Results

4.1 ENR and Node Monitoring Insights

The hourly connectivity data facilitates the creation of the graph depicted in
figure 4.1. The chart’s orange trajectory represents the count of ENRs that are
responsive to PING requests, termed as “active ENRs”. A noticeable trend is
the immediate decline in active ENRs following each crawl. This decline can be
attributed to nodes either becoming inactive or undergoing ENR modifications.
Various factors can prompt nodes to alter their ENRs, a topic we’ll delve deeper
into subsequently. A recurring observation is the stabilization of active ENRs to
a consistent range (approximately 16’000 to 17’000) post each crawl.

The connectivity checker yields an hourly dataset of active ENRs. By select-
ing a specific set, such as the active ENRs from hour 100 depicted in the chart, we
can monitor its activity throughout the entire timeline. It’s noteworthy that some
ENRs active during hour 100 had been active in prior crawls, explaining why the
blue trajectory doesn’t originate from the y-axis’s zero point. The pronounced
surge and subsequent decline during the recent crawls indicate that the major-
ity of ENRs active during hour 100 were identified in the latest crawl and were
not detected in the subsequent one, leading to their removal from the monitored
ENR list. Post this sharp decline, the rate of activity reduction is more gradual,
suggesting a subset of nodes that infrequently modify their ENRs compared to
the broader node population.

4.2 Analysis of Node and ENR Continuity Across Crawls

To gain a comprehensive understanding of the Ethereum network’s dynamics,
we expanded our analysis beyond merely tracking active ENRs. By plotting the
total number of ENRs encountered in each crawl and subsequently monitoring
them in all following crawls, we can discern patterns of persistence and overlap.

In figure 4.2, the blue lines represent the total number of initially encountered
ENRs in each crawl. While this number consistently hovers around 52’000 to

14

4. Results 15

Figure 4.1: The orange line tracks the overall active ENRs that are being updated
with every crawl and the blue lines tracks the specific set of ENRs that were active
in hour 100, indicated by the red vertical line.

4. Results 16

Figure 4.2: The blue lines show the persistence of all ENRs starting from each
crawl whereas the purple lines only consider the ENRs stemming from nodes on
the Beacon mainnet and running the latest fork version Capella.

Figure 4.3: The red lines show the persistence of all nodes starting in each crawl
whereas the green lines only consider nodes where at least one of its ENRs was
registered active during the post-crawl activity-tracking period.

4. Results 17

53’000 unique ENRs, a significant drop to a range of 15’000 to 20’000 is observed,
eventually stabilizing around 6’000 in subsequent crawls. However, when we filter
these ENRs to only include those from nodes running the latest fork version on the
beacon mainnet(represented by the purple line, which accounts for approximately
50% of all ENRs in each crawl), a similar relative decline is observed, suggesting
a consistent trend.

Decoding the ENRs to extract IP/Port information (from keys such as “ip”,
“tcp”, “udp”, “ip6”, “tcp6”, and “udp6”) allows us to group ENRs by unique IP/Port
combinations, which we define as nodes. Figure 4.3 showcases the number of these
unique combinations (red lines) across crawls. Initially, each crawl reveals about
38’000 to 39’000 unique combinations from the 52’000 to 53’000 ENRs. This
number reduces to approximately 26’000 in the subsequent crawl and seems to
stabilize around 20’000 in later crawls. To identify active nodes, we consider
nodes with at least one ENR deemed active during the period between crawls.
The green lines in the figure represent these active nodes, which display greater
persistence across crawls compared to the overall node population. The difference
between the number of active nodes identified in the initial and final crawls is a
mere 3’500, from an initial count of around 13’500.

A key observation is the higher churn rate in ENRs compared to nodes. Nodes
“vanish” only when they go offline or modify their IP/Port. In contrast, an ENR
can “disappear” due to these reasons or when a node alters other features, such as
its public key. This distinction is further highlighted in figure 4.4, which plots the
overlap of nodes and ENRs between consecutive crawls. Here, overlap is defined
as the intersection of two crawls divided by their union. Notably, node overlap
is more than double that of ENRs. The marginally elevated values observed in
the initial two crawls can be attributed to the shorter intervals between them.

4.3 ENR analysis

By grouping all identified ENRs based on their IP/Port attributes and decoding
the values for every key encountered across these ENRs, we can undertake a com-
parative analysis of these values within each group. It’s noteworthy that several
keys are present in only a minority of ENRs, implying that most ENRs lack val-
ues for these specific keys. Such infrequently occurring features include photon,
diff, galaxy, snap, ncogearthchain, exp, opera, bsc, les, metatechchain, vns, and
skyhigh. As a result, the majority of groups exhibit uniformity concerning these
features.

In figure 4.5, the distribution among these groups is bifurcated into two dis-
tinct categories. The blue bars denote the count of IP/Port groups that appear
in a minimum of two different crawls, where all values for a particular feature
remain consistent within the group. This consistency indicates that the feature

4. Results 18

Figure 4.4: The overlap ratio (intersection divided by union) of crawled ENR
sets for ENRs and nodes compared with the next crawl.

4. Results 19

Figure 4.5: Share of nodes that have the same/different value among all ENRs
within their group, shown for each feature in the ENR.

remained unchanged over the observed timeframe. Conversely, the orange bars
signify the groups where varying values for a specific feature were observed, even
though the IP/Port remained consistent. This suggests that while the IP/Port
was stable, the feature in question underwent changes.

A notable observation is the alteration in nodes’ public keys (secp256k1) and
the bitvector that signifies the subnets to which they are subscribed (attnets).
This aligns with the consensus specifications [4], which recommend regular mod-
ifications to the subscribed nets. It’s plausible that many nodes either subscribe
to all available nets or refrain from altering their subscriptions within the moni-
tored period, resulting in an unchanged attnets value. Additionally, certain nodes
appear to transition between networks (e.g., from a testnet to the mainnet) or
modify their current or impending fork versions. This is evident from the groups
that display varied values for the eth2 key. As for the significance of other fea-
tures, our research did not yield substantial insights. Neither the EIP-778 [4]
nor the Beacon chain consensus specifications provide explicit mentions of these
features.

bba4da96,03000000,0.505723 628941ef,03001020,0.147762 189a8e29,40000040,0.039496
4a26c58b,02000000,0.037019 47eb72b3,90000072,0.025358 824be431,02000064,0.018416
c2ce3aa8,02001020,0.014226 4a26c58b,03000000,0.014069 824be431,03000064,0.010858
bba4da96,04000000,0.007578

4. Results 20

Figure 4.6: Distribution for the decoded values of the eth2 feature from all en-
countered nodes. The outer ring represents the net, the middle ring represents
the current fork version and the inner ring the future fork version.

4. Results 21

fork_digest genesis_validators_
root

current_fork_version

0xbba4da96 0x4b363db94e... 03000000 (Capella)
(mainnet)

0x628941ef 0x043db0d9a8... 03001020 (Capella)
(prater_testnet)

0x189a8e29 Unknown Unknown
0x4a26c58b 0x4b363db94e... 02000000 (Bellatrix)

(mainnet)
0x47eb72b3 0xd8ea171f3c... 90000072 (Unknown)

(bepolia_testnet)
0x824be431 Unknown Unknown
0xc2ce3aa8 0x043db0d9a8... 02001020 (Bellatrix)

(prater_testnet)
0x36ba57db Unknown Unknown
0x3cfa3bac Unknown Unknown
afcaaba0 Unknown Unknown

Table 4.1: Above are the 10 most common fork_digests, some of which we were
able to map to their genesis_validators_root and current_fork_version

4.3.1 eth2 key-value distribution

The decoded value of the eth2 key, as highlighted in the Introduction, can be di-
vided into three distinct sections fork_digest, next_fork_version and next_fork_epoch.
The computation of the fork_digest involves the genesis validators root and the
prevailing fork version. It’s noteworthy that the genesis validators root is dis-
tinct for each network. In the context of Ethereum 2.0, there exists a primary
mainnet and two actively maintained Beacon chain testnets by client developers,
named Prater and Bepolia. The genesis validators roots for these networks are
well-documented [8, 9, 10, 11]. In order to be able to map eth2 key-values to the
three known nets as well as the current fork version that they are running, we
took in a first step the three known genesis validators roots and all possible fork
versions as inputs to the compute_fork_digest function. Every possible combi-
nation of those inputs resulted in a different fork_digest value that we were then
able to compare with the fork_digest values we encountered in the ENRs and
map subsequently map the input values to the ENRs.

A visualization of all nodes is presented in figure 4.6. A significant majority of
nodes are affiliated with the mainnet and operate on the most recent fork version,
Capella:0300XXXX, as cited in [12]. Interestingly, 15% of nodes lack an eth2-
key, while an identical percentage, 15%, are associated with the Prater testnet
and also utilize the latest fork version. A smaller fraction, 4%, are linked to the
mainnet but are yet to transition to the latest fork version, continuing to operate

4. Results 22

Figure 4.7: Distribution over the amount of ENRs per node that responded to a
FINDNODE message, grouped per crawl, from all 7 crawls.

on Bellatrix (0200XXXX) as per [12]. Additionally, 1% of nodes, while currently
on the mainnet with Bellatrix, have intentions to transition to Capella in the
foreseeable future. To ensure clarity in the visualization, infrequent values were
grouped under the “Other” label, which also includes a few nodes from Bepolia.
The label “Unknown” signifies our inability to correlate the fork_digest with the
genesis validators roots from any of the three recognized networks. In instances
where a node displayed multiple ENRs with varying values, the most recent ENR
was chosen as the basis for node categorization.

4.4 Routing table analysis

During its operation, the crawler attempts to retrieve a routing table from each
ENR it comes across. Across the seven crawls conducted, the number of ENRs
encountered ranged from 52’692 to 54’565. A significant portion of these ENRs
are inaccessible, and even when an ENR is accessible (i.e., responds to a PING),
it doesn’t guarantee a response to a FINDNODE request. As a result, the count

4. Results 23

Figure 4.8: The group size on the y-axis refers to the amount of ENRs per node
per crawl and on the x-axis is the amount of non-empty routing tables from each
node, indicating the responsiveness to a FINDNODE message. The size of the
dots relates to the average size of the non-empty routing tables per node. The
colors indicate the date of the crawl.

4. Results 24

of non-empty routing tables acquired during each crawl fluctuates between 11’549
and 12’143.

Figure 4.7 presents, on a logarithmic scale, the distribution of nodes based
on the number of their ENRs with non-empty routing tables. This visualization
reveals that a vast majority of nodes, totaling around 205’000 or averaging 30,000
per crawl, lack any ENR with a queryable routing table. Thus, we possess no
data regarding their routing tables. Conversely, there are close to 55’000 nodes
(averaging about 8’000 per crawl) where only one of their ENRs responded to
a FINDNODE message. A few hundred nodes per crawl provided multiple non-
empty routing tables.

By analyzing the group sizes, which refers to the number of ENRs captured
per node, and juxtaposing this with the count of non-empty routing tables for
each node, we derive figure 4.8. In this figure, each dot symbolizes a node.
The dot’s size represents the mean size of the non-empty routing tables within
that group. The most prominent category is evident on the line x=0, which
encompasses groups devoid of non-empty routing tables. For these groups, the
dot size is set to a standard value of 1. Two nodes with exceptionally high ENR
turnover were excluded for clarity. Specifically, one node exhibited between 882
and 913 ENRs per crawl, which would have stretched the visualization. The
line x=1 showcases the next prevalent category, consisting of nodes with a single
FINDNODE-responsive ENR. For these primary categories, there doesn’t appear
to be a direct correlation between group size and FINDNODE responsiveness.
However, as we progress down the x-axis, a linear correlation emerges for certain
nodes, suggesting that some nodes consistently respond with every ENR in their
group.

4.4.1 Routing table size and reactivity

Figure 4.9 provides a visual representation of the distribution of sizes for all non-
empty routing tables. A significant portion of these tables contain approximately
180 nodes. However, there are some with only a handful of entries, potentially
indicating newer nodes that have recently joined the network. Given that nodes
can accommodate a maximum of 16 ENRs per bucket, they need to consistently
manage these buckets. This involves routinely pinging the ENRs and removing
the less responsive ones to accommodate newly identified nodes. To gauge the
frequency of updates to these routing tables, we can assess the commonality of a
node’s non-empty routing tables across different crawls. For each initial crawl, we
only took into account nodes that were present in every subsequent crawl after
the designated starting crawl.

In figure 4.10, we’ve illustrated the average commonality across all the nodes
under consideration. This overlap is defined by the ratio of the intersection to
the union of two routing tables, between the initial crawl and every subsequent

4. Results 25

Figure 4.9: Distribution over the sizes of all encountered routing tables with
mean and median.

crawl. In cases where a node had multiple routing tables within the same crawl,
one was chosen at random. Given that the intervals between the first three crawls
are shorter (three to four days), the average overlap from the initial two crawls
relative to their subsequent crawls is slightly elevated (around 20%) compared
to the overlaps from the remaining starting crawls (ranging from 10% to 15%),
which are spaced a week apart. This suggests that nodes are highly reactive,
adapting swiftly to an environment where many nodes frequently modify their
ENRs.

This heightened reactivity is further evident in figure 4.11. Here, we track
the ENRs from the top five nodes with the highest ENR turnover from the first
crawl across the routing tables in the following crawls. The node with the highest
ENR turnover (located in a datacenter in Dallas, TX) appears in over 700 routing
tables (with more than 800 distinct ENRs, implying some nodes have the same
node listed under multiple ENRs in their routing tables). The ENR turnover
for the other four nodes is considerably lower, with each appearing in 100 to
160 distinct routing tables during the first crawl. The majority of nodes purged
the older ENRs from the four smaller groups within the initial four crawls. In
contrast, the larger group demonstrated slightly more persistence, still appearing
in 200 routing tables during the second crawl but dropping below 100 by the final
crawl.

Rather than monitoring ENRs from high-turnover groups that remain active
under varying ENRs, we can focus on ENRs from nodes that have been deac-

4. Results 26

Figure 4.10: Average overlap of routing tables from one crawl compared with
subsequent crawls, for the same node.

Figure 4.11: Persistence in routing tables from subsequent crawls of ENRs from
nodes with a high ENR churn.

4. Results 27

tivated. During the activity-tracking phase following a crawl, if any ENR of a
node responds to a PING, we deem that node active for that duration. For a
node to be classified as deactivated, none of its ENRs should respond to a PING
in any subsequent periods. After each crawl, we compile a list of nodes meeting
this criterion. From each crawl’s list, we then select the three largest groups and
monitor the number of routing tables in which these ENRs continue to appear.
The findings are illustrated in figure 4.12. While some nodes vanish entirely from
all routing tables post-deactivation, others exhibit a degree of persistence. In the
legend, the number following the IP, TCP-port, and UDP-port denotes the group
size during the crawl when the node was last detected as active.

4.5 Ipv6

The crawler and subsequent activity checks were conducted over IPv4. However,
as highlighted in the Introduction, nodes can also store IPv6 connection de-
tails within their ENRs. From the entire dataset, we identified 36 unique ENRs
that include IPv6 IP/Port data. When these ENRs are grouped based on their
IPv6/Port, we discern 10 distinct IPv6 addresses. Some of these addresses are
associated with data centers, while others appear to be linked to residential IPs.

Interestingly, with a single exception, each IPv6 address corresponds to just
one IPv4 address. This implies that every ENR with a specific IPv6 address X
consistently has the same IPv4 address Y. Delving deeper, we found two IPv6 ad-
dresses located in China, one in Beijing and another in Shanghai. The Shanghai-
based IPv6 address is present in three ENRs. While two of these ENRs share
the same IPv4 address, the third one differs. However, all three IPv4 addresses
are geographically aligned with the location of the IPv6 address in Shanghai.
Notably, the ENR with the Beijing-based IPv6 address has its IPv4 counterpart
located in Shanghai, matching the location of the aforementioned Shanghai IPv6.

There’s a mix when it comes to the geographical alignment of IPv6-IPv4
pairs. Some pairs share the same location, while others have differing IPv4 and
IPv6 locations. When probing the routing tables of these ENRs via either IPv4
or IPv6, the disparities align with those observed when querying distinct ENRs
from an identical node consecutively over IPv4. Typically, differences span up to
three ENRs in routing tables comprising 180 nodes. This likely stems from the
frequent alterations observed in these routing tables.

4. Results 28

Figure 4.12: Longevity of nodes in routing tables after they get shut down.

Chapter 5

Discussion/Outlook

Upon examining the activity data, we’re confronted with a puzzling observation:
why is there a significant decline in the number of active nodes from a specific
hour by the time of the next crawl? Post each crawl, there’s a consistent decline
in active ENRs. While one explanation is the deactivation of nodes, leading them
to become unresponsive to PINGs, this decline is gradual. If we had continuously
tracked all the ENRs from a specific hour without excluding them based on their
absence in the subsequent crawl, we’d likely observe this steady decline persisting.
Yet, many ENRs, which would have still responded to PINGs, are absent in the
routing tables of the next crawl.

So, if nodes verify the vitality of ENRs in their tables through PING messages,
why do many ENRs, which would have responded with a PONG, vanish from the
routing tables? The answer is embedded in a key aspect of the discv5 protocol [5].
The protocol dictates that if a PONG response from a PINGed ENR suggests a
change in the ENR, the node performing the liveness check should retrieve the
new record and update its routing table. This mechanism explains the absence
of seemingly active ENRs from node routing tables.

Another intriguing point is the disparity between the number of nodes deemed
active post their discovery-crawl (consistently surpassing 10’000) and the unique
nodes responding to a FINDNODE request. As highlighted in the routing table
analysis, the count of non-empty routing tables per crawl fluctuates between
11’549 and 12’143. However, when filtered to select a single routing table per
node, the figures reduce to a range of 9’054 - 9’448 per crawl, falling short of
the initially active nodes. This discrepancy might arise from nodes frequently
altering their ENRs. By the time the crawler identifies their latest ENR and
queries their routing table, they might have already updated their ENR. Yet,
they still register as active during the activity check, responding to the PING
but signaling an ENR change.

Another dimension worth exploring is the direct relationship between group
size and the number of non-empty routing tables per group, as depicted in fig-
ure 4.8. When both metrics align, it indicates that every ENR from that node

29

5. Discussion/Outlook 30

responded to the FINDNODE request. It’s curious why certain nodes respond
regardless of the ENR’s recency, while most only react when approached with
the latest ENR.

Lastly, understanding the reasons behind the behavior of some nodes—those
that disappear from all routing tables shortly after becoming inactive, compared
to others that linger for weeks—could offer valuable insights.

Bibliography

[1] P. Wackerow, “The concept of proof of work,” 2022, accessed:
2023-08-06. [Online]. Available: https://ethereum.org/en/developers/docs/
consensus-mechanisms/pow/

[2] C. Smith, “The concept of proof of stake,” 2023, accessed: 2023-
08-06. [Online]. Available: https://ethereum.org/en/developers/docs/
consensus-mechanisms/pos/

[3] F. Lange, “Eip-778: Ethereum node records (enr),” 2017, accessed:
2023-08-06. [Online]. Available: https://eips.ethereum.org/EIPS/eip-778

[4] https://github.com/hwwhww, “The specs of the consensus layer,” 2023,
accessed: 2023-08-06. [Online]. Available: https://github.com/ethereum/
consensus-specs/blob/dev/specs/phase0/p2p-interface.md

[5] https://github.com/emhane, “The discv5 protocol,” 2022, accessed: 2023-
08-06. [Online]. Available: https://github.com/ethereum/devp2p/blob/
master/discv5/discv5-theory.md

[6] h. https://github.com/raulk, https://github.com/jhiesey, “The kademlia
dht specs,” 2022, accessed: 2023-08-06. [Online]. Available: https:
//github.com/libp2p/specs/blob/master/kad-dht/README.md

[7] https://github.com/vyzo, “The specs of the gossipsub protocol,” 2020,
accessed: 2023-08-06. [Online]. Available: https://github.com/libp2p/
specs/blob/master/pubsub/gossipsub/gossipsub-v1.0.md

[8] C. Smith, “Overview of ethereum’s networks,” 2023, accessed: 2023-08-06.
[Online]. Available: https://ethereum.org/en/developers/docs/networks/

[9] https://github.com/AgeManning, “Beacon mainnet specs,” 2021, ac-
cessed: 2023-08-06. [Online]. Available: https://github.com/eth-clients/
eth2-networks/tree/master/shared/mainnet

[10] https://github.com/q9f, “Bepolia testnet specs,” 2022, accessed: 2023-08-06.
[Online]. Available: https://github.com/eth-clients/sepolia

[11] https://github.com/ardislu, “Prater testnet specs,” 2021, accessed: 2023-
08-06. [Online]. Available: https://github.com/eth-clients/goerli

31

https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://eips.ethereum.org/EIPS/eip-778
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/p2p-interface.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/p2p-interface.md
https://github.com/ethereum/devp2p/blob/master/discv5/discv5-theory.md
https://github.com/ethereum/devp2p/blob/master/discv5/discv5-theory.md
https://github.com/libp2p/specs/blob/master/kad-dht/README.md
https://github.com/libp2p/specs/blob/master/kad-dht/README.md
https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/gossipsub-v1.0.md
https://github.com/libp2p/specs/blob/master/pubsub/gossipsub/gossipsub-v1.0.md
https://ethereum.org/en/developers/docs/networks/
https://github.com/eth-clients/eth2-networks/tree/master/shared/mainnet
https://github.com/eth-clients/eth2-networks/tree/master/shared/mainnet
https://github.com/eth-clients/sepolia
https://github.com/eth-clients/goerli

Bibliography 32

[12] https://github.com/zah, “Beacon chain fork ver-
sions,” 2023, accessed: 2023-08-06. [On-
line]. Available: https://github.com/eth-clients/eth2-networks/blob/
e930d81f7c9db816c88d1a9336be8cef858f7f4d/shared/mainnet/config.yaml

https://github.com/eth-clients/eth2-networks/blob/e930d81f7c9db816c88d1a9336be8cef858f7f4d/shared/mainnet/config.yaml
https://github.com/eth-clients/eth2-networks/blob/e930d81f7c9db816c88d1a9336be8cef858f7f4d/shared/mainnet/config.yaml

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation

	2 Background
	2.1 P2P
	2.2 Proof of Work
	2.3 Proof of Stake in Ethereum 2.0: The Beacon chain
	2.4 Ethereum Node Record (ENR)
	2.5 Networking Stack
	2.5.1 Discovery domain
	2.5.2 Gossip domain
	2.5.3 Req/Resp domain

	3 Gathering Network Data
	3.1 Network Crawler
	3.2 Assessing Node Connectivity

	4 Results
	4.1 ENR and Node Monitoring Insights
	4.2 Analysis of Node and ENR Continuity Across Crawls
	4.3 ENR analysis
	4.3.1 eth2 key-value distribution

	4.4 Routing table analysis
	4.4.1 Routing table size and reactivity

	4.5 Ipv6

	5 Discussion/Outlook
	Bibliography

