
Distributed

 Computing

Challenging the Lexical Focus of Code
Search

Semester Thesis

Frederik Markus

fremarkus@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Peter Belcák, Florian Grötschla
Prof. Dr. Roger Wattenhofer

February 27, 2023

Acknowledgements

I would like to thank my two supervisors, Peter and Florian, who provided in-
valuable feedback while undertaking the thesis. Furthermore, I would like to
thank Vandit who provided regular feedback and reports on the functionality of
the code. Finally, I would like to thank Professor Wattenhofer for enabling me
to write this semester thesis in his group.

i

Abstract

The principle goal of this work was to challenge the lexical focus of existing code
search models by showing that removing lexical clues from snippets will reduce
performance. We also aimed to construct a code search/code summarization data
engineering structure that would allow the user to specify certain parameters
without requiring any further instructions. Its modular design approach means
that users can introduce new models, datasets, and modifications without the
need for consideration of the whole structure. A secondary goal was to create a
larger number of possible attacks, expanding on the work done previously and
using these to create a benchmarking database for various models, datasets, and
attacks. We were able to show performance drops in the assessed metrics, with
the severity of the drops varying depending on the attack, across all languages
and models.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Code Search . 1

1.2 Model Robustness . 1

1.3 Attacks . 2

1.4 Pipeline . 2

1.5 Inference Type . 2

1.6 Code Summarization . 2

2 Related Work 3

2.1 Models . 3

2.1.1 CodeSearchNet . 3

2.1.2 GraphCodeBERT . 5

2.1.3 SynCoBERT . 6

2.2 CodeSearch Dataset . 8

3 Method and Procedure 9

3.1 Pipeline . 9

3.1.1 Launching a job . 9

3.1.2 Moving to the main script 11

3.1.3 Moving to the attack script 11

3.1.4 Moving to the training script 12

3.1.5 Moving to the testing script 12

3.1.6 Returning to the main script 12

3.1.7 Benefits of modular pipeline architecture 13

iii

Contents iv

3.2 Dataset Construction . 13

3.3 Attacks . 13

3.3.1 No Comment . 14

3.3.2 Full Hash . 15

3.3.3 K-Shift Dataset . 15

3.3.4 K-Shift Snippet . 16

3.3.5 Most Popular . 17

3.3.6 Ordered ID . 18

3.3.7 Random Permutation . 18

3.3.8 Translation . 19

3.4 Database Utilization . 19

4 Experiment Details 20

4.1 Server and Shell Scripting . 20

4.2 Environments . 20

5 Results 21

5.1 Default versus No Comment . 21

5.2 Confused versus Not Confused 22

5.3 Best and Worst Performance by dataset 25

5.4 Weighted scores per attack per model 31

5.5 Severity of attack against Performance 31

6 Conclusion and Outlook 34

6.1 Conclusion . 34

6.2 Outlook . 35

Bibliography 37

A Complete list of tables for worst performances A-1

B Complete list of tables for best performances B-1

C Hyperparameters for models C-1

C.1 CodeSearchNet . C-1

Contents v

C.2 GraphCodeBERT . C-1

C.3 SynCoBERT . C-1

D CodeSearch Dataset D-1

E Weighted scores calculation dataset E-1

Chapter 1

Introduction

1.1 Code Search

Code search is the task of finding suitable code from a dataset of code snippets.
The program is provided with a natural-language query, and the program should
provide suitable code options in return. The principal issue with this is that the
program needs to return code that is semantically related to the query. In order
to achieve this, it therefore needs to gain an understanding of how the query and
the code are structured, what their fundamental semantic structures are, and
what the relationship between the natural-language query and the code snippet
is. The “understanding” can be achieved with several different approaches, which
leads to multiple models. A good example of a use case to better understand the
goal of code search is the following: We have a corpus of documentation strings
and paired code snippets and a neural network architecture that has been trained
to conduct code search. A user now poses a search query in natural language to
the network, and the network provides the user with a piece of code, a snippet,
from the corpus that does exactly, or as closely as possible, what the user has
queried.

1.2 Model Robustness

There currently exists a plethora of frameworks that can tackle these challenges
with varying degrees of accuracy. As these models’ inner workings are black
boxes (relying primarily on neural networks), there is some uncertainty as to
what the model specifically relies on. The leading assumption is that keywords
and phrases that are used in the code snippet and the corresponding description
play the most significant role. Hence, a key question that arises is to what extent
the code can be obfuscated and how this affects the performance of the varying
models in returning the correct code to a given query.

1

1. Introduction 2

1.3 Attacks

As our principal interest was to study the effect of the removal of lexical clues
from a code snippet on the performance of the assessed metrics, we had to build
datasets that, in some way or form, reduced or removed lexical information. We
call these modifications “attacks” as they assault the original datasets to enforce
some form of restriction on the code snippets. As the modifications could vary
in the implemented restrictiveness, we designed multiple attacks with varying
approaches to how the lexical clues are changed, resulting in wide-ranging degrees
of severity.

1.4 Pipeline

This thesis will explore the implementation of a data engineering structure, hence-
forth referred to as “the pipeline”. It combines various shell scripts that are
used to assemble an automatized approach to conducting code search and code
summarization training and testing jobs for various datasets and store the gath-
ered results in a server-based database. This approach accelerates the individual
steps of creating an attacked dataset, training a model on this dataset, testing the
model, and its modular construction allows for liberal expansions in all adjustable
parameters. The pipeline, along with the scripts for the attacks, is located on
the TIK Arton cluster at ETH Zurich.

1.5 Inference Type

As part of the pipeline we have implemented two different types of inference that
can be selected. The first, called Confused, uses the attacked dataset to both
train and then test a model. The second, called Not Confused, uses the baseline
dataset to train the model and then the modified dataset to test it.

1.6 Code Summarization

In addition to code search, the pipeline structure was also constructed to enable
a user to train models for Code Summarization, which is the task of generating
concise natural language descriptions of source code in order to improve program
comprehension and maintenance. [1]. We can observe that the two tasks of code
search and code summarization are related. In this thesis, we will focus solely on
the task of code search. Nonetheless, the pipeline structure has been written to
support code summarization jobs as well as their differing metrics.

Chapter 2

Related Work

2.1 Models

The principle goal behind all models and encoders used is to generate a working
function for any given description. The techniques used to achieve this vary from
model to model. The next sections provide an overview of the models used as
well as an outline of their inner workings. The description of the models has been
taken from work done previously in [2].

2.1.1 CodeSearchNet

CodeSearchNet describes a range of different models, all of which are based on
the same architecture. The difference lies in the encoding methods that each
model uses.

Figure 2.1: This figure presents the model architecture used in the CodeSearch-
Net. Taken from the CodeSearchNet GitHub repository [3].

3

2. Related Work 4

Figure 2.1 illustrates the general architectural approach taken by CodeSearch-
Net. The model has two inputs: the query describing what the function is sup-
posed to do and the code snippet. While the query has a single encoder, each
programming language has its version. This approach is taken from earlier work
[4, 5]. The idea is to use a joint embedding of code and query to implement a
neural code search system. This is achieved by creating a map between each func-
tion snippet and the language it corresponds to and projecting this onto relatively
close vectors. With this mapping achieved, a search method is implemented by
creating an embedding of the query phrase and placing this in the same embed-
ding space as the function embeddings. We can now return the code snippets
close to the query in the embedding space (closeness in a hyper-dimensional space
is defined through absolute distances between vectors). CodeSearchNet opted for
this relatively simple implementation as it allows for quick, efficient indexing and
searching as only a single vector has to be generated, even though more complex
models, as presented in [5], have shown better results. The exact procedure is
explained in detail in [6]: Each input sequence token is first preprocessed accord-
ing to its semantics. This means the code tokens are split into subtokens, and
natural language tokens are split using byte-pair encoding. These new tokens are
processed to obtain token embeddings using one of the four model architectures:

• Neural Bag of Words: Here, each token (or subtoken) is embedded to a
learnable vector representation

• Bidirectional RNN model: GRU cells, originally developed in [7], are em-
ployed to summarize the inputs. Note: This model was not used since there
have been significant changes to the RNN layers in Tensorflow in the years
since CodeSearchNet was first released and the original model no longer
works.

• 1D Convolutional Neural Network: The model is applied to the input se-
quence of the tokens as per [8].

• Self-Attention: Multi-Head attention is used to compute representations
of each token in the sequence, as used in [9]. A variant of this is the
convolutional self-attention model, which is also employed in this study.

The token embeddings are combined into one sequence embedding using a pool-
ing function (either mean or max pooling). The two sequences, one from the
query and one from the code are then multiplied together to form a matrix over
which a softmax is then applied to generate a comparison matrix with the correct
function and query pair matching along the main diagonal. While training, the
loss minimizing metric that is employed is defined as:

− 1

N

∑
i

log
exp(Ec(ci)

⊺Eq(di))∑
j exp(Ec(cj)⊺Eq(di))

(2.1)

2. Related Work 5

where N is the number of snippets, code and natural language description
pairs are (ci,di) and Ec, Eq are the code and query encoder respectively. The
goal is therefore to maximize the inner product between each code snippet ci and
its respective description di while minimizing the distance to each distracting
snippet cj (where i ̸= j).

2.1.2 GraphCodeBERT

GraphCodeBERT considers the inherent structure of code by leveraging its semantic-
level information, known as data flow, during pretraining. As defined in [10], Data
flow is a graph in which nodes represent variables and edges represent the relation
of “where-the-value-comes-from” between variables. Due to their less hierarchical
nature, data flow graphs are usually less complex than syntactic representations,
which include, for example, Abstract Syntax Trees. To generate the data flow
and help the model learn the code representation from structure, two pretraining
tasks are required: The first one is used to build the data flow graph for learning
code structure representation, and the second one is used to align the representa-
tion between source code and code structure. The GraphCodeBERT model itself
is based upon the Transformer neural architecture introduced in [9].

Data Flow Edge Prediction

Unlike an Abstract Syntax Tree, data flow diagrams are consistent across varying
abstract grammars. This makes it easier to follow the semantics of code even
when a variable is used in far-apart locations in the snippet. We first parse the
code into an Abstract Syntax Tree to generate a data flow diagram. The leaves
of the AST are used to identify the variable sequence. Each variable is chosen as
a node, and directed edges are drawn between all related pairs of nodes (when
the value of one variable is derived from another). The graph G(C) = (V,E)
is now the data flow graph consisting of nodes V and directed edges E used to
represent all dependency relations between all variables in the source code C.
In the first pretraining task, we now randomly sample a fraction of the nodes in
the data flow and mask all direct edges connecting the sampled nodes. This is
achieved by adding an infinitely negative value to the mask matrix. The model
then has to predict these masked edges. The idea behind this is to encourage the
model to understand a structured representation of the code and where specific
values are derived from.

Variable Alignment between Representations

The second pretraining task is used to encourage the model to align representa-
tions between the source code and the data flow. Here we predict edges between

2. Related Work 6

code tokens and nodes. This is achieved once again by first masking the edges be-
tween randomly selected nodes and code tokens and then predicting these masked
edges.

Figure 2.2: This figure illustrates an example of the node alignment. We first
mask edges between variable x11 in the data flow and code tokens and subse-
quently predict which code token the variable in the data flow is identified from.
The tick indicates that the variable is x11 is predicted from the variable x in
“return x” based on the information in the data flow. Taken from [10]

. .

Downstream Tasks

GraphCodeBERT has a wide range of downstream applications. In [10], four
downstream tasks are explored: code search, clone detection, code translation
and code refinement. Relevant to our study is only code search.
While the premise is the same, there are differences in execution between Graph-
CodeBERT and CodeSearchNet. While CodeSearchNet uses only 1000 candidate
functions when testing, GraphCodeBERT extends its candidates to the entire
function corpus, which is a sensible approach since it is closer to a real-life sce-
nario. The evaluation metric is again chosen as MRR.

2.1.3 SynCoBERT

SynCoBERT, as developed in [11], is an amalgamation of multiple ideas not
found in any other of the covered models. What primarily sets this model apart
is the usage of Cross Momentum Contrastive Learning (xMoCo) [12], a framework
that has been shown to function robustly with multi-modal data by employing
multiple encoders. It evolved from the Momentum Contrastive Learning (MoCo)
framework [13] and utilizes negatives samples more consistently by employing a
dictionary of samples rather than just using in-batch samples. Building on this
is the DyHardCode framework [14], which provides more meaningful negative

2. Related Work 7

samples that lead to more robust results. The conclusive step is using the Barlow
Twins framework [15], a regularization step that does not rely on a contrastive
learning objective. It aims at minimizing redundancy in the embedding features
and benefits from larger embedding sizes than comparable contrastive learning
models. The Barlow loss, defined as:

LBarlow =
∑
i

(1− Cii)
2 + λ

∑
i

∑
j ̸=i

C2
ij (2.2)

where λ is a positive constant trading off the importance of on-diagonal and
off-diagonal terms and C is the cross-correlation matrix of the current embedding
standardized and computed along the batch dimension, can be incorporated into
the xMoCo framework as a regularization term multiplied with an appropriate
weight hyperparameter. This leads to the following schematic for the overall
framework, combining all discussed features:

Figure 2.3: The complete framework combining xMoCo, DyHardCode and Bar-
low Loss. Taken from [11].

2. Related Work 8

2.2 CodeSearch Dataset

All experiments are run using the cleaned version of the CodeSearch dataset,
which was originally collected for the CodeSearchNet challenge in [6]. The original
dataset is somewhat larger but contains certain elements that are not desired,
which either leads to the function being changed or removed entirely from the
dataset. This includes [16]:

• Remove functions that cannot be parsed into an Abstract Syntax Tree

• Remove functions with very few (less than 3) or very many tokens (more
than 256)

• Remove functions that contain special tokens. These include but are not
limited to or https:...

• Remove functions where the description is not in English

Note that the Funcom and TL-CodeSum datasets were not collected as part of
this original group and thus must be viewed in isolation.

PL Train Valid Test

Python 251,820 13,914 14,918

Java 164,923 5,183 10,955

PHP 241,241 12,982 14,014

Go 167,288 7,325 8,122

Javascript 58,025 3,885 3,291

TL-CodeSum 69,708 8,714 8,714

Funcom 1,949,120 99,000 100,000

Table 2.1: The dataset used for the attacks and running the models.

Information concerning the original dataset can be found in the appendix.
Applying the rules state above has decreased the usable data significantly, but
ensures a higher quality of training, validation and testing code. Note that Fun-
com and TL-CodeSum were added for the sake of completeness. More information
about their construction can be found in section 3.2.

Chapter 3

Method and Procedure

3.1 Pipeline

The principle goal of the pipeline was to facilitate the procedural steps that
previously had to be conducted independently to modify a particular dataset and
run it on a particular model. This includes the creation of a modified dataset,
the training of this dataset on a particular model, the testing of this dataset on a
particular model, and the recording of the received scores. The idea was to design
it in a modular fashion so that it could be both used and extended as desired.
Figure 3.1 illustrates the overall layout of the pipeline architecture. Using this
figure as a guide, we can describe the individual parts that comprise the data
pipeline.

3.1.1 Launching a job

In order to start a job, it is necessary to provide seven distinct parameters. These
are, in the order in which they must be passed as arguments:

1. Model: This parameter specifies the model to be used.

2. Dataset: This parameter specifies the base dataset that is to be used for
this job.

3. Attack: This parameter specifies the attack that is to be applied to the
dataset prior to the training phase.

4. Training: We can pass this parameter in order to specify whether training
is meant to take place. This can be useful, for example, when a model
has already been trained in a previous job, but we now want to test us-
ing a different inference scheme. To skip training, we can simply pass
“skip_training”.

5. Testing: This parameter specifies whether testing should be carried out or
not. To skip testing, we can simply pass “skip_testing”.

9

3. Method and Procedure 10

Figure 3.1: An illustration of the entire pipeline architecture. The corresponding
sections are labelled in each box.

6. Confused: This parameter specifies the type of inference that is to be done
when evaluating. We have defined two different possibilities for evalua-
tion. The first one, called Confused, uses the modified dataset for train-
ing as well as for testing. The second, called Not Confused, uses the No
Comment dataset for training (No Comment is our default baseline) and,
subsequently, the modified dataset for testing.

7. Overview: This parameter forces a run of the set of parameters even if
this exact set already exists in the dataset. This can be useful when a
faulty modification is discovered, or the model did not complete training as
expected but still carried out testing.

3. Method and Procedure 11

With the parameters specified, we can now start to explore the pipeline. The
chosen parameters are passed to the mlmfc_ui.sh script which acts as a wrapper
for the mlmfc_ui_main.sh script. In mlmfc_ui.sh, we set certain environmental
parameters that are used by the SLURM (Simple Linux Utility for Resource Man-
agement) job scheduler. Based on the model and dataset passed as parameters,
the job will require a different set of environmental specifications. For jobs with
more intensive resources requirements due to parameter-heavy models or larger
dataset size, we can specify more powerful GPUs, such as the Nvidia Geforce
RTX 3090 or the Nvidia Quattro A6000, as well as request more memory on
a particular node. Furthermore, we can use parallelism to use multiple GPUs
on one node simultaneously. We can also restrict jobs to only run on certain
compute capability classes. An overview of available SLURM commands can be
found at [17].

3.1.2 Moving to the main script

Having set the environmental variables in place, mlmfc_ui.sh calls mlmfc_ui_
main.sh which envelopes most of 3.1. We first check whether the Overwrite
parameter has been set or not. If not, we can check whether a run with this
particular set of parameters already exists in the database. On top of the specified
parameters, we must also compare the existing git hash. This is the hash that is
created whenever a new commit is pushed on the Gitlab site of the project [18].
It provides a chronological order to updates, and, as such, we can check whether
any particular run in the database also uses the most recent git hash. If this
is the case, and all parameters match, and we have not specified the Overwrite
parameter, the job will exit and return the respective scores from the database.

3.1.3 Moving to the attack script

If we cannot find a matching score in the database, the next step is to check
for the existence of the attacked dataset. If this is not the case, we call up the
master_attack_job.sh script, which contains all possible attacks for all available
languages. By using appropriate case statements, we can select the correct attack
and dataset and use this to generate the desired, modified dataset. These attacks
are written either in Python or the respective language of the dataset. Source
code for all attacks has been made available on [18].

Once the modified dataset has been generated and stored, we can assess the
type of inference that is to be conducted. If we are using evaluation on the
Confused dataset, we can proceed to training as no further checks are required.
However, if we are using inference on the Not Confused dataset, we need to
enquire whether the default No Comment model executable exists. If this is the
case, we can skip the training step and proceed to the testing phase.

3. Method and Procedure 12

3.1.4 Moving to the training script

If training has not been skipped (either because the appropriate argument has
not been passed or because the No Comment executable does not exist), we enter
the master_train_job.sh script, which contains training calls to the available
models. These are listed in case statements and link to the respective model’s
source code. The training phase is normally the most time-consuming stage of
the pipeline taking anywhere from ten minutes to 35 hours, depending on the
size and complexity of the chosen model. Progress for the training stage can be
tracked through the log files of the job number.

3.1.5 Moving to the testing script

Once the training phase has been completed, we move on to the testing phase.
We first need to check whether the testing argument has been passed. If this is
not the case, testing will be skipped, and then we will exit the pipeline without
writing anything into the database. There may be instances where a user has
chosen to skip the pipeline’s training stage but wants to test a model executable,
so a test call for a non-existent model may be made. In this case, the pipeline
exits with an error message stating that the model executable for the desired
parameter combination does not exist. If testing has been selected and the nec-
essary executable exists, we move to the master_test_job.sh which, in similar
fashion to master_train_job.sh, lists testing calls for all available models.

3.1.6 Returning to the main script

Once the testing stage has been completed, we parse the desired scores from the
job log files. Each job submitted to the cluster has a unique, running job ID,
meaning that the respective scores’ extraction is always deterministic. Based
on whether we are conducting a code search or a code summarization task, the
scores that will be extracted from the log files are divergent. If we are conduct-
ing code search, the scores that will be extracted are: MRR, Top-1, Top-5, and
Top-10, where MRR is the Mean Reciprocal Rank [19], and the Top scores rep-
resent the fractions of snippets that are ranked in the first, first five and first
ten positions respectively. If we conduct a code summarization task, the scores
that will be extracted from the log file are: BLEU-composite, BLEU1, BLEU2,
BLEU3, and BLEU4. BLEU-1 to BLEU-4 refer to the corpus-level modified N-
gram precision. The BLEU scores are the count of all (corpus-level) n-grams of
the predicted sentences that match with n-grams in their corresponding reference
sentence(s) divided by the number of n-grams in the predicted sentences. The
BLEU composite is just the geometric mean of these four scores. [20]

Once the desired scores have been extracted from the log files, the last step
is to write them into the database using an SQLite query. This has allowed us to

3. Method and Procedure 13

create a benchmarking database, containing the various combinations of models,
datasets, and attacks.

In order to be able to draw comparisons between the scores received by the
user and the scores stated in the papers where the models were presented, the
hyperparameters chosen for training and testing are the default values provided
in the implementation.

3.1.7 Benefits of modular pipeline architecture

The primary benefit of this pipeline architecture is that it is entirely modular.
This means anyone can add their own model, dataset, or attack without requir-
ing in-depth knowledge of the entire process, as they can simply append a case
statement to the end of the necessary file. To facilitate this process, we have also
written a user manual that provides an overview of how to add one’s own work
to the pipeline and a quick-start guide. The manual can be found at: [21]. The
modular architecture also facilitates debugging as we can run different sections
in isolation from one another, so the process of finding and fixing errors can be
accelerated.

3.2 Dataset Construction

In addition to the already established CodeSearchNet datasets, we also wanted
to use datasets for which no baseline exists. To this end, we added two further
datasets, both based on the Java programming language. These are TL CodeSum
[22] and Funcom, [23], which is the largest dataset at hand at roughly 2.1 million
snippets and paired descriptions. In order to fit the datasets neatly into the
pipeline, modifications were done to add missing columns, change the data format
to jsonl and change column names to make them accessible to the attack scripts.

3.3 Attacks

Building on the work done previously [2], the idea was to expand upon the num-
ber of possible attacks (modifications that could be taken to affect the lexical
structure of the code snippet without affecting its meaning). To this end, a
range of attacks was developed. In general, we can classify the modifications
that can be applied into three categories: semantic attacks, where we change the
meaning and functionality of a snippet, syntactic attacks, where we change the
functionality but not the meaning of a snippet and lexical attacks, where neither
the meaning nor the functionality is changed but a snippet changes on a symbolic
level. “Functionality” can be thought of as the algorithmic implementation of an
idea, while “meaning” is the idea itself that is to be implemented in code. In

3. Method and Procedure 14

this thesis, we focus on lexical attacks, specifically those presented below, but re-
search into the other categories has also been done. It is important to note that
while lexically attacked snippets may look visually different from the original,
their functionality is fundamentally preserved. Furthermore, the substitution of
any individual identifier is deterministic and unique, meaning that based on a
known scheme, we can say exactly what the modified identifier will look like.
Specific algorithmic implementations of every attack can be found at [18] and are
provided for every dataset currently usable by the pipeline.

We will use the example code snippet below, taken from the Python dataset,
to demonstrate the effect that the individual attacks have:

def _check_series_localize_t(s, timezone):
from pandas.api.types import is_datetime64tz_dtype
tz = timezone or _get_local_timezone()
#handle nested time case
if is_datetime64tz_dtype(s.dtype):

return s.dt.tz_convert(tz).dt.tz_localize(None)
else:

return s

3.3.1 No Comment

The No Comment attack provide the baseline dataset against which all other
datasets are compared and scored. As some, but not all, of the comments present
in the dataset, may be used as tokens for training, it was considered more ap-
propriate to remove all of them throughout all datasets and do this consistently
throughout all attacks. Besides the removal of comments, no other modification
was undertaken. The idea behind this attack was the belief that the models lever-
age the lexical information contained in the comments quite heavily, so removing
them would result in a significant weakening in the scores.

The effect of the attack on the example code snippet:

def _check_series_localize_t(s, timezone):
from pandas.api.types import is_datetime64tz_dtype
tz = timezone or _get_local_timezone()
if is_datetime64tz_dtype(s.dtype):

return s.dt.tz_convert(tz).dt.tz_localize(None)
else:

return s

3. Method and Procedure 15

3.3.2 Full Hash

The fullhash is an attack that was taken from previous work [2]. For example, it
is clear to a reader that a variable called “counter” will be keeping count of some
iterative loop or similar. However, if we now hash this string and replace it in
the snippet with var458796e4e963a163322319ba62d683315a930a09, it is no longer
clear what this variable is supposed to achieve. While previously [2] we had the
option to specifically select what type of identifiers we wanted to modify, here
we chose the most aggressive strategy, which means hashing all function names,
arguments, and variables using a SHA1 hash. The code can be adapted to test
other hashing combinations as well. The idea behind this attack is to provide a
benchmark score for the case when all lexical resemblance between the original
snippet and the newly modified snippet has been destroyed.

The effect of the attack on the example code snippet (hashes have been short-
ened for readability):

def fun79a06b59(argdd4ba62f, arg5a901fe9):
from pandas.api.types import is_datetime64tz_dtype
var1412349a = arg5a901fe9 or _get_local_timezone()
if is_datetime64tz_dtype(argdd4ba62f.dtype):

return argdd4ba62f.dt.tz_convert(var1412349a) \
.dt.tz_localize (None)

else:
return argdd4ba62f

3.3.3 K-Shift Dataset

This attack results in a cyclical shift of identifiers between code snippets by
an amount k. To create this shift, we create a dictionary of key-value pairs
where the keys are the identifiers from the current snippet, and the values are
the identifiers from the k-th previous snippet. We store the two sets as a list
(providing an order to them) and assign the values to the keys in the order in
which they are encountered in the abstract syntax tree. This means that the
identifiers present in a snippet no longer match with the snippet that they are
part of. In our database, we have created two separate instances of the attack:
the first one shifts identifiers by three snippets (3-shift-dataset), and the second
shifts identifiers by 64 snippets (64-shift-dataset). The idea was to see whether a
more significant shift would result in a lower score. This is a valid consideration
since the datasets group snippets coming from the same repository in sequence
(a consequence of the GitHub scraping method used to compile the datasets).
Programmers writing code for a single repository will reuse identifiers in order
to maintain an overview of the code structure. This reuse between different
sections of code and, by extension, different functions means that consecutive

3. Method and Procedure 16

code snippets in the datasets will likely use similar, if not identical, identifiers.
As such, shifting by three snippets would mean that identifiers are more likely
to stay within the same repository that they were originally scraped from than
when shifting by 64 snippets and thus more meaningfully contribute to the overall
understanding of a piece of code.

The effect on the example code snippet relies on another snippet that is k
snippet instances away from the example snippet. For demonstration purposes,
we have extracted the following identifiers from the other snippet: [’user’, ’reach’,
’flow’, ’difference’, ’time_in_zone’]. The effect will be as follows:

def user(reach, flow):
from pandas.api.types import is_datetime64tz_dtype
difference = flow or _get_local_timezone()
if is_datetime64tz_dtype(reach.dtype):

return reach.dt.tz_convert(difference).dt.tz_localize(None)
else:

return reach

Note the fact that we have extracted more identifiers from the other snippet
than can be used in the example snippet, so the last one, ’time_in_zone’, will
not be used.

3.3.4 K-Shift Snippet

This attack cyclically rotates the individual identifiers of a snippet. We can
create a dictionary by listing any individual identifier we find inside the abstract
syntax tree as a key and then shift them according to the specified instance of
“k” to generate the values for the dictionary. We again created two instances of
this attack, the first shifting by three identifiers (3-shift-snippet) and the second
by 64 identifiers (64-shift-snippet). Since very few code snippets have 64 unique
identifiers, shifting by this amount may result in a scenario where an identifier
will find itself once again in its original position or where the same effect could
be achieved using a much smaller amount of shifting.

The effect on the example code snippet will be demonstrated using the 3-shift
instance of the attack. We have four unique identifiers: check_series_localize
_t, s, timezone, tz. Using 3-shifting means that the following key-value pairs
(where the original identifier is the key and the newly shifted identifier is the
value) are created: {_check_series_localize_t: s, s: timezone, timezone: tz, tz:
_check_series_localize_t}. Substituting the values into the snippet leads to the
following:

def s(timezone, tz):
from pandas.api.types import is_datetime64tz_dtype

3. Method and Procedure 17

_check_series_localize_t = tz or _get_local_timezone()
if is_datetime64tz_dtype(timezone.dtype):

return timezone.dt.tz_convert(_check_series_localize_t) \
.dt.tz_localize(None)

else:
return timezone

3.3.5 Most Popular

In a first iteration over the entire dataset, this attack creates a ranking of the
number of occurrences of any individual identifier over the whole dataset as well
as an identical ranking within each snippet. We then iterate over the dataset
again and now link up each unique identifier in a snippet with its matching
partner in the overall ranking of all identifiers based on its rank. The idea of this
attack is to drastically reduce the total number of identifiers that are used in the
entire dataset. Since most snippets in any dataset have few unique identifiers, as
the snippets are not hundreds of lines long, most identifiers that exist only in a
couple of snippets will never be matched to any identifier in one snippet. This
means that the number of identifiers that the models encounter when training
is reduced massively, and the belief is that this will hamper performance as the
model has not been “exposed” to as many varied tokens. Looking at the available
Python dataset, here are the five most common identifiers in the dataset, along
with the number of occurrences of each one:

1. data: 61,956

2. i: 61,614

3. os: 53,136

4. name: 47,070

5. x: 45,864

Using this information, we can create a mapping from the most common
identifiers in our example snippet to the most common identifiers in the whole
dataset. For our example snippet, we have the following number of occurrences,
ordered by frequency: {s: 4, timezone: 3, tz: 3, _check_series_localize_t: 1}.
We can now map these to the overall most common identifiers. If there are two
snippet identifiers with the same number of occurrences, then the one that is
encountered first in the abstract (in our case, this means timezone is mapped
before tz since arguments are visited first). Our mapping now looks as follows:
{s: data, timezone: i, tz: os, _check_series_localize_t: name}. Substituting
this into the snippet yields:

3. Method and Procedure 18

def name(data, i):
from pandas.api.types import is_datetime64tz_dtype
os = i or _get_local_timezone()
if is_datetime64tz_dtype(data.dtype):

return data.dt.tz_convert(os).dt.tz_localize(None)
else:

return data

3.3.6 Ordered ID

This attack considers all identifiers that are present in an individual snippet and
then renames them with a label. So the first identifier that is encountered is
labeled id1, the second id2, and so on. The idea is to drastically reduce the
number of unique identifiers the model encounters when training similar to the
Most Popular attack.

The effect on the example snippet can be seen below. The identifiers are
labeled in the order they are encountered in the abstract syntax tree.

def id1(id2, id3):
from pandas.api.types import is_datetime64tz_dtype
id4 = id3 or _get_local_timezone()
if is_datetime64tz_dtype(id2.dtype):

return id2.dt.tz_convert(id4).dt.tz_localize(None)
else:

return id2

3.3.7 Random Permutation

This attack is derived from the k-shift snippet attack and as such serves as a
comparative attack. Rather than shifting all identifiers by a set amount k, each
snippet shifts its identifiers by a random number between one and twenty.

For the example snippet, we can use a randomly select shift of one. This
means that the following key-value pairs are created: {_check_series_localize
_t: tz, s: _check_series_localize_t timezone: s, tz: timezone}.

def tz(_check_series_localize_t, s):
from pandas.api.types import is_datetime64tz_dtype
timezone = s or _get_local_timezone()
if is_datetime64tz_dtype(_check_series_localize_t \.dtype):

return _check_series_localize_t.dt.tz_convert(timezone) \
.dt.tz_localize(None)

3. Method and Procedure 19

else:
return _check_series_localize_t

3.3.8 Translation

The translation attack translates all comments in the original dataset into a
language of choice. To do this, we used the Google Cloud Translation API to
translate the extracted comments using Google’s own Neural Translation soft-
ware. While in principle, the comments can be translated into any available
language, we chose to only create one instance and translate the comments into
Spanish. The idea behind this attack is that the language model may leverage
language structures present in a foreign language but not in English, which could
provide an edge when aiming to find appropriate snippets in code search.

Using the Spanish instance of the attack, we can demonstrate the effect on
our example snippet:

def _check_series_localize_t(s, timezone):
from pandas.api.types import is_datetime64tz_dtype
#manejar el caso de tiempo anidado
tz = timezone or _get_local_timezone()
if is_datetime64tz_dtype(s.dtype):

return s.dt.tz_convert(tz).dt.tz_localize(None)
else:

return s

3.4 Database Utilization

All scores, both for code search and code summarization are stored locally in a
.db file to facilitate benchmarking comparisons. To write and read this file, we
use SQLite queries. The write queries are integrated as part of the pipeline de-
scribed previously, and we have also provided a script called sqliteinteract.py
that can be used to craft queries tailored to your specific wishes. Furthermore,
we can also write queries explicitly tailored to specific requirements (for exam-
ple: fetch all scores with an MRR over 0.5), which was previously impossible.
Alternatively, we can also use the pipeline structure to read out single values for
certain combinations of parameters. We were also briefly considering using an
external Oracle Server in combination with MySQL; however, this was quickly
discarded due to fact that local, on-server storage cost less money.

Chapter 4

Experiment Details

4.1 Server and Shell Scripting

All experiments were conducted on the TIK Arton cluster at ETH Zurich. This
cluster houses several different high-end graphics cards ranging from Tesla K40C’s
on the lower end of the performance spectrum to Nvidia Quattro RTX A6000 on
the high. While interactive sessions on each graphics card can be conducted, the
recommended way of running an experiment is through shell scripts. As such,
the pipeline was constructed around the usage of several linking scripts that can
be used in combination to achieve the desired results.

4.2 Environments

All models are written in Python and primarily based on the PyTorch or Ten-
sorflow Machine Learning frameworks. In addition, all models are run in their
own Conda Environments, tailored specifically to their dependencies. This took
time to set up since the instructions were not always completely up-to-date and
sometimes left critical dependencies unspecified (when no specific version was
provided) or unmentioned (the package was not mentioned in the notes but then
threw an error when trying to run the model). Furthermore, we have also set up
environments that work with all available attacks. In contrast to [2], we now run
all attacks directly on the server. Previously, the modified datasets were gener-
ated locally and then uploaded to the server, but this has now been automatized
so that only a baseline version of the dataset is required to be present on the
server, and everything else is created using shell scripts.

20

Chapter 5

Results

In this section we will highlight the most significant results that have been gath-
ered. An overview of all collected scores can be found at [24].

5.1 Default versus No Comment

In the first step, we can compare our baseline set, which is the No Comment
dataset, with the scores stated in the CodeSearchNet challenge paper [6], the
GraphCodeBERT paper [10] and the SynCoBERT paper [11]. As mentioned in
section 2.2, the CodeSearchNet paper uses the original default dataset (which
the researchers) collected themselves), GraphCodeBERT and SynCoBERT use a
slightly modified version of this original.

The most crucial modification that was applied was the comment removal.
Since some, but importantly not all, comments, will be used in the tokeniza-
tion. As we cannot reliably say which comments will be used, the removal of
all comments provided a fair method of evaluation. However, one will notice
nevertheless that our stated No Comment baseline scores do not quite line up
with No Comment scores reported by GraphCodeBERT and SynCoBERT. The
reason for this is that we used a different tokenization to create our datasets,
which could be addressed in future experiments (covered in more detail in sec-
tion 6.2). Furthermore, we also collected scores in the form of Top-1, Top-5 and
Top-10, for which no baseline comparison score exists. In addition, Funcom and
TL-CodeSum were two datasets that were added on top of the existing languages.
As such, no baseline score exists for them. Funcom posed additional challenges
as its size was multiple times larger than the next largest dataset. This meant we
were unable to run it on the more complex models due to the time constraints
imposed by the cluster.

This table illustrates that even just the comment removal will lead to a, in
some cases, significant performance drop across all metrics. This suggests that a
lot of lexical clues that the model leverages are contained solely in the comments
of a code snippet.

21

5. Results 22

Model Python Java Javascript PHP Go TL-CodeSum Funcom

Base NoCom Base NoCom Base NoCom Base NoCom Base NoCom Base NoCom Base NoCom

NBoW 0.634 0.537 0.660 0.011 0.399 0.010 0.684 0.679 0.802 0.062 N/A 0.042 N/A 0.009

SelfAtt 0.634 0.454 0.643 0.273 0.445 0.143 0.693 0.693 0.871 0.804 N/A 0.367 N/A 0.254

ConvSelfAtt 0.622 0.455 0.326 0.326 0.342 0.193 0.697 0.669 0.873 0.804 N/A 0.421 N/A 0.241

1D-CNN 0.505 0.310 0.537 0.253 0.158 0.059 0.609 0.615 0.801 0.757 N/A 0.327 N/A 0.206

GraphCodeBERT 0.694 0.763 0.690 0.637 0.643 0.564 0.647 0.756 0.895 0.850 N/A 0.644 N/A N/A

SynCoBERT 0.718 0.711 0.761 0.673 0.681 0.480 0.701 0.701 0.929 0.888 N/A 0.418 N/A N/A

Table 5.1: The table above presents the MRR scores of all models across all
examined languages for two versions of the datsets. The first column in each
language represents the baseline score, while the second column represents the
No Comment version that was used as the baseline for our experiments.

5.2 Confused versus Not Confused

The tables below illustrate the overall trend of Confused inference versus Not
Confused inference using the random permutation attack. Tables 5.2 and 5.2 il-
lustrate the overall trend that the Not Confused inference cannot keep up with the
Confused Inference scores, performing worse across all models and all datasets.

5. Results 23

M
od

el
P

yt
ho

n
Ja

va
Ja

va
sc

ri
pt

P
H

P

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

N
B

oW
0.

64
3

0.
54

5
0.

76
2

0.
82

2
0.

01
1

0.
00

2
0.

00
9

0.
01

5
0.

01
2

0.
00

2
0.

01
2

0.
02

0
0.

71
3

0.
62

0
0.

83
0

0.
87

8

Se
lfA

tt
0.

51
6

0.
41

7
0.

62
6

0.
69

6
0.

18
9

0.
11

4
0.

25
8

0.
33

2
0.

10
0

0.
05

4
0.

13
8

0.
18

6
0.

61
6

0.
51

7
0.

73
3

0.
80

1

C
on

vS
el

fA
tt

0.
49

7
0.

40
4

0.
60

1
0.

66
9

0.
29

4
0.

20
7

0.
38

7
0.

46
1

0.
13

9
0.

08
0

0.
18

4
0.

24
4

0.
66

9
0.

56
9

0.
78

8
0.

84
7

1D
-C

N
N

0.
33

9
0.

30
3

0.
49

6
0,

58
1

0.
19

3
0.

11
8

0.
25

9
0.

33
3

0.
03

6
0.

01
0

0.
04

4
0.

07
7

0.
62

1
0.

52
1

0.
73

7
0.

80
5

G
ra

ph
C

od
eB

E
R
T

0.
72

5
0.

62
3

0.
85

3
0.

90
0

0.
61

5
0.

50
7

0.
74

9
0.

81
2

0.
52

6
0.

41
4

0.
65

9
0.

73
5

0.
73

6
0.

63
5

0.
86

3
0.

90
9

Sy
nC

oB
E

R
T

0.
68

3
0.

58
5

0.
80

1
0.

85
7

0.
66

0
0.

56
3

0.
77

8
0.

83
2

0.
44

7
0.

34
5

0.
56

6
0.

64
1

0.
68

3
0.

58
5

0.
80

1
0.

85
9

M
od

el
G

o
T

L-
C

od
eS

um
Fu

nc
om

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

N
B

oW
0.

14
0

0.
09

3
0.

17
9

0.
22

4
0.

03
6

0.
01

4
0.

04
9

0.
06

9
0.

00
9

0.
00

1
0.

00
6

0.
01

3

Se
lfA

tt
0.

64
9

0.
56

1
0.

75
4

0.
80

9
0.

37
8

0.
30

1
0.

46
0

0.
51

5
0.

23
0

0.
13

8
0.

31
5

0.
42

6

C
on

vS
el

fA
tt

0.
73

4
0.

67
2

0.
80

7
0.

83
9

0.
43

5
0.

34
6

0.
53

3
0.

59
4

0.
23

1
0.

13
7

0.
32

0
0.

43
4

1D
-C

N
N

0.
71

4
0.

64
7

0.
79

3
0.

82
8

0.
29

1
0.

20
8

0.
37

7
0.

44
0

0.
17

8
0.

10
1

0.
24

5
0.

33
1

G
ra

ph
C

od
eB

E
R
T

0.
83

9
0.

77
5

0.
91

9
0.

94
3

0.
62

3
0.

51
6

0.
75

7
0.

82
7

N
/A

N
/A

N
/A

N
/A

Sy
nC

oB
E

R
T

0.
88

4
0.

83
9

0.
93

8
0.

95
5

0.
51

7
0.

40
8

0.
65

5
0.

73
5

N
/A

N
/A

N
/A

N
/A

T
ab

le
5.

2:
R

es
ul

ts
of

al
ld

at
as

et
s

an
d

m
od

el
s

m
od

ifi
ed

w
it

h
th

e
R

an
do

m
P
er

m
ut

at
io

n
at

ta
ck

an
d

C
on

fu
se

d
In

fe
re

nc
e.

5. Results 24

M
od

el
P

yt
ho

n
Ja

va
Ja

va
sc

ri
pt

P
H

P

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

N
B

oW
0.

00
7

0.
00

1
0.

00
5

0.
01

1
0.

01
3

0.
00

3
0.

01
1

0.
02

1
0.

01
1

0.
00

3
0.

01
0

0.
01

7
0.

69
6

0.
60

0
0.

81
4

0.
86

9

Se
lfA

tt
0.

49
1

0.
38

3
0.

61
7

0.
70

1
0.

14
9

0.
08

8
0.

19
9

0.
26

1
0.

09
3

0.
05

2
0.

12
1

0.
16

8
0.

54
3

0.
44

2
0.

66
2

0.
73

5

C
on

vS
el

fA
tt

0.
39

9
0.

29
4

0.
51

3
0.

60
2

0.
17

5
0.

11
0

0.
22

9
0.

29
8

0.
12

3
0.

07
1

0.
16

5
0.

22
5

0.
48

5
0.

38
4

0.
69

9
0.

67
6

1D
-C

N
N

0.
27

3
0.

18
7

0.
35

3
0.

44
1

0.
10

0
0.

05
7

0.
12

9
0.

17
9

0.
03

0
0.

01
2

0.
04

0
0.

05
5

0.
39

8
0.

30
1

0.
49

9
0.

58
8

G
ra

ph
C

od
eB

E
R
T

0.
52

2
0.

41
3

0.
65

1
0.

73
2

0.
45

6
0.

34
7

0.
58

1
0.

66
4

0.
46

2
0.

35
2

0.
58

9
0.

67
6

0.
57

2
0.

46
1

0.
70

2
0.

78
0

Sy
nC

oB
E

R
T

0.
47

2
0.

37
2

0.
58

6
0.

66
3

0.
48

2
0.

38
0

0.
59

9
0.

67
3

0.
37

0
0.

27
6

0.
46

7
0.

55
5

0.
51

8
0.

41
6

0.
63

2
0.

71
3

M
od

el
G

o
T

L-
C

od
eS

um
Fu

nc
om

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

N
B

oW
0.

11
5

0.
07

0
0.

15
1

0.
19

4
0.

02
8

0.
00

8
0.

03
7

0.
05

8
0.

00
9

0.
00

1
0.

00
6

0.
01

4

Se
lfA

tt
0.

27
0

0.
22

2
0.

31
2

0.
34

9
0.

17
9

0.
11

1
0.

23
9

0.
30

5
0.

19
7

0.
11

6
0.

27
0

0.
36

5

C
on

vS
el

fA
tt

0.
25

0
0.

21
2

0.
28

1
0.

31
3

0.
22

4
0.

14
4

0.
30

1
0.

38
2

0.
16

9
0.

09
5

0.
22

7
0.

31
8

1D
-C

N
N

0.
21

0
0.

17
9

0.
23

6
0.

25
7

0.
08

1
0.

04
0

0.
11

1
0.

15
7

0.
12

6
0.

06
4

0.
17

3
0.

25
1

G
ra

ph
C

od
eB

E
R
T

0.
37

7
0.

29
8

0.
45

7
0.

53
7

0.
46

4
0.

35
9

0.
58

4
0.

66
9

N
/A

N
/A

N
/A

N
/A

Sy
nC

oB
E

R
T

0.
39

8
0.

32
8

0.
46

8
0.

53
5

0.
38

3
0.

28
1

0.
50

1
0.

59
5

N
/A

N
/A

N
/A

N
/A

T
ab

le
5.

3:
R

es
ul

ts
of

al
ld

at
as

et
s

an
d

m
od

el
s

m
od

ifi
ed

w
it

h
th

e
R

an
do

m
P
er

m
ut

at
io

n
at

ta
ck

an
d

N
ot

C
on

fu
se

d
In

fe
re

nc
e.

5. Results 25

5.3 Best and Worst Performance by dataset

One set of interesting results can be derived from looking at the data from abso-
lute and relative (to the baseline No Comment dataset) standpoints and looking
for the best and worst overall scores for each dataset. In this instance, we will
just consider the Confused Inference. We have discovered some negative relative
scores. These correlate to an improvement in performance. All other attacks’
scores fall between the two extremes shown below. Thus any conclusions that
can be drawn for the best and worst scores will also hold for the scores in between.

Considering the worst scores first:

Most Popular MRR Top-1 Top-5 Top-10

NBoW 0.007 0.001 0.005 0.010

SelfAtt 0.007 0.001 0.004 0.009

ConvSelfAtt 0.008 0.001 0.006 0.012

1D-CNN 0.007 0.001 0.005 0.009

GraphCodeBERT 0.001 0.000 0.000 0.001

SynCoBERT 0.000 0.000 0.000 0.000

Table 5.4: The worst absolute scores for the Most Popular attack for the Python
dataset.

Most Popular MRR [%] Top-1 [%] Top-5 [%] Top-10 [%]

NBoW 98.70 99.77 99.24 98.62

SelfAtt 98.46 99.71 99.30 98.63

ConvSelfAtt 98.24 99.70 98.95 98.23

1D-CNN 97.74 99.52 98.80 98.26

GraphCodeBERT 99.86 100 100 99.89

SynCoBERT 100 100 100 100

Table 5.5: The worst relative scores for the Most Popular attack for the Python
dataset expressed as a percentage change relative to the baseline No Comment
scores.

5. Results 26

Fullhash MRR Top-1 Top-5 Top-10

NBoW 0.010 0.002 0.010 0.016

SelfAtt 0.049 0.024 0.063 0.092

ConvSelfAtt 0.082 0.045 0.106 0.149

1D-CNN 0.036 0.015 0.045 0.065

GraphCodeBERT 0.291 0.198 0.386 0.474

SynCoBERT 0.225 0.143 0.305 0.384

Table 5.6: The worst absolute scores for the Fullhash attack for the Javascript
dataset.

Fullhash MRR [%] Top-1 [%] Top-5 [%] Top-10 [%]

NBoW 0.00 -100.00 -11.11 0.00

SelfAtt 65.73 73.33 66.31 61.34

ConvSelfAtt 57.51 64.00 58.27 52.85

1D-CNN 38.98 44.44 43.04 39.25

GraphCodeBERT 48.40 56.48 44.30 38.28

SynCoBERT 53.13 62.37 48.91 42.86

Table 5.7: The worst relative scores for the Fullhash attack for the Javascript
dataset expressed as a percentage change relative to the baseline No Comment
scores.

5. Results 27

Fullhash MRR Top-1 Top-5 Top-10

NBoW 0.525 0.419 0.649 0.720

SelfAtt 0.417 0.311 0.536 0.621

ConvSelfAtt 0.421 0.298 0.562 0.664

1D-CNN 0.284 0.186 0.383 0.480

GraphCodeBERT 0.486 0.356 0.597 0.682

SynCoBERT 0.461 0.355 0.578 0.662

Table 5.8: The worst absolute scores for the Fullhash attack for the PHP dataset.
Fullhash MRR [%] Top-1 [%] Top-5 [%] Top-10 [%]

NBoW 22.68 27.38 19.28 16.67

SelfAtt 39.83 48.34 33.00 27.37

ConvSelfAtt 37.07 47.99 28.32 20.95

1D-CNN 53.82 63.95 47.46 39.92

GraphCodeBERT 38.10 46.06 31.85 25.95

SynCoBERT 34.24 41.23 29.51 24.08

Table 5.9: The worst relative scores for the Fullhash attack for the PHP dataset
expressed as a percentage change relative to the baseline No Comment scores.

5. Results 28

We can now look at the best performing attacks, those that have created
the smallest performance drop from the baseline No Comment, for a selection of
datasets.

Random Permutation MRR Top-1 Top-5 Top-10

NBoW 0.643 0.545 0.762 0.822

SelfAtt 0.516 0.417 0.626 0.696

ConvSelfAtt 0.497 0.404 0.601 0.669

1D-CNN 0.339 0.303 0.496 0.581

GraphCodeBERT 0.725 0.623 0.853 0.900

SynCoBERT 0.683 0.585 0.801 0.857

Table 5.10: The best absolute scores for the Random Permutation attack for the
Python dataset.
Random Permutation MRR [%] Top-1 [%] Top-5 [%] Top-10 [%]

NBoW -19.74 -25.87 -15.81 -12.76

SelfAtt -13.66 -20.52 -9.25 -5.78

ConvSelfAtt -9.23 -19.53 -2.04 1.33

1D-CNN -9.35 -45.67 -19.52 -12.60

GraphCodeBERT 4.98 7.01 3.07 2.28

SynCoBERT 3.94 4.88 3.26 2.39

Table 5.11: The best relative scores for the Random Permutation attack for the
Python dataset expressed as a percentage change relative to the baseline No
Comment scores.

5. Results 29

3-Shift-Snippet MRR Top-1 Top-5 Top-10

NBoW 0.009 0.001 0.007 0.014

SelfAtt 0.094 0.047 0.132 0.179

ConvSelfAtt 0.136 0.077 0.187 0.248

1D-CNN 0.056 0.023 0.075 0.108

GraphCodeBERT 0.538 0.432 0.665 0.741

SynCoBERT 0.450 0.348 0.567 0.643

Table 5.12: The best absolute scores for the 3-Shift-Snippet attack for the
Javascript dataset.

3-Shift-Snippet MRR [%] Top-1 [%] Top-5 [%] Top-10 [%]

NBoW 10.00 0.00 22.22 12.50

SelfAtt 34.27 47.78 29.41 24.79

ConvSelfAtt 29.53 38.40 26.38 21.52

1D-CNN 5.08 14.81 5.06 -0.93

GraphCodeBERT 4.61 5.05 4.04 3.52

SynCoBERT 6.25 8.42 5.03 4.32

Table 5.13: The best relative scores for the 3-Shift-Snippet attack for the
Javascript dataset expressed as a percentage change relative to the baseline No
Comment scores.

5. Results 30

64-Shift-Snippet MRR Top-1 Top-5 Top-10

NBoW 0.713 0.622 0.825 0.874

SelfAtt 0.630 0.533 0.749 0.810

ConvSelfAtt 0.682 0.581 0.805 0.860

1D-CNN 0.627 0.531 0.740 0.805

GraphCodeBERT 0.737 0.636 0.861 0.908

SynCoBERT 0.685 0.586 0.805 0.860

Table 5.14: The best absolute scores for the 64-Shift-Snippet attack for the PHP
dataset.

64-Shift-Snippet MRR [%] Top-1 [%] Top-5 [%] Top-10 [%]

NBoW -5.01 -7.80 -2.61 -1.16

SelfAtt 9.09 11.46 6.38 5.26

ConvSelfAtt -1.94 -1.40 -2.68 -2.38

1D-CNN -1.95 -2.91 -1.51 -0.75

GraphCodeBERT 2.51 3.64 1.71 1.41

SynCoBERT 2.28 2.98 1.83 1.38

Table 5.15: The best relative scores for the 64-Shift-Snippet attack for the PHP
dataset expressed as a percentage change relative to the baseline No Comment
scores.

The tables above illustrate that the Shift Snippet attacks (both in the 64
and 3 instance variation) and the derived Random Permutation attack perform
best, while Fullhash and Most Popular perform worst across all metrics. The
tables provided above show the general trend in performance decrease that can
be observed across all datasets. The explanation lies in the severity of an in-
dividual attack and is explored in more detail in section 5.5. Regardless of the
attack, we can say that the performance (with few exceptions) decreases across
all observed metrics. We must also mention the instances where a performance
increase has been observed. We believe this is not due to the model itself but to
the tokenization used to tokenize the individual snippets in the attacked dataset
(both No Comment and otherwise). This in itself is a significant drawback of the
tested models (observed in all models except GraphCodeBERT) and should be
addressed in the design of future models.

5. Results 31

5.4 Weighted scores per attack per model

We can utilize the received data to derive observations. In table 5.16, we have
calculated a weighted score for every model and attack combination across all
four metrics for the confused inference. This means that for every attack and
model, we have taken each dataset’s scores and calculated an average for each
metric, accounting for the size of the individual dataset. Since not all code
snippets can be anonymized (due to faulty code, which prevents the construction
of an abstract syntax tree), the dataset sizes are not equal to those of the default
dataset. An overview can be found in Appendix table E.1. In our eyes, this
provides an appropriate way to estimate the performance of a particular model
on a particular attack for a dataset in a generic programming language.

5.5 Severity of attack against Performance

Using the weighted scores presented in table 5.16, we can use the boldly stated
scores, which highlight the best-performing model for each metric and each at-
tack, to illustrate the performance of an attack against the severity of an attack.
By severity, we mean the degree to which the lexical identifiers in an attack have
been obfuscated. While there is some degree of subjectivity to this, we can gen-
erally sort the attacks by three guiding questions, asked by increasing severity:

1. Do we move around identifiers between individual snippets?

2. If we are moving identifiers between snippets, how significant is the move-
ment?

3. Do we repeat individual identifiers across the dataset?

Using these questions, we can rank the severity of attacks and the associated
scores of the four metrics presented in figure 5.1.

The figure suggests that there is a correlation between the severity of the
attack and the observed performance loss across all metrics. The more severe the
attack, the higher the performance drop across the assessed metrics.

5. Results 32

M
od

el
N

o
C

om
m

en
t

Fu
llh

as
h

3-
sh

ift
-d

at
as

et
64

-s
hi

ft
-d

at
as

et
3-

sh
ift

-s
ni

pp
et

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

N
B

oW
0.

11
6

0.
09

0
0.

13
7

0.
15

7
0.

09
2

0.
06

5
0.

11
0

0.
13

2
0.

06
2

0.
04

0
0.

07
7

0.
09

6
0.

03
4

0.
01

9
0.

03
9

0.
05

4
0.

13
5

0.
11

0
0.

15
6

0.
17

2

Se
lfA

tt
0.

34
3

0.
24

7
0.

42
7

0.
51

5
0.

24
0

0.
15

5
0.

32
1

0.
41

2
0.

17
5

0.
10

3
0.

23
7

0.
32

0
0.

17
3

0.
10

1
0.

22
8

0.
31

8
0.

31
2

0.
22

6
0.

39
8

0.
48

4

C
on

vS
el

fA
tt

0.
33

8
0.

24
8

0.
42

9
0.

51
8

0.
25

1
0.

16
3

0.
33

6
0.

42
9

0.
21

2
0.

12
9

0.
28

8
0.

38
4

0.
20

2
0.

12
2

0.
27

3
0.

36
9

0.
34

7
0.

25
5

0.
44

1
0.

52
8

1D
-C

N
N

0.
28

5
0.

19
9

0.
37

1
0.

46
0

0.
17

0
0.

09
9

0.
22

9
0.

31
3

0.
12

9
0.

06
5

0.
17

7
0.

25
8

0.
11

9
0.

05
9

0.
16

2
0.

23
9

0.
27

4
0.

19
1

0.
35

7
0.

44
4

G
ra

ph
C

od
eB

E
R
T

0.
73

4
0.

64
1

0.
84

9
0.

89
5

0.
47

9
0.

37
1

0.
60

5
0.

68
5

0.
52

0
0.

40
4

0.
65

7
0.

74
0

0.
47

2
0.

36
9

0.
59

5
0.

66
7

0.
65

4
0.

55
9

0.
76

9
0.

82
0

Sy
nC

oB
E

R
T

0.
41

8
0.

33
0

0.
55

2
0.

63
6

0.
50

0
0.

39
9

0.
61

8
0.

69
2

0.
49

1
0.

38
7

0.
61

1
0.

68
6

0.
46

0
0.

36
3

0.
57

5
0.

64
6

0.
66

0
0.

57
6

0.
76

3
0.

81
2

M
od

el
64

-s
hi

ft
-s

ni
pp

et
M

os
t

P
op

ul
ar

O
rd

er
ed

ID
R

an
do

m
P
er

m
ut

at
io

n

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

M
R

R
T
op

-1
T
op

-5
T
op

-1
0

N
B

oW
0.

13
4

0.
10

8
0.

15
5

0.
17

1
0.

04
9

0.
03

3
0.

05
7

0.
07

2
0.

08
3

0.
05

8
0.

10
0

0.
12

1
0.

13
3

0.
10

7
0.

15
4

0.
17

1

Se
lfA

tt
0.

32
0

0.
23

1
0.

41
1

0.
49

8
0.

17
4

0.
10

7
0.

23
1

0.
30

7
0.

20
1

0.
12

5
0.

26
8

0.
35

2
0.

31
1

0.
22

0
0.

40
0

0.
49

6

C
on

vS
el

fA
tt

0.
34

6
0.

25
2

0.
44

2
0.

53
3

0.
19

7
0.

12
3

0.
26

5
0.

34
6

0.
22

2
0.

14
0

0.
29

5
0.

38
2

0.
32

8
0.

23
6

0.
41

9
0.

51
5

1D
-C

N
N

0.
27

7
0.

19
5

0.
35

7
0.

44
3

0.
13

2
0.

07
2

0.
18

0
0.

25
3

0.
14

5
0.

07
8

0.
19

8
0.

27
8

0.
26

2
0.

18
8

0.
34

1
0.

42
0

G
ra

ph
C

od
eB

E
R
T

0.
68

0
0.

58
6

0.
79

6
0.

84
4

0.
37

4
0.

29
0

0.
47

3
0.

53
5

0.
51

0
0.

39
7

0.
64

3
0.

72
4

0.
70

9
0.

61
2

0.
83

0
0.

87
9

Sy
nC

oB
E

R
T

0.
64

4
0.

55
7

0.
75

1
0.

80
5

0.
36

2
0.

28
8

0.
45

0
0.

50
6

0.
47

8
0.

37
8

0.
59

6
0.

67
2

0.
68

8
0.

59
8

0.
79

6
0.

84
8

T
ab

le
5.

16
:

W
ei

gh
te

d
sc

or
es

fo
r

co
nf

us
ed

in
fe

re
nc

e
pe

r
at

ta
ck

pe
r

m
od

el
.

5. Results 33

F
ig

ur
e

5.
1:

M
et

ri
cs

’p
er

fo
rm

an
ce

ag
ai

ns
t

th
e

di
ffe

re
nt

at
ta

ck
s

so
rt

ed
by

se
ve

ri
ty

.
B

as
ed

on
ou

r
su

bj
ec

ti
ve

op
in

io
n,

th
e

se
ve

ri
ty

of
th

e
at

ta
ck

s
is

in
cr

ea
si

ng
fr

om
le

ft
to

ri
gh

t.

Chapter 6

Conclusion and Outlook

6.1 Conclusion

The primary conclusion that can be drawn from the data is that removing or
obfuscating lexical clues will reduce the performance across all models regard-
less of the severity of the obfuscation. This illustrates that the model does not
understand the meaning of a code snippet but instead solely relies on lexical
information to create connections between the natural language query and the
code snippet.

Our conclusion is further supported by the fact that just the removal of com-
ments will lead to a significant drop in performance, as observed in table 5.1.
Since all other attacks also have their respective comments removed, we can at-
tribute the majority of the performance loss across all metrics to the comment
removal in itself. This highlights the models’ heavy reliance on natural language
clues rather than the information found in the code’s structure, as changing lexi-
cal identifiers does not have as large of an effect as simply removing the comments
from the snippet.

We can also see that the more complex models, GraphCodeBERT and Syn-
CoBERT, which use pretrained architectures with more parameters, perform bet-
ter than those mentioned in the original CodeSearchNet paper [6]. Regardless
of the chosen attack, the performance drop seen for GraphCodeBERT and Syn-
CoBERT is nearly always lower than for the other group of models.

We would normally presume that providing a model with more data points
should improve its robustness, leading to more stable and improved results. Hav-
ing added the Funcom dataset, which is nearly ten times the size of the next
largest dataset, our assumption was initially that this would lead to a substantial
improvement in the scores fetched for Java-based datasets. However, this hy-
pothesis could not be confirmed as the dataset performed on par and often even
below the much smaller CodeSearchNet Java and TL-CodeSum datasets. This
indicates that the performance of a dataset on the varying models is not neces-
sarily linked to its size but rather to the nature of the programming language

34

6. Conclusion and Outlook 35

that the dataset is based on. Considering performance metrics by language, we
can split the programming languages into three groups:

1. Languages that are (nearly) averse to any modification

2. Languages that are not impacted by mild modifications but are affected by
severe modifications

3. Languages that are impacted even by small modifications.

Into the first group belong PHP and Go, into the second Python and Java
(with its three datasets), and into the third group just Javascript.

We can also state that more severe lexical attacks, as defined in section 5.5,
will lead to larger drops in performance across all metrics. This means that we
can not only state that there is a performance drop but that the magnitude of
this drop is also directly related to the restrictiveness that the attack imposes on
the dataset.

The confused inference method scores higher across all metrics for all models
and all attacks. The conclusion that can be deduced from this is that the models
perform better when the training data is more similar to the test data from a
lexical point of view, even if this means that the lexical information contained in
a single snippet is reduced.

6.2 Outlook

As discussed, a central tenet of the design philosophy behind the pipeline is its
modular flexibility. Any aspect can be appended to, so naturally, it is sensible to
add more attacks, models, and programming language datasets. Regarding the
attacks, we have also designed translation attacks that were not pursued due to
financial considerations. Finding a cost-efficient alternative for this in the future
may be beneficial. Furthermore, another interesting angle could be to utilize
other hashes than SHA1, which, for example, are shorter and could be tokenized
into fewer symbols. We have also been considering adding the CodeBERT model
to the pipeline [25]; however, as of the time of writing, we have yet to be suc-
cessful in our attempts to integrate this model into the pipeline. Other models,
including those that are tasked with conducting code summarization, such as
CodeXGlue [26], have also been considered to be added in the future. Adding
new programming languages will rely on generating suitable datasets as well as
writing or adapting the existing attacks to work for this new programming lan-
guage. Furthermore, based on the existing datasets and the performance metrics
that have been observed grouped by programming language, it would also be an
interesting research question to investigate what exactly makes some languages
more robust to modifications than others.

6. Conclusion and Outlook 36

One feature in particular that has been discussed is the possibility of com-
pounding multiple different attacks on top of one another. This is currently not
supported by the pipeline and would require a major rewrite of a large section
of the code base. On top of the technical difficulties, it would also enormously
increase the number of possible combinations of attacks that have to be inves-
tigated. Even just compounding two attacks would, with the current set of
available attacks, lead to more than 400 possible datasets that must be tested.
Furthermore, the additional benefit to be gained from doing this is marginal, as
even just our set of current attacks leads to (significant) performance decreases.

As seen from the results and stated in the results, a different tokenization
using the Python tokenization library rather than the Natural Language Toolkit
library (NLTK) may result in different results for the simpler CodeSearchNet
family of models. Investigating these discrepancies between different tokenizers
could in itself be an interesting research topic.

Another consideration that should be made in the future is to challenge the
notion that MRR should be considered as the central metric. The CodeSearchNet
authors do not explain why MRR should be used as a measure of performance
for this ranking task. We have added the Top-1, Top-5, and Top-10 metrics to
gain additional performance insights. Interestingly it appears that MRR most
often scores somewhere between the score of the Top-1 and the Top-5 metric.
Nevertheless, we should question why MRR is the go-to metric for code search.

Bibliography

[1] E. Shi, Y. Wang, L. Du, H. Zhang, S. Han, D. Zhang, and H. Sun,
“CAST: enhancing code summarization with hierarchical splitting and
reconstruction of abstract syntax trees,” CoRR, vol. abs/2108.12987, 2021.
[Online]. Available: https://arxiv.org/abs/2108.12987

[2] F. Markus, “Algorithm learning from data,” 2022. [Online]. Available:
https://pub.tik.ee.ethz.ch/students/2022-FS/BA-2022-36.pdf

[3] “Codesearchnet model architecture Link.” [Online]. Available: https://
github.com/github/CodeSearchNet/blob/master/images/architecture.png

[4] X. Gu, H. Zhang, and S. Kim, “Deep code search,” 2018 IEEE/ACM 40th In-
ternational Conference on Software Engineering (ICSE), pp. 933–944, 2018.

[5] B. Miutra and N. Craswell, “An introduction to neural information
retrieval,” Found. Trends Inf. Retr., vol. 13, no. 1, p. 1–126, dec 2018.
[Online]. Available: https://doi.org/10.1561/1500000061

[6] H. Husain, H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code
search,” CoRR, vol. abs/1909.09436, 2019. [Online]. Available: http:
//arxiv.org/abs/1909.09436

[7] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
CoRR, vol. abs/1409.1259, 2014. [Online]. Available: http://arxiv.org/abs/
1409.1259

[8] Y. Kim, “Convolutional neural networks for sentence classification,” CoRR,
vol. abs/1408.5882, 2014. [Online]. Available: http://arxiv.org/abs/1408.
5882

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” CoRR, vol.
abs/1706.03762, 2017. [Online]. Available: http://arxiv.org/abs/1706.03762

[10] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. B. Clement, D. Drain,
N. Sundaresan, J. Yin, D. Jiang, and M. Zhou, “Graphcodebert: Pre-
training code representations with data flow,” CoRR, vol. abs/2009.08366,
2020. [Online]. Available: https://arxiv.org/abs/2009.08366

37

https://arxiv.org/abs/2108.12987
https://pub.tik.ee.ethz.ch/students/2022-FS/BA-2022-36.pdf
https://github.com/github/CodeSearchNet/blob/master/images/architecture.png
https://github.com/github/CodeSearchNet/blob/master/images/architecture.png
https://doi.org/10.1561/1500000061
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2009.08366

Bibliography 38

[11] J. Studer, “Contrastive learning for programming languages,” 2021. [Online].
Available: https://pub.tik.ee.ethz.ch/students/2021-HS/BA-2021-25.pdf

[12] N. Yang, F. Wei, B. Jiao, D. Jiang, and L. Yang, “xmoco: Cross momentum
contrastive learning for open-domain question answering,” 2021. [Online].
Available: https://aclanthology.org/2021.acl-long.477.pdf

[13] K. He, H. Fan, Y. Wu, S. Xie, and R. B. Girshick, “Momentum contrast for
unsupervised visual representation learning,” CoRR, vol. abs/1911.05722,
2019. [Online]. Available: http://arxiv.org/abs/1911.05722

[14] Anonymous, “Contrastive learning of natural language and code rep-
resentations for semantic code search,” 2021. [Online]. Available:
https://openreview.net/forum?id=eiAkrltBTh4

[15] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny, “Barlow twins: Self-
supervised learning via redundancy reduction,” CoRR, vol. abs/2103.03230,
2021. [Online]. Available: https://arxiv.org/abs/2103.03230

[16] “Graphcodebert github repository Link.” [Online]. Available: https://github.
com/microsoft/CodeBERT/tree/master/GraphCodeBERT/codesearch

[17] “Slurm overview Link.” [Online]. Available: https://computing.ee.ethz.ch/
Services/SLURM

[18] “Gitlab repository Link.” [Online]. Available: https://gitlab.ethz.ch/
disco-students/mlmfc

[19] “Mrr definition Link.” [Online]. Available: https://en.wikipedia.org/wiki/
Mean_reciprocal_rank

[20] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for auto-
matic evaluation of machine translation,” in Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics. Philadelphia,
Pennsylvania, USA: Association for Computational Linguistics, Jul. 2002,
pp. 311–318. [Online]. Available: https://aclanthology.org/P02-1040

[21] “User manual for pipeline Link.” [Online]. Available: https://www.overleaf.
com/read/jshzxwrfpfsf

[22] “Tl codesum dataset Link.” [Online]. Available: https://github.com/
xing-hu/TL-CodeSum

[23] “Funcom dataset Link.” [Online]. Available: https://s3.us-east-2.
amazonaws.com/icse2018/index.html

[24] “Mlmfc full score set, Link.” [Online]. Available: https://docs.google.com/
spreadsheets/d/1u0HSNgnu87EG3GNypja5ypwW8pCFqGgDLIqBgtSiabI/
edit?usp=sharing

https://pub.tik.ee.ethz.ch/students/2021-HS/BA-2021-25.pdf
https://aclanthology.org/2021.acl-long.477.pdf
http://arxiv.org/abs/1911.05722
https://openreview.net/forum?id=eiAkrltBTh4
https://arxiv.org/abs/2103.03230
https://github.com/microsoft/CodeBERT/tree/master/GraphCodeBERT/codesearch
https://github.com/microsoft/CodeBERT/tree/master/GraphCodeBERT/codesearch
https://computing.ee.ethz.ch/Services/SLURM
https://computing.ee.ethz.ch/Services/SLURM
https://gitlab.ethz.ch/disco-students/mlmfc
https://gitlab.ethz.ch/disco-students/mlmfc
https://en.wikipedia.org/wiki/Mean_reciprocal_rank
https://en.wikipedia.org/wiki/Mean_reciprocal_rank
https://aclanthology.org/P02-1040
https://www.overleaf.com/read/jshzxwrfpfsf
https://www.overleaf.com/read/jshzxwrfpfsf
https://github.com/xing-hu/TL-CodeSum
https://github.com/xing-hu/TL-CodeSum
https://s3.us-east-2.amazonaws.com/icse2018/index.html
https://s3.us-east-2.amazonaws.com/icse2018/index.html
https://docs.google.com/spreadsheets/d/1u0HSNgnu87EG3GNypja5ypwW8pCFqGgDLIqBgtSiabI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1u0HSNgnu87EG3GNypja5ypwW8pCFqGgDLIqBgtSiabI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1u0HSNgnu87EG3GNypja5ypwW8pCFqGgDLIqBgtSiabI/edit?usp=sharing

Bibliography 39

[25] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model for
programming and natural languages,” CoRR, vol. abs/2002.08155, 2020.
[Online]. Available: https://arxiv.org/abs/2002.08155

[26] “Codexglue code summarization model Link.” [Online]. Avail-
able: https://github.com/microsoft/CodeXGLUE/tree/main/Code-Text/
code-to-text/code

[27] “Codesearch full dataset, Link.” [Online]. Available: https://github.com/
github/CodeSearchNet/blob/master/notebooks/ExploreData.ipynb

https://arxiv.org/abs/2002.08155
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Text/code-to-text/code
https://github.com/microsoft/CodeXGLUE/tree/main/Code-Text/code-to-text/code
https://github.com/github/CodeSearchNet/blob/master/notebooks/ExploreData.ipynb
https://github.com/github/CodeSearchNet/blob/master/notebooks/ExploreData.ipynb

Appendix A

Complete list of tables for worst
performances

The results section only covered some of the worst performances and outliers
observed, so below we have assembled a list of all worst scores for all available
datasets.

Most Popular MRR Top-1 Top-5 Top-10

NBoW 0.007 0.001 0.005 0.010

SelfAtt 0.007 0.001 0.004 0.009

ConvSelfAtt 0.008 0.001 0.006 0.012

1D-CNN 0.007 0.001 0.005 0.009

GraphCodeBERT 0.001 0.000 0.000 0.001

SynCoBERT 0.000 0.000 0.000 0.000

Table A.1: The worst absolute scores for the Most Popular attack for the Python
dataset.

Most Popular MRR [%] Top-1 [%] Top-5 [%] Top-10 [%]

NBoW 98.70 99.77 99.24 98.62

SelfAtt 98.46 99.71 99.30 98.63

ConvSelfAtt 98.24 99.70 98.95 98.23

1D-CNN 97.74 99.52 98.80 98.26

GraphCodeBERT 99.86 100 100 99.89

SynCoBERT 100 100 100 100

Table A.2: The worst relative scores for the Most Popular attack for the Python
dataset expressed as a percentage change relative to the baseline No Comment
scores.

A-1

Complete list of tables for worst performances A-2

Most Popular MRR Top-1 Top-5 Top-10

NBoW 0.009 0.001 0.006 0.013

SelfAtt 0.092 0.045 0.119 0.173

ConvSelfAtt 0.172 0.099 0.237 0.312

1D-CNN 0.078 0.036 0.101 0.157

GraphCodeBERT 0.455 0.344 0.584 0.668

SynCoBERT 0.465 0.361 0.585 0.665

Table A.3: The worst absolute scores for the Most Popular attack for the Java
dataset.

Most Popular MRR [%] Top-1 [%] Top-5 [%] Top-10 [%]

NBoW 18.18 50.00 45.45 35.00

SelfAtt 66.30 75.81 67.40 60.77

ConvSelfAtt 47.24 58.23 43.57 37.60

1D-CNN 69.17 78.70 70.03 61.99

GraphCodeBERT 28.57 35.10 24.25 19.42

SynCoBERT 30.91 37.44 25.95 20.83

Table A.4: The worst relative scores for the Most Popular attack for the Java
dataset expressed as a percentage change relative to the baseline No Comment
scores.

Complete list of tables for worst performances A-3

Fullhash MRR Top-1 Top-5 Top-10

NBoW 0.010 0.002 0.010 0.016

SelfAtt 0.049 0.024 0.063 0.092

ConvSelfAtt 0.082 0.045 0.106 0.149

1D-CNN 0.036 0.015 0.045 0.065

GraphCodeBERT 0.291 0.198 0.386 0.474

SynCoBERT 0.225 0.143 0.305 0.384

Table A.5: The worst absolute scores for the Fullhash attack for the Javascript
dataset.

Fullhash MRR [%] Top-1 [%] Top-5 [%] Top-10 [%]

NBoW 0.00 -100.00 -11.11 0.00

SelfAtt 65.73 73.33 66.31 61.34

ConvSelfAtt 57.51 64.00 58.27 52.85

1D-CNN 38.98 44.44 43.04 39.25

GraphCodeBERT 48.40 56.48 44.30 38.28

SynCoBERT 53.13 62.37 48.91 42.86

Table A.6: The worst relative scores for the Fullhash attack for the Javascript
dataset expressed as a percentage change relative to the baseline No Comment
scores.

Complete list of tables for worst performances A-4

Fullhash MRR Top-1 Top-5 Top-10

NBoW 0.525 0.419 0.649 0.720

SelfAtt 0.417 0.311 0.536 0.621

ConvSelfAtt 0.421 0.298 0.562 0.664

1D-CNN 0.284 0.186 0.383 0.480

GraphCodeBERT 0.486 0.356 0.597 0.682

SynCoBERT 0.461 0.355 0.578 0.662

Table A.7: The worst absolute scores for the Fullhash attack for the PHP dataset.
Fullhash MRR [%] Top-1 [%] Top-5 [%] Top-10 [%]

NBoW 22.68 27.38 19.28 16.67

SelfAtt 39.83 48.34 33.00 27.37

ConvSelfAtt 37.07 47.99 28.32 20.95

1D-CNN 53.82 63.95 47.46 39.92

GraphCodeBERT 38.10 46.06 31.85 25.95

SynCoBERT 34.24 41.23 29.51 24.08

Table A.8: The worst relative scores for the Fullhash attack for the PHP dataset
expressed as a percentage change relative to the baseline No Comment scores.

Complete list of tables for worst performances A-5

64-shift-dataset MRR Top-1 Top-5 Top-10

NBoW 0.013 0.002 0.014 0.023

SelfAtt 0.224 0.140 0.204 0.384

ConvSelfAtt 0.354 0.255 0.455 0.545

1D-CNN 0.220 0.149 0.285 0.359

GraphCodeBERT 0.590 0.470 0.736 0.812

SynCoBERT 0.670 0.565 0.797 0.854

Table A.9: The worst absolute scores for the 64-shift-dataset attack for the Go
dataset.

64-shift-dataset MRR [%] Top-1 [%] Top-5 [%] Top-10 [%]

NBoW 79.03 93.55 82.72 79.82

SelfAtt 72.14 81.18 76.77 57.71

ConvSelfAtt 56.24 66.05 48.18 39.98

1D-CNN 70.94 78.47 65.87 58.55

GraphCodeBERT 30.59 40.36 20.69 14.62

SynCoBERT 24.55 33.14 15.21 10.86

Table A.10: The worst relative scores for the 64-shift-dataset attack for the Go
dataset expressed as a percentage change relative to the baseline No Comment
scores.

Complete list of tables for worst performances A-6

64-shift-dataset MRR Top-1 Top-5 Top-10

NBoW 0.016 0.004 0.016 0.030

SelfAtt 0.218 0.149 0.283 0.340

ConvSelfAtt 0.275 0.201 0.350 0.416

1D-CNN 0.145 0.088 0.194 0.248

GraphCodeBERT 0.464 0.350 0.601 0.689

SynCoBERT 0.379 0.274 0.501 0.586

Table A.11: The worst absolute scores for the 64-shift-dataset attack for the TL-
CodeSum dataset.

64-shift-dataset MRR [%] Top-1 [%] Top-5 [%] Top-10 [%]

NBoW 61.90 76.47 72.88 64.29

SelfAtt 40.60 50.17 35.24 29.75

ConvSelfAtt 34.68 42.07 29.29 24.50

1D-CNN 55.66 65.63 51.98 44.77

GraphCodeBERT 27.95 34.82 22.45 18.27

SynCoBERT 9.33 16.97 9.24 7.86

Table A.12: The worst relative scores for the 64-shift-dataset attack for the TL-
CodeSum dataset expressed as a percentage change relative to the baseline No
Comment scores.

Complete list of tables for worst performances A-7

64-shift-dataset MRR Top-1 Top-5 Top-10

NBoW 0.009 0.001 0.006 0.014

SelfAtt 0.155 0.085 0.211 0.299

ConvSelfAtt 0.170 0.095 0.232 0.332

1D-CNN 0.105 0.046 0.144 0.225

GraphCodeBERT N/A N/A N/A N/A

SynCoBERT N/A N/A N/A N/A

Table A.13: The worst absolute scores for the 64-shift-dataset attack for the
Funcom dataset.

64-shift-dataset MRR [%] Top-1 [%] Top-5 [%] Top-10 [%]

NBoW 0.00 0.00 0.00 0.00

SelfAtt 38.98 44.81 36.64 31.26

ConvSelfAtt 29.46 37.09 29.05 22.43

1D-CNN 49.03 61.67 50.17 42.16

GraphCodeBERT N/A N/A N/A N/A

SynCoBERT N/A N/A N/A N/A

Table A.14: The worst relative scores for the 64-shift-dataset attack for the
Funcom dataset expressed as a percentage change relative to the baseline No
Comment scores.

Appendix B

Complete list of tables for best
performances

The results section only covered some of the best performances and outliers ob-
served, so below we have assembled a list of all best scores for all available
datasets.

B-1

Complete list of tables for best performances B-2

Random Permutation MRR Top-1 Top-5 Top-10

NBoW 0.643 0.545 0.762 0.822

SelfAtt 0.516 0.417 0.626 0.696

ConvSelfAtt 0.497 0.404 0.601 0.669

1D-CNN 0.339 0.303 0.496 0.581

GraphCodeBERT 0.725 0.623 0.853 0.900

SynCoBERT 0.683 0.585 0.801 0.857

Table B.1: The best absolute scores for the Random Permutation attack for the
Python dataset.
Random Permutation MRR [%] Top-1 [%] Top-5 [%] Top-10 [%]

NBoW -19.74 -25.87 -15.81 -12.76

SelfAtt -13.66 -20.52 -9.25 -5.78

ConvSelfAtt -9.23 -19.53 -2.04 1.33

1D-CNN -9.35 -45.67 -19.52 -12.60

GraphCodeBERT 4.98 7.01 3.07 2.28

SynCoBERT 3.94 4.88 3.26 2.39

Table B.2: The best relative scores for the Random Permutation attack for the
Python dataset expressed as a percentage change relative to the baseline No
Comment scores.

Complete list of tables for best performances B-3

3-Shift-Snippet MRR Top-1 Top-5 Top-10

NBoW 0.010 0.001 0.009 0.016

SelfAtt 0.188 0.113 0.256 0.336

ConvSelfAtt 0.297 0.209 0.388 0.459

1D-CNN 0.222 0.144 0.298 0.373

GraphCodeBERT 0.623 0.513 0.757 0.817

SynCoBERT 0.659 0.560 0.778 0.829

Table B.3: The best absolute scores for the 3-Shift-Snippet attack for the Java
dataset.

3-Shift-Snippet MRR [%] Top-1 [%] Top-5 [%] Top-10 [%]

NBoW 9.09 50.00 18.18 20.00

SelfAtt 31.14 39.25 29.86 23.81

ConvSelfAtt 8.90 11.81 7.62 8.20

1D-CNN 12.25 14.79 11.57 9.69

GraphCodeBERT 2.20 3.21 1.82 1.45

SynCoBERT 2.08 2.95 1.52 1.31

Table B.4: The best relative scores for the 3-Shift-Snippet attack for the Java
dataset expressed as a percentage change relative to the baseline No Comment
scores.

Complete list of tables for best performances B-4

3-Shift-Snippet MRR Top-1 Top-5 Top-10

NBoW 0.009 0.001 0.007 0.014

SelfAtt 0.094 0.047 0.132 0.179

ConvSelfAtt 0.136 0.077 0.187 0.248

1D-CNN 0.056 0.023 0.075 0.108

GraphCodeBERT 0.538 0.432 0.665 0.741

SynCoBERT 0.450 0.348 0.567 0.643

Table B.5: The best absolute scores for the 3-Shift-Snippet attack for the
Javascript dataset.

3-Shift-Snippet MRR [%] Top-1 [%] Top-5 [%] Top-10 [%]

NBoW 10.00 0.00 22.22 12.50

SelfAtt 34.27 47.78 29.41 24.79

ConvSelfAtt 29.53 38.40 26.38 21.52

1D-CNN 5.08 14.81 5.06 -0.93

GraphCodeBERT 4.61 5.05 4.04 3.52

SynCoBERT 6.25 8.42 5.03 4.32

Table B.6: The best relative scores for the 3-Shift-Snippet attack for the
Javascript dataset expressed as a percentage change relative to the baseline No
Comment scores.

Complete list of tables for best performances B-5

64-Shift-Snippet MRR Top-1 Top-5 Top-10

NBoW 0.713 0.622 0.825 0.874

SelfAtt 0.630 0.533 0.749 0.810

ConvSelfAtt 0.682 0.581 0.805 0.860

1D-CNN 0.627 0.531 0.740 0.805

GraphCodeBERT 0.737 0.636 0.861 0.908

SynCoBERT 0.685 0.586 0.805 0.860

Table B.7: The best absolute scores for the 64-Shift-Snippet attack for the PHP
dataset.

64-Shift-Snippet MRR [%] Top-1 [%] Top-5 [%] Top-10 [%]

NBoW -5.01 -7.80 -2.61 -1.16

SelfAtt 9.09 11.46 6.38 5.26

ConvSelfAtt -1.94 -1.40 -2.68 -2.38

1D-CNN -1.95 -2.91 -1.51 -0.75

GraphCodeBERT 2.51 3.64 1.71 1.41

SynCoBERT 2.28 2.98 1.83 1.38

Table B.8: The best relative scores for the 64-Shift-Snippet attack for the PHP
dataset expressed as a percentage change relative to the baseline No Comment
scores.

Complete list of tables for best performances B-6

3-Shift-Snippet MRR Top-1 Top-5 Top-10

NBoW 0.163 0.111 0.208 0.256

SelfAtt 0.727 0.652 0.817 0.857

ConvSelfAtt 0.790 0.732 0.863 0.889

1D-CNN 0.742 0.680 0.820 0.846

GraphCodeBERT 0.843 0.778 0.924 0.949

SynCoBERT 0.888 0.844 0.942 0.953

Table B.9: The best absolute scores for the 3-Shift-Snippet attack for the Go
dataset.

3-Shift-Snippet MRR [%] Top-1 [%] Top-5 [%] Top-10 [%]

NBoW -162.90 -258.06 -156.79 -124.56

SelfAtt 9.58 12.37 6.95 5.62

ConvSelfAtt 2.35 2.53 1.71 2.09

1D-CNN 1.98 1.73 1.80 2.31

GraphCodeBERT 0.82 1.27 0.43 0.21

SynCoBERT 0.00 0.12 -0.21 -0.10

Table B.10: The best relative scores for the 3-Shift-Snippet attack for the Go
dataset expressed as a percentage change relative to the baseline No Comment
scores.

Complete list of tables for best performances B-7

3-Shift-Snippet MRR Top-1 Top-5 Top-10

NBoW 0.044 0.022 0.059 0.077

SelfAtt 0.400 0.319 0.487 0.543

ConvSelfAtt 0.452 0.361 0.554 0.614

1D-CNN 0.350 0.269 0.439 0.495

GraphCodeBERT 0.621 0.512 0.755 0.826

SynCoBERT 0.501 0.408 0.642 0.725

Table B.11: The best absolute scores for the 3-Shift-Snippet attack for the TL-
CodeSum dataset.

3-Shift-Snippet MRR [%] Top-1 [%] Top-5 [%] Top-10 [%]

NBoW -4.76 -29.41 0.00 8.33

SelfAtt -8.99 -6.69 -11.44 -12.19

ConvSelfAtt -7.36 -4.03 -11.92 -11.43

1D-CNN -7.03 -5.08 -8.66 -10.24

GraphCodeBERT 3.57 4.66 2.58 2.02

SynCoBERT -19.86 -23.64 -16.30 -13.99

Table B.12: The best relative scores for the 3-Shift-Snippet attack for the TL-
CodeSum dataset expressed as a percentage change relative to the baseline No
Comment scores.

Complete list of tables for best performances B-8

64-Shift-Snippet MRR Top-1 Top-5 Top-10

NBoW 0.009 0.001 0.005 0.010

SelfAtt 0.237 0.148 0.325 0.423

ConvSelfAtt 0.251 0.156 0.344 0.450

1D-CNN 0.186 0.106 0.260 0.354

GraphCodeBERT N/A N/A N/A N/A

SynCoBERT N/A N/A N/A N/A

Table B.13: The best absolute scores for the 64-Shift-Snippet attack for the
Funcom dataset.

64-Shift-Snippet MRR [%] Top-1 [%] Top-5 [%] Top-10 [%]

NBoW 0.00 0.00 16.67 28.57

SelfAtt 6.69 3.90 2.40 2.76

ConvSelfAtt -4.15 -3.31 -5.20 5.14

1D-CNN 9.71 11.67 10.03 9.00

GraphCodeBERT N/A N/A N/A N/A

SynCoBERT N/A N/A N/A N/A

Table B.14: The best relative scores for the 64-Shift-Snippet attack for the Fun-
com dataset expressed as a percentage change relative to the baseline No Com-
ment scores.

Appendix C

Hyperparameters for models

The used hyperparameters for all models are listed below. If hyperparameters
are left unspecified, the default value is assumed.

C.1 CodeSearchNet

max num epochs 300

test batch size 1000

distance metric cosine

Table C.1: CodeSearchNet hyperparameters

Specify do_test and do_eval or do_train for testing or training respectively.
The remaining hyperparameters are identical between the two.

C.2 GraphCodeBERT

Specify do_test and do_eval or do_train for testing or training respectively.
The remaining hyperparameters are identical between the two. For the training
batch size, 64 is used only in the case of the Funcom dataset all other dataset
are run with batch size 32.

C.3 SynCoBERT

After training is completed it can occur that the model continues to run if the
testing flag has been raised. While this will lead to an error, it will not crash the
model. As such it is necessary to stop the script and re-run it with the following
specifications:

C-1

Hyperparameters for models C-2

num training epochs 10

code length 256

data flow length 64

nl length 128

train batch size 32/64

eval batch size 64

learning rate 2 ∗ 10−5

seed 123456

Table C.2: GraphCodeBERT hyperparameters

effective queue size 4096

effective batch size 64/128

learning rate 10−5

num hard negatives 2

debug data skip interval 1

num workers 2

always use full val set as parameter

num epochs 6

language specify desired language

checkpoint base path specify base path

checkpoint name specify checkpoint name

generate checkpoints set as parameter

shuffle set as parameter

Table C.3: SynCoBERT hyperparameters for training. The effective batch size
is set at 128 for Python datasets only. All other dataset are run at batchsize 64.

Hyperparameters for models C-3

effective queue size 4096

effective batch size 32

learning rate 10−5

num hard negatives 2

debug data skip interval 1

num workers 2

always use full val set as parameter

num epochs 6

language specify desired language

checkpoint base path specify base path

checkpoint name specify checkpoint name

do test set as parameter

skip training set as parameter

shuffle set as parameter

Table C.4: SynCoBERT hyperparameters for testing. Note that setting
−−skip_training will make most of the above set training parameters redun-
dant.

Appendix D

CodeSearch Dataset

The original CodeSearch data corpus. [27]

PL Train Valid Test

Python 412,178 23,107 22,176

Java 454,451 15,328 26,909

PHP 523,712 26,015 28,391

Go 317,832 14,242 14,291

Javascript 123,889 8,253 6,483

Table D.1: The original dataset before cleaning and processing

D-1

Appendix E

Weighted scores calculation
dataset

Below are the size of the datasets that are used to calculate the weighted scores.
Consider that we must use the test sizes since the calculated scores are based on
this.

PL Size

Python 14,723

Java 10,953

PHP 14,014

Go 8,122

Javascript 3,235

TL-CodeSum 8,689

Funcom 99,032

Table E.1: The dataset used for calculating the weighted scores. Note that there
may be small variations, depending on which dataset is used for the calculation.
Above are the values for the No Comment dataset.

E-1

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Code Search
	1.2 Model Robustness
	1.3 Attacks
	1.4 Pipeline
	1.5 Inference Type
	1.6 Code Summarization

	2 Related Work
	2.1 Models
	2.1.1 CodeSearchNet
	2.1.2 GraphCodeBERT
	2.1.3 SynCoBERT

	2.2 CodeSearch Dataset

	3 Method and Procedure
	3.1 Pipeline
	3.1.1 Launching a job
	3.1.2 Moving to the main script
	3.1.3 Moving to the attack script
	3.1.4 Moving to the training script
	3.1.5 Moving to the testing script
	3.1.6 Returning to the main script
	3.1.7 Benefits of modular pipeline architecture

	3.2 Dataset Construction
	3.3 Attacks
	3.3.1 No Comment
	3.3.2 Full Hash
	3.3.3 K-Shift Dataset
	3.3.4 K-Shift Snippet
	3.3.5 Most Popular
	3.3.6 Ordered ID
	3.3.7 Random Permutation
	3.3.8 Translation

	3.4 Database Utilization

	4 Experiment Details
	4.1 Server and Shell Scripting
	4.2 Environments

	5 Results
	5.1 Default versus No Comment
	5.2 Confused versus Not Confused
	5.3 Best and Worst Performance by dataset
	5.4 Weighted scores per attack per model
	5.5 Severity of attack against Performance

	6 Conclusion and Outlook
	6.1 Conclusion
	6.2 Outlook

	Bibliography
	A Complete list of tables for worst performances
	B Complete list of tables for best performances
	C Hyperparameters for models
	C.1 CodeSearchNet
	C.2 GraphCodeBERT
	C.3 SynCoBERT

	D CodeSearch Dataset
	E Weighted scores calculation dataset

