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Abstract

This research aims to perform the Left-Right Direction Prediction L/R task on
the Visual Symbol Search data paradigm, as an extension of the work by [1]. Pre-
viously, the LR task was trained on the anti-saccade paradigm in the EEGEyeNet
dataset, which was a structured experiment to record the direction of the gaze
of participants after explicit cues. The VSS paradigm is a cognitive task with
no explicit instructions for the participant to move their gaze in a certain direc-
tion. Thus, I explore whether the previously employed data preparation method
and CNN model is robust enough to perform the L/R task on a dataset such as
the VSS paradigm, while identifying and implementing necessary modifications.
Ultimately, I was able to achieve an average accuracy of 0.9968, highlighting
the robustness of the existing model as well as the efficacy of the proposed data
preparation technique.
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Chapter 1

Introduction

Eye Tracking is a growing field of study due to its immense potential in areas
such as UI/UX[2], behavioural research, assistance technology[3] etc. An active
area of research in this field is the use of electroencephalographic (EEG) data to
complement existing eye tracking solutions or to replace them with a low-cost al-
ternative [4]. Any EEG based solution aiming to complement or replace existing
Eye Tracking solutions needs to be very robust. In 2021, [1] released a powerful
dataset of high quality EEG recordings over 3 different experiment paradigms
called EEGEyeNet. Furthermore, they developed their own benchmark models
for gaze estimation tasks from EEG signals. One of these gaze estimation tasks,
the left-right direction task, focused on predicting which horizontal direction a
participant’s gaze went. In [1], they developed this direction estimation bench-
mark model by training it on the anti-saccade experiment paradigm, a structured
experiment where a participant’s gaze is controlled using cues. In this thesis, I
wish to build upon their previous work by exploring the robustness of their model
and data preparation techniques. I plan to try and apply their benchmark models
to a dataset obtained from the Visual Symbol Search (VSS) experiment paradigm,
where the participants were focused on solving cognitive and physical tasks with
no prompts or cues to control their gaze. My contribution in this thesis is not to
just explore the robustness of the existing benchmark models, but also to fully
explore the data, build appropriate data preparation methods and optimize the
accuracy for this task.
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Chapter 2

EEGEyeNet

The EEGEyeNet database was constructed by recording hours of EEG using a
500Hz 128-channel EEG Geodesic Hydrocel system, from 356 healthy adults for
over 3 different experiment paradigms [1]. Here I will introduce two of those
experiment paradigms:

• Pro- and Antisaccade: Participants start by focusing on the central fixation
square at centre of their screens. Every 1-3.5 seconds, a cue will appear for
exactly 1 second on either the left or right of the central fixation square.
In pro-saccade trials, participants are asked to immediately fixate on the
cue, while during anti-saccade trials, they are asked to perform a saccade
in the opposite direction. Once the cue disappears, the participants return
to fixate on the central fixation square. As can be seen, this is a very rigid
experiment that seeks to prompt and control the participant’s gaze as much
as possible. The participant is also likely only thinking about their gaze
throughout the experiment.

• Visual Symbol Search: Participants are given 15 rows of symbol search
questions at a time, wherein each row consists of 2 target symbols on the
left and 5 search symbols on the right, and the participants press the "YES"
button if either of the target symbols is present in the set of search symbols,
otherwise they press "NO". VSS is a digital version of a clinical method
to measure processing speed. Unlike Anti-saccade, the experiment doesn’t
restrict the participant as they are free to look wherever they want whenever
they want. The participant is also likely not thinking about their gaze at
all, instead focusing on solving the symbol search problem.

EEGEyeNet provides two different types of preprocessing on the raw EEG,
using the openly available toolbox from [5]:

• Minimal preprocessing: Bad electrodes are identified and interpolated and
the data is filtered with a 40 Hz high-pass filter and 0.5 Hz low-pass filter.
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2. EEGEyeNet 3

• Maximal preprocessing: Tries to remove contamination from a larger num-
ber of external artifacts such as the heart, muscles, eyes etc. using Indepen-
dent component analysis along with a pre-trained classifier that "estimates
the probability of a component reflecting artifactual activity"[1].

Minimally prepossessed data consistently performed better with benchmark
models for gaze estimation tasks since it still included some ocular artifacts.



Chapter 3

Data Processing

3.1 Data Exploration

For the left-right direction task, I decided to divide the dataset into individual
sequences, where each sequence is the EEG and Eye Tracker’s recording during
the occurrence of a consecutive fixation, saccade and fixation. The saccade is
the important event for this task since that is when the eye actually moves. The
preceding and proceeding fixations were included to account for any neurological
processing that takes place before and after the saccade actually occurs.

My first aim was to analyze how the data is distributed and if the VSS dataset
is even appropriate for the left-right direction task. The first distribution I anal-
ysed was the saccade angle, to ascertain whether the movement was primarily
horizontal in nature. 3.1 shows the distribution of saccade angles plotted on an
angular histogram. As can be observed, a majority of saccades are in the hori-
zontal direction, having saccade angles close to either O degrees or 180 degrees.
Furthermore, we can also observe that the left and right saccades are almost
equally distributed, addressing initial concerns about a class imbalance.

Next, I tried to analyse the distribution of saccade amplitudes over the se-
quences. As can be observed in 3.2, the saccades in the Antisaccade Paradigm can
be classified into 2 types based on their amplitudes: unprompted and uncontrolled
microsaccades and the experiment-induced saccades. The left-right direction task
on the anti-saccade paradigm was trained only on the latter experiment-induced
saccades. Since the distance of the cues from the central fixation square was
fixed, the saccade amplitudes had little variance and could also be considered
(approximately) fixed.

However, since the saccades in the VSS paradigm were uncontrolled and un-
prompted, the distribution of saccade amplitudes could have a high variance.
Thus, I wanted to explore how these amplitudes were currently distributed and if
that variance might lead to lower model performance. 3.3 shows the distribution
of saccade amplitudes (left) and the distribution of the horizontal component of
saccade amplitudes (right) plotted as overlapping histograms for the left (blue)
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3. Data Processing 5

Figure 3.1: Saccade Angle Distribution

and right (orange) class. As expected, given the distribution of saccade angles
shown earlier, the distributions of the saccade amplitudes and the horizontal
component of the saccade amplitudes are very similar. We can also observe that
the distribution of amplitudes is similar for both classes, with most saccades have
amplitudes below 200 units. For saccades with amplitudes beyond 200 units, the
distribution of amplitudes for both classes start to differ, with the right class
having a noticeably higher frequency of amplitudes between 200-400 units, and
the left class having a mildly higher frequency of amplitudes between 400-650
units.

There were some outlier sequences which had a calculated amplitude as high
as 60,000, which is physically impossible. Thus, all sequences with amplitudes
greater than 800 units were marked as outliers and removed.

Finally, I tried to analyse the distribution of the duration of the fixations
and saccades that constitute each sequence. It is important to understand this
distribution so that we can determine how to prepare the data and ascertain an
appropriate fixed input sequence length for the model. The duration distributions
for the sequence and its components were represented using violin plots, with
separate plots for each class. 3.4 shows the initial plots, where the presence
of extraordinary outliers can be observed. Ideally, singular saccades lasting for
30,000 time points (60 secs) shouldn’t even be possible and it is possible that
they arose as a result of equipment failure. Therefore, I removed all sequences
where the total duration of the sequence was greater than 1200. 3.5 shows the
distribution of this updated dataset, with 3.1 showing the exact percentile values.
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Figure 3.2: Saccade Amplitude Distribution (Antisaccade Paradigm) [1]

Figure 3.3: Saccade Amplitude Distribution (VSS Paradigm)

We can observe that the duration distributions for sequences belonging to
both classes is very similar. This further reduces the probability of our model
developing a class bias.

3.2 Data Preparation

In order to prepare the data for the model, I decided to divide the data into fixed-
length samples constructed using the sequences defined in the previous section
(occurrences of a consecutive fixation, saccade and fixation). Thus, each sample
included a 600ms recording from each of the 128 EEG channels as well as the
reference electrode, giving each sample a shape of 129 x 300.

The samples used for the left-right direction task on the anti-saccade paradigm
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Figure 3.4: Saccade Duration Distribution for all sequences

Figure 3.5: Saccade Duration Distribution without outliers

by [1] had a fixed sequence length of 500. This was appropriate for the anti-
saccade paradigm since the gaze of the participant was controlled using a cue
that lasted for exactly 1 second (500 data points). Thus, the 500 data points
recorded during the cue’s existence completely captured a sequence of a consec-
utive fixation, saccade, and fixation.

However, in the VSS dataset, all selected saccades are uncontrolled and un-
prompted and thus, as shown in 3.5, the length of the sequence varies greatly.
This means that either a sequence will be too large for the chosen fixed sequence
length (thus, requiring trimming) or be too small for the chosen fixed sequence
length (thus, requiring padding). The aim was to choose a sequence length that
is large enough to completely encapsulate most sequences, while not being so
large that most of the sample is padding. Given that the 75th percentile for
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Distribution 25th 50th 75th
Sequence Duration (L) 162 202 254
Sequence Duration (R) 173 212 264

Pre-fixation Duration (L) 64 85 118
Pre-fixation Duration (R) 69 91 120

Saccade Duration (L) 13 20 31
Saccade Duration (L) 14 20 28

Post-fixation Duration (L) 63 82 116
Post-fixation Duration (R) 70 93 122

Table 3.1: Distributions of Durations

the duration of a sequence is 254 for the left class and 264 for the right class
(3.1), 300 was chosen as an appropriate fixed sequence length that could cover
most sequences. The fixed sequence was prepared in such a way that the saccade
started exactly at the 140th position. With a median saccade duration of 20, the
saccade would be placed approximately at the center of the fixed distribution.
Thus, only the preceding and proceeding fixations would be the subject of trim-
ming and padding. Finally, the Y label was set to 1 if the direction recorded by
the Eye Tracker for that duration was Right, otherwise the label was set to 0 if
it was Left.

I created three different datasets using this preparation method:

1. Minimally Preprocessed Subset: Dataset prepared from a subset of the
complete Minimally Preprocessed Dataset, consisting of 87 total partici-
pants with 1 experiment trial each. Relatively smaller subset allowed me
to iterate and evaluate the model relatively quickly.

2. Minimally Preprocessed Dataset: Dataset prepared from the complete Min-
imally Preprocessed Dataset, consisting of 222 participants over 2 days with
2 trials per day.

3. Maximally Preprocessed Dataset: Dataset prepared from the complete
Maximally Preprocessed Dataset, consisting of 222 participants over 1 day
with 2 trials per day.

Since minimally preprocessed datasets had consistently outperformed maxi-
mally preprocessed datasets in [1], I chose to initially focus my experiments and
evaluations on a subset of the minimally preprocessed dataset.

All outlier sequences identified during Data Exploration were removed.
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Dataset Total Train Validation Test
Minimally Preprocessed Subset 40,092 32,268 3,912 3,912
Minimally Preprocessed Dataset 372,302 298,536 36,883 36,883
Maximally Preprocessed Dataset 189,363 151,895 18,734 18,734

Table 3.2: Datasets and their size



Chapter 4

Model

I used the CNN benchmark model designed by [1] as it is, without making
any changes. Therefore, the architecture of the model was "a standard one-
dimensional convolutional neural network with 12 layers and additive residual
connections around blocks of three layers. Each layer consists of (1D-)convolution,
batch normalization, ReLU activation and max pooling. In the convolutions we
use 16 filters of size size 64, and for the pooling operation a kernel of size 2
and stride 1. Each residual connection performs a convolution followed by batch
normalization."

The learning rate and the hyperparameters of the model were optimized using
the validation dataset. I used Binary Cross Entropy Loss to train the model and
used the Adam[6] Optimizer along with early stopping on the validation sets.
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Chapter 5

Results

5.1 Initial Results on Minimally Preprocessed Subset

Here I shall present a summary on the results and evaluation of the model after
multiple iterations on a fixed seed. Initially, the model returned an accuracy
score of 0.9301 with the following metrics:

• False Positive Rate: 0.0512

• False Negative Rate: 0.9135

• Precision on Right: 0.9527

• Precision of Left: 0.9066

Figure 5.1: Confusion Matrix of the Initial Result on the Minimally Preprocessed
Subset

These metrics can also inferred from the Confusion Matrix in 5.1. As we had hy-
pothesized during Data Exploration, prediction on both classes performed almost
equally well with no obvious signs of a class bias.
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5.1.1 Model Confidence

Next, I evaluated how confident the model was in its correct and incorrect pre-
dictions, in an effort to explore areas for improvement. First, I plotted the prob-
ability values output by the model for all the correct predictions it made (5.2).
For most of the predictions, the model was very confident as its probabilities
were close to either 0 or 1. However, there was a conspicuous cluster of samples
where the model was not confident at all, with samples from both classes return-
ing probabilities close to 0.5. I also plotted the probability values output by the
model for all the incorrect predictions it made (5.3). It can be observed that the
model was confidently incorrect just as often as it in-confidently incorrect.

Figure 5.2: P(Y==1) for all correct predictions

Figure 5.3: P(Y==1) for all incorrect predictions
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5.1.2 Data from Electrodes 125 and 128

I decided to further analyze the relationship between True Positive, True Nega-
tive, False Positive and False Negative predictions by plotting their corresponding
inputs. [7] showed that most of the important information for eye movement is
highly concentrated in the frontal electrodes, with electrodes 125 and 128 being
the most important. 5.4 shows the location of electrodes 125 and 128 near the
eyes as well as the importance ranking of electrodes for a minimally preprocessed
dataset.

Figure 5.4: Electrode Clustering Visualization. This figure shows the electrode
placement, with the most important electrodes for eye movement coloured pink,
blue, teal and yellow in decreasing order of importance.[7]

Therefore, instead of plotting the input from all channels, I only plotted the
inputs from electrodes 125 (5.5) and 128 (5.6). The first key observation is that
the True Positive and True Negative samples have a clear visual pattern. For
example, when the saccade starts (at time point 140), the plot of Electrode 125
for True Negatives drops significantly. The second observation is that there is a
need for normalization, since even though a pattern exists, it does occur at the
same scale with each sample. For example, the blue sample in the False Positive
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section of 5.5 is misclassified as Positive even though it exhibits the same pattern
as the True Negative samples, just on a larger scale.

Figure 5.5: Plots of Electrode 125 in samples from the test dataset

5.1.3 Distribution of Incorrect Predictions by Subject

I also attempted to explore how correct and incorrect predictions were distributed
amongst different subjects. Surprisingly, there were a few subjects that con-
tributed towards a significant majority of incorrect predictions. For example, in
one particular run, subject ’AR0’ (labelled as 52 here) accounted for almost all
of the prediction errors (5.7), despite having just as many total samples in the
test dataset as other subjects (5.8).

Furthermore, inspecting the recordings from electrode 125 and 128 from these
subjects revealed many exceptionally noisy samples (5.9. in fact, samples from
these subjects were responsible for the conspicuous cluster of inconfident correct
predictions seen in 5.2, and removing them completely tended to make the model
much more confident in its correct predictions (5.10). Through multiple itera-
tions, several other such subjects were found that were creating such out-sized
errors. After analysing the preprocessing logs of the data from these subjects, it
could be ascertained that Electrodes 125 and 128 for all of these subjects were
detected as being of bad quality and thus, interpolated. It seems that the inter-
polation wasn’t effective at modelling the true recordings from these electrodes,
leading to such noisy samples and outsized errors.
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Figure 5.6: Plots of Electrode 128 in samples from the test dataset

5.1.4 Errors and Eye Tracking Data

Finally, I plotted the horizontal eye tracking data for False Positive and False
Negative samples, to ascertain whether there were particular patterns of eye
movement that the model was consistently failing to understand. The plots,
shown in 5.11, go up if the saccade is in the "right" direction and go down if
the saccade is in the "left" direction. The plots uncover two major sources of
error. First is that the Eye Tracker sometimes fails and immediately goes to 0.
This rapid change in value gets miscategorized as a left moving saccade within
the VSS dataset, even though physically no such saccade occurs. The second
source of error is that some singular saccades in the VSS dataset are multi-

Figure 5.7: Number of prediction errors from each subject
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Figure 5.8: Number of samples in the test dataset from each subject

directional. Thus, defining the direction of a saccade based on just its start and
end coordinates does not capture the actual physical movements taking place.

5.1.5 Key Insights

After training and evaluating the model on the minimally preprocessed subset
several times, the following results emerge:

• Padding with zeroes provides better results than mirror padding or no
padding.

• The padded data needs to be normalized using the Max Absolute Normal-
izer for best results.

• All subjects with interpolated electrodes 125 and 128 need to be removed
from the training and test dataset.

• All multi-directional saccades and saccades where the x-coordinate recorded
by the the Eye Tracker equals 0, need to be removed from the dataset.

5.2 Results on the Minimally Preprocessed Dataset

After implementing the insights derived from multiple iterations on the minimally
preprocessed subset, I was able to achieve an average accuracy of 0.9968 on the
complete Minimally Preprocessed Dataset.

• False Positive Rate: 0.0020

• False Negative Rate: 0.0040

• Precision on Right: 0.9983

• Precision of Left: 0.9950
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Figure 5.9: Plots of Electrode 128 in samples from subject ’AR0’

The average accuracy was even higher than the accuracy attained by any of
the benchmark models in [1].

5.2.1 Distribution of Incorrect Predictions by Saccade Ampli-
tude

As explained previously, I wanted to understand whether a dataset consisting of
saccades with varying amplitudes would effect the model’s ability to predict the
direction of eye movement. 5.13 shows that the distribution of incorrect answers
is very close to the original distribution of saccade amplitudes shown in 3.3 and
thus, given the high score, it seems like the variance of the amplitude did not
have a major effect on the model’s ability to make predictions.

5.3 Results on the Maximally Preprocessed Dataset

Using the same model and data preparation technique, I was able to achieve an
average accuracy of 0.9159 on the complete Maximally Preprocessed Dataset.

• False Positive Rate: 0.0918

• False Negative Rate: 0.0770

• Precision on Right: 0.9157



5. Results 18

Figure 5.10: P(Y==1) for all correct predictions after removing samples from
’AR0’

• Precision of Left: 0.9161

Consistent with results from [1], the maximally preprocessed dataset per-
formed worse than the minimally preprocessed dataset. Furthermore, most of
the model’s correct prediction also had low confidence as seen in 5.14.
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Figure 5.11: Horizontal Eye Tracker

Figure 5.12: Confusion Matrix of the Result on the Minimally Preprocessed
Dataset
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Figure 5.13: Distribution of Incorrect Predictions by Saccade Amplitude

Figure 5.14: P(Y==1) for all correct predictions



Chapter 6

Discussion

We were able to successfully demonstrate that the CNN benchmark model de-
scribed in [1] is robust enough that, with analysis based appropriate changes to
data preparation, it can act as an excellent classifier in "realistic" datasets like
the VSS, where the participant is focused on cognitive tasks and their gaze is
unprompted and uncontrolled. A limitation of this thesis is that it was only able
to establish this claim for the CNN benchmark model. Given more time, this re-
search could be generalized to test the performance of modified and unmodified
versions of other benchmark models on datasets such as the VSS as well. Even
though the left-right direction task is the easiest of the gaze estimation tasks,
these results pave the way for future work in implementing such models to es-
timate saccade angle, saccade amplitude, and absolute position on unstructured
"realistic" datasets.

21



Chapter 7

Conclusion

For EEG based models to complement and/or replace expensive Eye Trackers,
they need to be robust enough to perform well even on unstructured and noisy
datasets such as the VSS, not just highly controlled laboratory experiments such
as the Pro/Anti-Saccade Paradigm. My aim with this thesis was to not only
test the robustness of one of the benchmark models but also to explore what
changes in methodologies towards data preparation might be necessary to make
the newer unstructured datasets compatible with the benchmark models. This
thesis shows that an investigative and iterative approach to data exploration and
model evaluation is necessary to transform data in such a way that not only
errors are minimized but the model predictions are also confident.
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