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Abstract

This work discusses the rise of decentralised prediction markets facilitated by
smart contracts and automated market makers (AMMs). These markets allow
individuals to bet on the outcome of a diverse range of events, including pol-
itics, economics, pandemics, and many more. The paper analyses the state of
prediction markets through both theoretical and data analysis, identifying short-
comings in current AMMs and proposing a novel market maker that aims to
provide improved liquidity for converging markets. The theoretical section re-
views mechanisms of order books, AMMs, and market resolutions, as well as
game theoretic properties of prediction markets. In the data analyses we scrape
and study over 2 million transactions, analysing biases and accuracy against sev-
eral dimensions. Through this data analysis we identify problems with liquidity
provisioning for converging prediction markets, and we propose the Smooth Liq-
uidity Market Maker (SLMM) to address this issue. The SLMM is expected to
improve liquidity provisioning, and thereby increasing both trading volume and
the accuracy of prediction markets.
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Chapter 1

Introduction

Humans have always been interested in predicting future events. In the Olympic
games of ancient times people would bet on the outcome of athletic events. In
modern times traders bet in stock markets on the future performance of com-
panies. However, such markets were limited in their specific domains such as
sports and finance because they were dependent on a centralised intermediary to
organise the markets. In recent years, many decentralised applications based on
Ethereum and other blockchains have emerged. One particular application class
are prediction markets. These markets facilitate the prediction of future events
through financial bets. The recent surge of prediction markets has enabled fore-
casts on a much larger variety of events such as politics, economics, pandemics,
natural disasters, sports, pop culture events and military events. Many of these
prediction markets use smart contracts to facilitate predictions, with the prices
being determined by automated market makers (AMMs). The vision of these
prediction markets is that they can aggregate the forecasts of many people and
provide a more accurate prediction than any individual could alone.

In this project, we analyse the state of prediction markets through theoreti-
cal and data analysis. After finding shortcomings in current automated market
makers, we finally propose a novel market maker that aims to provide improved
liquidity for converging markets.

To begin with, we describe the theoretical mechanisms of order books, au-
tomated market makers and market resolutions, as well as some game theoretic
properties of prediction markets in chapter 2. In a second step we scrape and anal-
yse over 2 million transactions from the prediction markets on Polymarket1 ans
provide an analysis thereof in chapter 3. We analyse biases in this historic data,
as well as compare the markets’ accuracy against several other dimensions. We
also perform a specialised analysis on the liquidity provisioning in these markets
in section 3.5. After observing problems with liquidity provisioning for converg-
ing prediction markets in our scraped data, as well as discussing the theoretical
incentive structure that can lead to this problem, we finally propose a new mar-
ket making algorithm in section 4.1. This "Smooth Liquidity Market Maker"
(SLMM) aims to provide improved liquidity for converging markets, thereby in-
creasing both trading volume and the accuracy of prediction markets.

1https://polymarket.com/
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Chapter 2

Theoretical Background

2.1 Definition of Prediction Markets

Prediction markets are markets in which participants make financial bets on the
outcome of future events. For example, a market may include ’yes’/’no’ shares,
where ’yes’/’no’ refer to a question such as "Will event X happen before date Y?".
The owners of shares with the correct outcome receive a predetermined amount,
e.g. 1 USD per share. We will now describe mechanisms for such markets in
more detail.

Centralised vs. Decentralised Prediction Markets

Markets can be centralised, decentralised, or a hybrid thereof. In a centralised
market, a single cooperation coordinates market creation, trades, resolution and
payouts. Most literature on prediction markets was conducted at times when
centralised markets were predominant, such as the Iowa Electronic Market, run
by the university of Iowa as an academic experiment [1]. Since the advent of
Ethereum [2] and other smart contract platforms, prediction markets with various
degrees of decentralisation have been created. For example, prediction markets on
the Polymarket platform1 have smart contract based trading, liquidity provision,
market making, market resolution and payouts – only the market creation remains
centralised in the case of Polymarket.

Examples of Prediction Markets

Prediction Markets for some narrow domains have been around for a long time.
For example, the history of sports betting is believed to date back to the 23rd
Olympic Games in the 7th century BC [3]. In recent decades, some prediction
markets have been created for research purposes, e.g. the Iowa Electronic Markets
which was created in 1998 by the university of Iowa and allows betting on elections

1https://polymarket.com/
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2. Theoretical Background 3

in the US [4]. There are also prediction markets at corporations, for example at
Google and Ford [5, 6]. In these internal markets employees bet on events relevant
for the companies. Most recently, platforms offering predictions on a wide range
of domains have been created, for example Polymarket. The data analysis in
chapter 3 will focus on data from Polymarket.

2.2 Mechanisms of Prediction Markets

As seen in section 2.1, a variety of prediction markets exist. In this section we
focus on common mechanisms of decentralised / semi-decentralised prediction
markets. In particular we will focus on mechanics used by Polymarket, since the
data analysis in chapter 3 will focus on data from Polymarket.

2.2.1 Order Book Based Market Making

Markets can suffer from the so-called "thin market problem" [7]: Traders must
coordinate when and on which assets to trade. This can be overcome by using
an intermediary. Today, two common types of intermediaries for market making
exist: order book based market making and automated market makers. In the case
with an order book, market participants specify a price at which they are willing
to buy or sell a specific outcome token [8]. These positions are then entered into
an order-book. Another market participant may then buy or sell the outcome
token at the price specified in the order book. This approach as the downside
that the think market problem is only overcome to the extent that there are
enough market participants willing to place orders in the order book.

2.2.2 Automated Market Makers

An alternative to order book based market making is the use of Automated
Market Maker (AMM)s. An AMM is an intermediary with which a market
participant may trade at any given time. The basic idea of AMMs is that they
hold a pool of outcome tokens called liquidity pool, which they use to trade with
market participants. The liquidity pool is provided by liquidity providers, who
get fees on trades in exchange for providing liquidity. We will now describe the
mechanisms of AMMs as proposed by Hanson et. al [7] and Angeris et. al [9].
This theoretical foundation is similar to the one used by Polymarket.

Buying & Selling Outcome Tokens and AMM Invariants

When a market participant wants to buy or sell a specific outcome token from the
AMM, the AMM determines the price based on an invariant. Such an invariant is
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a formula that takes the number of outcome tokens held by the AMM’s liquidity
pool as input and outputs a number that ought to be kept constant between buy
/ sell operations by market makers. There are various types of variants, such as
the logarithmic market scoring rule described by Hanson et. al. [7] and the more
recent constant product invariant [9] giving rise to a Constant-Product Market
Maker (CPMM). With CPMMs, the invariant specifies to keep the product of
number of outcome tokens held by the AMM per outcome token type constant.
In detail, the steps for purchasing a specific outcome token from the automated
market maker are:

1. The market participant gives funds (e.g. USDC) to the AMM.

2. The AMM converts the funds into outcome tokens, with equal amounts of
outcome tokens being created per possible outcome. The new outcome to-
kens are added to the liquidity pool of the AMM, which leads to a violation
of the invariant.

3. The AMM gives the market participant outcome tokens of the requested
type until the invariant is restored. Out of the funds given to the market
participants some fees are deducted for the liquidity providers. The fraction
of the funds provided in step 1 and the amount of tokens given to the market
participant in step 3 implies the price at which the market participant
bought the outcome tokens.

Similarly, when selling tokens to the AMM, the AMM receives outcome tokens
of a specific type and then converts outcome tokens back into collateral until the
invariant is restored. The collateral recovered during this process minus fees for
liquidity providers is the remuneration for the market participant.

Liquidity Provision

AMMs have a liquidity pool that holds tokens of the different possible outcomes.
This liquidity pool is used when a market participant wants to buy or sell a
specific outcome token. Initially, the AMM is provided with liquidity by liquid-
ity providers. This liquidity is collateral from which the AMM creates an equal
amount of each possible outcome token. At a later stage in time, the AMM may
have different amounts of tokens for different outcomes, due to market partici-
pants buying and selling outcome tokens. If a liquidity provider wants to add
liquidity to the AMM and the AMM has an imbalance of outcome tokens, the
liquidity provider does not add all newly created outcome tokens to the liquidity
pool, but refunds such an amount of token to the liquidity provider that the
proportions of tokens in the liquidity pool are the same as before the liquidity
provider added liquidity.
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Liquidity providers are incentivised to provide liquidity by earning fees on
trades. For example, a market might have a fixed fee of 0.5%, such that 0.5%
of all trade amounts are distributed to the liquidity providers. The distribution
among the liquidity providers is determined by the fraction of so called liquidity
shares which liquidity providers receive when adding liquidity.

On the other hand, liquidity providers are also exposed to a risk: As described
earlier, buying and selling tokens upholds an invariant such as the constant prod-
uct invariant. In consequence, the proportions of outcome tokens in the liquidity
pool may change. For example, if the possible outcomes are ’yes’ and ’no’, and
market participants buy outcome tokens of the ’yes’ type from a CPMM, the
liquidity pool will have less ’yes’ tokens and more ’no’ tokens. This can be a risk
for liquidity providers: If market participants continue buying ’yes’ and ’yes’ is
the correct outcome, the liquidity pool ends up with worthless ’no’ tokens. The
phenomena of the liquidity pool loosing value as the price changes is also referred
to as "impermanent loss" in the literature [10].

A variant of liquidity provision implemented by some AMMs is concentrated
liquidity [11, 12]. In this variant, a liquidity providers provides a liquidity position
that is only active for a specific price interval, i.e. for a specific interval of
proportions of outcome tokens in the liquidity pool.

2.2.3 Market Resolution

For a prediction market to be useful, it must be possible to resolve the market,
i.e. determine which of the traded outcomes turned out to be correct. Market
resolution is not a trivial task, since there often is some level of ambiguity in the
question that the market is predicting on. Furthermore, the entity which is re-
solving the market must be trusted. In centralised prediction markets, the entity
resolving the market is the market operator. For example, the Iowa Electronics
Market is operated by the university of Iowa [4].

In smart-contract based prediction markets such as Polymarket, the smart-
contract that is underlying a market is typically resolved by an oracle. For
example, the UMA oracle is used by Polymarket to resolve markets. The UMA
oracle is an optimistic oracle, meaning that the UMA’s resolution process is only
triggered if someone makes a dispute. For most markets on Polymarket, the
question is resolved by the prices for one of the outcomes tending to 1 USD, e.g.
the market reaching consensus to price ’yes’ at 1 USD. Any market participant
can however dispute the resolution of the market. If a dispute is made, the
holders of UMA tokens vote on the resolution of the market. Therefore, with
such a decentralised resolution mechanism the trust in the market operator is
replaced by the trust in the UMA token holders. As UMA tokens can be bought
and sold anonymously, this exposes prediction markets to a risk of manipulation
by UMA token holders.
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2.3 Game Theoretic Properties

2.3.1 Insider Trading

One of the concerns that is sometimes raised when discussing prediction mar-
kets is insider trading. Insider trading is the trading of assets based on inside
information that’s not publicly available. For example, if a market participant
knows from a non-public source that an asset’s price is going to increase, or has
the power to influence a real-world event that is important for the pricing of the
asset, they could attempt to profit from this knowledge by trading with the asset.
This problem also arises in markets other than prediction markets, for example in
stock markets where insider trading is regulated by law. In prediction markets,
insider trading is of particular concern because they are less regulated and often
more anonymous than other markets.

What effects may insider trading have on prediction markets? One effect that
insider trading could have on prediction markets is that it may affect their accu-
racy. There is however no consensus on whether insider trading might increase
or decrease the accuracy of prediction markets. In the literature of the effects
of insider trading some scholars argue that market participants with superior
non-public information can increase the accuracy of a market by including this
information in the pricing [13, 14]. On the other hand profits from insider trading
incentivise to keep information secret, which could reduce the accuracy of a mar-
ket [15]. Finally, insider trading could also detract market participants without
superior non-public information from participating in the market, which could
reduce the overall trading volume and thereby also the accuracy of prediction
markets. In conclusion there is no consensus on whether insider trading might
increase or decrease the accuracy of prediction markets.

2.3.2 Real-Money vs Play-Money

While prediction markets often trade with real money, there are also predic-
tion markets that trade with play-money. For example, prediction markets on
Polymarket are considered real-money markets as market participants trade with
USDC (a "stable coin" pegged to the USD). On other platforms such as Man-
ifold Markets2 users bet with play-money that can not be converted to "real"
money, i.e. it can not be converted to a currency that can be used to buy goods
or services. There exists some debate on how the accuracy of real-money and
play-money prediction markets compare, with some scholars having found real-
money prediction markets to be more accurate [16] and others having found no
significant difference in accuracy [17].

2https://manifold.markets/

https://manifold.markets/
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2.3.3 Interpreting Prices as Predicted Probabilities

There exists some debate on whether prediction market prices should be inter-
preted as probabilities. As an initial example let’s consider a market with two
tokens, a ’yes’ token and a ’no’ token. The outcome which is resolved as correct
will receive 1 USD. Let’s further assume that the price is currently 0.60 USD for
the ’yes’ token and 0.40 USD for the ’no’ token. Should we interpret this as the
market participants predicting that the outcome is 60% likely to be ’yes’ and 40%
likely to be ’no’? If the true probability of the outcome being ’yes’ is not 60%,
then (assuming zero transaction fees) there exists a financial opportunity: If the
true probability is higher than 60%, one can buy the ’yes’ token for 0.60 USD
and make profit in expectation. If the true probability is lower than 60%, one can
buy the ’no’ token for 0.40 USD and make profit in expectation. Therefore, an
unbiased and expectation maximizing market participant would execute trades
that push the price of an outcome token towards the true probability.

Wolfers et al. [18] make a more refined analysis of such a binary outcome
market by examining a model in which traders have their wealth and their be-
liefs about the true probabilities drawn independently from a distribution. They
assume that market participants maximize the expected value of a logarithmic
utility function. Note that this implies a type of risk-aversion which will differ-
entiate their model from other authors mentioned later. Finally, they assume
that there are no trading fees (although transaction fees / costs are not explicitly
discussed by the authors). With this model Wolfers et al. show that a mar-
ket participant’s demand x∗ for an outcome token is dependent on their belief q
about the true probability of the outcome being correct, and deduce

x∗ = y
q − π

π(1− π)

where y is the wealth of the market participant and π is the price of the
outcome token. By asserting that supply equals demand, Wolfers et al. show
that the price of the outcome token is given by π = q̄, i.e. the equilibrium price
is the mean belief of the market participants.

This result breaks down when some of the assumptions are violated. While
Wolfers et al. [18] were working on the model above in the years 2004-2006, there
was a mutual influence with Manski [19] as well as with Gjerstad et al. [20].
Their analyses disagreed on the assumption of risk-neutrality vs. risk-aversion in
particular. Manski [19] showed that under the assumption of risk-neutrality the
equilibrium price is not necessarily the mean belief of the market participants,
although it does give a bound on the mean belief.

In conclusion, the interpretation of prediction market prices depends on as-
sumptions on beliefs, budgets, and risk preferences [18, 19, 20]. Under certain
reasonable assumption the price of an outcome equals the mean belief of the mar-
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ket participants on the true probability. Furthermore, if the price of an outcome
token is not equal to the real probability, then there exists a financial opportunity
for market participants to make profit in expectation. We will therefore interpret
prices as predicted probabilities in sections 3.3 and 3.4 in order to assess biases
and accuracy of the markets.

2.3.4 Scoring Rules

For evaluating the accuracy of a prediction, so-called scoring rules can be used.
These scoring rules were not specifically developed for prediction markets, but
are widely used in this context for example by Hanson et al. [7, 21] who also laid
the foundations for AMMs (see section 2.2.2). Consider the problem of scoring
a reported probability distribution p = {pi}i over a set of disjoint events i. Let
o = {oi}i be the actual binary outcomes drawn from the probability distribution
r = {ri}i, were oi ∈ {0, 1} and 0 ≤ ri ≤ 1. A scoring rule s(p) assigns a score
to the reported probability distribution p. One scoring rule that is commonly
used is the quadratic scoring rule or also called the Brier score [22]:

B(p) =
1

N

N∑
i=1

(pi − oi)
2

This is essentially the mean squared error of the prediction. It is a scoring rule
and attains values between 0 and 1, where 0 indicates a perfect prediction. One
property that such a scoring rule should have is that it should be proper. A
scoring rule is proper if the reported score which maximizes the expected score
is the probability distribution from which outcomes are drawn, i.e.

r = argmax
p

E[s(p)]

We can check that the Brier score is proper by computing

argmax
p

E[B(p)] = argmax
p

1

N

N∑
i=1

(ri(pi − 1)2 + (1− ri)(pi)
2

= argmax
p

1

N

N∑
i=1

ri + p2i − 2ripi

= r,

where the last step obtained by calculating the derivative with respect to pi
and setting it to 0. This implies that the Brier score is proper and hence mar-
ket participants who report their belief for the real probability distribution also
maximize their expected Brier score.



Chapter 3

Data Analysis

3.1 Data Source

The data used in this chapter is scraped from prediction markets on the Poly-
market platform. It combines several data sources:

1. The Polymarket subgraph. The code base for this subgraph is maintained
by the Polymarket team on GitHub1 and deployed on The Graph2.

2. Polymarket’s strapi API3. This offers data such as the market questions
and market outcomes for resolved markets.

3. A polygon archive node via alchemy4. This complements some of the am-
biguous and incomplete data retrieved from the subgraph. For example,
the subgraph assigns transactions from the same polygon block the same
timestamp, which omits the order in which the transactions were included
in the block.

There are some limitations of this data: In particular, there is a small fraction of
transactions which does not fall into the schema of the subgraph. For example,
in rare cases a transaction trades on several markets, but only the part of the
transaction which trades on one market is recorded in the subgraph.

3.2 General Statistics

The obtained dataset on Polymarket contains 2’054’717 Buy/Sell transactions
across 9’026 markets. It further contains 174’934 liquidity pool additions and
157’137 liquidity pool removals. Users on Polymarket are also able to split USDC

1https://github.com/Polymarket/polymarket-subgraph
2https://thegraph.com/hosted-service/subgraph/polymarket/matic-markets-7
3https://strapi-matic.poly.market/
4https://www.alchemy.com/
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into equal amounts of outcome tokens, which occurred 409’645 times, and merge
outcome tokens into USDC, which occurred 182’713 times. Finally users re-
deemed USDC from resolved markets 423’855 times.

A histogram showing the transaction volume over time is displayed in fig-
ure 3.1. To understand the irregularity of the transaction volume, it should be
considered that the trading volume can spike if one or a few markets attract par-
ticularly high activity: For example, several markets during and in the aftermath
of the 2020 USD election attracted high trading volume.

Figure 3.1: Transaction volume over time.

The distribution of the 9’026 market creations is presented in figure 3.2. To
understand the irregularity of the number of newly created markets, it’s impor-
tant to recall that market creation is the only part of Polymarket which is not
decentralized, but rather controlled by the Polymarket team. In the beginning
of 2020 and into 2021, we saw a slow ramp-up of the number of markets created.
Afterwards a period of high activity at the end of 2021 and beginning of 2022 fol-
lowed, as the Polymarket team created many markets using repeating templates,
for example about prices of crypto currencies, sport events and COVID-19. In the
middle of 2022 Polymarket changed their market creation strategy and started
to create markets with more unique questions, resulting in fewer new markets
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being created.

Figure 3.2: Histogram of market creation timestamps.

The Buy/Sell trades on Polymarket were executed by 34’691 users. Due to
the anonymity of wallets it can not be determined how many of those users are
unique personas, and how many are the same person utilizing multiple wallets.
The 30 most active users by transaction volume are shown in figure 3.3. Overall,
the 30 most active users account for 28.0% of all transaction volume, and the 100
most active users account for 50.5% of all transaction volume.
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Figure 3.3: The percentage of volume traded by the 30 most active users.

3.3 Biases of Predictions

In order to assess biases of forecasting, some platform use a binary calibration
plot [23]. Such a binary calibration graph plots a predicted probability versus the
actual outcome. We adapt this approach and plot the prices of ’yes’/’no’ tokens
versus the fraction of these tokens for which the respective market was resolved
’yes’/’now’. If the prices would be unbiased, the graph would be a straight line
with slope 1. We’ve plotted such a binary calibration graph for ’no’ tokens in
figure 3.4 and for ’yes’ tokens in figure 3.5.

In figure 3.4 we see that for prices in the range of 0.2-0.8 that the markets re-
solve to ’no’ more often than the price suggest. Put differently, in the price range
0.2-0.8 there is a bias of the ’no’ token prices to be too low. In figure 3.5 we see
the opposite bias for ’yes’ tokens, i.e. the prices are too high for the ’yes’ tokens
in the range 0.2-0.8., albeit to a lesser extent than for ’no’ tokens. Overall, this
implies that on average ’yes’ tokens have been overpriced, and ’no’ tokens have
been underpriced on Polymarket in the price range 0.2-0.8. While we can only
speculate about the reasons for this bias, we note that the psychology literature
has shown an "acquiescence bias" in some scenarios, which is the tendency to
agree with agree-disagree questions [24].

When the price for ’yes’ or ’no’ tokens is close to 1, we see that there is a bias
of prices being to low: Both in figure 3.4 and 3.5 the bin with the 0.80-0.90 price
on the x axis corresponds to a fraction of accordingly resolved markets (resolved
’yes’ for ’yes’ tokens, ’no’ for ’no’ tokens) of over 90%. This implies that prices in
the range 0.8-0.9 have on average been too low. Similarly, in the price range 0.10-
.20, the fraction markets resolved ’yes’/’no’ is below 10%, implying that prices
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Figure 3.4: A binary calibration graph for ’no’ tokens: Every buy/sell trans-
action of a token falls into one of the buckets on the x axis depending on the
transaction price. Per such bucket the fraction of tokens for which the corre-
sponding market resolved to ’no’ is plotted on the y axis.

in this range have been too high. This could be due to various reasons: First,
as the price of an outcome converges, the liquidity providers are incentivised to
remove liquidity (as discussed in section 2.2.2) which makes it less favorable to
execute transactions due to increasing price slippage. Secondly, if the price is
close to 1, buying new tokens that agree with the market trend can only provide
a small percentage of profit, which might be too small to justify the transaction
costs and the opportunity costs of holding the tokens.

In conclusion, we have found that the prices of ’yes’ and ’no’ tokens on Poly-
market have been biased as follows: When prices are in the range 0.2-0.8, the
prices of ’no’ tokens have on average been too low, and the prices of ’yes’ tokens
have on average been too high. When prices are below 0.2 or above 0.8, on av-
erage, there is a bias that the prices do not converge fast enough to 0 or 1, i.e.
prices being to high for prices below 0.2 and too low for prices above 0.8.
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Figure 3.5: A binary calibration graph for ’yes’ tokens: Every buy/sell trans-
action of a token falls into one of the buckets on the x axis depending on the
transaction price. Per such bucket the fraction of tokens for which the corre-
sponding market resolved to ’yes’ is plotted on the y axis.

3.4 Accuracy of Predictions

As discussed in section 2.3.4 about scoring rules, one metric to assess the accuracy
of predictions is the "Brier score". To recap, the Brier score assumes values
between 0 and 1, where 0 indicates perfect accuracy. In this chapter we assess
the accuracy of predictions on Polymarket in terms of Brier score relative to other
dimensions such as time and transaction volume.

As a first perspective, we display the Brier score versus the market volume
in figure 3.6. We see that the average Brier score of predictions on Polymarket
is around 0.15, with no clear visible trend with respect to market volume. With
high market volume the variance in the displayed figure increases. This can be
explained by there being fewer markets for a bin with high market volume, and
hence a small number of high-volume markets with especially low or high Brier
score can impact one of the bins with high market volume.
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Figure 3.6: The accuracy of predictions on Polymarket in terms of Brier score
versus the market volume. Every buy/sell transaction of a token is interpreted as
a prediction with the price indicating the predicted probability.

Another interesting dimension to look at is the accuracy of predictions versus
the date of the prediction, which is displayed in figure 3.7. The variance in this
graph is very high, because at a given date one or a few markets might have
dominated the trading volume. If such markets were particularly accurate or
inaccurate, this is reflected in the graph. For example, around the end of 2020
there were markets about the 2020 US election on questions such as "Will Trump
win [..]"5 or questions on which party would win in the State of Georgia6 and
Pennsylvania7. Such markets saw a high trading value while the price of the
correct outcome was already 0.8-0.9 USD, and hence the overall Brier score for
predictions on Polymarket around this time is relatively low.

As trades occur over the lifetime of a prediction market, we would expect
them to, on average, become more precise as time passes. For some markets the
convergence to the correct market outcome happens quickly, as a response to
some real-world event. In other cases it happens gradually, due to a series of new
information or due to the absence of an event as a resolution date gets closer. By
the time that information is available to resolve the market, we expect the price
of the correct outcome to converge to 1 and hence the Brier score to fall. To test
this empirically, we display the Brier score relative to time in figure 3.8, where
the x-axis with the time represents the fraction of time between market creation
and closure that has already passed. As expected, we can observe the Brier score

5https://polymarket.com/event/will-trump-win...
6https://polymarket.com/event/which-party-will-win-georgia...
7https://polymarket.com/event/which-party-will-win-pennsylvania...

https://polymarket.com/event/will-trump-win-the-2020-us-presidential-election
https://polymarket.com/event/which-party-will-win-georgia-in-the-2020-presidential-election
https://polymarket.com/event/which-party-will-win-pennsylvania-in-the-2020-presidential-election
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Figure 3.7: The accuracy of predictions on Polymarket in terms of Brier score
versus the date of the corresponding transaction. Every buy/sell transaction of a
token is interpreted as a prediction with the price indicating the predicted proba-
bility.

to drop as the closure time of the market comes close.

Figure 3.8: The accuracy of predictions on Polymarket in terms of Brier score
versus the fraction of time between the market creation and market closure that
has already been passed when the corresponding transaction was executed. Ev-
ery buy/sell transaction of a token is interpreted as a prediction with the price
indicating the predicted probability.
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We investigate the relationship between the accuracy of predictions and the
volume of the corresponding transaction in figure 3.9. As can be observed in the
figure, there is a negative correlation between the Brier score and the volume
of transaction. In other words: Historically, transaction on Polymarket with
a volume of several thousand USD have, on average, been more accurate than
transactions with smaller volume

Figure 3.9: The accuracy of predictions on Polymarket in terms of Brier score
versus the volume of the corresponding transaction. Every buy/sell transaction
of a token is interpreted as a prediction with the price indicating the predicted
probability.

3.5 Liquidity Provisioning

As described in section 2.2.2 about automated market makers (AMMs), many
prediction markets are facilitated by AMMs. These rely on liquidity providers
to fund the liquidity pool of tokens held by the AMM. In this section we will
analyse some characteristics of the liquidity provisioning on Polymarket.

We begin by looking at the segmentation of liquidity providers: Are there a
few dominant liquidity providers or are there many small liquidity providers? In
figure 3.10 we can see the fraction of liquidity shares minted per user by the 30
largest liquidity providers. Recall that liquidity shares get minted as liquidity
providers add funding to a liquidity pool, in order to track which user holds
what fraction of the liquidity pool. In the figure we observe that there is one
user who minted an extraordinarily large fraction of liquidity shares with circa
15%. Overall, the 10 largest liquidity providers minted 51% of all liquidity shares,
the 30 largest liquidity providers minted 74% of all liquidity shares and the 100
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largest liquidity providers minted 94%. A total of 3885 unique user IDs has
added liquidity at least once. Similarly to the transactions in section 3.2, also
with liquidity provisioning we can not deduce whether these user accounts belong
to separate entities, or whether some entities anonymously controls multiple of
the corresponding wallets.

Figure 3.10: The fraction of liquidity shares minted per user by the 30 largest
liquidity providers.

Another perspective from which to analyze the dominance of liquidity providers
is this: First, we take the 10 largest liquidity providers across all markets, which
corresponds to the ten largest liquidity providers in figure 3.10. For every mar-
ket, we then calculate per market the fraction of liquidity shares held by these
users over time. Finally, we average this across all markets (with all markets
being weighted equally) and display the result in figure 3.11. As we can see the
fixed set of 10 liquidity providers hold averaged across all markets about 25% of
liquidity shares during the first half of a markets lifetime. After this the frac-
tion drops to an average of circa 15%. This implies that the largest liquidity
providers remove funds earlier, on average. An explanation for this could be
that the largest liquidity providers might be more sophisticated and therefore
remove their liquidity earlier as the risk of liquidity provisioning increases when
the market converges (as explained in the "Liquidity Provision" part of section
2.2.2).

We’ve analysed the dominance of liquidity providers in terms of the fraction
of liquidity shares they hold. But how many liquidity shares are there? This is
displayed in figure 3.12. As in the previous figures, we calculated the number of
liquidity shares per market over time, and average across the markets. We observe
that on average, the number of liquidity shares increases over the first third of
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Figure 3.11: The fraction of liquidity shares held by the 10 largest liquidity
providers over time, averaged across all markets. The "largest" liquidity providers
are determined globally, i.e. in terms of the liquidity shares they have minted
across all markets.

a market’s lifespan, briefly plateaus, and then gradually declines. Shortly before
the closure of a market the liquidity providers remove their shares. This can be
explained by the fact that converging prices pose a risk to liquidity providers.
We will use the characteristics of this curve in the next step, where we compare
prediction accuracy vs. market liquidity.

The amount of liquidity provided to markets is a frequent concern among
market participants, because the liquidity pool is the intermediary market par-
ticipants may trade with. Therefore, too little liquidity may discourage market
participation. Is this reflected in the prediction accuracy of markets? We inves-
tigate this in figure 3.13.

In this graphic, every buy/sell transaction of a token is interpreted as a pre-
diction with the price indicating the predicted probability. These predictions are
binned by the number of liquidity shares at the time of the transaction. Finally,
based on our finding in figure 3.12, we only consider transactions that occurred
at a time when 10%-80% of the market’s lifetime has passed. This is to reduce
the effect that predictions very early in a market or close to market closure land
in different liquidity bins than earlier predictions, due to the average liquidity
being lower at these times. In the figure we observe that empirically predictions
in markets with liquidity roughly equivalent to 50’000 USD8 have been substan-

8Adding 50’000 USD of liquidity to an empty liquidity pool gives this number of liquidity
shares. For a non-empty pool the calculation is more complicated. However, given a certain
state of the pool the amount of added funding and the number of received liquidity shares
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Figure 3.12: The number of liquidity shares over time, averaged across all
markets.

Figure 3.13: The accuracy of predictions vs. the number of liquidity shares at
the time of the transaction. Every buy/sell transaction of a token is interpreted as
a prediction with the price indicating the predicted probability. These predictions
are binned by the number of liquidity shares at the time of the transaction. We
only consider transactions that occurred at a time when 10%-80% of the market’s
lifetime has passed in order to avoid some of the correlation between the amount
of liquidity and the transaction time, which is visible in figure 3.12.

remains proportional.
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tially more accurate. Hence we do indeed observe in the data that markets with
large liquidity have on average been more accurate.
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Discussion

4.1 Smooth Liquidity Provision

As we have seen in section 3.5, the average liquidity in markets drops as markets
approach resolution. This can be explained by liquidity providers reducing their
risk exposure as the prices converges. The problem with this outflow of liquidity is
that markets with less liquidity are less accurate (as we saw in 3.4). In particular
markets with converging prices are biased to not converge fast enough (as we saw
in 3.3). In this section we propose an alternative automated market maker design
that aims to mitigate the problem of reduced liquidity in converging prediction
markets..

4.1.1 Idea

With a constant-product market maker (CPMM) it is rational for liquidity providers
to reduce liquidity as the prices converge. If they do not do so and prices con-
verge, they end up with a large number of tokens from the outcome(s) for which
the price converges to 0 (see 2.2.2). In order to improve this situation, we would
need to reduce the risk exposure of liquidity providers, so that they are not in-
centivised to withdraw liquidity as prices converge. Could it be effective to aim
for zero risk exposure? Recall that prediction markets are a zero-sum game be-
tween buyers and sellers of outcome tokens and liquidity providers. Consider
the example of a market where the price of an outcome token is known to be
underpriced and therefore there are only traders who want to buy the token /
sell other tokens for disjoint outcomes. If the traders are to make a profit in
this scenario, some other market participant must lose money. In this case, it
is the liquidity providers. Providing traders with an opportunity to make a buy
transaction which is correcting an underpriced outcome token is necessary from
a market design perspective. Therefore, we need to find a way to reduce the risk
exposure of liquidity providers in order for liquidity providers to not be incen-
tivised to withdraw liquidity as prices converge, while at the same time keeping
liquidity providers exposed to a non-zero risk in order for traders to be able to

22
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make profitable trades.

In order to better understand the risk exposure of liquidity providers, we
plot the number of tokens in the liquidity pool of a CPMM in figure 4.1. We
assume that the market starts with a price of 0.50/0.50 for ’yes’/’no’ and 100/100
tokens in the liquidity pool. We show how the number of tokens held by liquidity
providers changes as the price converges to 1.00 for ’yes’ while assuming that
there are no liquidity additions or removals.

Figure 4.1: A simulation of the number of tokens held by liquidity providers in a
market with a constant-product market maker. The market starts with a price of
0.50/0.50 for ’yes’/’/no’ and 100/100 tokens in the liquidity pool. We show how
the number of tokens held by liquidity providers changes as the price converges to
1.00 for ’yes’ while assuming that there are no liquidity additions or removals.

We observe that as the price of the ’yes’ tokens increases, the number of
’yes’ tokens held by liquidity providers decreases and the number of ’no’ tokens
increases. This is the result of simultaneously fulfilling the formula for the CPMM

a · b = k := a0 · b0
,
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where a, b, are the current number of tokens(e.g. a for ’yes’ and b for ’no’),
a0, b0 are the initial number of tokens, and k is the constant product, as well as
fulfilling

p :=
a

a+ b
,

where p is the current price. As we can see in the figure 4.1, as the price
converges to 1.00, the liquidity providers end up with presumably worthless ’no’
tokens, and hence are incentivised to remove their liquidity before the price con-
verges. In order to solve this problem, we propose a new market maker design for
which the number of valuable tokens held by liquidity providers don’t converge to
0 as the price converges. We call this market maker design the smooth liquidity
market maker.

4.1.2 Smooth Liquidity Market Maker

Consider the original CPMM formula

a · b = k := a0 · b0

where a, b, are the current number of tokens(e.g. a for ’yes’ and b for ’no’), a0, b0
are the initial number of tokens, and k is the constant product. We modify this
formula by 1) adding replacing k with a term that depends on c(p) which we will
refer to as the fraction of liquidity concentration, where p is the current price,
and 2) on the left hand side subtract c(p)a0 and c(p)b0 from a and b respectively.
This gives us the following formula:

(a− c(p)a0) · (b− c(p)b0) = c(p)2 · a0 · b0

The function used for c(p) is adjustable and gives rise to a tradeoff between risk
exposure of liquidity providers and incentives for traders (more on this in section
4.1.3). As an example, we propose

c(p) := 1− |p− 0.5|

which is displayed in figure 4.2a. Simulating this smooth liquidity market maker
with an example market gives rise to the liquidity pool displayed in 4.2b. As we
can see, the number of valuable tokens held by liquidity providers converges to
a non-zero value as the price converges to 1.00. This reduces the risk exposure
of liquidity providers and hence reduces the incentive for liquidity providers to
remove their liquidity as prices converge.
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(a) concentration function (b) liquidity pool

(c) price slippage (d) possible return on ’yes’

Figure 4.2: Example of a smooth liquidity market maker (SLMM) for a market
with ’yes’/’no’ outcomes. We assume an initial liquidity of 100/100 and no fur-
ther liquidity additions or removals. The concentration function c(p) in 4.2a for
this example is c(p) = −2(p− 0.5)2+1. For calculating the price slippage in 4.2c
and the possible profit in 4.2d for investing in ’yes’, we assume 2% liquidity fees
and employ the tactic of splitting 10 USDC in ’yes’/’no’ and selling ’no’, which
is more profitable than buying ’yes’ directly.
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4.1.3 Trade-Offs

We have seen how the smooth liquidity market maker with the concentration
function in figure 4.2a reduces the risk exposure of liquidity providers as visible
in figure 4.2b. However, this reduced risk exposure comes at the cost of reduced
incentives for traders. Concretely, the price slippage for a fixed liquidity pool and
trade amount is increased, as is visible in figure 4.2c. As a consequence of this,
the possible profit for traders on a fixed trade amount is reduced, as displayed in
figure 4.2d.

In practical terms, if a trader observes e.g. price 0.70 USD and believes the
asset should be priced at 0.75 USD, the absolute trade amount needed until the
price reached 0.75 USD is reduced by the smooth liquidity market maker. This
means that the trader can invest less capital to reach the valuation that the trader
believes to be correct. In some instances this may lead a trader to not invest at
all, as they might not wish to execute trades with such a small trade amount.
In most cases this is a trade-off worth making, as it reduces the risk exposure
of liquidity providers and hence reduces the incentive for liquidity providers to
remove their liquidity as prices converge.

4.2 Response to "Five Open Questions about Predic-
tion Markets" by J. Wolfers & E. Zitzewitz

In 2006 J. Wolfers and E. Zitzewitz published a paper titled "Five Open Questions
about Prediction Markets" [25]. However, in 2006 this was only possible through
the somewhat limited lense of 1) theory and 2) some niche markets such as
university experiments, markets at companies, and sports betting. In this chapter
we respond to three of their five questions on the basis of our data analysis of
the diverse prediction markets on Polymarket.

Are markets well calibrated on small probabilities?

Concerned by evidence from the university of Iowa’s election prediction markets,
Wolfers and Zitzewitz [25] bring into question whether markets are well calibrated
on events with small probabilities. They also bring forth potential reasons from
psychology and risk-aversion for why this may not be the case.

Based on the empirical evidence form Polymarket, in particular section 3.3,
we can answer this question: No, markets on Polymarket have not been well
calibrated for small probabilities. In addition to the reasons from psychology
and risk-aversion this may also be due to 1) A lack of liquidity for converging
markets, as with Polymarket’s AMMs liquidity providers operate at a loss as a
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market converges (see section 2.2.2), 2) transaction fees that outpace potential
gains as the market converges, and 3) the opportunity cost of capital.

How to tradeoff interest and contractability?

The authors point out the difficulty of designing a market that is about an in-
teresting topic yet has a sufficiently precise resolution criteria. Certainly, this
has remained a challenge for prediction markets and hence great care is taken
to precisely phrase the question and resolution sources. One tool that has been
popularized since the work of Wolfers and Zitzewitz [25] to address this challenge
are optimistic resolution oracles as described in section 2.2.3: This improves the
tradeoff between interest and contractability by defaulting the resolution to the
converged price, and only escalating to the oracle if the resolution is disputed.

Attracting uninformed traders

Wolfers and Zitzewitz [25] note that it could be challenging for prediction mar-
kets to attract uninformed traders, i.e. traders who operate at a loss so that
informed traders may be incentivised by profits. They speculate on the reasons
why uninformed traders may be motivated, such as hedging, overconfidence, and
gambling. While we can not provide detailed insight into the motivation of unin-
formed trades on Polymarket, based on the significant trading volume on Poly-
market on a wide range of topics we can answer Wolfers and Zitzewitz’ question
"Will prediction markets attract necessary uninformed trade" [25] positively.
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Conclusion

This practical project set out to understand the state of the art of prediction
markets through theoretical and data analysis, as well as to improve the state of
the art where possible. To this end we began by reviewing the theoretical back-
ground in chapter 2. In particular, we described the mechanisms of order books,
automated market makers and market resolutions, as well as some game theo-
retic properties of prediction markets. From a theoretical perspective we already
saw a potential problem with automated market makers for prediction markets
in section 2.2.2: As a market converges, liquidity providers are incentivised to
remove their liquidity, which may inhibit trading activity.

In a second step we scraped and analysed over 2 million transactions from
the prediction markets on Polymarket. We found various biases in this historic
data, and analysed the markets’ accuracy against several other dimensions. We
also performed a specialised analysis on the liquidity provisioning in these mar-
kets. In particular, we found that liquidity providers remove their liquidity as
a market converges, and that markets become more biased and less accurate as
they converge and as liquidity drops.

After observing the problem of liquidity provisioning for converging predic-
tion markets in our scraped data as well as discussing the theoretical incentive
structure that can lead to this problem, we proposed a new market making al-
gorithm in section 4.1. This "Smooth Liquidity Market Maker" is designed to
reduce the risk exposure of liquidity providers as a market converges. We showed
that this reduces the incentive for liquidity providers to remove their liquidity,
which promises to increase trading activity and improve the accuracy of predic-
tion markets.
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