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Abstract

In this thesis we explored to utility of SPECTRE for graph augmentations for a
Contrastive Learning (CL) with subsequent downstream classification task. We
investigated factors influencing the generated augmentations and analyzed their
effect on the learning embeddings. Our classification results look promising being
on par with supervised baselines, but analysis of the generated augmentations
suggest that performance is not exhausted, yet and can be further optimized.
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Chapter 1

Introduction

Graphs are an attractive datastructure for their versatility and ability to model
complex relationships in a wide variety of domains, such as social networks, where
nodes represent users and edges represent their connections, knowledge graphs,
where nodes represent entities and edges represent relationships between them,
molecular graphs, where nodes represent atoms and edges represent chemical
bonds, and fraud detection in financial systems, where nodes represent transac-
tions and edges represent the flow of money between them. As in any Machine
Learning domain labeling data is expensive and at bottleneck for many projects.
Self-Supervised Learning methods, and specifically Contrastive Learning as pro-
posed in SimCLR [1], tries to alleviate this issue by learning the features of a
dataset without the need of human-annotated labels. These pretrained embed-
dings are subsequently finetuned on downstream, achieving comparable perfor-
mance with less labels.

For CL a model generates two versions of an original data sample by applying
augmentations on it and then minimizing the distance between the embeddings
of these two versions. These augmentations should add noise to image, with-
out altering the features. For images augmentations are easily imaginable like
cropping, resizing, scaling, rotations, distortions, but should not change the core
properties by e.g. changing a cat to a dog. Fundamental to the success of CL
are the augmentations, but for graphs less straightforward. Especially since for
depending on the application e.g. the removal of a random node could either be
insignificant or label altering.

This is were our research comes in: In this paper we research the utility of
SPECTRE [2] to generate graph augmentations for Contrastive Learning. We
propose a Contrastive Learning architecture inspired from Barlow Twins [3] in
Chapter 2, evaluate the model on a downstream task and develop methods to
analyze the performance of the augmentations in Chapter 3.
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Chapter 2

Method

In this section we introduce our Contrastive Learning method, which consists of
the three building blocks: the augmentation generation, the embedding, and the
loss.

Contrastive Learning Setup. The architecture setup in this work draws
inspiration from Barlow Twins (BT) [3] and is adapted to the graph neural net-
work domain. As shown in Figure 2.1, the architecture consists of three phases:
Augmentation Generation, Embedding, and Loss. First, based on an original
graph as input, we generate two augmentations (Y A and Y B). Next, we embed
both augmented graphs to obtain two corresponding embedding vectors (ZA and
ZB). To encourage the embeddings to capture useful information about the input
graph, while invariant to the augmentations, we calculate their cross-correlation
and aim to make it resemble the identity matrix. In the following paragraphs,
we provide a detailed discussion of each of these three steps.

(1) Augmentation. To generate augmentation we utilize the one-shot graph
generator SPECTRE [2]. For our use-case a one-shot generator is favorable over
autoregressive generators as it results in more novelty and is fully-parallelizable
(faster training).

SPECTRE is able to capture the structure of graphs and generate new graphs
belonging to the same distribution, by conditioning the generated graphs on spec-
tral properties. This faithful reconstruction of graph properties is important for

Figure 2.1: Excerpt from Barlow Twins [3] illustrating the training pipeline
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2. Method 3

CL models.
To condition a graph generation on the properties of an input graph with ad-
jacency matrix A, SPECTRE computes the normalized Laplacian L = I −
D− 1

2AD− 1
2 , where D is the diagonal degree matrix and I the identity. Then,

an eigenvalue decomposition L = UΛUT is performed on the graph Laplacian
L, where U = [u1, ..., un] and Λ = diag(λ1, ...λn) correspond to the eigenvectors
and eigenvalues resp.. These eigenvalues are sorted in ascending order, where
the first, resp. lowest, contain the most information of the graph structure and
are thus the most influential. Since we don’t want to completely replicate the
original graph, but want to generation alterations of it, we restrict the num-
ber of eigenvalues/eigenvectors passed to SPECTRE to the k lowest to support
imperfect reconstruction within reason. Hence, we can tune the strength of con-
ditioning and therefore the amount of alterations by parameter k: The higher
the k, the more do the generations resemble the original graph, and vice versa.
Note, that this does not directly steers the generation towards augmentations,
which are sensible w.r.t. the dataset domain. During implementation, we noticed
that PyTorch’s batched eigenvalue decomposition pads the eigenvectors on the
left side with zeros, when the batched graphs contain different number of nodes.
The network struggled to handle that the most consequential inputs would jump
around so that we had to align them to the left side with padding on the right
so that λ0 and u0 are always on the zero-th index.

In the original SPECTRE paper the distribution of spectra in the dataset
is also learned, so that the generated graphs are conditioned on in turn gen-
erated eigenvalues/eigenvectors, but we restricted our experiments to supplying
SPECTRE with the real spectra.

To construct an augmentation A′, N ′, F ′ = gA(λk, Uk, wA) SPECTRE uti-
lizes an l-layer Provably Powerful Graph Network (PPGN) [4], where A′, N ′, F ′

are the generated adjacency (N × N × 2,) node features (N × F), and edge fea-
tures (N × N × F) matrices. N is the number of nodes and F the number of
node/edge features respectively. To enable diversity a latent variable zA is sam-
pled wA = MLPwA(zA) and processed by an MLP. Note, that in the standard
implementation there is no conditioning on node and edge features. Implications
of that are discussed in Section 3.1.

(2) Embedding. For a graph embedding we used the Graph Isomorphism
Network (GIN) [5] and adapted the implementation of OGB [6], as it supported
node & edge feature embedding. Since this GIN implementation expects sparse
graphs in a PyG mini-batch format, we had to pre-embed the node and edge
features. For that we discretized the prediction logits into one-hot vectors using
the Gumbel-Softmax [7] trick (since an argmax would destroy the gradients) and
multiplied them with the weights of the respective node (atom) and edge (bond)
encoders. We used 5 GIN layers with an embedding dimension of 300, mean
pooling and an embedding dropout of 0.5, which were the default values used in
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OGB [6].

(3) Loss. The loss consists of two important parts: (1) a Reconstruction Loss
trying to minimize the distance to the original graph and (2) a Barlow Twins Loss
pioneered by [3], which steers the network to learn effective representations.

The Reconstruction Loss is fundamental to the networks ability to resemble
the original graphs. Without it the network would collapse to always predicting
full graphs as the Barlow Twins loss does not encourage not predicting an edge.
The reconstruction loss applies the predicted, dense logits to three Cross-Entropy
losses for each of the adjacency, node and edge features matrices respectively
together with the original graph. For this the original graph has to be converted
to a dense representation.

The BT loss on the other hand does not contrast each augmentation with the
original graph, but the two augmentations with each other. Earlier self-supervised
learning methods struggled with mode collapse to constant trivial solutions [3].
BT avoids this by measuring the cross-correlation between the augmentations
and making it as close to the identity matrix as possible. An identity cross-
correlation would mean that each feature is independent of each other, resulting
in maximal expressiveness and utilization of the networks capacity. The diagonal
elements of the cross-correlation matrix (supposed to be 1) make the embedding
invariant to augmentations applied, while the off-diagonal elements (supposed to
be 0) decorrelate the embedding.

We deviated from the BT reference implementation in two points. First, we
noticed that the magnitude of the loss formulated in the original paper depended
on the size of the inputted vectors. This caused difficulties when combining it with
the reconstructive loss terms, so that we normalized the diagonal and off-diagonal
sums by their number of elements (essentially resulting in a MSE). Consequently,
we deviated from their proposed loss trade-off of 0.005 to an equal summation of
on-diagonal and off-diagonal loss. Secondly, we disabled the tracking of running
stats in the Batch Norm layers.

The total loss is summed as

L = R-TO · 2(LAdj +LNode +LEdge) + (1−R-TO) · (Lon-diag +B-TO · Loff -diag)

We did not trade-off the three reconstructive losses with each other, as this
would have resulted in too many parameters to tune even though it would have
been sensible to do. R-TO and B-TO stands for Reconstructive Trade-Off and
Barlow Trade-Off respectively. Note that the multiplication factor of 2 is a sim-
plification of the fact that the reconstructive loss is calculated twice, once for
each augmentation.

Our best performing model was trained with k = 8, a trade-off between the
on-diagonal and off-diagnoal terms of the Barlow Twins Loss B-TO = 2, a recon-
structive trade-off of R-OT = 0.1, an embedding dimension of 300, symmetric
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Laplacian normalization, a batch size of 40 and for 30 epochs. Parameters that
we did not experimented with were set to 4 PPGN layers, a latent dimension of
128 for noise z, 5 GIN embedding layers, and mean graph pooling.

2.1 Variations

We also experimented with a number of variations to this architecture, which did
not immediately result in conclusive improvements.

Adversarial. We experimented with an adversarial setup similar to a Gen-
erative Adversarial Network. Conceptually the idea is persuasive: A risk when
generating the augmentations is that they are too close to the original graph and
would not capture applicable range of plausible augmentations. In our adversar-
ial setup the optimizer during generation minimizes the reconstructive losses (to
keep the augmentations plausible), while maximizing the BT loss to train the
augmentations, which fool the embedding. During the embedding phase (analog
to the discriminator phase in a classical GAN) the optimizer minimizes the BT
loss. This should enable the network to be more robust to out of distribution
samples.

Spectral Reconstructive Loss. Another approach to prevent augmenta-
tions being too close was to replace the Reconstructive Cross Entropy Loss on
the adjacency matrix with a Spectral Reconstructive Loss. This followed from
the observation that the the Cross Entropy losses penalized completely implau-
sible edge prediction and plausible edge prediction equally. By computing the
loss over the spectral properties we hope that the loss would become “less hard”
and “fuzzier”, penalizing spectral altering augmentations more. We formulated
the Spectral Reconstructive Loss as

MSE(diag(UTLAugU),Λ) (2.1)

where LAug is the Laplacian of the generated augmentation and U and Λ are
the real eigenvectors, resp. eigenvalues. Equation 2.1 is a reformulation of the
eigenvalue decomposition

L = UΛUT

UTLU = Λ

Unfortunately our implementation was not able to overfit to a single batch
(each epoch the graphs would become sparser until eventually empty) so that we
had to abandon this approach due to time constraints.

Conditioning on Node and Edge Features. As described above the
graph generator is only conditioned on the graph spectrum and nothing else.
Since the graph adjacency influences node and edge features only to a limited
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degree, the graph generator struggles to learn these. A required remedy would
be to additionally condition generated graphs on node and edge features. As a
preliminary proof-of-concept experiment, we concatenate the real edge features
with the initial Laplacian build before the first layer of the PPGN, to judge the
effect on loss and information content.



Chapter 3

Experimental Evaluation

This chapter is divided into two sections: The first discusses the prediction per-
formance, where the embeddings are finetuned to a downstream task, while the
second seeks to explain observed behaviours by analysing the embeddings and
augmentations.

3.1 Finetuning Results

Dataset. For this project we concentrated us on the ogb-molhiv dataset as
developed by Hu et al. [6]. The task is binary classification of molecules, whether
they inhibit the HIV virus replication or not. The dataset consists of 41,127
graphs with on average 25.5 nodes per graph. We ignored outlier graphs with
more than 100 nodes and less than 18, hence resulting in 32,573 graphs split into
train (64%), test (20%), and validation (16%) sets. The results discussed below
should therefore be interpreted with caution as the evaluation was conducted on
this subset of ogb-molhiv. As a result, the results may not be directly comparable
to those obtained from the full dataset.

Setup. As a finetuning network we utilized an MLP with one hidden layer
with half the embedding dimension and a single output neuron for binary classi-
fication. Since the dataset is skewed with roughly 23 negative samples for each
positive samples, we increased the weight of positive weights in the Binary Cross
Entropy loss accordingly.

Baselines. To put our results in context, we compare our results to three
baselines. The first follows the suggestion of [8] to finetune a randomly initialized
GNN embedding to establish a lower bound. Secondly, as our hypothesis is that
SPECTRE augmentations suit the CL task better than trivial augmentations, we
compare to simple augmentations, which rewire randomly 20% of the edges. The
third baseline is the GIN with additional features, but without a virtual node as
published in OGB [6] on their test set.
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Figure 3.3: (1) Typical example for Magnitudes of the different loss terms
(2) Conditioning on Edge Features has no visible impact on the reconstructive
edge loss.

k Eigenvalues. Our initial hypothesis was that by tuning the reconstruc-
tional quality with k of SPECTRE and henceforth the amount of alterations, we
would be able to influence the embedding quality and prediction performance of
the network. Unfortunately, we cannot observe a clear relation ship between k
and the prediction performance. All runs plotted in Figure 3.1 were performed
with a BT trade-off of barlow = on-diag + 0.5 · off-diag and a reconstructive
trade-off of 0.3 · reconst terms + (1 − 0.3) · barlow. Note, that the off-diagonal
BT loss is not halved here intentionally, but due to an implementation bug. This
should however not affect the comparison of different k values.

Trade-Off Parameters. It is difficult to find the right balance between
in total 8 loss terms (2 × 3 reconstructive terms +2 BT terms). The exam-
ple loss behaviour depicted in Figure 3.3 demonstrates the scale of each pa-
rameter, and is representative for all runs. A sweep over different parameters
is shown in Figure 3.2. We found the all-over best scoring configuration for
k = 8, barlow = on-diag + 2 · off-diag, 0.1 · reconst terms + (1 − 0.1) · barlow.
As we observe significant performance improvements after tuning the B-TO and
R-OT parameters, it would be worthwhile to explore the impact of a finely tuned
trade-off between the three reconstructive losses.
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Embedding Dimension. The authors of the Barlow Twins paper [3] ex-
perienced increased performance on their task by using very high-dimensional
embeddings. Hence, we also experimented with embedding dimensions 150, 300
(OGB default) and 600, scoring respectively 74.57%, 75.51%, 73.04%. Since the
initial choice and OGB default of 300 performed best, we did not further explored
this parameter.

Conditioning on Edge Features. As mentioned in Chapter 2, the graph
generator is only conditioned on the graph spectrum and nothing else. This is
most likely the reason why the networks fails to improve the node and edge re-
constructive losses in Figure 3.3. They hovered around a constant value, meaning
that the network most likely collapsed to constantly predict the mean of the dis-
tribution. To test, whether the network would be able to improve on these losses
with additional information, we conditioned the run in shown in Figure 3.3 also
on real edge features. In one initial proof-of-concept experiment we could observe
a jump of prediction performance by 2.32 percentage points, but no improvement
in terms of training loss. Though, including the real edge features runs contrary
to the idea of generating augmentations.

3.2 Embedding & Augmentation Analysis

Cosine Similarity. The most important part of CL are the augmentations. To
better understand and quantify the augmentation’s performance we generated
for every original graph 100 augmentations, embedded them, and calculated the
Cosine Similarity for these 100 embeddings of the augmented vectors with the
embedding of the original graph.

A Cosine Similarity too high would mean that the augmentations are too close
to the original graph. Orthogonal embeddings on the other hand would suggest
that the generated augmentations are out of distribution and not similar to the
original. Another interesting metric is the support of the resulting probability
distribution as it signifies the range of augmentations from similar to dissimilar.
We hypothesize that the ideal Cosine Similarity distribution should hover around
0.5 to 0.8.

In Figure 3.4 we observed that our SPECTRE augmentations fall short of
our goal to create realistic, in-distribution augmentations, since they are mostly
orthogonal to slightly anti-correlated to the original graph’s embedding. Never-
theless, the prediction performance seems to show that the embeddings capture
enough features to slightly exceed the OGB Baseline (but nowhere near the top
of the leaderboard, which scores 84.20%). This indicates that there is still a lot
of potential performance left in this CL approach.

Intriguingly, while no effect of conditioning on edge features could be observed
on the edge reconstruction loss during training, its Cosine Similarity distribution
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Figure 3.4: Distribution of Cosine
Similarities between Augmentations
and their Original w.r.t. Graph Em-
beddings
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Figure 3.5: Distribution of Cosine
Similarities between Augmentations
and their Original w.r.t. Node Fea-
ture Embeddings

w.r.t. node feature vectors are clearly influenced, as depicted in Figure 3.5. The
excessive Cosine Similarity scores highlight the necessity of abstracting the real
features for feature conditioning. When real features are overly influential, they
can constrain the augmentation process, leading to a shortage of variation in the
augmented features.

-1.00
-0.94
-0.87
-0.81
-0.74
-0.68
-0.61
-0.55
-0.48
-0.42
-0.35
-0.29
-0.23
-0.16
-0.10
-0.03
0.03
0.10
0.16
0.23
0.29
0.35
0.42
0.48
0.55
0.61
0.68
0.74
0.81
0.87
0.94
1.00

0

0.05

0.1

0.15

0.2

0.25

0.3

ROC=78.78%, k=8, B-TO=2, R-TO=0.1
Layer 0, 
Layer 1, 
Layer 2, 
Layer 3, 
Layer 4, 

ROC=78.27%, k=8, B-TO=4, R-TO=0.1
conditioned on Edge Features

Layer 0, 
Layer 1, 
Layer 2, 
Layer 3, 
Layer 4, 

Cosine Similarity

Pr
ob

ab
ili

ty
 D

en
si

ty

Figure 3.6: Distribution of Cosine Sim-
ilarities between Augmentations and
their Original w.r.t. Edge Embedding
of each GIN Layer

Visual analysis of edge embeddings
is more challenging compared to node
embeddings as edge embeddings are cal-
culated for each GIN layer. In con-
trast, node embeddings are only com-
puted once at the beginning. There-
fore, when plotting edge embeddings,
one must consider the impact of mul-
tiple GIN layers on each edge embed-
ding, which convolute the plots. An ex-
ample is shown in Figure 3.6, depicting
the difference between the best perform-
ing model and the model conditioned on
edge features. A similar tendency as
with the node features towards higher
Cosine Similarity values can be observed
here as well.

Influence of k Eigenvalues on generated Adj.

In Figures 3.7 to 3.14 the generated augmentations on the validation set at
epoch 30 are shown (please zoom in). A couple observations can be made:

1. Figure 3.7: If the Reconstructive loss Trade-Off term (R-TO) is too high,
no augmentations take place.
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Figure 3.7: ROC=75.51%, B-
TO=0.5, R-TO=0.3, k=8

Figure 3.8: ROC=77.92%, B-TO=2,
R-TO=0.1, k=18

Figure 3.9: ROC=78.78%, B-TO=2,
R-TO=0.1, k=8

Figure 3.10: ROC=78.27%, B-
TO=4, R-TO=0.1, conditioned on
Edge Features, k=8

2. A higher reconstructive loss helps networks with low k to capture the high-
level structure.

3. Augmentations with low k often contain filled cycles (i.e. all nodes in a
cycle are connected).

4. Generally, augmentations always increase the total number of edges.

5. Figures 3.13, 3.14: Normalizing the Laplacian by the datasets maximal
Eigenvalue, impedes faithful reconstruction heavily.
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Figure 3.11: k=2, ROC=68.62%, B-
TO=0.5, R-TO=0.3

Figure 3.12: k=4, ROC=74.00%, B-
TO=0.5, R-TO=0.3

Figure 3.13: Symmetric Laplacian
Normalization, ROC=75.24%, B-
TO=0.5, R-TO=0.3, k=18

Figure 3.14: Laplacian Nor-
malization by max Eigenvalue,
ROC=75.11%, B-TO=0.5, R-
TO=0.3, k=18



Chapter 4

Conclusion & Outlook

In conclusion, our results demonstrate that SPECTRE is a promising approach
for generating augmentations and achieving strong performance on downstream
tasks. Nevertheless, optimizing and fine-tuning it to specific domains is a non-
trivial task that requires further research to fully understand its upper limits, as
we suspect that there is performance left ot be gained.

Further research is especially needed for node and edge feature conditioning
to carry over the SPECTRE’s success generating adjacency augmentations to the
generation of node and edge features.

Though a case can also be made to first perfect pure adjacency generation on
a dataset, which does not contain node and edge features. Lower k values lead
to undesirable artifacts as e.g. filled cycles. Conditioning on learned eigenvalues
and eigenvectors, as proposed in the SPECTRE paper [2], could be a potential
solution to retaining novelty with higher k values, while also minimizing artifacts.
This in turn, could allow to evaluate whether our technique of comparing Cosine
Similarity of embeddings and our hypothesis, which values would be ideal, are
actually desirable.

Furthermore, it is not evident whether the Cross Entropy Reconstructive Loss
we used is the ideal one. Since one of the desirable properties of augmentation
generation is that realistic augmentations are generated, it could make sense
to penalize clearly illegal graphs, e.g. in the molecular domain to physically
impossible bonds. For example, carbon, which has four valence electrons, can
form up to four covalent bonds with other atoms, such as in methane (CH4),
but not more. Carbon nodes could therefore be penalized should their degree be
greater than 4.
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