
Distributed

 Computing

Towards Semi-Supervised
Region-Learning for

Electroencephalography Models
Semester Project

Dustin Klebe, Jie-Ming Li, Lukas Wolf

{klebed, ljie, wolflu}@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Ard Kastrati

Prof. Dr. Roger Wattenhofer

July 18, 2023

Acknowledgements

We would like to express our sincere gratitude to Prof. Wattenhofer for providing
us with the opportunity and resources to work on this project. We would also
like to thank Prof. Langer from UZH for his constant support and for providing
access to the datasets that were crucial in the project.

Furthermore, we are grateful to Ard Kastrati for his generous supervision
and guidance throughout the project. Thank you for your trust in our ideas and
approach and for leaving us the freedom of exploration.

i

Abstract

While DETRtime [1] is a powerful architecture for detecting events in time series
signals, there are still several issues where it can be improved upon. Therefore, in
this project report, we aim to investigate the state-of-the-art time series segmen-
tation DETRtime model by addressing its three main downsides: overlapping
boxes, model size, and generalization capabilities.

First, the nature of predicting potentially overlapping boxes seems unusual
as a segmentation objective. Therefore, we argue that predicting change points
may be the more natural approach.

Second, the large size and unscalable transformer architecture make DETR-
time difficult to use in certain applications. We investigate the representations
that DETRtime learns and explore alternative building blocks of the model.

Finally, while DETRtime has shown superior performance in multiple seg-
mentation settings, its generalization capabilities need to be further investigated.
Since the authors observed large performance differences in development and test
sets, we propose a novel pretraining procedure that learns discrete box embed-
dings and reconstructs them, which allows us to learn better representations of
EEG data streams based on the semantics of their subsequences.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction and Motivation 1

2 Background and Related Work 3

2.1 Electroencephalography and Eye Tracking 3

2.2 Machine Learning Background 5

2.2.1 Representation Learning 5

2.2.2 Time Series Segmentation 6

2.2.3 Region Learning . 7

2.3 Considered Models . 7

2.3.1 DETRtime . 7

2.3.2 BENDR . 9

2.4 Data Sources . 10

2.4.1 EEGEyeNet . 10

2.4.2 Movie Watching Paradigm 12

2.4.3 Data Annotation and Preprocessing 12

2.4.4 Comparison to BENDR Dataset and Preprocessing 13

3 Investigating DETRtime 15

3.1 Investigating DETRtime Backbone Embeddings 15

3.1.1 Raw EEG Timestamp Similarity 15

3.1.2 Intermediate Timestamp Representation Similarity 15

3.1.3 Distilling the Backbone Through Pretraining 17

3.2 Using DETRtime for Changepoint Detection 18

3.2.1 Limitations of Event Detection in DETRtime 19

iii

Contents iv

3.2.2 Introduction of Changepoint Detection 19

3.2.3 Prediction and Sequence Generation 20

3.2.4 Training and Hyperparameters 20

3.2.5 Postprocessing . 20

3.2.6 Results . 21

3.3 Improving Generalization through Self-Supervised Pretraining . . 23

3.3.1 Pre-training objective . 23

3.3.2 The architecture . 24

3.3.3 Results and Discussions 24

4 Improving Representations of DETRtime 25

4.1 Evaluation of BENDR on EEGEyeNet 25

4.1.1 BENDR Pretraining . 25

4.1.2 BENDR Finetuning . 26

4.2 DETRtime for Region Learning 27

4.2.1 Transferring BENDR Ideas 27

4.2.2 The Region Learning Model 29

5 Evaluation and Outlook 30

Bibliography 32

Chapter 1

Introduction and Motivation

As the most efficient pathway for transmitting information to the brain, the
human eye plays a pivotal role in our daily lives. Our ability to process visual
stimuli and navigate our surroundings is key to our survival and success. As
a result, eye gaze and visual information are frequently utilized as behavioral
measures in cognitive science and psychology to investigate attentional focus,
cognitive control, decision-making, and more [2]. Currently, eye gaze information
is predominantly employed to detect variations in a participant’s attention and
adherence to a task.

Eye-tracking data is often inaccessible to many researchers due to the high
cost of hardware and experimental setup. Recent studies have explored the use of
machine learning techniques to compute eye gaze based on functional Magnetic
Resonance Imaging (fMRI) signals and webcams, but these setups have their
limitations in usability and cost. The fMRI signal, for instance, does not pro-
vide the temporal resolution required to track cognition at the level of eye gaze.
Webcam-based methods, on the other hand, can be less expensive but come with
usability issues.

As an alternative, EEG (Electroencephalography) is a widely used, cost-
friendly, and safe method in cognitive neuroscience that allows the measurement
of the brain’s electrical activity over extended periods in clinical settings. EEG
has been used to study a wide range of cognitive processes, including attention,
perception, and memory. Therefore, it presents itself as a viable option for re-
searchers interested in studying eye gaze in cognitive neuroscience. [3]

Given that many neuroscientific and psychological laboratories already pos-
sess the necessary hardware to collect EEG data, developing an eye-tracking
approach that can predict eye gaze based on simultaneously measured EEG and
electrooculography (EOG) data is a worthwhile goal. This approach could accel-
erate the scientific discovery of human behavior and neurological and psychiatric
diseases. By combining EEG and EOG data, researchers can obtain a more
comprehensive understanding of cognitive processes that involve eye movements,
such as attention and decision-making. Furthermore, this approach can overcome
the limitations associated with traditional eye-tracking methods and provide a

1

1. Introduction and Motivation 2

more accessible and cost-effective option for studying eye gaze in cognitive neu-
roscience. Therefore, developing a reliable EEG-based eye-tracking method has
the potential to advance our understanding of the neural mechanisms underly-
ing human behavior and psychiatric disorders. On the other hand, EEG data
analysis is difficult due to its high dimensionality, noise, and complex structure.

The segmentation of time series signals is a fundamental problem in many
fields, such as signal processing, machine learning, and data mining. In general,
segmentation involves dividing a time series into meaningful segments that cor-
respond to different underlying processes or phenomena. For instance, in speech
recognition, the segmentation of audio signals into phonemes is necessary to iden-
tify words and phrases.

As such, a significant challenge in EEG analysis is segmenting EEG time
series into meaningful segments that correspond to specific brain states, such as
sleep stages or cognitive processes. This project builds upon our previous work on
DETRtime, a segmentation model for EEG data. Segmenting EEG data is crucial
because it allows for the identification of different brain states related to cognitive
processes like attention, memory, or emotion. In sleep research, segmenting EEG
signals into sleep stages is crucial for understanding the organization of sleep and
its relationship with various physiological and psychological processes.

Segmentation of EEG data can also aid in detecting abnormalities or changes
in brain activity that may be associated with neurological or psychiatric dis-
orders. For example, epileptic seizures can be identified by segmenting EEG
signals and recognizing abnormal patterns of brain activity that are indicative of
seizures. Segmenting EEG signals can also facilitate the interpretation of intri-
cate patterns of brain activity, such as those that occur during multi-tasking or
decision-making. By segmenting EEG data into epochs that correspond to differ-
ent cognitive processes, it becomes possible to investigate the neural mechanisms
underlying these processes.

In addition, the segmentation of EEG data is essential for the development of
EEG-based brain-computer interfaces, which allow individuals to control devices
using their brain activity. By segmenting the EEG signals into different brain
states, it is possible to map specific brain states to specific device commands.

The DETRtime architecture has proven its value within the domain of EEG
time series segmentation, but one might expect that it generalizes beyond EEG
to other medical time series signals or even time series segmentation in general.
For instance, in financial analysis, the segmentation of stock prices into trends
and patterns can help in predicting future stock prices. In environmental mon-
itoring, the segmentation of time series data into different regimes can help in
understanding the dynamics of ecological systems. This motivates a further in-
vestigation of the DETRtime model in time series segmentation, where we use
EEG data as a starting point.

Chapter 2

Background and Related Work

2.1 Electroencephalography and Eye Tracking

EEG is a method that involves placing electrodes on the scalp to record the
electrical activity in the brain. This technique is non-invasive and captures the
combined activity of millions of neurons firing together, providing crucial insights
into brain function and potential disorders.

In 1924, Hans Berger first recorded EEG by placing electrodes on his son’s
scalp and observing the electrical activity with a string galvanometer. He coined
the term "electroencephalogram" for the recorded signals. Since then, EEG has
become an essential tool in both clinical practice and neuroscience research [4].
In clinical settings, EEG is used to diagnose and monitor neurological disorders
such as epilepsy, dementia, and sleep disorders. Meanwhile, in research, EEG is
applied to investigate brain activity during cognitive and sensory processes such
as memory, attention, and perception [5].

Eye tracking is a research technique that measures the movement and position
of the eyes. It is a non-invasive method that records and analyzes the position
of the pupil and the direction of the gaze. Eye tracking can provide valuable
information about cognitive processes such as attention, perception, reading, and
decision-making. The technique has numerous applications, including market
research, usability testing, psychology, and neuroscience.

One of the earliest and most widely used methods of eye tracking is video-
based eye tracking. This technique involves using a camera to record the position
of the eyes and analyze the footage to determine the direction of the gaze. Infrared
eye tracking is another popular method that uses infrared light to track the
position of the pupils. More recently, mobile eye tracking has become increasingly
popular, which allows researchers to study eye movements in naturalistic settings.

Eye tracking has been used in many different areas of research, including
psychology, neuroscience, marketing, and human-computer interaction. For ex-
ample, in psychology, eye tracking has been used to study attention, memory, and
decision-making processes. In neuroscience, eye tracking has been used to study

3

2. Background and Related Work 4

the neural basis of visual attention and to develop new methods for diagnosing
and treating neurological disorders.

Gaze prediction is a subject of active research that has applications in var-
ious fields such as human behavior analysis [6], advertisement [7], and human-
computer interaction [8]. Previous research has found that attention facilitates
action selection [9]. [10] demonstrated the possibility of performing activity recog-
nition from eye movements. Some models use saliency maps to predict gaze lo-
cation [11, 12], while others leverage machine learning techniques to estimate
gaze position from indirect data. For example, [13] use webcam images, and [14]
and [15] use functional magnetic resonance imaging (fMRI). Similarly, [16] recon-
structed fixation maps directly from fMRI data to predict eye movement patterns.
Recently, [17] found that it might be possible to infer gaze direction directly from
EEG data. A big leap forward was being done by [3], which introduces a novel,
large dataset and a benchmark with tasks of increasing difficulty.

Ocular events’ detection is an active research topic with applications in hu-
man behaviour analysis [18], activity recognition [19], human-computer interac-
tion and usability research [20], to mention a few.
The most standard and exploited segmentation techniques rely on infrared video-
based systems. Modern eye-tracker companies use proprietary solutions to enable
fast and reliable data segmentation [21]. Another prominent example of the seg-
mentation framework was provided by [22]. This deep learning-based solution
detects eye movements from eye-tracking data and does not require hand-crafted
signal features or signal thresholding. However, in many experimental settings,
a camera setup for eye tracking is not available, and thus this approach becomes
impossible.
Another technique of measuring eye movements is Electrooculography (EOG),
that record changes in electric potentials that originate from movements of the
eye muscles [23]. Previous studies have described and evaluated algorithms for de-
tecting saccades, fixations, and blinks characteristics from EOG signals recorded
while driving a car [24]. The proposed algorithm detects microsleep episodes in
eye movement data, showing the high importance of the tool. Other authors [25]
have successfully evaluated algorithms for detecting three eye movement types
from EOG signal achieving average precision of 76.1 % and recall of 70.5 % over
all classes and participants. To date, the most successful and comprehensive ap-
proach to the problem of the EOG segmentation was proposed by [26]. They
classified temporal eye parameters (saccades, blinks) from EOG data. The clas-
sification sensitivity for horizontal and large saccades was larger than 89% and
for vertical saccades larger than 82%. Another line of research on the subject
has been mostly restricted to blink detection [27]. Their BLINKER algorithms
are effective in capturing a majority of the blinks and calculating common ocular
indices.

Recently, [1] introduces a new way of segmenting EEG signals, achieving

2. Background and Related Work 5

state-of-the-art performance in ocular events and sleep stage segmentation. A
more involved introduction to this work is provided in Section 2.3.1.

2.2 Machine Learning Background

Machine Learning, particularly deep learning, has become a popular technique for
analyzing high-dimensional and complex data such as EEG data. Deep learning
in particular allows extracting meaningful representations in a lower-dimensional
space, thus reducing redundancy in the data while retaining key information.
The resulting representations can be used for various downstream tasks such as
time series segmentation, which is of particular interest in our research.

2.2.1 Representation Learning

Representation learning is a fundamental aspect of deep learning that is crucial
for the performance of deep learning models. The goal of representation learning
is to automatically learn a more compact and informative representation of the
input data that can be used for various downstream tasks such as classification,
segmentation, and synthesis. Representation learning operates under the premise
of the manifold hypothesis [28] i.e. that a complex dataset, which exists in a high-
dimensional space lies on a manifold that is parametrized by a lower-dimensional
space. As such, we can learn representations of the data in this reduced parameter
space.

Representation learning is performed by training deep neural networks with
multiple layers of nonlinear transformations. Each layer of the network learns
to transform the input data into a new representation that captures increasingly
abstract and high-level features of the input data.

One of the key advantages of deep learning and representation learning is their
ability to handle high-dimensional and complex data, such as images, audio, and
in our case EEG. By learning a more informative representation of the input
data, deep learning models can often achieve better performance on a wide range
of tasks compared to traditional machine learning methods.

There are many different techniques and architectures for representation learn-
ing in deep learning, including convolutional neural networks (CNNs) for im-
age and video data, recurrent neural networks (RNNs) for sequential data, and
transformers for natural language processing. In addition, unsupervised learning
methods such as autoencoders, generative adversarial networks (GANs), and vari-
ational autoencoders (VAEs) can also be used for representation learning without
requiring labeled data.

Recently, Wav2Vec [29] introduced a model that can learn representations of
high-dimensional continuous data in an unsupervised fashion, which can extract

2. Background and Related Work 6

high-quality representation of audio signal and transform it into text, i.e., a
transformation from continuous signal into discrete. BENDR [30] extends this
approach to EEG data with the aim of achieving high-quality representation of
EEG data.

2.2.2 Time Series Segmentation

Time-series segmentation is a crucial task in machine learning that involves divid-
ing a continuous sequence of data into characteristic segments or sub-sequences,
each of which is assumed to exhibit a homogeneous behavior or pattern. This task
is particularly important in applications where the data is naturally in the form
of a time series, such as in finance, healthcare, and speech recognition. In the
case of EEG data, segmentation can be used to identify different ocular events.

Time-series segmentation is an active field of research in machine learning,
leading to a wide variety of methods, ranging from simple statistical methods
to complex machine-learning algorithms. One common approach is to use un-
supervised learning methods such as clustering [31], and dynamic time warping
[32]. These methods aim to group together similar segments of the time series
based on some distance or similarity measure. One prominent method is the
hidden Markov [33] algorithm, which assumes that the time-series is the evidence
of an underlying generative procedure. The method tries to learn the generative
function for each class explicitly, while maximizing the likelihood of the evidence.

Another approach to time-series segmentation is to use supervised learning
methods, where the goal is to learn a mapping between the input time series
and a set of labeled change-points, which indicate the segment boundaries. This
approach requires labeled training data and can be formulated as a classification
and regression problem, as the position and the class of the change-point are
predicted.

Deep learning models have also been applied to time-series segmentation
tasks, with great success. One common approach is to use recurrent neural
networks (RNNs [34]) or convolutional neural networks (CNNs) to learn a hi-
erarchical representation of the time series and then use this representation to
perform segmentation. Other deep learning models, such as transformers [35],
have also been applied to time-series segmentation tasks with promising results.

One of the key challenges in time-series segmentation is the trade-off between
accuracy and computational efficiency. While complex machine learning models
can achieve high accuracy, they are often computationally expensive and require
large amounts of training data. On the other hand, simpler methods such as
statistical models may be faster and require less data, but may not be as accurate.

2. Background and Related Work 7

2.2.3 Region Learning

We define Region learning as the intersection of representation learning and time
series segmentation. The goal of region learning is identifying and learning seman-
tically meaningful fixed-sized representations of variable length segments within
a time series. Therefore, regions are represented in a way that enables easy seg-
mentation and prediction in downstream tasks. The problem is motivated by the
insight that complex signals like EEG can be divided into multiple regions events
(e.g. ocular events or sleep stages), where each event follows its own generating
distribution.

To elaborate further, region learning involves identifying segments in time
series data that are meaningful and representative of underlying patterns. These
segments could be contiguous time windows, specific events or patterns within the
time series, or other forms of meaningful sub-sequences. Once identified, these
regions can be represented using appropriate machine learning techniques, such
as feature extraction, encoding, or embedding, to capture relevant information
for downstream tasks.

One example of a downstream task that could benefit from region learning
is time series classification, where the goal is to predict the class or category
of a time series based on its features. By using region learning to identify and
represent meaningful segments within the time series, the task of classification
can become more accurate and efficient, as the algorithm can focus on the most
informative parts of the time series.

Region learning is closely related to concepts computer vision, as both fields
deal with learning representations of semantically meaningful segments. In com-
puter vision, this involves identifying and segmenting objects, scenes, or other
meaningful units within an image or video. Region learning in time series data
is analogous to this process, as it involves identifying and segmenting meaningful
units within a temporal sequence. However, region learning in time series data
presents unique challenges, such as dealing with irregular or non-uniform time
intervals, varying sampling rates, and temporal dependencies between segments.
These challenges require specialized techniques and algorithms that are tailored
to the specific characteristics of time series data.

2.3 Considered Models

2.3.1 DETRtime

Architecture and Design

DETRtime [1] is a transformer-based architecture that was developed as a mod-
ification of the original DETR (DEtection TRansformer) [36] model, which was

2. Background and Related Work 8

used for object detection in natural images. However, DETRtime is specifically
designed for detecting events in a time series and has been extensively tested on
EEG data. The task of DETRtime is to segment a stream of EEG data into
ocular events, which are events related to eye movements.

The architecture of DETRtime consists of two main components: a backbone
and an encoder-decoder transformer. The backbone is a convolutional neural
network (CNN) architecture that is composed of six layers of convolutional mod-
ules with residual connections that maps the input to a shape suitable for the
transformer. The transformer, on the other hand, consists of an encoder and a
decoder. The transformer encoder learns a sequence representation which, along
with learned queries, is fed to the decoder to produce encoded features for a fixed
number of learned event queries. DETRtime uses N=20 queries for almost all
EEG data streams of length 1 second. The decoder attends to the encoder output
and predicts the properties of each event.

The authors of DETRtime performed extensive experiments on their novel
and publicly available datasets, which included the Visual Symbol Search, Read-
ing paradigms, and Dots paradigms. According to the reported results the au-
thors observed that their model outperformed the current state-of-the-art models
by a large margin. Additionally, DETRtime was evaluated in different applica-
tions, such as the sleep staging task, which was initially performed with the
U-time and SalientSleepNet models. In this task as well, DETRtime outper-
formed the current state-of-the-art solutions, demonstrating its generalization
capabilities.

Overall, DETRtime is a powerful architecture that is capable of detecting
events in a time series, with a focus on EEG data. Its backbone and transformer
components work together to efficiently encode and decode features from the
input data, and its superior performance in experiments makes it a promising
solution for various applications in the future.

Limitations

While DETRtime has shown to be a powerful architecture for detecting events in a
time series, there are some downsides that call for further investigation. One such
downside is the nature of overlapping boxes, which is unusual as a segmentation
objective. An alternative and potentially promising objective would be using
change point detection. This approach is covered in Section 3.2.

Another issue is a large size and unscalable transformer architecture of DE-
TRtime, which may limit its practical applications. This may call for further
research into ways to optimize the architecture to make it more scalable and
efficient. In the following chapters (see Section 3)

Moreover, while DETRtime has demonstrated superior performance in exper-

2. Background and Related Work 9

iments, its lack of generalization with large differences in development and test
sets is a concern. It is possible that the model was overfitting to the specific
datasets used in the experiments, and thus it may not perform as well on other
EEG datasets or in different applications. Therefore, further investigation and
testing on diverse datasets are necessary to evaluate the generalization capabili-
ties of the model. In order to do so, we investigate learning better representations
of EEG data in Section 4.

2.3.2 BENDR

Architecture and Design

BENDR [30] tackles the challenge of using deep neural networks (DNNs) to clas-
sify raw electroencephalography (EEG) data in brain-computer interface (BCI)
applications. The goal is extracting useful features from raw sequences and clas-
sifying those features from limited data. The authors argues that self-supervised
sequence learning, specifically techniques inspired by language modelling, could
be an effective approach for developing more complex DNNs in BCI. The au-
thors evaluate a self-supervised speech recognition technique called wav2vec 2.0
[29] adapted to EEG data, and discuss the transferability of learned features to
unseen subjects, hardware, and tasks.

The approach involves using self-supervised training objective to learn com-
pressed representations of raw data signals, which can be fine-tuned to a variety
of downstream BCI and EEG classification tasks. The study found that a sin-
gle pre-trained model can model completely novel raw EEG sequences recorded
with differing hardware, and different subjects performing different tasks and
outperforms prior work in more task-specific self-supervision.

Unlike common unsupervised schemes, BENDR uses a cosine similarity-based
contrastive loss [37] to learn meaningful representations:

L = − log
exp(cossim(ct, bt)/κ)∑

bi∈BD
exp(cossim(ct, bi)/κ)

(2.1)

In essence, this loss operates by adjusting the output of the transformer at
position t to be most similar to the encoded representation at t, as compared
to a set of randomly sampled negative examples BD, despite that this input to
the transformer is masked. A more detailed explanation of this objective can be
found in Section 4.2.1.

2. Background and Related Work 10

Limitations

The BENDR architecture has some limitations that need to be addressed. The
first problem is related to the heavy downsampling applied by the model, which
results in the loss of fine-grained local information. This information might be
crucial for some tasks, such as the segmentation of ocular events, where saccades
and blinks can last only 60 milliseconds or even shorter. Moreover, the heavy
downsampling requires a long input sequence of 60 seconds, which is not practi-
cal for many tasks. Shorter input sequences, such as 1 second, would result in
intermediate sequence lengths of less than 7 and hence, most of the sequential
information would be lost.

Another limitation of BENDR is that it is restricted to downstream clas-
sification tasks, where the effective sampling rate is not critical. However, in
other downstream tasks, it may be more important. Therefore, it is necessary
to demonstrate the performance of the model on tasks other than classification.
Overall, these limitations highlight the need for further research in developing ar-
chitectures that can handle fine-grained local information while still maintaining
computational efficiency and practicality for various applications.

2.4 Data Sources

2.4.1 EEGEyeNet

The dataset utilized in this study was originally published in [3], consisting of
recordings from 365 healthy adults, with 190 females and 175 males, ranging in
age from 18 to 80 years. The experiments were conducted in a soundproof and
darkened room, with participants seated at a distance of 68cm from a 24-inch
ASUS ROG Swift PG248Q monitor, featuring display dimensions of 531×299
mm and a resolution of 800×600 pixels, resulting in a display area of 400×298.9
mm and a vertical refresh rate of 100Hz. Specifically, data were collected from a
subset of 80 healthy adults, including 33 females, with ages ranging from 20 to
40 years, as detailed in [1].

The EEG data was captured using a 128-channel EEG Geodesic Hydrocel
system, with midline central recording reference and a sampling rate of 500 Hz.
Simultaneously, an infrared video-based ET EyeLink 1000 Plus was used to record
eye position at the same sampling rate of 500 Hz, with a spatial resolution of less
than 0.01 root mean square (RMS) between successive samples. Participants
were positioned 65 cm away from a 24-inch monitor with a resolution of 800 x
600 pixels, and the setup is illustrated in Figure 2.1. Ground truth signal was
derived from the eye movement recordings [3].

EEG data can be easily corrupted by environmental factors such as temper-
ature, humidity, and electromagnetic radiation, as well as by individual-specific

2. Background and Related Work 11

Figure 2.1: The illustration of the recording setup

disturbances such as eye blinks, muscle noise, and heart signal. To address this is-
sue, the data used in this study was preprocessed through artifact correction [38].
Two preprocessing methods are provided by the Pedroni et al. toolbox: minimal
and maximal preprocessing. The minimal approach involves detecting and inter-
polating malfunctioning electrodes, and filtering the data with a 40 Hz high-pass
filter and a 0.5 Hz low-pass filter. In contrast, the maximal preprocessing method
removes a larger number of artifacts by utilizing independent component analysis
(ICA) in conjunction with IClabel [39], a pre-trained classifier that estimates the
probability of a component representing artifactual activity. If the probability es-
timation of a component exceeds 0.8 for any artifact class, it is removed from the
data. Importantly, minimally preprocessed data retains ocular artifacts, which is
expected to facilitate gaze position estimation [3].

Large Grid

The experiment involves participants fixating on a series of dots presented in a
sequence of 27 trials per block. The dots are displayed at 25 different screen
positions, with the center dot appearing three times. Each dot is shown for a
duration of 1.5 to 1.8 seconds. The positions of the dots were chosen to cover
all areas of the screen, including the corners and center. The grid used for eye
gaze estimation is based on the Large Grid paradigm developed by Son et al.
(2008) for fMRI studies. The stimulus length and number of repetitions have
been adjusted for our study, with different pseudo-randomized orderings of dot
presentation used in five experimental blocks to increase the number of trials and
reduce predictability. An illustration can be found in [3]

Processing Speed Paradigm

The Visual Symbol Search (VSS) is an assessment tool that measures processing
speed in a computerized version of the Symbol Search Subtest of the Wechsler

2. Background and Related Work 12

Intelligence Scale for Children IV (WISC-IV) and the Wechsler Adult Intelligence
Scale (WAIS-III). During the VSS test, participants view 15 rows at a time, where
each row contains two target symbols, five search symbols, and two additional
symbols with the words "YES" and "NO". The goal is to click the "YES" or
"NO" symbol to indicate whether one of the target symbols is among the search
symbols. Each VSS recording lasts for 120 seconds with a maximum of 60 trials,
or rows. Half of the trials include one of the target symbols, and the other half
do not. After each set of 15 rows, participants click a "next page" button to
proceed to a new set of 15 rows. Participants are instructed to complete as
many trials as possible within the given 120 seconds. Prior to the recording,
participants perform a training of four trials with feedback. The collected data
can be used to investigate the correlation between processing speed and behavior
and neurophysiology.

ZuCo 2.0

Another dataset being used is called ZuCo 2.0, which is a collection of simultane-
ous eye-tracking and electroencephalography (EEG) data during natural reading
and annotation. It contains data from 18 participants and includes 739 English
sentences, with 349 being in a normal reading paradigm and 390 in a task-specific
paradigm where participants actively search for a semantic relation type in the
given sentences as a linguistic annotation task. [40]

2.4.2 Movie Watching Paradigm

In addition to the previously mentioned experimental paradigms from EEGEyeNet,
we augment the dataset with the Movie Watching paradigm, representing a more
natural setting. Data were obtained during two short and highly engaging movies
scenes (‘Despicable Me’ [171 seconds clip, MPEG-4 movie, the bedtime ("Three
Little Kittens") scene] and ‘Fun Fractals’ [163 seconds clip, MPEG-4 movie]).
The data was first released in [1].

2.4.3 Data Annotation and Preprocessing

Literature studying eye movement classifies three different events, namely sac-
cades, fixations and blinks [41]. A saccade is a time interval of very fast eye
movement that instantly changes the position of the eye gaze. Fixations are gen-
erally defined as time periods without saccades, whereas blinks can be seen as
a special kind of fixation, where the measured pupil diameter is equal to zero.
While most of the important information is contained in the saccades, the time
intervals of the fixations seem to contain artifacts of the saccades they follow.

2. Background and Related Work 13

In EEGEyeNet [3] the authors utilize various paradigms and datasets. Specif-
ically, the paper processes fixed 500-length samples of data from three different
paradigms, namely dots (Large Grid), processing speed, and ZuCo 2.0 (reading).
We follow the preprocessing steps in [3]. In addition to the above paradigms,
we also utilize movie data, which provides a more natural paradigm for analysis.
For the DETRtime investigation (see Section 3), we use segmentation samples
of length 500. The events in these samples are classified into three categories:
fixations, saccades, and blinks. In order to pre-train models (see Section 4),
we use the whole data stream collected during an experiment, instead of short
fixed-length samples. This results in much more data being used for pre-training.
The data is randomly sampled from all paradigms, while each participant is only
included in either the train, validation or test split. For each epoch, the random
offsets of the stream samples of arbitrary but fixed length (e.g. 2000) are resam-
pled, leading to more variance in the training data. This approach helps to avoid
overfitting and improves the generalization of the model.

2.4.4 Comparison to BENDR Dataset and Preprocessing

The BENDR paper [30] uses a combination of publicly accessible EEG data
classification tasks and the Temple University Hospital EEG Corpus (TUEG)
dataset for pre-training. The TUEG dataset consists of clinical recordings of
over 10,000 people, recorded over many sessions and distributed across large
time scales. The publicly accessible EEG data classification tasks include BCI
task datasets and one sleep stage classification (SSC) task dataset. The BCI task
datasets are classified in the context of particular trials or events, while the SSC
dataset requires labeling of large spans of time with the particular sleep stage a
subject is undergoing. The sequences in the SSC dataset are longer and closer
in length to the pre-training task, allowing for consideration of how effective
the approach is at a different time scale. The SSC dataset has a larger scale
of available labels, enabling prior work to consider deeper and more complex
models. The sequences in the datasets are segmented into 30-second periods and
focused on 5 labels. [30]

The preprocessing steps of BENDR involve modifying downstream datasets
to match the configuration of the pre-training dataset. The steps include remov-
ing spurious differences in channel amplitude by linearly scaling and shifting each
sequence, adding a single channel to account for lost relative amplitude informa-
tion, and addressing differences in sampling frequency and electrode sets using
standard features in DN3. A reduced subset of the Deep1010 channel mapping
was used, and sequences of 60 seconds were extracted for pre-training. Down-
stream datasets used shorter sequence lengths, but the architecture used was
agnostic to the sequence length. [30]

In our pretraining experiments (see Section 4) we adopt the normalization

2. Background and Related Work 14

procedure of BENDR, and add the additional channel to encode the amplitude.
For the dataset being used in the pre-training procedure of BENDR large-scale
training infrastructure is needed. In order to extend the BENDR results from
classification-only to other tasks, we pre-train our own BENDR model on the
EEGEyeNet + movie paradigm dataset. This amounts to roughly 205GB of
EEG data and contains a large variety of eye movements.

Chapter 3

Investigating DETRtime

3.1 Investigating DETRtime Backbone Embeddings

The goal of this section is to gain insights into the representation learning process
of the backbone architecture of the DETRtime model [1]. As the dimensionality
of the input data is not temporally downsampled, there is a one-to-one correspon-
dence between the input timestamp and the intermediate representation output
of the backbones. The similarity of timestamps within and across classes is ana-
lyzed using cosine similarity as a metric.

3.1.1 Raw EEG Timestamp Similarity

Analysis of the raw EEG input timestamps (see image 3.1) reveals that there is
no correlation between timestamps across different classes, indicating that the
vectors are orthogonal. Additionally, there is only a slight correlation between
timestamps within each class, with blinks being the only exception, showing a
higher within class-correlation than fixations and saccades. These results suggest
that blinks may be easier to detect than saccades, even though they are even
more underrepresented in the dataset than saccades.

3.1.2 Intermediate Timestamp Representation Similarity

Analysis of the intermediate timestamp representation after passing the data
through the DETRtime backbone reveals that the cosine similarity values are
clearly positive for all cross- and in-class pairs. Moreover, the similarity of times-
tamps within each class is higher than the cross-class similarity, indicating that
the backbone has learned relevant features characterizing each class.

It is noteworthy that the similarity values of saccades are significantly larger
than those of other classes, even though the similarity values of saccades on the
raw timestamps are the smallest. This indicates that the backbone architec-
ture specifically focuses on identifying informative features for the saccade class.

15

3. Investigating DETRtime 16

Figure 3.1: Cosine Similarity on Raw EEG Timestamps

Figure 3.2: Cosine Similarity on DETRtime embedding

3. Investigating DETRtime 17

Thus, it is suggested that saccades may be difficult to classify and require specific
consideration by the backbone.

3.1.3 Distilling the Backbone Through Pretraining

The analysis of the intermediate timestamp representation in DETRtime pro-
vides valuable insights into the representation learning process of the backbone
architecture. The results indicate that the backbone has learned relevant features
that characterize each class.

Separation of Classes

However, the fact that saccades have the highest similarity values on the inter-
mediate timestamp representation, even though they have the smallest similarity
values on the raw timestamps, suggests that there is a discrepancy between the
learned features and the actual informative features. This discrepancy could po-
tentially be addressed by investigating the embeddings and trying to pretrain
our own embeddings with a different training objective. By doing so, we may
be able to get rid of the backbone architecture or try to improve DETRtime
by using these pretrained embeddings. Additionally, the fact that blinks show
a clear correlation of similar timestamps suggests that blinks may be easier to
detect than saccades, even though they are even more underrepresented in the
dataset. Therefore, further investigation into the embeddings could potentially
improve the overall performance of the model in detecting saccades and other
underrepresented classes.

Cosine Similarity Approach

Since the backbone clearly tries to align same class time stamps while being
trained on the DETRtime training objective, we now want to find out how much
we can separate the classes with respect to cosine similarity, if cosine similarity
was used as training objective.

In order to do so, we map single-timestamp inputs with either a 3-layer Per-
ceptron or a multi-layer CNN to a lower dimensional vector. Across a batch, we
then minimize the cosine-similarity across vectors of different classes, and max-
imize the similarity across same classes. The results of this learning procedure
can be found in Figure 3.3.

As we can see, the cosine similarity within the classes fixation and blink is very
high. Taking into account that most timesteps are fixations, the average cosine
similarity of timesteps within the same event class is 0.92, while the average
cosine similarity of timesteps across classes is 0.19. At the same time, we clearly
struggle to separate the saccade class from the other classes. This indicates that

3. Investigating DETRtime 18

saccades are of a somewhat ambigous nature, which already has been stated in
[1].

We conclude, that the DETRtime backbone is doing a good job at extracting
meaningful features, that already separate the timesteps of different classes in
the Euclidean space, which can then be handled by the transformer nicely. We
ran experiments trying to predict the class of a time step based on the pretrained
embeddings, showing very poor results compared to DETRtime.

In the course of this project we did not run any experiments of the DETRtime
transformer on the artificially encoded timesteps with cosine-similarity as training
objective. This is an interesting direction left for further research.

Figure 3.3: Cosine similarities of embeddings when being trained with a cosine-
similarity objective and and Multilayer Perceptron to map the inputs.

3.2 Using DETRtime for Changepoint Detection

DETRtime has shown promising results in detecting eye movement events by
introducing a new architecture and loss function in the regime of time-series
segmentation [1]. However, DETRtime has certain limitations and can benefit
from further improvements.

In this study, we propose modifications to DETRtime as proposed in [1] to
address some of its limitations. Specifically, we focus on improving the detection
of eye movement events by introducing a changepoint detection method and a
postprocessing step. We evaluate the performance of our modified model on
the dots-paradigm EEG dataset and compare it with the performance of the
original DETRtime model. The metric used for the analysis is the macro F1-score,
describing the classification performance of the three ocular events: fixation,

3. Investigating DETRtime 19

saccade, and blink.

3.2.1 Limitations of Event Detection in DETRtime

Despite achieving high macro F1 scores, DETRtime exhibits certain limitations
resulting from its event detection approach for prediction. DETRtime segments
time series data into labeled boxes by predicting start and end points for each
event. However, the approach may lead to some limitations that can affect the
accuracy and generalizability of the model.

One of the primary limitations of DETRtime is that the boxes generated by
the model may overlap or have gaps where multiple classes or no class is predicted.
This is problematic because each timestamp must belong to exactly one class.
The current approach leads to ambiguity in the labeling of these timestamps.

To address this issue, the authors of DETRtime propose a heuristic approach
where non-assigned classes are labeled as "fixation," and non-maximum suppres-
sion is used for timestamps that have been assigned to multiple classes. The
authors found that this approach worked well when segmenting ocular events
in EEG data because "fixation" was the dominant class. However, it is unclear
whether this approach generalizes to other domains with different class distribu-
tions.

3.2.2 Introduction of Changepoint Detection

To overcome this limitation, we built upon DETRtime’s strengths in attention
mechanism and introduced a more natural prediction scheme for time-series seg-
mentation. Specifically, we predict changepoints instead of bounding boxes,
thereby offering a more straightforward approach to time-series segmentation.
This approach is based on detecting changes in the time series, where each change-
point indicates a transition from one segment of the time series to another.

Each prediction consists of two entities: the first is a position pi, which is
a relative x-coordinate in the value range [0,1]. The second entity is the cross-
entropy vector, indicating the probabilities for each class, including the non-
object class. The class prediction indicates the class assignment of the timestamps
after the changepoint.

Similar to DETRtime, we use the Hungarian loss as our objective function,
computing a minimal matching of our predictions and targets. This objective can
be further motivated by the theory of optimal transport as this loss minimized
the monge objective [42]. For the class predictions, we use the cross-entropy loss.
For the position prediction, we use the L1 loss.

Our approach offers several advantages over the event detection approach
used in DETRtime. First, it is more natural because it directly detects changes

3. Investigating DETRtime 20

in the time series, which are the defining characteristics of many real-world phe-
nomena. Second, it avoids the ambiguity of the event detection approach, where
timestamps may be assigned to zero or multiple classes. Hence, it offers a more
straightforward approach to time series segmentation, which can improve the
generalizability of the model.

3.2.3 Prediction and Sequence Generation

Once all predictions have been made for a given sample using our changepoint
detection approach, we generate the sequence as follows. First, we consider all
changepoints for which the confidence of non-class objects is not the highest.
This means that there is a class that has the highest confidence among all other
classes.

Next, we sort the changepoints according to their position from left to right
and map them onto the full length of the sample, which is 500 timestamps in our
case. We then assign each timestamp coming after a changepoint to the class
predicted for that changepoint until another changepoint appears. As our model
has learned that each sequence always begins with a changepoint, we do not have
the problem of unassigned changepoints at the beginning of a sequence.

Our approach also avoids the initial problems of DETRtime where change-
points can be non-assigned or assigned to multiple classes. By focusing on the
highest-confidence class for each changepoint, we ensure that each timestamp is
assigned to a single class and there is no ambiguity in the prediction.

3.2.4 Training and Hyperparameters

The model is trained for 250 epochs using a batch size of 32 and a learning rate
of 1e-4. In order to balance the gradient information, we multiplied the L1 loss
on the position by 20, as we observed that the magnitudes of the losses differed
by a factor of 20. The full list of hyperparameters used in the training process
can be found in the appendix.

During the training process, we observed a high variance in the metric score,
even in the later epochs. This variance can be attributed to the model’s instability
towards false positive and false negative changepoints. This motivates the use of
a postprocessing step.

3.2.5 Postprocessing

In this subsection, we describe a postprocessing step to address the instability
towards false positives in the changepoint approach. False positives or false nega-
tives in changepoint detection can result in misclassification of many timestamps

3. Investigating DETRtime 21

and can drastically reduce precision, especially for short classes such as "saccade"
or "blink." To address this, we propose computing the posterior distribution of
class lengths to identify class events with unlikely lengths.

To augment the definition of confidence for a changepoint, we multiply the
predicted class confidence by the probability of the class lengths given the pos-
terior length distribution of each class. This gives each changepoint prediction a
new confidence measure. Using this measure, we filter out unlikely changepoints
with unrealistic class lengths, such as a very long saccade.

To implement this postprocessing step, we iterate backward through the se-
quence of changepoints and compute the distance to the next changepoint, which
is the length of the event. We then look up the probability from the posterior
distribution of each class and compute the new confidence of this changepoint.
If this confidence falls below a certain threshold, which is a newly introduced
hyperparameter, then we evict this changepoint from the sequence.

By filtering out false positives through this process, we were able to increase
precision, which is critical for short classes. We provide an example case where a
false positive of the saccade class is predicted, successfully identified, and evicted
by their postprocessing step, as shown in Image 3.4.

3.2.6 Results

The presented results demonstrate the impact of the proposed postprocessing
step on the performance of the changepoint detection model. The macro F1
score increases from 0.83 to 0.87 with the inclusion of the postprocessing step.
The precision of the saccade class improves from 0.51 to 0.80, and the recall
of the fixation class increases from 0.96 to 0.99 with the postprocessing step.
However, the recall of blinks and saccades slightly decreases. Overall, we can see
an improvement of 0.04 by using the postprocessing procedure.

Although the DETRtime changepoint detection with postprocessing achieves
a competitive score of 0.87, the original DETRtime as proposed in the paper out-
performs the modified model by 0.05 margin, with a score of 0.92. The proposed
changepoint detection method resolved the issue of ambiguity in the original DE-
TRtime and improved its generalizability, but it also introduced new challenges,
including unstable false negative and false positive predictions. Consequently, the
results worsened, and the proposed modification did not result in an improvement
over the original DETRtime. We thus conclude that the assumed independence
in the box objective leads to better performance overall.

3. Investigating DETRtime 22

Figure 3.4: The image presents a comparison of the ground truth, prediction,
and post-processed prediction. The bottom part of the image depicts the ground
truth, while the middle part shows the initial prediction made by the model. It is
evident that the prediction includes a false positive saccade changepoint, which
misclassifies 80% of the timestamps in the sample. However, the top part of the
image demonstrates the post-processed prediction, which successfully eliminates
the false positive prediction and significantly improves the overall accuracy of the
prediction

3. Investigating DETRtime 23

3.3 Improving Generalization through Self-Supervised
Pretraining

We additionally investigate the topic of self-supervision in the EEG domain,
inspired by successes in other domains such as computer vision and natural lan-
guage processing. As is the case with DETRtime, initial approaches leveraged
large labeled datasets to achieve initial successes. In any case, this approach is
largely limited by the amount of available labeled data.
Recently, self-supervised learning has gained a foothold in specifically natural
language processing (NLP) and computer vision as a pre-training objective in
order to learn suitable features for an array of downstream tasks. Given the
similarities in architectures used in these domains and DETRtime, we found it
prudent to investigate a similar usage of common pre-training objectives.

3.3.1 Pre-training objective

Masked modeling and similar auto-regressive objectives have been leveraged as
highly successful methods in NLP pretraining ([43], [44]). A portion of the input
sequence is masked and held out and models are trained to predict the miss-
ing content. In NLP, these methods have performed well and there is ample
evidence demonstrating good generalization of learned representations to down-
stream tasks.

The approach is generalized to more continuous settings such as vision by
using auto-encoding techniques, where an encoder maps the input space to a
latent space and a decoder reconstructs the input. With the rise of architecturally
similar transformer architectures for the vision domain ([45]), combining this
approach with the masked objective of NLP became more feasible.

So called masked auto-encoders, where additionally the input contains masked
patches, where found to be similarly well-performing for transfer learning on
downstream tasks ([46]). Still, the largely heavier spatial redundancy in the
continuous vision setting represents an additional challenge for learning useful
features, which can be overcome with masking large percentages of the input
space.

Since the time series setting is similarly continuous with high local redundan-
cies, we adapt a similar objective for the time series setting, by masking sections
of the input signal and using various distance measures such as L1 distance or
mean squared error (MSE) as proxies for reconstruction quality.

3. Investigating DETRtime 24

3.3.2 The architecture

We adapt the ViT transformer ([45]) for the time series setting to yield a masked
autoencoder for the time series setting. The encoder works on unmasked portions
of the input sequences to produce latent embeddings, which are used together
with mask tokens by the decoder to reconstruct the vision output. Similar to
the ([1]), we use normalized input samples consisting of 500 time steps for the
training.

Reconstruction Objective The input is reconstructed by predicting the per-
time step values of the input signals. The loss function then computes the mean
squared error between the reconstructed and original values of the masked por-
tions of the input signal.

Masking ratio We found a masking ratio of around 40% due yield the best
results, providing better trade-off for the generally smaller redundancy of time
series data.

3.3.3 Results and Discussions

We report on our best performing models an average L1 distance of around 187.5
per sample. At the chosen masking ratio, this corresponds to an average of 90 %
the expected standard deviation on our normalized signal, which we found to be
particularly unsatisfactory given the additional challenges of our reconstruction
proxies on time-series data.

Given the expected high correlation between neighboring samples in EEG,
one can argue that similarly other time-series based domains an interpolation
is learned. Counter-acting this requires masking larger contiguous patches, but
even for smaller size masks of around 20 timesteps (corresponding to 20ms),
we find that this in turn negatively affects reconstruction. Since MSE or L1
loss already erroneously assume independent errors and fail to capture certain
degrees of errors in time series ([47], [30]), we find the general distance-based
reconstruction errors to be unsuitable for good representation learning on EEG.

Chapter 4

Improving Representations of
DETRtime

4.1 Evaluation of BENDR on EEGEyeNet

The BENDR method has shown promising results in various classification tasks.
However, it is essential to validate these results and extend them to non-classification
tasks. This would provide a more comprehensive understanding of the algorithm’s
performance and potential applications.

EEGEyeNet contains EEG data with ocular events, as well as tasks of in-
creasing difficulty, including classification and regression problems of distances
and angles. It has been widely used as a benchmark for various EEG data anal-
ysis methods, making it an excellent choice for evaluating the performance of
the BENDR method. This provides a comprehensive understanding of the algo-
rithm’s strengths and weaknesses and help identify areas for improvement.

4.1.1 BENDR Pretraining

To perform the pretraining, we randomly sample the input streams from the EEG
data as described in Section 2. However, we perform less downsampling in the
convolutional encoder in order to obtain a higher effective sampling rate than
BENDR. This is done with the intention of testing downstream tasks that need
higher temporal resolution.

We conduct pretraining experiments over multiple sequence lengths, and we
also experiment with mask rates and span sizes. Additionally, we experiment
with various numbers of encoder features, which represent the number of feature
maps of the convolutional operations.

As shown in Table 4.2, we achieve similar loss values, which confirms the
statement in the BENDR paper that the architecture is sequence length agnostic.
After pretraining, we fine-tune on downstream tasks using multiple versions of
BENDR. Surprisingly, we find that there is not much change in downstream task

25

4. Improving Representations of DETRtime 26

performance among the different BENDR versions. Therefore, in the following
section, we focus only on finetuning the BENDR version that achieved the lowest
test loss.

BENDR Pretraining on EEGEyeNet
Sequence Length Mask Rate Mask Span Encoder

Features
Test Loss

10000/84 0.1 5 512 3.78
4000/84 0.1 5 512 3.63
4000/84 0.065 5 512 3.82
4000/84 0.1 5 128 3.53
2000/42 0.1 5 256 3.33
2000/42 0.1 5 128 3.21

Table 4.1: Pretraining results of the BENDR architecture on all paradigms
of the EEGEyeNet dataset. The sequence length denotes input sequence
length/encoder sequence length

4.1.2 BENDR Finetuning

To evaluate the performance of the BENDR architecture on downstream tasks, we
fine-tune the model by training a small MLP for each task. We use the BENDR
convolutional encoder for inference to produce the "BENDR" embeddings, and
freeze its weights without retraining them on the downstream task. We apply
different loss functions depending on the specific task. For each downstream
task, the same MLP architecture is used, consisting of 2 hidden layers with a
dimension of 32 and an output layer with either 1 or 2 output logits, depending
on the task. The MLP has a total of 46000 parameters. We choose the encoder
with the smallest number of features tested (128) to reduce the complexity in the
MLPs for the downstream tasks.

The LR task is considered the easiest and acts as a sanity check, as it is
a problem that is already solved. The fine-tuned model achieves a comparable
accuracy to the EEGeyenet, reaching an accuracy of 96.3 after training. The
training converges quickly, with an accuracy of 96 achieved after only one epoch.

In addition, the utilization of BENDR representations in regression tasks has
yielded promising results with respect to its generalization capabilities. Despite
performing comparatively worse than EEGEyeNet models in the angle and am-
plitude tasks, the BENDR model outperforms the naive baseline. Furthermore,
convergence in these tasks was observed after only a few epochs of training.

Lastly, the position task can be considered the most challenging task. Our
fine-tuned models are slightly worse than the EEGeyenet model but have com-
parable performance.

4. Improving Representations of DETRtime 27

The different fine-tuning tasks exhibit similar training behavior, with perfor-
mance being comparable across all tasks with the EEGeyenet, although slightly
worse. The fast training and convergence can be attributed to the small MLP
and good representations by BENDR. Overall, the fine-tuning results demon-
strate the effectiveness of the BENDR architecture for downstream tasks, with
its good performance and fast training and convergence.

EEGEyeNet Tasks
Model LR Angle Amplitude Position
BENDR 96.3 0.55 49.0 78.5
EEGEyeNet 98.8 0.33 30.7 70.2
Naive Baseline 52.3 1.90 74.7 123.3

Table 4.2: Here, the BENDR results refer to the pre-trained BENDR model,
where after the frozen encoder we only fine-tune a simple MLP on the respective
task. The EEGEyeNet result refers to the best model reported in the benchmark
[3]. LR performance is given in Accuracy, Angle in radians, and Amplitude and
Position in RMSE.

4.2 DETRtime for Region Learning

In preliminary experiments we found DETRtime in its original region based for-
mulation to be the best performing segmentation model. With regards to rep-
resentation learning a contrastive predictive coding [48] based approach showed
promising results on various downstream tasks.

In the following we propose a unified approach towards using segmentation
abilities of DETRtime to guide representation learning.

4.2.1 Transferring BENDR Ideas

The high level ideas surrounding the representation learning in BENDR are based
on contrastive predictive coding (CPC) [48]. In these CPC based models, an
initial encoder E is used to map observations xt to a sequence of latent repre-
sentations zt = E(xt). Temporal resolution of these latent representations may
differ here, as is the case in [30]. An autoregressive model M then uses the latent
encodings to construct a context representation ct = M((z≤t). In BENDR, the
corresponding z≤t is replaced with whole sequence of latent encodings (zt)t.

Instead of direct future predictions, the goal is then to model the density
corresponding to the mutual information between xt+k and ct. xt+k may variously

4. Improving Representations of DETRtime 28

be replaced with zt+k s.t. the

fk(xt+k, ct) ∝
p(xt+k|ct)
p(xt+k)

(4.1)

Any positive scoring function may be used in these cases. Whereas the original
paper proposes a bilinear function [48], BENDR [30] [29] has used cosine similarity
as a scoring function.

Training Objective Direct evaluation of p(x) and p(x|c) is not tractable, how-
ever, one may use samples from these distributions for noise-contrastive estima-
tion [49] to jointly optimize the encoder and autoregressive model. Given a set of
samples X consisting of a single positive sample p(xt+k|ct) and negative samples
from the proposal distribution p(xt), optimizing the following objective

LN = EX

[
log

fk(xt+k, ct)∑
xj∈X fk(xj , ct)

]
(4.2)

will result in a correct estimation of the density ratio in 4.1.

We combine these ideas with the general ideas underlying change point de-
tection and segmentation[50] [51], whereby there exists an underlying (latent)
process that suddenly changes at certain times. Under this viewpoint, a signal
may be discretized into variably sized segments.

Region Learning We note that such segments may generally be seen as con-
text representations cIt′ where It′ corresponds to an interval or region possibly
containing multiple time steps. In particular, the general hidden state outputs of
DETRtime may represent such variable-sized regions. Concretely, we reformulate
the context representations as (cIt′ , It′) = M((zt))i, where the model M predicts
an interval It′ and its corresponding context region cIt′ . Under this formulation,
we assume the generating distribution for a time step t to be p(xt|cIt′) where
t ∈ It′ . Alternatively, one can directly model the ratios for p(xt|cIt′ through a
different sampling procedure.

For our model we implement the first approach by introducing an additional
encoding E for t ∈ I ′t s.t. ct = Et(cI′t) following an assignment of t to re-
gions It′ based on predicted confidence to augment the DETRtime objective
with BENDR’s contrastive loss.

4. Improving Representations of DETRtime 29

4.2.2 The Region Learning Model

Our proposed model relies on learned accurate segmentations. In lieu of suitable
fully self-supervised segmentation approaches, we thus first rely on supervised
approaches to achieve good segmentation results.

The original DETRtime loss is used to train a transformer to predict discrete
segments in a time-series signal xt. The corresponding region representations and
boundaries are then used to recover the latent encodings ct at each time-step for
the BENDR objective by simply assigning the latent embedding of a region to
corresponding time-steps and using a simple MLP to recover the context encoding
ct.

One can variously train the supervised and unsupervised objectives jointly or
separately, however, the model does rely on initial supervised training to yield
meaningful segmentations. It is possible to only rely on partially labelled datasets
in training.

The intent is that labelled segments will guide the learning of meaningful
latent context representations in this way for further downstream tasks. We
argue that this is especially the case for cases where downstream tasks can be
meaningfully related to a classic segmentation task, as is the case in EEG-based
eye-movement segmentation where saccades correspond to the only regions where
eye movements should be detected.

Chapter 5

Evaluation and Outlook

In this work, we explored and evaluated the challenges of time series tasks with
the DETRtime architecture and proposed a pathway towards a semi-supervised
region learning model for (EEG) data by incorporating ideas from BENDR and
DETRtime.

We evaluated potential reformulations of DETRtime’s detection objective by
evaluating a change towards change point detection. Despite possibly benefits
over the initial independent region objective, we found the original formulation
to be more robust and wellperforming.

The DETRtime backbone embeddings were evaluated using different similar-
ity measures to better understand what is needed for effective time series seg-
mentation. We found that DETRtime is able to effectively separate time steps
from separate classes, and pretraining with a cosine similarity objective did not
improve performance. In fact, we found the additional cosine similarity objective
to have an adverse effect on performance and observed that DETRtime achieves
better class separation specifically for the downstream tasks more important sac-
cade class.

We also explored different representation learning approaches for time series
data. We found that unlike in e.g. NLP domains where simple reconstruction
objectives suffice, more complicated techniques such contrastive predictive coding
perform better on EEG data due to the specific challenges of high local redun-
dancies and sparse long-term dependencies that time series data presents.

We note that DETRtime’s initial segmentation can be augmented with CPC
to provide a semi-supervised representation learning based on region representa-
tions. Currently, much of the evaluation of our model is outstanding, including
the exploration of different training modalities to achieve the the intended semi-
supervised learning.

We have prepared a host of downstream tasks for evaluation and further work
will focus on in-depth evaluation of these tasks. Our proposed semi-supervised re-
gion learning model has the potential to improve downstream tasks performance,
e.g. the accuracy of time series segmentation in EEG data, and we hope our work

30

5. Evaluation and Outlook 31

will inspire further exploration of this approach in the field.

Bibliography

[1] L. Wolf, A. Kastrati, M. B. Płomecka, J.-M. Li, D. Klebe, A. Veicht,
R. Wattenhofer, and N. Langer, “A deep learning approach for the
segmentation of electroencephalography data in eye tracking applications,”
2022. [Online]. Available: https://arxiv.org/abs/2206.08672

[2] C. R. Michael Cohen, Christian E. Elger, “Reward expectation modulates
feedback-related negativity and eeg spectra,” Neuroimage, 35(2):968-978,
2007.

[3] A. Kastrati, M. B. Płomecka, D. Pascual, L. Wolf, V. Gillioz, R. Watten-
hofer, and N. Langer, “Eegeyenet: a simultaneous electroencephalography
and eye-tracking dataset and benchmark for eye movement prediction,”
2021. [Online]. Available: https://arxiv.org/abs/2111.05100

[4] “Hans berger (mediziner) – wikipedia,” https://de.wikipedia.org/wiki/
Hans_Berger_(Mediziner), (Accessed on 02/21/2023).

[5] S. Tong and N. V. Thankor, Quantitative EEG analysis methods and clinical
applications. Artech House, 2009.

[6] A. A. Chaaraoui, P. Climent-Pérez, and F. Flórez-Revuelta, “A review on
vision techniques applied to human behaviour analysis for ambient-assisted
living,” Expert Systems with Applications, vol. 39, no. 12, pp. 10 873–10 888,
2012.

[7] G. Okada, K. Masui, and N. Tsumura, “Advertisement effectiveness estima-
tion based on crowdsourced multimodal affective responses,” in Proceedings
of the IEEE Conference on computer vision and pattern recognition work-
shops, 2018, pp. 1263–1271.

[8] P. Majaranta and A. Bulling, “Eye tracking and eye-based human–computer
interaction,” in Advances in physiological computing. Springer, 2014, pp.
39–65.

[9] M. K. Eckstein, B. Guerra-Carrillo, A. T. M. Singley, and S. A. Bunge,
“Beyond eye gaze: What else can eyetracking reveal about cognition and
cognitive development?” Developmental cognitive neuroscience, vol. 25, pp.
69–91, 2017.

32

https://arxiv.org/abs/2206.08672
https://arxiv.org/abs/2111.05100
https://de.wikipedia.org/wiki/Hans_Berger_(Mediziner)
https://de.wikipedia.org/wiki/Hans_Berger_(Mediziner)

Bibliography 33

[10] A. Bulling, J. A. Ward, H. Gellersen, and G. Tröster, “Eye movement analy-
sis for activity recognition using electrooculography,” IEEE transactions on
pattern analysis and machine intelligence, vol. 33, no. 4, pp. 741–753, 2010.

[11] R. Nakashima, Y. Fang, Y. Hatori, A. Hiratani, K. Matsumiya, I. Kuriki,
and S. Shioiri, “Saliency-based gaze prediction based on head direction,”
Vision research, vol. 117, pp. 59–66, 2015.

[12] C. Koch and S. Ullman, “Shifts in selective visual attention: towards the
underlying neural circuitry,” in Matters of intelligence. Springer, 1987, pp.
115–141.

[13] K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. Bhandarkar, W. Matusik,
and A. Torralba, “Eye tracking for everyone,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 2176–2184.

[14] J. Son, L. Ai, R. Lim, T. Xu, S. Colcombe, A. R. Franco, J. Cloud, S. La-
Conte, J. Lisinski, A. Klein et al., “Evaluating fmri-based estimation of eye
gaze during naturalistic viewing,” Cerebral Cortex, vol. 30, no. 3, pp. 1171–
1184, 2020.

[15] S. LaConte, S. Peltier, K. Heberlein, and X. Hu, “Predictive eye estimation
regression (peer) for simultaneous eye tracking and fmri,” in Proc. Intl. Soc.
Magn. Reson. Med, vol. 2808, 2006, p. 13.

[16] T. P. O’Connell and M. M. Chun, “Predicting eye movement patterns from
fmri responses to natural scenes,” Nature communications, vol. 9, no. 1, pp.
1–15, 2018.

[17] A. Kastrati, M. B. Plomecka, R. Wattenhofer, and N. Langer, “Using deep
learning to classify saccade direction from brain activity,” in ACM Sym-
posium on Eye Tracking Research and Applications, ser. ETRA ’21 Short
Papers. Association for Computing Machinery, 2021.

[18] M. L. Mele and S. Federici, “Gaze and eye-tracking solutions for psychological
research,” Cognitive processing, vol. 13, no. 1, pp. 261–265, 2012.

[19] A. Bulling and D. Roggen, “Recognition of visual memory recall processes
using eye movement analysis,” in Proceedings of the 13th international con-
ference on Ubiquitous computing, 2011, pp. 455–464.

[20] R. J. Jacob and K. S. Karn, “Eye tracking in human-computer interaction
and usability research: Ready to deliver the promises,” in The mind’s eye.
Elsevier, 2003, pp. 573–605.

[21] E. M. Reingold, “Eye tracking research and technology: Towards objective
measurement of data quality,” Visual cognition, vol. 22, no. 3-4, pp. 635–652,
2014.

Bibliography 34

[22] R. Zemblys, D. C. Niehorster, and K. Holmqvist, “gazenet: End-to-end eye-
movement event detection with deep neural networks,” Behavior research
methods, 2018.

[23] R. Barea, L. Boquete, M. Mazo, and E. López, “System for assisted mobility
using eye movements based on electrooculography,” IEEE transactions on
neural systems and rehabilitation engineering, vol. 10, no. 4, pp. 209–218,
2002.

[24] F. Behrens, M. MacKeben, and W. Schröder-Preikschat, “An improved al-
gorithm for automatic detection of saccades in eye movement data and for
calculating saccade parameters,” Behavior research methods, vol. 42, no. 3,
pp. 701–708, 2010.

[25] A. Bulling, J. A. Ward, H. Gellersen, and G. Tröster, “Eye movement analysis
for activity recognition,” in Proceedings of the 11th international conference
on Ubiquitous computing, 2009, pp. 41–50.

[26] K. Pettersson, S. Jagadeesan, K. Lukander, A. Henelius, E. Hæggström, and
K. Müller, “Algorithm for automatic analysis of electro-oculographic data,”
Biomedical engineering online, vol. 12, no. 1, pp. 1–18, 2013.

[27] K. Kleifges, N. Bigdely-Shamlo, S. E. Kerick, and K. A. Robbins, “Blinker:
Automated extraction of ocular indices from eeg enabling large-scale analy-
sis,” Frontiers in neuroscience, vol. 11, p. 12, 2017.

[28] C. Fefferman, S. Mitter, and H. Narayanan, “Testing the manifold
hypothesis,” 2013. [Online]. Available: https://arxiv.org/abs/1310.0425

[29] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A
framework for self-supervised learning of speech representations,” CoRR, vol.
abs/2006.11477, 2020. [Online]. Available: https://arxiv.org/abs/2006.11477

[30] D. Kostas, S. Aroca-Ouellette, and F. Rudzicz, “BENDR: using
transformers and a contrastive self-supervised learning task to learn from
massive amounts of EEG data,” CoRR, vol. abs/2101.12037, 2021. [Online].
Available: https://arxiv.org/abs/2101.12037

[31] D. Guijo-Rubio, A. M. Durán-Rosal, P. A. Gutiérrez, A. Troncoso, and
C. Hervás-Martínez, “Time-series clustering based on the characterization of
segment typologies,” IEEE Transactions on Cybernetics, vol. 51, no. 11, pp.
5409–5422, 2021.

[32] R. Ma, A. Ahmadzadeh, S. F. Boubrahimi, and R. A. Angryk, “Segmen-
tation of time series in improving dynamic time warping,” in 2018 IEEE
International Conference on Big Data (Big Data), 2018, pp. 3756–3761.

https://arxiv.org/abs/1310.0425
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2101.12037

Bibliography 35

[33] D. Trabelsi, S. Mohammed, F. Chamroukhi, L. Oukhellou, and Y. Amirat,
“An unsupervised approach for automatic activity recognition based on hid-
den markov model regression,” IEEE Transactions on Automation Science
and Engineering, vol. 10, no. 3, pp. 829–835, 2013.

[34] A. Chinea, “Understanding the principles of recursive neural networks: A
generative approach to tackle model complexity,” CoRR, vol. abs/0911.3298,
2009. [Online]. Available: http://arxiv.org/abs/0911.3298

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” CoRR, vol.
abs/1706.03762, 2017. [Online]. Available: http://arxiv.org/abs/1706.03762

[36] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko,
“End-to-end object detection with transformers,” in European Conference on
Computer Vision. Springer, 2020, pp. 213–229.

[37] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” 2020. [Online]. Available:
https://arxiv.org/abs/2002.05709

[38] N. L. Andreas Pedroni, Amirreza Bahreini, “Automagic: Standardized pre-
processing of big eeg data.” Neuroimage, 200:460-473, 2019.

[39] K. K.-D. Luca Pion-Tonachini and S. Makeig, “Iclabel: An automated elec-
troencephalographic independent component classifier, dataset, and web-
site.” NeuroImage, 198:181–197, 2019.

[40] N. Hollenstein, M. Troendle, C. Zhang, and N. Langer, “Zuco
2.0: A dataset of physiological recordings during natural reading
and annotation,” CoRR, vol. abs/1912.00903, 2019. [Online]. Available:
http://arxiv.org/abs/1912.00903

[41] K. P. Miika Toivanen and K. Lukander, “A probabilistic real-time algorithm
for detecting blinks, saccades, and fixations from eog data.” Journal of Eye
Movement Research, 8(2), 2015.

[42] D. Feyel and A. S. Ustunel, “The monge-kantorovitch problem and
monge-ampere equation on wiener space,” 2003. [Online]. Available:
https://arxiv.org/abs/math/0306323

[43] A. Radford and K. Narasimhan, “Improving language understanding by gen-
erative pre-training,” 2018.

[44] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Lan-
guage models are unsupervised multitask learners,” 2019.

http://arxiv.org/abs/0911.3298
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2002.05709
http://arxiv.org/abs/1912.00903
https://arxiv.org/abs/math/0306323

Bibliography 36

[45] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” CoRR, vol. abs/2010.11929,
2020. [Online]. Available: https://arxiv.org/abs/2010.11929

[46] K. He, X. Chen, S. Xie, Y. Li, P. Doll’ar, and R. B. Girshick, “Masked
autoencoders are scalable vision learners,” 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 15 979–15 988, 2021.

[47] F. Rivest and R. Kohar, “A new timing error cost function for binary time
series prediction,” IEEE Transactions on Neural Networks and Learning Sys-
tems, vol. 31, no. 1, pp. 174–185, 2020.

[48] A. van den Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” CoRR, vol. abs/1807.03748, 2018. [Online].
Available: http://arxiv.org/abs/1807.03748

[49] Z. Ma and M. Collins, “Noise contrastive estimation and negative sampling
for conditional models: Consistency and statistical efficiency,” 2018.
[Online]. Available: https://arxiv.org/abs/1809.01812

[50] E. Caldarelli, P. Wenk, S. Bauer, and A. Krause, “Adaptive Gaussian
process change point detection,” in Proceedings of the 39th International
Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and
S. Sabato, Eds., vol. 162. PMLR, 17–23 Jul 2022, pp. 2542–2571. [Online].
Available: https://proceedings.mlr.press/v162/caldarelli22a.html

[51] E. J. Keogh, S. Chu, D. M. Hart, and M. J. Pazzani, “Segmenting time series:
A survey and novel approach,” 2002.

https://arxiv.org/abs/2010.11929
http://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1809.01812
https://proceedings.mlr.press/v162/caldarelli22a.html

	Acknowledgements
	Abstract
	1 Introduction and Motivation
	2 Background and Related Work
	2.1 Electroencephalography and Eye Tracking
	2.2 Machine Learning Background
	2.2.1 Representation Learning
	2.2.2 Time Series Segmentation
	2.2.3 Region Learning

	2.3 Considered Models
	2.3.1 DETRtime
	2.3.2 BENDR

	2.4 Data Sources
	2.4.1 EEGEyeNet
	2.4.2 Movie Watching Paradigm
	2.4.3 Data Annotation and Preprocessing
	2.4.4 Comparison to BENDR Dataset and Preprocessing

	3 Investigating DETRtime
	3.1 Investigating DETRtime Backbone Embeddings
	3.1.1 Raw EEG Timestamp Similarity
	3.1.2 Intermediate Timestamp Representation Similarity
	3.1.3 Distilling the Backbone Through Pretraining

	3.2 Using DETRtime for Changepoint Detection
	3.2.1 Limitations of Event Detection in DETRtime
	3.2.2 Introduction of Changepoint Detection
	3.2.3 Prediction and Sequence Generation
	3.2.4 Training and Hyperparameters
	3.2.5 Postprocessing
	3.2.6 Results

	3.3 Improving Generalization through Self-Supervised Pretraining
	3.3.1 Pre-training objective
	3.3.2 The architecture
	3.3.3 Results and Discussions

	4 Improving Representations of DETRtime
	4.1 Evaluation of BENDR on EEGEyeNet
	4.1.1 BENDR Pretraining
	4.1.2 BENDR Finetuning

	4.2 DETRtime for Region Learning
	4.2.1 Transferring BENDR Ideas
	4.2.2 The Region Learning Model

	5 Evaluation and Outlook
	Bibliography

