
Distributed

 Computing

Adversarial Robustness of Expressive
Graph Neural Networks

Bachelor’s Thesis

Reto Merz

retmerz@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Dr. Karolis Martinkus

Prof. Dr. Aleksandar Bojchevski
Prof. Dr. Roger Wattenhofer

August 22, 2023

Acknowledgements

Most of all I thank my advisor Karolis Martinkus for his expertise, guidance, and
support throughout the thesis, and also for the freedom he left me in how to ap-
proach the project. Secondly, I would like to thank Aleksandar Bojchevski for his
contributions to the project, which have shaped how I think about robustness. Addi-
tionally, I thank Professor Roger Wattenhofer and the Distributed Computing Group
for making this thesis possible by providing the infrastructure to run the experiments.
Finally, I would like to thank my family and friends who supported me all through
my undergraduate studies.

i

Abstract

In recent years, graph neural networks (GNNs) have gained popularity as a tool for
machine learning on graphs. Despite their success in many fields, many GNN ar-
chitectures lack the expressiveness to differentiate between non-isomorphic graphs of
certain classes, motivating more expressive architectures. Other works have shown
basic GNN architectures and defenses vulnerable to adversarial attacks, which gen-
erate adversarial examples that are mispredicted by the model. We investigate how
the expressivity of a GNN architecture influences its robustness to adversarial at-
tacks by designing graph-level test-time attacks targeting the discrete structure of
graphs with node and edge features. Our experiments indicate that PPGN, the most
expressive architecture tested, is more robust on a range of attacks than the other
tested architectures, and can even outperform adversarially trained models of other
expressive architectures under attacks.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction and Related Work 1

2 Machine Learning on Graphs 4

2.1 Graph Data . 4

2.2 Message Passing Neural Networks . 6

3 Expressive Graph Neural Networks 9

3.1 Expressiveness and the Weisfeiler-Lehman isomorphism test 9

3.2 Equivariant Sub-graph Aggregation Network 11

3.3 DropGNN . 13

3.4 Provably Powerful Graph Network 14

3.5 SignNet . 14

4 Robustness and Attacks 16

4.1 Adversarial Attacks . 16

4.2 Threat Models . 17

4.3 Random Perturbations and Simple Attacks 19

4.3.1 Random Perturbations . 19

4.3.2 Brute Force . 19

4.4 Adjacency Projected Gradient Descent 20

4.4.1 Algorithm . 20

4.4.2 Attacking GNNs with features 21

4.4.3 Hyperparameters . 24

4.5 Feature and Adjacency Projected Gradient Descent 24

4.5.1 Algorithm . 24

4.6 Adversarial Training . 27

iii

Contents iv

5 Experiment and Results 28

5.1 Methodology . 28

5.2 Experimental Setup . 29

5.3 Robustness under Brute Force Attack 34

5.4 Robustness under Random Perturbations 37

5.5 Robustness under Gradient-Based Attacks 39

5.5.1 Attack Strength . 41

5.6 Impact of Adversarial Training . 43

6 Conclusion and Future Work 47

Bibliography 50

A Further Experimental Details A-1

Chapter 1

Introduction and Related Work

In recent years, graph neural networks (GNNs) have gained popularity as a tool
to apply machine learning to graph data and were successfully applied to a wide
range of domains, such as social networks [1, 2], chemistry [3], drug discovery [4]
and computer vision [5], exploiting structural information present in these fields.
Despite their popularity, the basic models lack the expressiveness to differentiate
between certain non-isomorphic graphs, such as k-regular graphs. To remedy the
situation, a hierarchy of expressiveness based on how well GNNs can distinguish non-
isomorphic graphs was introduced [6], and many novel architectures were proposed
which provably exceed the expressiveness of the basic models and perform better in
practice [7, 8, 9, 10, 11, 12].

As with any model deployed in the real world, GNNs are potentially exposed
to adversarial attacks and distribution shifts. In a social network, a bad actor may
try to determine a set of members to follow which minimizes his chance of being
discovered to be malicious, i.e. find changes in the adjacency of the network graph
that fool the model. In the molecular domain, an attacker might swap out certain
atoms in a molecule, and thereby change the node features that are relayed to a
model, to reduce its predicted toxicity. In general, attacks on graph models may
target the adjacency of a graph as well as its node and edge features.

Similar to convolutional architectures for computer vision, unprotected GNNs
were shown to be vulnerable to attacks. This led to a range of proposed defenses,
which did not hold up to adaptive attacks [13]. However, these defenses are based
on non-expressive GNNs, which raises the main questions this thesis tries to answer:

Are expressive GNNs more or less robust on graph-level tasks than
less-expressive GNNs?

On the one hand, expressive models can represent more complex functions, which
might enable them to learn more robust decision boundaries. On the other hand,
they may be more sensitive to graphs that are not well represented in the training
data, due to their improved capability to differentiate between graphs. However,
even the basic GNNs should be able to distinguish between original and perturbed
graphs for most perturbations.

To answer the question quantitatively, we run gradient-based evasion attacks on a
range of expressive architectures. The selected architectures, which are introduced in
more detail in Chapter 3, include DropGNN [7] and Equivariant Subgraph Aggrega-
tion Networks (ESAN) [9], which process multiple subgraphs to improve robustness,

1

1. Introduction and Related Work 2

Provably Powerful Graph Network (PPGN) [8] that builds higher-order represen-
tations of the adjacency matrix via matrix multiplication, and SignNet [10] which
augments node features with eigenvector information of the graph Laplacian.

In the experiments, we examine the robustness of models from a given architecture
that were trained in a supervised setting. This approach is concerned with models
that arise in practice, and thus it cannot give insight into the robustness of the most
robust model of a given architecture. Because expressiveness is established by proving
the existence of model parameters that achieve certain properties, it is interesting to
see whether models of more expressive architectures can express more robust decision
boundaries. To research this aspect, we additionally test models obtained through
adversarial training [14, 15], which is a technique to learn robust decision boundaries.
Adversarial training trains the model on the strongest adversarial example in each
training step instead of the original data. Its roots are in computer vision, but it has
also been applied to GNNs [16]. Concerning expressive GNNs, we ask the following
secondary questions:

How does the expressiveness of a model relate to robustness
improvements due to adversarial training? Does the expressiveness of a

model improve its performance on clean data when trained
adversarially?

We expect positive answers to both questions because expressive GNNs are in theory
better equipped to express robust decision boundaries, however, it is hard to say
how big the impact will be in practice and how it will differ between expressive
architectures.

Expressive GNNs are mostly applied on graph-level tasks with smaller graphs.
We selected graph datasets that are commonly used to evaluate the performance of
(expressive) GNNs:

• MolHIV from the Open Graph Benchmark (OGB) providing a binary classifi-
cation task on small molecules [17].

• ZINC12k featuring a regression task on small molecules [18, 19].

• IMDB-BINARY, IMDB-MULTI and MUTAG from the TUDataset collection
[20, 21], which are smaller datasets. IMDB-BINARY and IMDB-MULTI have
binary and 3-way classification tasks on ego-graphs based on the collaboration
of actors, and the task of MUTAG is to predict the mutagenic properties of
small molecules.

The molecules are represented as graphs with node and edge features, giving addi-
tional information about the atoms and bonds. The graphs in the IMDB datasets
however have no node or edge features. The MUTAG dataset was selected for the
experiment on adversarial training due to its small size, which results in a reasonable
training speed even with the high computational overhead of adversarial training.

To our knowledge, there are no studies on the robustness of expressive GNNs.
However, the literature suggests a wide range of attacks on GNNs. The goal of an
attack is to find a small perturbation of a graph such that the perturbed class gets
misclassified in the case of a classification task or that the predicted value is far

1. Introduction and Related Work 3

from the labeled value in the case of a regression task. Due to the combinatorial
nature of graphs, it might be infeasible to try all perturbations. This is why there
has been a focus on gradient-based attacks, which relax the discrete structures of
adjacency and features and optimize over real-valued tensors. Since many GNN ar-
chitectures are not differentiable with respect to the adjacency matrix, differentiable
surrogate models are required. A recent paper [13] suggests best practices for design-
ing model-specific adaptive attacks. Xu et al. introduced a gradient-based attack
on the adjacency of graphs that provides adversarial examples given a budget of al-
lowed adjacency changes [22]. Nettack, presented in [23], considers models for node
classification, which it attacks by modifying both the adjacency and node features
in an unnoticeable way that keeps the node degree distributions similar. This attack
greedily optimizes the adjacency and node features in alternating rounds and selects
the next change based on gradient information from a surrogate model. None of these
attacks consider attacking the edge features since their GNN architectures don’t use
edge features.

In Chapter 4, we present and adapt the topology attack of Xu et al. to graph-
prediction models with edge features. We design an extension of this attack that
additionally targets node and edge features besides the adjacency. We also briefly
introduce some simple attacks that serve as baselines for the model’s robustness
as well as the performance of other attacks. Chapter 5 is devoted to the robustness
experiments and their results. There, we give a detailed overview of our experimental
setup, followed by an analysis of the generated data. We conclude in Chapter 6 by
answering the posed questions.

Contributions

The contributions of this thesis are summarized as follows:

• We provide an overview of expressive GNN architectures.

• We design and implement differentiable surrogate models for popular expressive
GNN architectures.

• We design, implement and evaluate gradient-based evasion attacks targeting
the adjacency, node, and edge features considering specific threat models.

• We test the robustness of expressive GNN architectures on graph-prediction
tasks under random and adversarial test-time perturbations.

• We evaluate how effective adversarial training is at improving the robustness
of expressive GNNs and how it impacts the performance with clean data.

Chapter 2

Machine Learning on Graphs

Molecules, social networks, the control flow of programs, or other network-like struc-
tures can all be modeled by graphs, which are sets of nodes that are connected by
binary edges. Vast amounts of data in these domains enable machine learning ap-
proaches to solve various tasks, such as predicting chemical properties of molecules,
identifying spam accounts in social networks or even detecting bugs in code. This
chapter introduces the basis of supervised machine learning approaches on graphs.
As is typical for supervised machine learning they rely on a parametrized model ar-
chitecture, which is fitted to a labeled dataset using a gradient-based optimization
scheme like gradient descent and derivatives.

The fundamental property that models on graphs need to satisfy is invariance
under node permutations, i.e. re-labeling the nodes of a graph should not change the
answer of the model. The way many graph neural networks achieve this property is
by restricting the first stage of processing to node-local operations and then, in the
case of graph-level tasks, continuing computation on an aggregate over all nodes.

2.1 Graph Data

Definition 2.1 (undirected graph). An undirected graph is tuple (V,E) for some
finite set of nodes V = {v0, . . . , vn−1} and edges E ⊆ {{u, v} | u, v ∈ V, u ̸= v}. For
convenience, we use N := |V | and M := |E|.

We will often represent the edge relation as a sparse edge index tensor I ∈
{0, . . . , N − 1}2×2M , where {vi, vj} ∈ E ⇐⇒ I:,k = [i, j] ∧ I:,l = [j, i] for some
k, l ∈ {0, . . . , 2M − 1}. The edge index tensor represents each undirected edge
as two directed edges and fixes an ordering of the directed edges. A dense way1

to represent the edges is via the adjacency matrix A ∈ {0, 1}N×N , defined by
Ai,j = 1 ⇐⇒ {vi, vj} ∈ E.

Depending on the machine learning task, we might have additional information
about the kinds of nodes and edges present in the graph, e.g. atom and bond infor-
mation of a molecule, resulting in an attributed graph G = (V,E,X, Y). The node
features X : V → Rdn map each node to a vector in Rdn , which in a sparse encoding
under a fixed node order is represented as a tensor in RN×dn . Similarly, the edge

1Meaning that the adjacency information between each pair of nodes is explicitly represented.

4

2. Machine Learning on Graphs 5

V = {x0, x1, x2, x3} , E = {{x0, x1} , {x1, x2} , {x2, x0} , {x2, x3}} , dn = 3, de = 2

x0

x1

x2

x3

11
5

02
0

43
0

21
3

[
0
3

]

[
2
0

]
[
4
1

]
[
1
1

]
I =

[
0 1 1 2 2 0 2 3
1 0 2 1 0 2 3 2

]

A =

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

X =

1 1 5
0 2 0
4 3 0
2 1 3

Y =

0 3
0 3
2 0
2 0
4 1
4 1
1 1
1 1

Figure 2.1: Example of a graph with node and edge features, including edge index
tensor, node and edge feature tensors, and adjacency matrix.

features Y : E → Rde map each edge to a vector in Rde , which is sparsely represented
as a tensor in R2M×de . The dense representation of edge features is given by a tensor
in Y = RN×N×de , where Y i,j = Y ({i, j}) for all {i, j} ∈ E and Y i,j = 0 if {i, j} ̸∈ E.
We use G to denote the set of all attributed graphs.

Usually, the sparse representation of graphs is preferred since it allows for faster
processing of sparse graphs (where M ≪

(
N
2

)
). The dense representation of an

attributed graph, given by the adjacency matrix and the dense edge feature tensor,
will be important for the attacks because it describes the adjacency between any pair
of nodes as a real number, for both positive (∈ E) and negative (̸∈ E) edges. This
real-valued adjacency structure is the target of the gradient-based attacks.

Feature Embeddings

The node and edge features often only take a finite number of values and encode
a class instead of a value. Discrete feature vectors in Nd get embedded into a real
feature vector in Rd′

. The embedding of x ∈ Nd is computed as
∑d

i=1 Li(xi), where
Li : {0, . . . , ki − 1} → Rd′

is a learned lookup table (called an embedding in PyTorch)
for the i-th feature.

Embeddings can be computed globally (once) for a model or locally per submod-
ule. Although embeddings computed per submodule are more powerful2, we only
use global embeddings in this thesis due to the convenience of implementation for
gradient attacks and the small difference in practice to local embeddings.

2Any model with global embeddings can be represented by a model with local embeddings where
each local embedding computes the global embedding.

2. Machine Learning on Graphs 6

Mini-Batching

During model training, the gradient on the loss of the entire dataset is estimated
by the gradient of the loss of just a small subset of the data, a so-called mini-batch.
Mini-batching may also result in higher GPU utilization, which speeds up processing.
For the sake of completeness and understanding of implementation details, we briefly
illustrate what shape the batched representations of sparse and dense graphs have.

Sparse graphs are batched by combining them into a large graph by relabeling the
nodes to avoid conflicts and then joining all updated nodes and edges. The compo-
nents of the batched graph are the original graphs. Given a batch of B sparse graphs
with node counts N1, . . . , NB and edge counts M1, . . . ,MB , the batched versions of
graph-representing tensors have the following shapes:

node features R(N1+...+NB)×dn

edge index R2×2(M1+...+MB)

edge features R2(M1+...+MB)×de

Dense graphs are batched by joining the graph tensors along a new dimension.
In case the graphs have a differing number of nodes, the tensors are zero-padded to
the largest number of nodes per graph in the batch (along node-labeled dimensions).
A batch of B graphs is represented by dense tensors of shapes:

node features RB×N×dn

adjacency matrix {0, 1}B×N×N

edge features RB×N×N×de

Graph-ML tasks

The labeling of the data depends on the type of task we want to solve. Machine
learning tasks on graphs can be categorized as node prediction, link prediction, and
graph prediction. An example of a node prediction task is the detection of bad
agents in social networks, where we wish to assign each participant (represented by a
node in the social network graph) a credibility score. However, this thesis focuses on
graph prediction tasks, which means that our graph data contains a per-graph label.
Typical graph prediction tasks in the chemical domain are to predict the chemical
properties of molecules.

2.2 Message Passing Neural Networks

Message Passing Neural Networks (MPNNs) start with initial node representations
provided by the data. These node representations are repeatedly updated based
on the representation of neighboring nodes and the corresponding edges in a series
of layers. A single layer consists of three steps: each node passes a message to its
neighbors (1), which then aggregate all received messages (2) and finally update their
representation based on this aggregate (3). In the case of graph-level tasks, the node
representations obtained from multiple layers of message-passing layers are pooled
together (often using sum, mean, or max aggregation) to obtain a representation of

2. Machine Learning on Graphs 7

the entire graph. This graph-level representation is typically further processed by a
multi-layer perceptron (MLP).

In the most general form, a MPNN layer is described by the following formula3:

x
(k)
i = γ(k)

x
(k−1)
i ,

⊕
j∈N (i)

ϕ(k)
(
x
(k−1)
i ,x

(k−1)
j ,yj,i

) , (2.1)

where x
(k)
i ∈ Rd denotes the feature vector of node i in the k-th layer of the network

and yi,j the feature vector of the edge connecting node i and j4. The messages
ϕ(k)

(
x
(k−1)
i ,x

(k−1)
j , ej,i

)
(step 1) of all neighbors j ∈ N (i) of node i get aggregated

by a permutation invariant operator
⊕

j∈N (i) (step 2) such as
∑

(sum), 1
|N (i)|

∑
(mean) or max. Finally, γ(k) computes the new representation of node i based on
its current representation and neighborhood aggregate (step 3). ϕ(k) and γ(k) are
parametrized functions that may be learned during training.

This layer is compatible with batched graphs (where multiple graphs are repre-
sented as one big graph) since every node has the same neighborhoods in the batched
graph as in the original graph. The global graph pooling step however has to be ad-
justed to the batched graph as only nodes from the same original graph should be
aggregated. PyTorch Geometric provides functions that implement this behavior.

The final graph level MPNN F : G → Rn has the form

F = r ◦ p ◦ lk ◦ . . . ◦ l1, (2.2)

consisting of a series of k MPNN layers l1, . . . , lk : G → G (equation (2.1)), a global
pooling operation p : G → Rm and a readout MLP r : Rm → Rn.

As mentioned earlier, an important property that (graph-level) GNNs need to
satisfy is invariance under node relabeling. Consider an attributed graph G =
(V,E,X, Y) on N nodes with node features X : V → Rdv and edge features Y :
E → Rde . The group of node permutations SN acts on G as follows

G′ = (V,E′, X ′, Y ′) = σ ·G
where {vi, vj} ∈ E′ ⇐⇒

{
vσ−1(i), vσ−1(j)

}
∈ E,

X ′(vi) = X(vσ−1(j)),

Y ′ ({vi, vj}) = Y
({

vσ−1(i), vσ−1(j)

})
.

MPNNs layers li : G → G are node-permutation equivariant in the sense that
li(σ · G) = σ · li(G) for any G ∈ G and σ ∈ SN , since vσ(j) ∈ Nσ·G(vσ(i)) ⇐⇒
vj ∈ NG(vi). The global graph pooling p : G → Rm is node-permutation invariant
as it satisfies ∀G ∈ G ∀σ ∈ SN .p(G) = p(σ · G). Since the MPNN layers propagate
node permutations (equivariance) and the pooling cancels out node permutations
(invariance), any MPNN F = r ◦ p ◦ lk ◦ . . . ◦ l1 is node-permutation invariant.

3This description is taken from the PyTorch Geometric documentation [24].
4Note that the edge representations are not updated.

https://pytorch-geometric.readthedocs.io/en/latest/tutorial/create_gnn.html

2. Machine Learning on Graphs 8

Graph Isomorphism Network

The Graph Isomorphism Network (GIN) was introduced in [6] as a simple architecture
that is maximally expressive for graph classification among the standard GNNs (more
on this in the next chapter). It is a special case of a general MPNN in which each
layer computes

x
(k)
i = h(k)

(1 + ε)x
(k−1)
i +

∑
j∈N (i)

x
(k−1)
j

 , (GINConv)

where h(k) is a trainable MLP and ε is typically fixed to 0. Due to its similarity to
convolution (where the next representation of some element is a weighted sum over
its neighbors), this layer is called GINConv.

It can be easily adapted to also use edge features, resulting in the GINEConv
operator, which was introduced in [25]:

x
(k)
i = h(k)

(1 + ε)x
(k−1)
i +

∑
j∈N (i)

ReLU(x
(k−1)
j + ej,i)

 . (GINEConv)

It is important that the node feature dimension dn matches the edge feature dimen-
sion de in every layer as x

(k−1)
j + ej,i is not defined otherwise.

Chapter 3

Expressive Graph Neural
Networks

As it turns out, the node-local way of handling graphs by MPNNs is not very ex-
pressive, as the basic models cannot even decide graph connectivity. The literature
suggests many architectures which improve upon the poor expressiveness and are
provably more expressive in a hierarchy of Weisfeiler-Lehman isomorphism tests.
This chapter defines how the expressiveness of models is quantified in the literature
and presents various architectures that are provably more expressive than MPNNs.

3.1 Expressiveness and the Weisfeiler-Lehman iso-
morphism test

A classic example (Fig. 3.1 a) of non-isomorphic graphs that cannot be told apart
by MPNNs is a 2k-cycle and two k-cycles (where all nodes and edges have the same
features). This happens because all nodes see two neighbors with the same labels
in every neighborhood aggregation step, which results in the representation for each
node after each layer. This example illustrates that the expressive power of graph
neural networks is limited by the neighborhood that is observed in every aggregation
step. Indeed, a single 6-cycle and two 3-cycles can be told apart by comparing 2-

G1

G2

(a) k-regular graphs are not
distinguishable by MPNNs.

G1 G2

(b) graphs with identical
degree distributions (from
[7], Fig. 2b)

G1
G2

(c) not distinguishable
by mean neighborhood
aggregation models

Figure 3.1: Pairs of graphs (G1, G2) that are not distinguishable by various GNN
architectures.

9

3. Expressive Graph Neural Networks 10

hop neighborhoods, since the 2-hop neighborhoods of nodes in a 6-cycle are paths of
length 3, whereas the 2-hop neighborhoods for the 3-cycles are triangles. Another
example (Fig. 3.1 b, taken from [7]) again illustrates the limited expressive power
of MPNNs, which fail to distinguish the two graphs since they have the same node-
degree distribution (two nodes of degree 3 and four nodes of degree 2).

WL test The two presented examples hint towards the usefulness of degree
distributions to classify the expressive power of graph neural networks. They are
an important ingredient in the Weisfeiler-Lehman isomorphism test (WL test) [26],
which is an efficient algorithm that approximately solves the hard graph-isomorphism
problem for which we know no polynomial time algorithm [27]. The idea is to initially
color each node by its features such that nodes with the sane feature get the same
color,1 and then iteratively update each node’s color based on the color distribution
among its neighbors until a fixed point is reached. In case the final color distributions
between the two graphs differ, we can conclude that the graphs are not isomorphic.
This algorithm is also known as 1-WL test.

k-WL test The extended family of k-WL tests follows a similar scheme as the 1-
WL test but colors k-tuples of nodes instead of coloring single nodes. This improves
the precision of the algorithm in the sense that for any k it is possible to construct
two non-isomorphic graphs that can be differentiated by k+1-WL but not by k-WL
for k ≥ 2. 1-WL has the same power as 2-WL. [28, 8]

A precise formulation of the k-WL test taken from [8] is as follows: We denote
the color of node-tuple n ∈ V k in round l by Cl

n. Initially, the color C0
n of n is given

by its isomorphism type, meaning that two tuples n, n′ ∈ V k get the same color if
ni = nj ⇐⇒ n′

i = n′
j , deg(ni) = deg(n′

i) and {ni, nj} ∈ E ⇐⇒
{
n′
i, n

′
j

}
for all

i, j ∈ {1, . . . , k}.
The j-th neighborhood Nj(n) of node n, along which colors are updated, consists

of all k-tuples where the j-th entry is given by an arbitrary node and the others are
as in n, i.e.

Nj(n) =
{
n′ | n′

j ∈ V, n′
1 = n1, . . . , n

′
j−1 = nj−1, n

′
j+1 = nj+1, . . . , n

′
k = nk

}
.

The color update for each round is

Cl
n = hash

(
Cl−1

n ,
({{

C ′l−1
n | n′ ∈ Nj(n)

}}
| j ∈ {1, . . . , k}

))
,

where {{·}} denotes a multiset and hash is an injective function.

This notion of expressiveness can be applied to GNNs in the following way:

Definition 3.1 (k-WL-expressiveness). A GNN architecture is called k-WL-expressive
if for all G,G′ ∈ G that can be distinguished by the k-WL graph isomorphism test,
there exists a model M in the architecture such that M(G) ̸= M(G′).

Xu et al. [6] showed that MPNNs are at most as expressive as the 1-WL test. They
designed the GIN(E) architecture, introduced in the previous chapter, to specifically
be 1-WL-expressive.

1In case the nodes have no features (as in the above examples), each node is initially assigned
the same color.

3. Expressive Graph Neural Networks 11

Architecture WL-expressiveness Complexity
meanGIN(E) less than 1-WL O(N)
GIN(E) 1-WL O(N)
BasisNet more than 1-WL O(N)
DropGIN(E) more than 1-WL O(rN), r ≈ N
DSS-GNN with EGO+ more than 1-WL O(N2)
PPGN 3-WL O(N3)

Table 3.1: WL-hierarchy and complexity of expressive GNN architectures

SUM vs MEAN neighborhood aggregation

As noted in [7], the neighborhood aggregation type can influence the WL-expressiveness
of a model. Models with mean or max neighborhood aggregation generally don’t
achieve 1-WL-expressiveness, whereas models with sum aggregation have better ex-
pressiveness. Figure 3.1 c shows two graphs where initially equal node features remain
equal over a series of MPNN layers. We call GIN(E) models with mean neighborhood
aggregation meanGIN(E). Each meanGINE layer computes

x
(k)
i = h(k)

(1 + ε)x
(k−1)
i +

1

|N (i)|
∑

j∈N (i)

ReLU(x
(k−1)
j + ej,i)

 .

Although meanGINE models are not 1-WL-expressive, we intuitively expect them
to be more robust against adjacency changes because the average over a set of values
is less impacted when an element is added or removed than the sum.

Expressiveness in Practice

Although the notion of WL-expressiveness is powerful to compare GNNs, it doesn’t
provide enough resolution to compare any two architectures as there exist models
that are more than k-WL-expressive2 but not k + 1-WL-expressive. Interestingly,
there exist natural extensions of GNNs that achieve k-WL-expressiveness for any
k ∈ N [11, 8]. However, these highly-expressive architectures scale badly both in
terms of running time and memory, leading to a trade-off between expressivity and
computational effort. k-WL expressiveness is generally associated with an O(Nk)
running time due to the Nk node-tuples of size k. Considering these points, table
3.1 summarizes the expressiveness and time complexity of the GNN architectures
considered in this thesis.

3.2 Equivariant Sub-graph Aggregation Network

Equivariant Sub-graph Aggregation Networks (ESAN) are GNN architectures intro-
duced by [9], whose main feature is the processing of bags of subgraphs, which enables
higher expressiveness.

2Meaning that they can differentiate graphs that are not differentiable by k-WL.

3. Expressive Graph Neural Networks 12

G1 6×

node
deletion

G2 6×

node
deletion

Figure 3.2: To motivate the expressive power of ESAN, consider the following exam-
ple: Under a single node deletion, the multiset of subgraphs of a 6-cycle (G1) and
two triangles (G2) can be distinguished by the 1-WL test. The multiset of subgraphs
of G1 are paths with five nodes, where the 1-WL algorithm will converge to assign
different colors to the middle node, the two outer nodes, and the remaining nodes.
In contrast, the converged 1-WL algorithm only assigns two distinct colors to nodes
in the subgraphs of G2, one for the triangle and one for the connected pair of nodes.

For the design of the architecture, the authors faced two main challenges: creating
a network that is equivariant under the order of subgraphs (1) and determining
suitable subgraph selection strategies that achieve high expressiveness and perform
well in practice (2).

For (1), the authors decide to represent a bag (multiset) of m subgraphs of a graph
with N nodes as an adjacency tensor RN×N×m and node feature tensor RN×dv×m.

They define the group H = Sm×SN , under which the feature encoder should be
equivariant. An element (τ, σ) ∈ H is interpreted as permutation on the subgraphs τ
and a permutation on the node order σ and thus acts on the graph tensors as follows:

((τ, σ) ·A)i,j,k = Aσ−1(i),σ−1(j),τ−1(k)

((τ, σ) ·X)i,j,k = Xσ−1(i),j,τ−1(k).

Then they introduce multiple architectures that are H-invariant, based on multi-
ple H-equivariant layers. An H-equivariant layer L updates the node feature tensor
of the i-th subgraph as follows

(L(A,X))i = L1 (Ai, Xi) + L2

 m∑
j=1

Aj ,

m∑
j=1

Xj

 ,

where (Aj , Xj) is the representation of the j-th subgraph and L1, L2 are arbitrary
graph encoders such as MPNN layers. Instead of the sums in L2, other permutation
invariant aggregation operators are possible, such as the mean or the max.

The DSS-GNN architecture presented in the ESAN paper consists of three parts,
similar to MPNN architectures:

FDSS-GNN = Esets ◦Rsubgraphs ◦ Esubgraphs.

• Esubgraphs : RN×N×m × RN×dv×m → RN×N×m × RN×d′
v×m encodes each sub-

graph based on H-equivariant layers

• Rsubgraphs : RN×N×m × RN×d′
v×m → Rd′

v×m aggregates the node features per
subgraph, and

3. Expressive Graph Neural Networks 13

• Esets : Rd′
v×m → Rd′′

v is a permutation invariant set encoder, such as the mean
over the subgraphs as in the implementation.

The paper also presents the DS-GNN architecture, which we don’t consider be-
cause DSS-GNN is at least as expressive as DS-GNN and DS-GNN tends to perform
worse in practice, based on the experiments of the authors.

For the subgraph selection (2), the authors consider four strategies. The Node-
Deleted (ND) policy considers all subgraphs obtained by deleting a single node,
which is implemented by removing all of its adjacent edges. Similarly, the Edge-
Deleted (ED) policy creates all subgraphs obtained by deleting a single edge. The
EGO policy generates k-hop (ego) subgraphs centered at each node. Finally, EGO+
has the same subgraphs as EGO in terms of adjacency but augments the node features
to mark the central node of each ego subgraph.

The authors prove that the ED subgraph selection policy is the most expressive in
terms of distinguishing strongly regular graphs, although the ND and EGO+ (with
N -hop subgraphs) policies are also able to differentiate between different classes of
strongly regular graphs3. In practice, EGO+ seems to be the best-performing policy
based on the experiments of the authors, with a significant difference in performance
on ZINC12k and a within-variance difference on the MolHIV and the IMDB datasets.

The number of subgraphs, which is N for the ND and EGO+ policies and M
for the ED policy, grows with the size of the graph. To improve the scalability
of the ESAN architectures, the authors suggest subgraph sampling, where only a
randomly chosen sub(multi)set of graphs is used. They evaluate this strategy with
sampling fractions 50%, 20%, and 5% on the TUDatasets and MolHIV and find
similar performance to using the full bag of subgraphs.

3.3 DropGNN

DropGNN [7] follows a similar strategy as ESAN to improve its expressiveness,
namely by processing a set of subgraphs. Whereas ESAN constructs subgraphs
deterministically, DropGNN does so in a randomized manner, by independently re-
moving (dropping out) each node with probability p. The probability p should be
chosen such that each subgraph (also called run) observes a different d-hop neigh-
borhood (over d layers of message passing), but the runs should be similar enough
so that the model output doesn’t fluctuate too much due to different nodes being
dropped out. Ideally, there is exactly one dropped-out node in every neighborhood
of interest Γ ⊆ V around each node. Thus the authors optimize p such that the
probability of a 1-dropout among γ := |Γ| is maximal, which is when

p =
1

1 + γ
.

They also show that when using r ≥ Ω(γ) runs, the expected number of observations
of each 1-dropout in Γ is at least 1.

The runs are processed independently over multiple MPNN layers and the result-
ing node embeddings are averaged over all runs before global pooling and readout.

3This is not possible with 1-WL

3. Expressive Graph Neural Networks 14

3.4 Provably Powerful Graph Network

The PPGN architecture [8] operates on a dense representation X ∈ RN×N×a of the
input graph. Given a graph G, this representation is derived as follows: The edges
of G are represented by their adjacency matrix A ∈ RN×N×1. In case G has node
features X : V → Rdv , they are represented by X ′ ∈ RN×N×dv , where

X ′
i,j =

{
X(vi) if i = j

0 ∈ Rdv else
.

Edge features Y : E → Rde are represented by the dense edge features Y ′ ∈
RN×N×de , defined by

Y ′
i,j =

{
Y ({i, j}) if {i, j} ∈ E

0 ∈ Rde else
.

The initial graph representation is the concatenation of these three4 tensors along
the last axis, i.e. X = (A, Y ′, X ′) ∈ RN×N×(1+dv+de) for the input to the model.

The PPGN architecture updates this representation in a series of blocks. A single
block applies three MLPs m1,m2 : Ra → Rb and m3 : Ra → Rb′ independently
to each feature of X. Denote the obtained tensors by B,B′ ∈ RN×N×b and C ∈
RN×N×b′ . The block then performs matrix multiplication between each of the b
features of B and B′ to obtain a tensor W ∈ RN×N×b, given by W:,:,k = B:,:,k ·B′

:,:,k.
The block output is then given by the concatenation (C,W) ∈ RN×N×(b+b′).

The full model architecture F = m ◦ h ◦ Bd ◦ . . . ◦ B1 consists of d such blocks
B1, . . . , Bd, an invariant feature extraction layer h : RN×N×b → Rb′ and a readout
MLP m : Rb′ → Rb′′ . An option for the invariant layer h is the sum over the first two
dimensions, however, our implementation combines this sum with trace information,
processed by individual MLPs.

To motivate the expressiveness of PPGN, the authors refer to the power of adja-
cency matrix exponentiation to compute interesting graph properties and take up the
example of a 6-cycle and two disjoint 3-cycles (Fig. 3.1 a). They note that a PPGN
model with three blocks is capable of computing A3 (e.g. by setting m1,m2 and
m3 in each block to the identity) and to subsequently read out trace(A3). It is well
known that trace(A3) counts the number of triangles in a graph. A 6-cycle has no
triangles, whereas the graph with two disjoint 3-cycles has 2, which allowed PPGN to
differentiate between the two graphs. Besides this nice intuition, the authors prove
that PPGN is at least as expressive as 3-WL.

3.5 SignNet

SignNet, proposed in [10], achieves a higher expressiveness by augmenting the node
features with eigenvector information of the graph Laplacian matrix. The eigenvec-
tors of the graph Laplacian encode structural information about its graph, e.g. about
connectivity, clusters, and how close nodes are [29].

4Or less in case G has no node or edge features.

3. Expressive Graph Neural Networks 15

Definition 3.2 (Normalized Graph Laplacian). Given a graph on N nodes with adja-
cency matrix A ∈ {0, 1}N×N and node degree matrix D = diag(deg(v1), . . . ,deg(vN)),
its normalized graph Laplacian is given by

L = D− 1
2 (D −A)D− 1

2 = I −D− 1
2AD− 1

2 .

Note that L is symmetric if A is symmetric. Since A is symmetric for the graphs
considered in this thesis, this means that there exist orthonormal eigenbases of L.
Even after ordering the normalized eigenvectors by the size of the respective eigen-
value, there remain multiple ways to encode the eigenvalue information of L:

• Every eigenvector has a sign symmetry : If v is an eigenvector of A, then so is
−v (since A(−v) = −Av = −λv = λ(−v)).

• Basis symmetry : If there is an eigenvalue with geometric multiplicity k > 1,
the associated eigenvectors v1, . . . , vk may be reordered in any way or replaced
by any other orthonormal basis of span {v1, . . . , vk}. If the columns of V =[
v1 . . . vk

]
∈ RN×k are an eigenbasis for some shared eigenvalue, then so

are the columns of V Q for any orthogonal Q ∈ Rk×k.

In the paper, two architectures are presented. SignNet only achieves sign-invariance
and BasisNet achieves both sign- and basis-invariance. Since the authors only im-
plement SignNet, we will not further discuss BasisNet.5

The following theorem is fundamental for the SignNet architecture:

Theorem 3.3 (Sign-Invariant Functions). A function f : RN → Rdenc is sign-
invariant if and only if there exists a function ϕ : RN → Rdenc such that f(x) =
ϕ(x) + ϕ(−x) for all x ∈ RN .

So we can encode any vector v ∈ RN in a sign-invariant manner as ϕ(v) + ϕ(−v)
for any ϕ. To encode multiple eigenvectors v1, . . . , vk ∈ RN , the authors propose the
sign invariant network f : RN×k → Rdout as

f(v1, . . . , vk) = ρ
(
[φ(vi) + φ(−vi)]ki=1

)
.

for neural networks ρ, φ and vector concatenation [·]i. This form can compute any
continuous function that is sign-invariant to each v1, . . . , vk (under mild conditions).

To make f permutation equivariant under SN , φ : RN → RN and ρ : RN×k →
RN×k′

have to be permutation equivariant. The authors suggest element-wise MLPs
or MPNN layers.

The complete SignNet architecture first computes sign-invariant positional encod-
ings for each node with f , using the first k eigenvectors with positive eigenvalues6,
ordered by their eigenvalue. The positional encodings are added to the existing node
features. Then, the new graph is processed using a GNN.

5It is interesting to note that a large fraction of real-world graphs do contain higher-dimensional
eigenspaces. In ZINC12k, 64.1% of graphs have a multiplicity of at least 1 and in MolHIV even
68.0% of graphs do, as pointed out in the paper.

6The eigenvector with eigenvalue 0 is discarded.

Chapter 4

Robustness and Attacks

The robustness of a machine learning architecture vaguely corresponds to how easy
it is to steer its predictions in a certain direction, leading to misclassified inputs
or deviations from regression labels. An evasion attack deliberately exploits the
vulnerability of missing robustness and produces adversarial examples, which are
inputs into a trained model that it predicts badly in case the attack was successful.

In the literature, both poisoning (training-time) attacks and evasion (evaluation-
time) attacks are studied [30, 13]. Poisoning attacks assume that the adversary
can sabotage the training data, which is especially interesting for models that are
continuously trained in an online fashion. Due to memory constraints, we focus
exclusively on evasion attacks in this thesis.1

In this chapter, we first define the attack model and then proceed to demonstrate
some basic attacks. These attacks assume that the attacker can use an evaluation
oracle to obtain the output logits of the model for a considerable number of in-
puts. Subsequently, we explore gradient-based attacks, which require a more potent
attacker with access to the model parameters.

4.1 Adversarial Attacks

In case a model F : G → Y is trained for a classification task, an evasion attack is
successful when the discretized prediction of the model changes to another class (in
a targeted attack, this class is specified by the attack). Under a given threat model
T : G → P(G), which specifies for each graph a set of lookalike graphs the adversary
may construct, and a graph G to attack, the attack tries to find any G′ ∈ T (G) for
which class(F (G′)) ̸= class(F (G)) (or in case of a targeted attack class(F (G′)) =
c for some specified class c). We cannot directly apply gradient-based methods to
find such a G′ because the procedure class doesn’t yield useful gradients. Instead,
we can replace class by some differentiable target function t : Y → R that achieves
high values only if the model output matches the adversary’s goal (similar to a
loss function, where high values indicate bad predictions) and optimize for t ◦ F
via gradient-based methods. The impact of the target function goes beyond the

1Gradient-based poisoning attacks involve meta-gradients that track how a change in the graph
structure affects the attack target after training on the changed attack. To compute such meta-
gradients, we need to store all intermediate values for the backward pass, which requires GPU
memory proportional to the number of epochs over which the meta-gradient is computed.

16

4. Robustness and Attacks 17

semantics of wrong predictions but also influences the convergence of gradient-based
optimization techniques.

In summary, an attack on model F : G → Y, graph G ∈ G with target function
t : Y → R and threat model T : G → P(G) tries to solve the following optimization
problem2:

argmax
G′∈T (G)

t(F (G′)). (4.1)

Target Functions

In a C-class classification setting, when the model output is a logit vector from Y =
RC , a sensible target function to switch predictions to class c is tc(ŷ) = ŷc−

∑
i ̸=c ŷi.

For binary classification (when Y = R), we use the target function ty(ŷ) = (1− 2y)ŷ
where y ∈ {0, 1} is the true class of a given graph and ŷ ∈ R the predicted logit.
Note that a graph G with label y gets misclassified if and only if ty(F (G)) > 0.

While there is a binary notion of a successful attack in a classification setting,
there is no principled way to define such a notion in a regression setting because
the predicted values have different meanings across datasets and domains. The loss
function used for training the model indicates good predictions with low values and
thus might be a suitable target function depending on the application. We train our
regression models (where Y = R) with the L1-loss, which yields the target function
t(ŷ) = |ŷ − y|. When applying a multistep gradient-based attack with this target
function, the first few steps will implicitly decide whether to drive the predicted
value ŷ up or down. Since our models are highly non-linear, such an initial decision
might not be optimal, which is why we try to individually increase and decrease the
predicted value as much as possible to make our attack stronger. To this end, we use
the target functions t↑(ŷ) = ŷ and t↓(ŷ) = −ŷ.

4.2 Threat Models

From a security perspective, a threat model determines how much an attacker can
control the inputs that are fed into a model, excluding drastic changes that can be
easily discovered and discarded by a defender. The definition of a reasonable threat
model heavily relies on the specific application domain and the abilities attributed
to both attackers and defenders. Threat models are often parametrized by a budget
ε ∈ (0,∞), which specifies the extent to which an attacker can change valid inputs
without being detected by a defender. In a discrete setting, the simplest threat model
is to count the number of changes an attacker is allowed to make compared to the
initial input.

The adjacency threat model, which allows for up to ε adjacency changes, is
2In general, even this problem is hard to solve exactly due to the large size of T (G), which grows

exponentially in the number of allowed changes to G. Instead, our attacks aim to solve this problem
approximately.

4. Robustness and Attacks 18

described by the function Ta : G × N→ P(G), where

Ta(G, ε) = {G′ | V = V ′ ∧X = X ′

∧ ∀e ∈ E ∩ E′.Y (e) = Y ′(e)

∧ |E ⊕ E′| ≤ ε},
(4.2)

and A ⊕ B = (A \ B) ∪ (B \ A) denotes the symmetric set difference. This threat
model enforces that the perturbed graphs have the same nodes and node features,
however, the edge features only need to agree on shared edges. In particular, newly
introduced edges may have arbitrary features.

The feature and adjacency threat model Sf : G × N → P(G) builds upon
the adjacency threat model and additionally allows for feature changes. Each value
change in any discrete feature vector uses a budget of one. We denote the number of
node feature changes by ∆X(G,G′) =

∑
v∈V ∩V ′ ∥X(v)−X ′(v)∥0 and the number of

edge feature changes by ∆Y (G,G′) =
∑

e∈E∩E′ ∥Y (e)− Y ′(e)∥0, where ∥ · ∥0 counts
the number of non-zero elements. Formally, the threat model is

Tf (G, ε) = {G′ | V = V ′ ∧ |E ⊕ E′|+∆X(G,G′) + ∆Y (G,G′) ≤ ε}. (4.3)

The goal of a threat model is to list all graphs where the defender cannot notice
changes from a valid graph. In case a dataset contains graphs of very different
sizes, whether changes are noticeable depend more on the number of changes relative
to the graph size than the absolute number of changes. The previously described
threat models are parametrized by an absolute budget, but can easily be adapted to
a relative budget, which is used together with the graph size to derive an absolute
budget, individualized to each graph. The relative budget that we use is relative to
the number of edges M .

The threat models Ta and Tf are quite general in the sense that they allow for
all kinds of changes. Depending on the domain, this might not be very realistic.
In the molecular domain, for example, adding an edge corresponds to forming a
bond between two atoms, which is likely not possible due to the fixed valency of
the involved elements. The same problem arises when changing an edge feature that
represents the type of bond. Node features for molecules might include the atom
type, charge, or chirality and thus cannot be changed arbitrarily. In general, single
changes to molecular graphs are likely to result in graphs that cannot be derived from
valid and stable molecules. Threat models that are restricted to valid molecules are
out of the scope of this thesis, as they require chemistry domain knowledge. A
simple approach to address this limitation is to use the here presented attack to
find potentially non-molecular adversarial examples and then to “project” them to
the closest valid molecule. However, such a projection would almost certainly alter
the total number of changes to the original molecule, resulting in a molecule that
might land outside the budget restrictions imposed by our threat models. In line
with the concept of unnoticeable changes, it could be more reasonable to consider
threat models that aren’t based on budgets that count the number of changes, but
instead are based on how similar molecules are in a chemical sense, e.g. by comparing
functional groups or the charges of atoms. We leave these problems and ideas for
future research and focus on the threat models described above.

4. Robustness and Attacks 19

4.3 Random Perturbations and Simple Attacks

4.3.1 Random Perturbations

As a starting point, we wanted to see how sensitive the models are to random per-
turbations. To this end, we considered the following random changes in isolation
(no combinations of changes): removing edges, adding edges (without introducing
self-loops), “rewiring” edges, and changing node and edge features.

Adding Edges To remove k edges from a graph on M edges, we uniformly
sampled a subset of k out of the M edges. The features of the newly added edges
are sampled uniformly from the original graph, essentially by choosing an index into
the edge feature tensor and copying the corresponding entry to the new feature.

Removing Edges To add k edges, we uniformly sampled a subset of size k from
the

(
N
2

)
−M missing edges. The accompanying edge features are sampled from the

original edge features, where each feature vector is as likely as how often it appears in
the original graph. This is a bit more restrictive than what our threat models allow,
but it aligns with the attackers’ goal of making the perturbations hard to detect by
keeping the distribution of edge features similar.

Rewiring Edges “Rewiring” an edge means to removing an edge {vi, vj} and
introducing a new edge {vi, vk} , i ̸= k. The rewired edges retain their original edge
features. Although this change requires an adjacency budget of 2, it ensures that
the degrees of at most two nodes (vj and vk) change, while arbitrary two adjacency
changes may result in up to four node degree changes.

Changing Features To obtain a graph with k node features changes, we select
k nodes uniformly at random. For each of these nodes, we construct a list of single
change feature vectors and sample a new feature vector uniformly at random from this
list. Edge feature changes are constructed similarly by selecting k edges uniformly
at random and then changing one feature randomly per edge.

4.3.2 Brute Force

Since our graphs are rather small, it is viable to find the strongest attack for small
budgets by trying all perturbations. For a budget of 1 and a graph on N nodes
and M edges, there are M changes of removing existing nodes, Fe ·

((
N
2

)
−M

)
perturbations for adding an edge where the edge features of new edges may take on
Fe values within a budget of 1. Additionally, there are Fn ·N many possible 1-budget
node feature changes and Fe ·M many 1-budget edge feature changes, where Fn and
Fe denote the total number of node and edge feature values. By trying all feature
values (including the ones of the original graph), we need to evaluate the target
function M + Fe ·

(
N
2

)
+ Fn · N ≤ O(N2) many times for a single graph to get the

strongest attack of budget 1.

4. Robustness and Attacks 20

4.4 Adjacency Projected Gradient Descent

Our first gradient-based attack, AdjPGD, takes the approach outlined in [22] in
attacking the edges. In summary, this attack relaxes the adjacency matrix A ∈
{0, 1}N×N to a tensor Ã ∈ [0, 1]N×N , which gets interpreted as a probability dis-
tribution over adjacency matrices where each edge {i, j} independently occurs with
probability Ãi,j . The algorithm then optimizes Ã to maximize a differentiable func-
tion f : [0, 1]N×N → R with projected gradient descent (PGD)3. The obtained
distribution matrix is finally used to sample k adjacency matrices A1, . . . , Ak ∈
{0, 1}N×N ∼ Bernoulli(Ã) (independent element-wise Bernoulli distribution) and
returns argminAi∈{A1,...,Ak}f(Ai). For a successful attack, the sampled matrices
should (1) have a decent (constant) chance of being within budget constraints and
(2) produce values that maximize f .

4.4.1 Algorithm

To achieve (1), the authors only consider distributions that meet the budget in
expectation, hoping that this yields many adjacency matrices during sampling that do
not violate the budget constraints. Given some distribution Ã and initial adjacency
matrix, the expected budget used sampling from Ã is given by

BA(Ã) =
1

2

N∑
i,j=1

|Ã−A|i,j (4.4)

The correction factor 1
2 is needed since we only consider undirected graphs.4 Due to

the same reason, we are only interested in symmetric distributions satisfying ÃT = Ã.
In summary, the set of good distributions is

SA =
{
Ã ∈ [0, 1]N×N | ÃT = Ã ∧BA(Ã) ≤ ε

}
. (4.5)

To obtain minimal values for the f : [0, 1]N×N → R (2), the authors apply pro-
jected gradient descent on the distribution matrix. Projected gradient descent (PGD)
with base learning rate λ0, budget ε and projection function PSA

: [0, 1]N×N → SA

and clamping function5 P[0,1] : RN×N → [0, 1]N×N performs the computations out-
lined in algorithm 1 on the next page.

The term ελ0√
i

provides a simple learning rate schedule6 and the gradient term

∇Ãf(Ã)+(∇Ãf(Ã))T reflects that we operate on undirected graphs whose adjacency
matrices can be parametrized by upper or lower triangular matrices. The “adjacency
value” a{i,j} linking nodes i and j is present in both Ãi,j and Ãj,i (a{i,j} = Ãi,j =

3We use this optimization algorithm to maximize a function, so projected gradient ascent might
be more fitting in this scenario.

4The paper abstracts out perturbations on adjacency matrices to perturbations on vectors, whose
elements may be embedded in adjacency matrices or other structures with binary features (presum-
ably because it is more general and allows for a cleaner presentation). We have concretized the
attack to adjacency matrices for undirected graphs.

5P[0,1](X)i,j = Xi,j if Xi,j ∈ [0, 1], P[0,1](X)i,j = 0 if Xi,j < 0 and P[0,1](X)i,j = 1 if Xi,j > 1.
6Which we have taken from the implementation of [13].

4. Robustness and Attacks 21

Algorithm 1 AdjPGD

1: Ã← A
2: for i = 1 . . .# PGD steps do
3: λ← λ0ε√

i

4: Ã← Ã+ λD(∇Ãf(Ã) + (∇Ãf(Ã))T)

5: Ã← PSA
(P[0,1](Ã))

6: end for

Ãj,i), meaning that
∂f(Ã)

∂a{i,j}
=

∂f(Ã)

∂Ãi,j

+
∂f(Ã)

∂Ãj,i

,

which leads to the adjusted gradient expression. We set all diagonal gradient entries
to 0 (indicated by applying D(·)) to avoid self-loops and add the resulting gradient
term to increase the value of f .

As a projection function, the authors suggest reducing the difference between a
given Ã ∈ [0, 1]N×N and the original adjacency matrix A uniformly among all entries
by some µ ∈ [0, 1] such that the distribution P[0,1](Ã + µ(2A − 1)), which is closer
to A, perfectly fits into the budget (we use 1 ∈ RN×N to denote the one matrix).
Concretely, the projection function is

PSA
(Ã) =

{
Ã if BA(Ã) ≤ ε

P[0,1](Ã+ µ(2A− 1)) if BA(P[0,1](Ã+ µ(2A− 1))) = ε
(4.6)

They show that PSA
minimizes the Frobenius norm to any element of SA, i.e.

PSA
(Ã) = argminA′∈SA

∥Ã−A′∥2F = argminA′∈SA

N∑
i,j=1

(Ãi,j −A′
i,j)

2.

In order to implement PSA
, we need to compute µ. This can be done via bisection,

i.e. by halving the interval [a, b] in which the true µ lies per step by checking if
Ã+µ(2A−1) exceeds the budget in expectation. Since µ ∈ [0, 1], a constant number
of steps can make the error on the true µ negligible.

Note that the algorithm doesn’t explicitly enforce the invariance of Ã’s symmetry.
This is not necessary since Ã is initialized with a symmetric matrix (line 1), X+XT

is symmetric for any X and the difference of symmetric matrices is symmetric (line
3), and PSA

has the same effect on every entry of Ã (line 4).

4.4.2 Attacking GNNs with features

To run the attack on our models, we need to choose a differentiable function f :
[0, 1]N×N → R over which to optimize. Because sparsely-expressed MPNNs are not
differentiable with respect to the input adjacency matrix, we construct differentiable
surrogate models that compute a similar7 function as the original models. Since the

7The surrogate model may deviate from the original model since we still evaluate the adversarial
graphs on the original model. In case the original model admits obfuscated gradients with respect

4. Robustness and Attacks 22

adjacency also influences “how present” the edge features are, such a surrogate model
M : [0, 1]N×N×RN×N×de → Y is a function on both the adjacency matrix and dense
edge features. With this, our f takes the form

f(A) = t (M(A, Y ′)) , (4.7)

where t : Y → R is a differentiable target function as introduced in section 4.1.

Y ′ is based on a completed edge feature tensor Y ∈ RN×N×de , where given some
edge features Y : E → Rde we define Y i,j = Y ({i, j}) ∀ {i, j} ∈ E and sample the
missing edge features uniformly from the multiset of existing features, i.e.

Y i,j
iid∼ U ({{Y ({k, l}) | {k, l} ∈ E}}) ∀ {i, j} /∈ E, i ̸= j.

The diagonal entries Y i,i are set to 0 ∈ Rde . Most of the dense surrogate models
we construct later already limit the edge features with element-wise multiplication
by the adjacency and thus compute the same function as their sparse counterparts
when Y ′ := Y . In particular, PPGN doesn’t “limit” the dense representation of
the edge features by the adjacency, which is why we manually do this element-wise
multiplication with the adjacency matrix (i.e. Y ′

i,j = Ai,j · Y i,j ∀i, j = 1, . . . , N).
In this case, the adjacency gradient ∇Af(A) depends on the edge feature gradient
∇Y ′M(A, Y ′), so our surrogate models also need to be differentiable with respect
to the edge features, which is given for all considered architectures. In general,
multiplying the edge feature with the adjacency enables the adjacency gradient to
correctly estimate the first-order impact of new edge features when flipping an edge.

In the following, we describe how we create differentiable surrogate models.

GIN(E)Conv Given a dense representation of node features X ∈ RN×dv , we
can sum up the node features over the neighbors of all nodes by multiplying the
adjacency matrix with X, since∑

vj∈N (vi)

Xj,: = Ai,: ·X = (A ·X)i,:.

The GINConv operator adds the original features (scaled by 1+ε) to the above sum.
The new node representation is obtained by applying some MLP h : Rde → Rd′

e .
Since the MLP is evaluated independently for each node, we can simply evaluate the
MLP h on each row of (1 + ε)X + A · X. The final dense version of the GINConv
layer is thus

h ((1 + ε)X +A ·X) . (DenseGINConv)

This is how PyTorch Geometric implements the DenseGIN operator [24]. We
adapt this approach to the GINEConv operator, which first combines the node fea-
tures with the features of the combining edge before aggregating over the neighboring
nodes. The main trick is to extend the node features from a tensor from X ∈ RN×dv

to X ′ ∈ RN×N×dv by repeating values along the new first index and then to con-
sider X ′ +Y , which contains the vectors x(k−1)

j + ej,i at entry i, j. Then GINEConv
applies ReLU to each of these values and aggregates over the neighborhood. We

to its input, specially designed surrogate models computing a different function can improve the
attack strength.

4. Robustness and Attacks 23

implement the aggregation over the neighborhood by first multiplying element-wise
with the adjacency, denoted by A⊙ReLU(X ′ + Y), and then to sum along the first
dimension, yielding a tensor in RN×dv . After the aggregates over the neighborhood
are computed, GINEConv does the same computation as GINConv. The complete
dense version is thus given by

h

(1 + ε)X +
∑

2nd index

A⊙ ReLU(X ′ + Y)

 . (DenseGINEConv)

DropGIN(E) relies mostly on GIN(E)Conv operations, which can be made dense
as described above. Dropping out nodes changes the computation graph by removing
the impact of certain nodes for some runs (by setting the adjacency of incident
edges to 0), but the surviving adjacency still propagates gradients, which means
that replacing the GIN(E)Conv operators by dense counterparts suffices to obtain
gradients for the adjacency.

PPGN is differentiable with respect to the adjacency and edge features by design
as it operates on dense representations of adjacency and edge features.

SignNet is a GINE model with positional encodings. The GIN(E)Conv opera-
tors can be made differentiable as described above, which just leaves the positional
encodings, which are constructed out of the eigenvectors of the graph Laplacian.
PyTorch implements the function torch.linalg.eigh to compute the eigenvectors
of a matrix, which can backpropagate gradients. A problem however is that the
gradient computation is undefined if case of repeated eigenvalues and numerically
unstable when there are close eigenvalues due to the internal computation of the
term 1

mini̸=j λi−λj
. Real-world graphs such as molecules often have repeated eigen-

values of their Laplacian [10], which prevents the direct use of torch.linalg.eigh.
We circumvent this problem by adding Gaussian noise8 to the diagonal entries of the
adjacency matrix in case torch.linalg.eigh doesn’t compute a suitable gradient.

ESAN has two stages, (1) generating subgraphs and (2) applying GINEConv
on various aggregates of these subgraphs. With the ND and ED policies, the first
stage is differentiable for the same reasons as DropGIN(E). However, the better-
performing EGO/EGO+ policies are not, with no clear alternative formulation that is
differentiable. Instead of generating ego subgraphs in a way that is differentiable with
respect to the adjacency matrix, we decided to construct the EGO graphs based on a
discrete adjacency matrix, sampled from Ã. To still get gradient information over the
generated subgraphs, we multiply the discrete adjacency matrix of the ego subgraphs
element-wise with the adjacency distribution Ã and use the result as the relaxed
adjacency matrix for the subgraphs. The second stage can be made differentiable
with respect to the subgraphs, again by replacing GIN(E)Conv operators with dense
counterparts.

To improve the effectiveness of the attack, we experimented with replacing all
ReLU activations with LeakyReLU activations that have slope α > 0 for negative in-
puts, hoping that the additional gradient information over nodes with negative inputs
speeds up convergence and enables the discovery of better distributions. However,
experiments showed little difference between the effectiveness of ReLU and leaky
ReLU with well-chosen learning rates, the results of which can be found in Figure

8First with a standard deviation of 0.001, and in case of failure with 0.01.

4. Robustness and Attacks 24

5.3. Because of this, we decided against using leaky ReLU instead of ReLU activa-
tions.

4.4.3 Hyperparameters

AdjPGD has hyperparameters that can influence the quality of the constructed ad-
versarial example, namely the base learning rate λ0, the number of PGD steps, and
the number of samples. We fix the number of PGD steps and the number of samples
since increasing them can only improve the attack and the selected values provided
good results on all manually tested graphs in a reasonable time. The attack strength
seemed to be quite sensitive to the base learning rate λ0 in manual testing, so fine-
tuning the learning rate based on a given budget, target function, and model is
appropriate. To this end, we run the attack on a small and randomly selected sub-
set of the data with various learning rates from a log-uniform grid and choose the
value which gives the best target score. To reduce the number of attack evaluations,
we implemented a two-stage search where the second stage covers a smaller space
centered (in log space) around the best combination from the first stage.

4.5 Feature and Adjacency Projected Gradient De-
scent

Our feature and adjacency attack, AttrPGD, follows a similar approach as AdjPGD,
where the graph structure and features are relaxed to distributions that are contin-
ually updated using gradient information and projected back such that the budget
holds in expectation, and finally sample adversarial examples from the learned distri-
butions. We represent a feature that can take k different values as a vector a ∈ [0, 1]k,
where the i-th entry is the probability that the feature takes the i-th value during
sampling. In case the feature initially has the j-th value, the initial distribution is
a = [δi,j]

k
i=1. Edge features for negative edges are initialized to a uniform distribution[

1
k

]k
i=1

. In the following, X ∈ [0, 1]N×pv denotes the tensor representation of node
feature distribution with pv values and Y ∈ RN×N×pe the tensor of edge feature
distributions.9

4.5.1 Algorithm

In contrast to the adjacency attack, this attack optimizes a function f : [0, 1]N×N ×
[0, 1]N×pv × [0, 1]N×N×pe → R on an adjacency distribution Ã ∈ [0, 1]N×N , node
feature distribution X̃ ∈ [0, 1]N×pv and edge feature distribution Ỹ ∈ [0, 1]N×N×pe .
To do so, Ã, X̃ and Ỹ are initialized with the respective initial distributions. Then,

9In practice, the nodes may have dv > 1 discrete features and the edges de > 1, which com-
plicates finding a suitable tensor representation when features have a different number of values.
Given d features with n1, . . . , nd values respectively, we solve this problem in the implementation by
embedding each feature into a distribution vector from [0, 1]nk and concatenating all these vectors
to obtain a vector representation in [0, 1]n1+...+nd of all d features. As an example, the edge feature
distributions are then represented as a tensor from [0, 1]N×N×(n1+...+nd). The individual feature
distributions can simply be spliced out of this tensor. We omit these details to improve the presen-
tation, although the presented formulas still apply and only require straightforward modifications.

4. Robustness and Attacks 25

over several steps, these distributions are updated with gradient information and
projected back such that the budget holds in expectation.

Gradient Updates

As in AdjPDG, this attack follow the learning rate schedule λ← λ0ε√
i

for step i given
some initial learning rate λ0 and absolute budget ε. The adjacency, node and edge
feature distributions are then updated as follows:

Ã′ ← Ã+ λD

(
∇Ãf(Ã, X̃, Ỹ) +

(
∇Ãf(Ã, X̃, Ỹ)

)T
)

X̃ ′ ← X̃ + λ∇X̃f(Ã, X̃, Ỹ)

Ỹ ′ ← Ỹ + λD

(
∇Ỹ f(Ã, X̃, Ỹ) +

(
∇Ỹ f(Ã, X̃, Ỹ)

)T
)
.

The gradient expressions for Ã and Ỹ include the transpose10 of the gradient because
we are attacking undirected graphs and D(·) sets diagonal entries to 0 to avoid self-
loops. After computing all gradients on the old distributions, we simultaneously
update all distributions:

Ã, X̃, Ỹ ← Ã′, X̃ ′, Ỹ ′.

Expected Budget

After each update, the attack projects the distributions into the space

SA,X,Y =
{
(Ã, X̃, Ỹ) | Ã = ÃT ∧ Ỹ = Ỹ T ∧BA(Ã) +BX(X̃) +BY (Ỹ) ≤ ε

}
,

such that the budget ε holds in expectation.

The adjacency budget BA is computed as in AdjPGD. The expected budget
of a feature distribution ã ∈ [0, 1]k given some initial distribution a = [δi,j]

k
i=1 is

Ba(ã) = (1 − a) · ã. To compute the expected node feature budget we add up this
expression over all nodes:

BX(X̃) =

N∑
i=1

(1−Xi) · X̃i. (4.8)

The budget for edge features needs to be scaled by the respective adjacency value
because we sample adjacency and features independently and there can only be a
change in edge features if the corresponding edge is present. Per our feature and
adjacency threat model (equation (4.3)), edge features for originally negative edges
incur no budget. Therefore, the expected edge feature budget is given by

BY (Ŷ) =

N∑
i,j=1

Ai,jÃi,j(1− Yi,j) · Ỹi,j . (4.9)

Note that the expression (1− Yi,j) · Ỹi,j only computes the correct expected budget
if Yi,j = [δi,l]

pe

i=1 for some l ∈ {1, . . . , pe}. This is not the case for negative edges, but
they have no impact due to the multiplication with Ai,j = 0.

10The edge feature gradient is transposed along the first two dimensions.

4. Robustness and Attacks 26

Projection

As in AdjPGD, we clamp all adjacency values to the interval [0, 1] before projecting
into SA,X,Y . The feature distributions are normalized after clamping to [0, 1].

In case the triplet (Ã, X̃, Ỹ) exceeds the prescribed budget ε, the algorithm
projects the triplet into SA,X,Y by uniformly decreasing the impact of each dis-
tribution by the smallest µ ∈ [0, 1] such that the budget holds in expectation (after
clamping all values to the interval [0, 1]). As in AdjPGD, µ is determined using
bisection.

Adjacency The adjacency budget is reduced as in AdjPGD, namely as

P[0,1](Ã+ µ(2A− 1)).

Node Features Given a single node attribute distribution ã ∈ Rpv representing
a feature that initially had the l-th value, we reduce its required budget using the
following algorithm:

ã←

(
1− µ∑

i ̸=l ãi

)
ã (step 1)

ã← P[0,1](ã) (step 2)

ãl ← 1−
∑
i ̸=l

ãi. (step 3)

We proportionally reduce each probability in step 1 and “fix” the probability of
the initial value in step 3 to again obtain a valid distribution (

∑pv

i=1 ãi = 1). µ
is scaled by the old expected budget

∑
i ̸=l ãi to ensure that the new distribution

requires no budget in case µ ≥
∑

i ̸=l ãi, which mirrors the behavior of reducing the
adjacency budget of a single adjacency value by µ. Step 2 ensures all values are
positive in case µ >

∑
i ̸=l ãi.

Edge Features Edge feature distributions are reduced similarly to node feature
distributions. The only difference is in step 1, where the algorithm additionally scales
the amount to reduce by the corresponding adjacency value Ãi,j (before decreasing
it by µ) and the initial adjacency value Ai,j ∈ {0, 1}:

ã←

(
1−Ai,jÃi,j

µ∑
i ̸=l ãi

)
ã. (step 1)

The factor Ai,j ensures that we only change distributions of initially present edges
since edge features of negative edges incur no budget as specified by our threat model.

As a consequence of the factor Ãi,j , a reduction by µ doesn’t result in a reduction
of expected budget by µ when Ãi,j < 1 (even if µ ≤

∑
i ̸=l ã)

11. We chose this behavior
to prevent undoing learned feature distributions that only have little impact on the
budget but might be important in later PGD steps or during sampling.

11Such a behavior would require a scaling by 1

Ãi,j
instead of Ãi,j since the expected budget is

given by Ãi,j
∑

i̸=l ã.

4. Robustness and Attacks 27

Closing Remarks

Feature embeddings, as introduced in section 2.1, rely on discrete features, which
are used to look up an embedding vector from a table L : {1, . . . , p} → Rd. This
procedure can be made differentiable with respect to a feature distribution ã ∈ Rd

by embedding ã as

L′(ã) =

p∑
i=1

ãiL(i).

By adapting the feature embedding scheme to distributions, the surrogate models
discussed in section 4.4.2 become differentiable with respect to the node and edge
feature distributions.

Note that this algorithm can easily be adjusted to slightly different threat models,
which e.g. weigh changes to the adjacency differently than changes to the features,
or which have different budgets for the adjacency, node, and edge features.

4.6 Adversarial Training

Given some parametrized model fθ and data distribution D, a supervised training
procedure aims to find model parameters θ that minimize the expected loss, measured
by the loss function l : Y × Y → R. This empirical risk minimization (ERM)
framework is expressed as the following optimization problem:

argmin
θ

E(x,y)∼D [l(fθ(x), y)] . (4.10)

Adversarial training, introduced by [14] and popularized by [15], additionally aims
to improve the robustness of the trained model, which under a threat model T : G →
P(G) is inversely related to the worst loss value achieved among the threat model
maxG′∈T (G)l(fθ(G

′), y). To mitigate the effect of such adversarial perturbations,
adversarial training solves the following saddle-point optimization problem instead:

argmin
θ

ρ(θ) where ρ(θ) = E(G,y)∼D

[
max

G′∈T (G)
l(fθ(G

′), y)

]
. (4.11)

This optimization problem is usually solved by modifying the training procedure.
In each gradient descent step, the model is trained on the pair(

argmax
G′∈T (G)

l(fθ(G
′), y), y

)

instead of (G, y). The modified graph argmaxG′∈T (G) l(fθ(G
′), y) is (approximately)

found using an adversarial attack.

Chapter 5

Experiment and Results

This chapter describes the main experiment and provides data to answer the main
question:

Are expressive GNNs more or less robust on graph-level tasks than
less-expressive GNNs?

Regarding adversarial training and robust GNNs, we describe an additional ex-
periment and analyze the resulting data to answer the following secondary questions:

How does the expressiveness of a model relate to robustness
improvements due to adversarial training? Does the expressiveness of a

model improve its performance on clean data when trained
adversarially?

5.1 Methodology

There are multiple ways to define the robustness of machine learning models, even if
we restrict ourselves to test-time perturbations of data.

The first is concerned with inputs that arise in practice, but are not specifically
tailored to fool the model. This can include distribution shifts and natural variation
in the data that wasn’t observed during the training procedure. A natural way to
evaluate this kind of robustness is to test the accuracy of models on data sampled
from its underlying distribution. The problem with this approach is the combinatorial
nature of graphs, which makes it difficult to specify the distribution of graph data.
Instead, we probe for this kind of robustness using random perturbations in the
experiments, as described in Section 4.3.

More commonly, robustness is defined via adversarial attacks. A threat model
quantifies which perturbations an adversary may produce that are unnoticeable by
the defender. Given a threat model, an adversary may aim to find the strongest
change that is allowed, i.e. solve the optimization problem in equation (4.1) exactly.
If the adversary has access to a model evaluation oracle, he may solve this prob-
lem exactly by brute-forcing all graphs in the threat model, which is possible since
our threat models are finite. We test the robustness against an adversary with an
evaluation oracle by running a brute force attack of budget 1.

28

5. Experiment and Results 29

Finally, we can take a practical security approach and only consider adversarial
examples that can efficiently be found by an adversary. To get a lower bound on the
security, we want to make as few assumptions about the adversary as possible, which
is why we need to consider the strongest (efficient) adversary. For attacking machine
learning models, research suggests that white-box1 PGD-based optimization attacks
are the strongest [13, 31]. We evaluate this robustness scenario using the AdjPGD
and AttrPDG attacks described in Sections 4.4 and 4.5. We evaluate the strength
of the PGD attack relative to the brute force attack (for budget 1) and the random
sampling attack (for higher budgets).

In all scenarios, we consider two threat models: one in which the attacker is only
allowed to change the adjacency (equation (4.2)) and one where the attacker may
also change the node and edge features (equation (4.3)). We employ both absolute
and relative budgets to test the models on different notions of unnoticeable changes.

5.2 Experimental Setup

The experiments are implemented in PyTorch [32] and PyTorch Geometric [24]. All
architectures except for SignNet have an open-source implementation in PyTorch
Geometric, which we adapted to our codebase for shared training, evaluation, and
attack routines. The code is available on GitHub.

Datasets

We use the following datasets, which are commonly used to evaluate the performance
of expressive GNNs.

Dataset Task Metric # Graphs per split N M dv de

MolHIV binary
classification ROC-AUC 32’901/4’113/4’113 25.5 27.5 9 3

ZINC12k regression MAE 10’000/1’000/1’000 23.2 24.9 1 1
IMDB-
BINARY

binary
classification accuracy 800/100/100 19.8 96.5 0 0

IMDB-
MULTI

3-way
classification accuracy 1’200/150/150 13.0 65.9 0 0

MUTAG binary
classification accuracy 150/19/19 17.9 19.8 7 4

Table 5.1: Dataset Overview: N is the average node count, M the average edge count,
dv the mean number of node features, and de the mean number of edge features.

MolHIV is part of the Open Graph Benchmark (OGB) [17] and includes 41’127
molecules with a binary classification task. The nodes (atoms) and edges (bonds)
include rich features and are listed in table A.2. Some node features, such as the
node degree or whether the atom is part of a ring, contain structural information
which depends on the neighborhood of the atom. The class distribution of MolHIV
is highly skewed - with a 96.5% / 3.5% class split, which is why MolHIV models are
evaluated using a ROC-AUC score.

1Where the adversary has access to the model and its parameters.

https://github.com/retolucamerz/expressive-gnn-robustness

5. Experiment and Results 30

ZINC12k contains 12’000 commercially available molecules, labeled by their pe-
nalized logP score2 (regression task) [18, 19]. The penalized logP score is computed
as y = logP + SAS − cycles3, where cycles is the number of cycles with at least
six atoms. In contrast to the many features of MolHIV, ZINC12k only has a single
feature per node, the atom number, and a single feature per edge, the bond type.

IMDB-BINARY and IMDB-MULTI, part of the TUDataset [21], contain
1’000 and 1’500 ego graphs with no node or edge features of actor collaborations.
The task is to predict the film genre, of which IMDB-BINARY has 2 and IMDB-
MULTI has 3. The classes are perfectly balanced (500/500 for IMDB-BINARY and
500/500/500 for IMDB-MULTI).

MUTAG is a small molecular dataset with just 188 graphs and also part of
TUDataset [21]. The task is to predict one of two classes indicating the impact
of the molecule on bacterial mutagenesis. Its small size makes it suitable for the
adversarial training experiment, which is quite slow due to the additional overhead
of re-computing adversarial examples in each epoch.

Models

We performed hyperparameter optimization for the model training with a parameter
grid inspired by the OGB leaderboard and hyperparameters used in official imple-
mentations, specifically optimizing the base learning rate, batch size, and drop-out
fraction. We selected the best hyperparameter combination for each architecture
based on the validation score.

Finally, we trained five models on the best combination of hyperparameters with
different seeds, which we use to evaluate the robustness of their architectures. All
models were trained using the ADAM optimizer. We used the L1 loss for regression,
the binary cross entropy loss for binary classification, and the cross entropy loss for
multi-class classification. All models except SignNet were trained up to 300 epochs
(1000 epochs for SignNet4) and stopping in case the validation score has not improved
in the last 100 epochs (200 epochs for SignNet). The model was selected based on
the best validation score achieved during training. We scheduled the learning rate
with ReduceLROnPlateau that reduced the learning rate by a factor 1

2 in case there
has been no improvement in the best validation score in the last 25 epochs.

This model training and selection procedure differs from how TUDataset (IMDB-
BINARY, IMDB-MULTI and MUTAG) models are usually evaluated. These models
are usually trained on 10 folds (yielding a 9/1 train/test split each). Per epoch, the
average performance on the test split over the 10 folds is computed and the best
average is reported. However, the robustness evaluation requires a single model and
some withheld test data. To achive this, we constructed a train, validation, and test
split by dividing the training part of the first fold out of the 10 into a final train
and validation split to obtain an 8/1/1 split. As with the other datasets, we train
the models on the train split, perform model selection based on the validation split
and evaluate the robustness of the selected models using the test split. ZINC12k and
MolHIV come with a pre-determined train/validation/test split.

2Alternatively called constrained solubility.
3logP is the water-octanol partition coefficient and SAS the synthetic accessibility score.
4This follows the official implementation of SignNet for ZINC12k.

https://github.com/cptq/SignNet-BasisNet/blob/main/GraphPrediction/configs/gin/GIN_ZINC_LapPE.json

5. Experiment and Results 31

Since the IMDB datasets come without any node features, we use the node degrees
as an index into a lookup table with 26 embedding vectors5. To attack this degree
embedding scheme, we attach gradients to the embedding vector closest to the relaxed
node degree, which is computed as the sum over the adjacency values for a given node.

In the following, we provide some implementation details on the architectures we
used.

Baseline As a baseline for the random perturbations, we train models that only
use the node features, but no adjacency information. These models apply the same
5 MLP layers to all node features, then combine the feature vectors via global mean
pooling and further process the graph representation using a small MLP.

GINE Our GINE model consists of 5 layers composed of GINEConv, batch-
norm, and ReLU. The outputs after every layer are independently mean-pooled to a
graph representation and mapped to a value of the output shape. The output of the
model is the sum of these per-layer outputs.

DropGINE The DropGINE architecture follows the GINE architecture described
above closely. The same 5 layers are applied to each run independently. The runs
are averaged together before mean-pooling after every layer. We set γ to the average
node count, rounded to the nearest integer, do r = γ runs, and drop out nodes with
probability p = 2

1+γ .

ESAN We test the DSS-GNN architecture with GINEConv layers as base en-
coders. The H-equivariant layer we use aggregates the subgraphs for the L2 com-
ponent by maxing the adjacencies (recovering the original adjacency) and averaging
the node features. We exclusively used the EGO+ subgraph selection with 3 hops
and sampling fraction 20% (i.e. using a randomly sampled subset of 20% of all
subgraphs).

SignNet We compute sign-invariant positional encodings as f(v1, . . . , vk) =
ρ
(
[φ(vi) + φ(−vi)]ki=1

)
, where φ : RN×k → RN×k is the composition of multiple

GIN layers and ρ : RN×k → RN×k′
applies the same MPL independently to each

of the N vectors in Rk. We decided to use many eigenvectors to maximize expres-
siveness. For ZINC12k, we use k = 37, for MolHIV k = 50 and k ∈ [15, 30] for the
TUDataset models. The positional encodings are added to the existing node features
and further processed using a usual GINE model. Since the SignNet model on seed
4 failed to converge on MolHIV with the selected hyperparameters, we replaced it
with a model on seed 5.

PPGN We apply the PPGN architecture as outlined in section 3.4, with 5 blocks.
The MLPs m1,m2 in each block consist of two linear layers with a leaky ReLU in
between and the MLP m3 is simply a linear layer. We refer to the code for the
specifics of the used feature extractor h : RN×N×a → Ra′

.

As mentioned previously, some official implementations of models use different
edge embeddings in each layer, while the models we test only have one global em-
bedding table. We tested the difference between GINE models with per-layer em-
beddings and global embeddings and have found little difference in the clean model
performance across all datasets. Also, the official implementations of some mod-
els don’t use edge features. In these cases, we replace the GINConv layers with
GINEConv layers.

5Node degrees above 25 also map to the 26th embedding vector.

5. Experiment and Results 32

Accuracy is the most important metric to evaluate attacks on classification models
because it directly measures the percentage of inputs for which the attack is success-
ful. Nonetheless, it doesn’t report the confidence of a model in its predictions, which
gives more insight into the effectiveness of attacks that only achieve a few mispredic-
tions than the accuracy. Therefore we also report the average label difference (lbl.
diff.) for classification models, which we define as |σ(ŷ)− y| for binary classification
tasks with label y ∈ {0, 1}, predicted logit ŷ ∈ R and the sigmoid activation func-
tion σ : R → [0, 1]. For C-class classification tasks, we define the label difference as∑C

i=1 |softmax(ŷ)i − 1y=i| for the logit vector ŷ ∈ RC and the label y ∈ {1, . . . , C}.

Model Type MolHIV ZINC12k
ROC-AUC ↑ accuracy ↑ label difference ↓ MAE ↓ normalized MAE ↓

Baseline 0.722± 0.012 0.967± 0.002 0.066± 0.004 0.692± 0.002 0.343± 0.001
meanGINE 0.770± 0.005 0.968± 0.001 0.050± 0.004 0.363± 0.011 0.180± 0.005
GIN 0.749± 0.007 0.967± 0.003 0.054± 0.009 0.299± 0.013 0.148± 0.007
GINE 0.757± 0.035 0.965± 0.002 0.072± 0.023 0.246± 0.008 0.122± 0.004
SignNet 0.723± 0.019 0.965± 0.003 0.057± 0.003 0.176± 0.035 0.087± 0.017
DropGINE 0.771± 0.009 0.967± 0.001 0.051± 0.002 0.251± 0.005 0.124± 0.003
ESAN 0.727± 0.020 0.964± 0.006 0.068± 0.020 0.184± 0.018 0.091± 0.009
PPGN 0.756± 0.008 0.968± 0.001 0.052± 0.009 0.147± 0.003 0.073± 0.001

Model Type IMDB-BINARY IMDB-MULTI
accuracy ↑ label difference ↓ accuracy ↑ label difference ↓

Baseline 0.632± 0.016 0.361± 0.012 0.481± 0.015 0.417± 0.001
meanGINE 0.678± 0.030 0.343± 0.021 0.493± 0.008 0.411± 0.001
GINE 0.684± 0.036 0.333± 0.031 0.487± 0.016 0.412± 0.002
SignNet 0.698± 0.015 0.402± 0.014 0.389± 0.032 0.435± 0.004
DropGINE 0.720± 0.037 0.308± 0.027 0.485± 0.007 0.412± 0.001
ESAN 0.708± 0.038 0.308± 0.023 0.464± 0.017 0.417± 0.003
PPGN 0.672± 0.018 0.335± 0.015 0.451± 0.010 0.422± 0.002

Table 5.2: Model Metrics on Clean Data (↑: higher is better, ↓: lower is better)

Attacks

We attacked the binary classification datasets with the target function ty(ŷ) = (1−
2y)ŷ, which increases the logit output ŷ ∈ R in case y = 0 and decreases it when
y = 1. To improve the strength of the attacks on the regression dataset ZINC12k,
we individually try to increase and decrease the value in separate attacks using the
target functions t↑(ŷ) = ŷ and t↓(ŷ) = −ŷ and only report the stronger attack.
For IMDB-MULTI, which is a multi-class classification dataset, we use the logit
margin ly(ŷ) = maxi ̸=y ŷi − ŷy for the output logits ŷ ∈ RC and the original class
y ∈ {1, . . . , C}. These choices are inspired by [13], which recommends using the logit
margin instead of the original model loss as a target function.

All adversarial graphs are evaluated on the original models. For the gradient-
based attacks, we convert the sparse data to a dense representation for PGD to
obtain a distribution over input graphs, and then evaluate the sampled graphs in a
sparse representation on the original models.

Feature Changes For most perturbations that can change features, we allowed
the perturbed feature to take on any value that occurs at least once in the dataset

5. Experiment and Results 33

(although the combination with other values in the same feature vector may be new).
The reason for excluding values that never occur is that the associated embedding
vectors were not trained and thus are random. From a security perspective, never
seen feature values could easily be detected, so they should be excluded. Excep-
tions are the node features of MolHIV for the random perturbations and brute force
attacks, which we restricted further to only include changes to the “atom number”
feature, and only to atoms that occur in at least 0.1% of features. The reason for
this is to give the random perturbations a reasonable chance to find an impactful
change, as early experiments suggested that the atomic numbers of frequent atoms
have the largest effect. Another benefit is that this restriction significantly speeds
up the brute force search over MolHIV’s many features.

ZINC12k & Normalized MAE Instead of the MAE, we report the normalized
MAE which is obtained by re-scaling the model predictions and labels by the test
data mean µ = 0.012 and standard deviation σ = 2.017, and then computing the
MAE between the adjusted predictions and labels. Some models on ZINC12k achieve
extreme deviations from their initial prediction on a few graphs, which have a strong
impact on the MAE. We decided to limit the impact of these outliers by removing
5% of graphs per model and budget which achieve the highest deviation compared to
the label from all reported data. Also, one of the SignNet models produced extreme
values even after discarding 5% of graphs (e.g. with a 255.855 normalized MAE under
an adjacency brute force attack), so we replaced it with a model with a different seed.

Since the label of ZINC12k molecules depends on the number of cycles in a graph,
which differs in attacked graphs, the models might correctly adjust their output to
account for a change in the number of cycles. To not punish such behavior, we
additionally evaluated the (normalized) MAE of the generated adversarial examples
with a cycle-corrected label.

AUC-ROC Score For the active attacks on classification models we don’t report
AUC-ROC scores since this metric relies on how the predictions across the dataset
relate instead of their values alone. On a binary classification task with balanced
classes and a fixed threshold, it is possible to mispredict half of the data but still
have a perfect ROC score.

5. Experiment and Results 34

5.3 Robustness under Brute Force Attack

The results of the brute force attacks are presented below. For ZINC12k, we include
scores for the original as well as the cycle-corrected label. For both, we individually
select the strongest change amongst all perturbation types and targets and discard
the 5% of graphs with the strongest absolute error.

Additionally, we studied the distribution of perturbation types that lead to the
strongest change.

Model Type MolHIV
accuracy ↑ ∆ accuracy ↓ label difference ↓ ∆ label difference ↓

meanGINE 0.947± 0.010 0.021± 0.010 0.099± 0.020 0.049± 0.016
GIN 0.888± 0.079 0.078± 0.077 0.175± 0.077 0.120± 0.070
GINE 0.868± 0.056 0.097± 0.056 0.209± 0.056 0.137± 0.055
SignNet 0.475± 0.123 0.489± 0.121 0.506± 0.101 0.450± 0.101
DropGINE 0.884± 0.036 0.083± 0.036 0.175± 0.032 0.124± 0.031
ESAN 0.752± 0.172 0.212± 0.167 0.307± 0.137 0.239± 0.121
PPGN 0.961± 0.006 0.008± 0.006 0.078± 0.012 0.026± 0.008

Model Type ZINC12k
original label cycle-corrected label

norm. MAE ↓ ∆ norm. MAE ↓ norm. MAE ↓ ∆ norm. MAE ↓
meanGINE 1.139± 0.132 0.959± 0.134 1.832± 0.070 1.652± 0.069
GIN 2.760± 0.116 2.612± 0.119 2.874± 0.108 2.726± 0.112
GINE 1.529± 0.118 1.407± 0.118 2.027± 0.076 1.905± 0.075
SignNet 2.144± 0.487 2.056± 0.501 1.869± 0.270 1.782± 0.269
DropGINE 1.487± 0.082 1.363± 0.084 2.055± 0.057 1.931± 0.060
ESAN 1.862± 0.445 1.770± 0.450 1.947± 0.366 1.855± 0.370
PPGN 1.721± 0.200 1.648± 0.202 1.729± 0.160 1.656± 0.162

Model Type IMDB-BINARY
accuracy ↑ ∆ accuracy ↓ label difference ↓ ∆ label difference ↓

meanGINE 0.456± 0.043 0.222± 0.056 0.552± 0.036 0.209± 0.056
GINE 0.496± 0.032 0.188± 0.065 0.495± 0.033 0.162± 0.060
SignNet 0.598± 0.060 0.100± 0.060 0.459± 0.043 0.057± 0.045
DropGINE 0.434± 0.062 0.286± 0.089 0.540± 0.057 0.231± 0.082
ESAN 0.458± 0.026 0.250± 0.021 0.516± 0.023 0.208± 0.031
PPGN 0.502± 0.030 0.170± 0.041 0.473± 0.009 0.138± 0.022

Model Type IMDB-MULTI
accuracy ↑ ∆ accuracy ↓ label difference ↓ ∆ label difference ↓

meanGINE 0.291± 0.080 0.203± 0.085 0.451± 0.014 0.041± 0.014
GINE 0.353± 0.045 0.133± 0.056 0.443± 0.009 0.032± 0.009
SignNet 0.320± 0.052 0.069± 0.036 0.445± 0.007 0.010± 0.006
DropGINE 0.303± 0.104 0.183± 0.099 0.452± 0.013 0.040± 0.012
ESAN 0.316± 0.080 0.148± 0.074 0.446± 0.010 0.029± 0.009
PPGN 0.396± 0.008 0.055± 0.007 0.436± 0.004 0.014± 0.003

Table 5.3: Adjacency Bruteforce Results (↑: higher is better, ↓: lower is better)

5. Experiment and Results 35

Model Type MolHIV
accuracy ↑ ∆ accuracy ↓ label difference ↓ ∆ label difference ↓

meanGINE 0.567± 0.288 0.401± 0.288 0.460± 0.240 0.411± 0.236
GINE 0.587± 0.209 0.378± 0.208 0.444± 0.165 0.372± 0.142
SignNet 0.468± 0.121 0.497± 0.119 0.511± 0.099 0.455± 0.100
DropGINE 0.732± 0.080 0.235± 0.081 0.324± 0.061 0.274± 0.061
ESAN 0.740± 0.178 0.224± 0.173 0.321± 0.141 0.254± 0.125
PPGN 0.929± 0.025 0.039± 0.025 0.135± 0.023 0.083± 0.024

Model Type ZINC12k
original label cycle-corrected label

norm. MAE ↓ ∆ norm. MAE ↓ norm. MAE ↓ ∆ norm. MAE ↓
meanGINE 2.477± 0.528 2.297± 0.532 2.654± 0.512 2.474± 0.517
GINE 2.325± 0.203 2.203± 0.201 2.490± 0.197 2.368± 0.195
SignNet 2.418± 0.623 2.330± 0.636 2.285± 0.531 2.198± 0.540
DropGINE 2.156± 0.144 2.031± 0.147 2.343± 0.112 2.218± 0.115
ESAN 2.323± 0.309 2.232± 0.314 2.276± 0.252 2.184± 0.256
PPGN 2.311± 0.286 2.238± 0.287 2.249± 0.315 2.176± 0.315

Table 5.4: Attribute and Adjacency Bruteforce Results (↑: higher is better,
↓: lower is better)

Perturbation meanGINE GIN GINE SignNet DropGINE ESAN PPGN

added edge 73.1% 93.3% 93.7% 82.7% 92.6% 82.8% 93.1%
dropped edge 26.9% 6.7% 6.3% 17.3% 7.4% 17.2% 6.9%

Perturbation meanGINE GINE SignNet DropGINE ESAN PPGN

adjacency 2.5% 18.8% 95.5% 19.4% 79.6% 10.8%
node attr. 97.4% 81.1% 0.0% 80.5% 6.7% 85.7%
edge attr. 0.2% 0.1% 4.5% 0.1% 13.6% 3.5%

Table 5.5: Distribution of perturbation types amongst bruteforce attack on MolHIV

Observations and Discussion

Adjacency Bruteforce

MolHIV PPGN is the most robust architecture on MolHIV, where it loses almost
no accuracy and keeps a low label difference under a single adjacency change. The
next closest architecture, meanGINE, also achieves very good scores. SignNet loses
by far the most accuracy under the strongest single adjacency change.

ZINC12k For ZINC12k with cycle-corrected labels, meanGINE, SignNet, and
PPGN are the most robust architectures, but meanGINE beats all other models by
quite a margin with the original label. However, with normalized MAEs of above
1, none of the models are robust enough to be reasonably used under brute force
attacks. Interestingly, the only model that benefits from the cycle-correction of
labels is SignNet, which could be explained by the ability of BasisNet to count the
number of small cycles6. However, the score of the GIN and ESAN models also seems

6Each added or removed cycle changes the normalized MAE by 1
σ

= 0.496. Considering that
not all adjacency changes alter the number of cycles with at least 6 nodes, this might reasonably
explain a difference of about 0.275.

5. Experiment and Results 36

to not be impacted much, and the GIN models have no apparent advantage in terms
of robustness.

IMDB Although SignNet performs badly on MolHIV, it is the most robust on
IMDB-BINARY, with GINE and PPGN not far off. On IMDB-MULTI, PPGN beats
all the other architectures in terms of accuracy but is followed closely by all other
architectures in terms of label difference7.

Attribute and Adjacency Bruteforce

MolHIV Compared to the adjacency brute force attack, the low-expressive models
meanGINE and GINE suffer most from adversarial attribute changes on MolHIV.
PPGN is the most robust architecture in this scenario, performing similarly with
unperturbed inputs ever under this attack.

ZINC12k On ZINC12k, all models perform similarly. With the original label,
DropGINE has an advantage. The high deviations between models of the same
architecture, when evaluated with cycle-corrected labels, make it hard to rank the
models but meanGINE performs best on average.

These results suggest that PPGN, which is the most expressive architecture
tested, is also the most robust under adjacency and attribute brute force attacks
across the tested datasets. However, SignNet performs well on IMDB-BINARY and
meanGINE behaves similarly to PPGN in both MolHIV and ZINC12k under the ad-
jacency brute force attack. It is not surprising that the variation across architectures
is lower for the attribute and adjacency brute force attacks compared to just the ad-
jacency brute force attacks since the more expressive GNNs are only more expressive
for the graph structure, not the features.

Regarding the distribution of perturbations, which are presented in tables 5.5 and
A.4, it appears that adding an edge can have more impact than removing an edge.
This doesn’t seem to be purely a consequence of the attribute threat model (which
allows arbitrary features for new edges) since the GIN models behave similarly.

7This difference is likely due to the binary cross entropy loss that was used to train the models,
which tends to optimize for accuracy instead of label difference.

5. Experiment and Results 37

5.4 Robustness under Random Perturbations

We sample 5 different graphs for each of the perturbation types and budgets. The
results are separated into adjacency changes (average over the values obtained from
adding and removing edges), attribute change (average over the node and edge feature
modifications), and edge rewirings. Detailed plots per model type and budget can
be found in the appendix (Fig. A.1 and A.2 for adjacency perturbations, Fig. A.3
for attribute perturbations, and A.4 for rewirings). The models were evaluated on
the following absolute and relative budgets:

ε ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40}
ε/M ∈ {1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 12%, 14%, 16%, 18%, 20%, 30%, 40%, 50%} .

To combine the results across budgets into a single score per model, we define
the Cumulative Relative Robustness (CRR) score, which is inspired by the Area-
Under-Curve score introduced in [13] and compares scores x1, . . . , xn to a baseline
value b using a scaled sum of per-budget above-baseline values max {0, xi − b}8. For
a sequence {(εi, xi)}ni=1 of per-budget scores xi sorted by budget ε1 < . . . < εn, the
CRR score is computed as

CRR ({(εi, xi)}ni=1) =
1

εn − ε0

(
n∑

i=1

(εi − εi−1)max {0, xi − b}

)
, (5.1)

where ε0 = ε1 − (ε2 − ε1) is chosen such that x1 has the same impact as x2. Models
achieve high CRR scores if they initially perform better than the baseline and con-
tinue to beat the baseline, even under increasing budgets. The baseline value we use
is the average clean performance of five MLP baseline models.

The results for the MolHIV, ZINC12k, and IMDB-BINARY datasets are pre-
sented in the tables below. We do not show results for IMDB-MULTI since the
baseline values for both accuracy and label difference are such that most architec-
tures already perform worse for budgets in the range 0 to 3 (see figures A.1, A.2,
A.3, and A.4). In such cases, the CRR score is mostly determined by the clean per-
formance instead of the performance under perturbations. For the same reason, we
omit accuracy CRR scores for MolHIV and CRR scores with cycle-corrected labels
for ZINC12k.

Observations and Discussion

Adjacency Perturbations

MolHIV The MolHIV CRR scores have very high variation, which can be attributed
to the strong MolHIV baselines (96.7% accuracy, 0.066 label difference). The per-
budget plots in Fig. A.1 and A.2 reveal that especially PPGN is the most robust
under random adjacency perturbations with high absolute and relative budgets, both
in terms of accuracy and label difference. Under increasing budgets, the performance
of some models (GIN, SignNet on rel. budget) initially decreases but eventually im-
proves again. This might be a result of the class skew of MolHIV, which incentivizes
models to predict the more frequent class given an unknown input.

8In case a lower score is better, we use max {0, b− xi} instead.

5. Experiment and Results 38

Model Type MolHIV - label difference CRR ZINC12k - normalized MAE CRR
abs. budget rel. budget abs. budget rel. budget

meanGINE 0.515± 0.640 0.872± 0.453 0.959± 0.085 1.253± 0.139
GIN 1.449± 0.897 0.178± 0.145 0.703± 0.056 0.507± 0.068
GINE 0.019± 0.026 0.033± 0.046 1.050± 0.043 1.076± 0.107
SignNet 1.095± 1.472 0.701± 0.955 0.969± 0.143 0.737± 0.213
DropGINE 0.262± 0.186 0.482± 0.206 0.971± 0.056 0.912± 0.115
ESAN 0.037± 0.051 0.084± 0.116 1.102± 0.053 1.001± 0.055
PPGN 0.699± 0.496 1.163± 0.686 1.288± 0.023 1.368± 0.066

Model Type IMDB-BINARY
absolute budget relative budget

accuracy CRR lbl. diff. CRR accuracy CRR lbl. diff. CRR

meanGINE 0.245± 0.185 0.074± 0.106 0.264± 0.204 0.075± 0.094
GINE 0.472± 0.183 0.159± 0.175 0.535± 0.191 0.186± 0.194
SignNet 0.765± 0.247 0.000± 0.000 0.973± 0.190 0.000± 0.000
DropGINE 0.498± 0.062 0.254± 0.122 0.514± 0.151 0.236± 0.084
ESAN 0.530± 0.297 0.263± 0.135 0.548± 0.305 0.244± 0.135
PPGN 0.363± 0.123 0.129± 0.093 0.492± 0.229 0.149± 0.139

Table 5.6: CRR scores for random adjacency changes (higher is better)

Model Type MolHIV - label difference CRR ZINC12k - normalized MAE CRR
abs. budget rel. budget abs. budget rel. budget

meanGINE 1.029± 1.050 1.289± 0.841 0.526± 0.018 0.320± 0.011
GIN 1.125± 0.777 0.848± 0.758 0.629± 0.021 0.382± 0.013
GINE 0.863± 0.914 0.565± 0.720 0.766± 0.044 0.511± 0.056
SignNet 0.362± 0.392 0.339± 0.261 1.000± 0.061 0.798± 0.077
DropGINE 1.173± 0.641 1.216± 0.185 0.763± 0.055 0.522± 0.086
ESAN 0.325± 0.611 0.400± 0.645 0.912± 0.061 0.659± 0.090
PPGN 0.580± 0.426 0.940± 0.592 1.050± 0.029 0.834± 0.052

Table 5.7: CRR scores for random attribute changes (higher is better)

ZINC12k In terms of CRR score, PPGN beats the other models. The per-
budget plots (Fig. A.1) show this score is largely influenced by the scores on budgets
0 and 1, and that PPGN as well as SignNet are significantly less stable than all other
architectures with higher budgets. For PPGN, this instability is likely explained by
the repeated matrix multiplication of the input adjacency matrix, and for SignNet
it is likely a result of the instability of the Laplacian eigenvectors9.

IMDB-BINARY SignNet achieves the highest CRR scores for accuracy, but
has CRR scores of 0 for the label difference because it fails to beat the baseline even
under no perturbations. On average ESAN achieves the highest CRR scores for the
label difference.

Attribute Perturbations

MolHIV As with the adjacency perturbations RCC scores, the attribute RCC scores
for MolHIV have very high standard deviations, which makes a comparison difficult.

9Also note that the used SignNet model has many layers, 8 for the Eigenvector embedding
followed by 16 GINE layers.

5. Experiment and Results 39

However, meanGINE and DropGINE perform best on average.

ZINC12k As with the adjacency perturbation results, the CRR scores are mostly
influenced by budgets 0 and 1, which again makes heavily biases the CRR scores
towards the clean data performance of the models. Because of this, PPGN beats the
other models in terms of CRR but again seems unstable for higher budgets.

5.5 Robustness under Gradient-Based Attacks

We apply AdjPDG and AttrPGD as introduced in Chapter 4. Because AdjPGD
randomly samples the features of missing edges, we repeat the attack 3 times and
only report the strongest change.10 The number of gradient update steps is fixed to
25 and 250 graphs are sampled, amongst which only the strongest perturbation is
recorded. When reducing the expected budget, we need to compute µ using bisection.
We use 18 steps, which drives the error on the true µ to at most 2−18.

Due to time constraints, we were not able to complete the PGD attacks on Mol-
HIV for relative budgets.

Observations and Discussion

MolHIV On both AdjPGD and AttrPGD, PPGN outperforms all other models by
quite a margin. For AdjPGD, PPGN is followed by meanGINE, and finally a cluster
of all other models. meanGINE performs worse on AttrPGD and falls within a cluster
of architectures that are superseded by PPGN and ESAN.

ZINC12k On AdjPGD, both PPGN and SignNet perform well on a budget of
1, but their MAE seems to grow super-exponentially for absolute budgets of 2 to 5,
which is similar to their unstable behavior under random adjacency perturbations.
SignNet and PPGN also perform well with relative budgets, as do GINE, DropGINE,
and meanGINE. Excluding the instabilities of PPGN and SignNet on higher budgets,
ESAN and GIN seem to be the least robust under an AdjPGD attack.

Under an AttrPGD attack, all models seem to perform similarly. The exceptions
are again SignNet and PPGN on absolute budgets above 3, and PPGN achieves less
error than the group of all other architectures across relative budgets.

10We briefly experimented with an attack that optimizes for the adjacency and attributes of
missing edges (essentially by zeroing the gradients for node features and edge features of positive
edges in AttrPGD) but decided against using this attack because it performed very similarly to
AdjPGD and was a bit slower. We validate the attack strength of AdjPGD by comparison with
brute force attacks later, where we will also note that changes to the node features and adjacency
tend to allow for higher changes as edge features.

5. Experiment and Results 40

0 1 2 3 4 5

Absolute budget ε

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

MolHIV - absolute budget ↑

0 1 2 3 4 5

Absolute budget ε

0.1

0.2

0.3

0.4

0.5

0.6

0.7

La
be

lD
iff

er
en

ce

MolHIV - absolute budget ↑
GINE
DropGINE
PPGN
SignNet
ESAN
GIN
meanGINE

0 1 2 3 4 5

Absolute budget ε

10−1

100

101

102

no
rm

al
iz

ed
M

A
E

(o
ri

gi
na

ll
ab

el
)

ZINC12k - absolute budget ↓

0 1 2 3 4 5
Relative budget ε/M (%)

10−1

100

101
no

rm
al

iz
ed

M
A

E
(o

ri
gi

na
ll

ab
el

)

ZINC12k - relative budget ↓
GINE
DropGINE
PPGN
SignNet
ESAN
GIN
meanGINE

0 1 2 3 4 5

Absolute budget ε

20

30

40

50

60

70

A
cc

ur
ac

y
(%

)

IMDB-BINARY - absolute budget ↑

0 1 2 3 4 5
Relative budget ε/M (%)

20

30

40

50

60

70

A
cc

ur
ac

y
(%

)

IMDB-BINARY - relative budget ↑
GINE
DropGINE
PPGN
SignNet
ESAN
meanGINE

0 1 2 3 4 5

Absolute budget ε

10

15

20

25

30

35

40

45

50

A
cc

ur
ac

y
(%

)

IMDB-MULTI - absolute budget ↑

0 1 2 3 4 5
Relative budget ε/M (%)

10

20

30

40

50

A
cc

ur
ac

y
(%

)

IMDB-MULTI - relative budget ↑
GINE
DropGINE
PPGN
SignNet
ESAN
meanGINE

Figure 5.1: AdjPGD Results (↑: higher is better, ↓: lower is better)

5. Experiment and Results 41

0 1 2 3 4 5

Absolute budget ε

20

40

60

80

100
A

cc
ur

ac
y

(%
)

MolHIV - absolute budget ↑

0 1 2 3 4 5

Absolute budget ε

0.2

0.4

0.6

0.8

La
be

lD
iff

er
en

ce

MolHIV - absolute budget ↓
GINE
DropGINE
PPGN
SignNet
ESAN
GIN
meanGINE

0 1 2 3 4 5

Absolute budget ε

10−1

100

101

102

103

no
rm

al
iz

ed
M

A
E

(o
ri

gi
na

ll
ab

el
)

ZINC12k - absolute budget ↓

0 1 2 3 4 5
Relative budget ε/M (%)

10−1

100
no

rm
al

iz
ed

M
A

E
(o

ri
gi

na
ll

ab
el

)

ZINC12k - relative budget ↓
GINE
DropGINE
PPGN
SignNet
ESAN
GIN
meanGINE

Figure 5.2: AttrPGD Results (↑: higher is better, ↓: lower is better)

5.5.1 Attack Strength

We briefly present some results to evaluate the attack strength of AdjPGD and
AttrPGD.

Hyperparameter Tuning

As mentioned in Section 4.4.2, we briefly experimented with leaky ReLU activation
functions11 for surrogate models in hopes that additional gradient information flowing
over nodes with negative inputs yields a stronger PGD attack. To evaluate the
effectiveness of this method, we tracked the value of the target function on surrogate
models with ReLU activation functions to get a clean target value. To find suitable
learning rates, we performed a hyperparameter search over both learning rate λ0 and
negative slope α and used the learning rate from the best combination. The data for
two such experiments are presented below in Fig. 5.3.

It turned out that the negative slope has little impact on the achieved target
value, which is why we abandoned this idea. However, these results indicate that
25 PGD steps are sufficient, with significantly less improvement in the target value
after 10 steps.

11The leaky ReLU activation function output αx for negative inputs x, instead of 0 as is the case
with ReLU. The negative slope α is a small constant.

5. Experiment and Results 42

0 5 10 15 20 25

PGD step

0

1

2

3

4

5

6

D
iff

er
en

ce
in

C
le

an
T
ar

ge
t

V
al

ue
GINE MolHIV (budget 3, λ0 = 0.01)

negative slope
0.0
0.01
0.05
0.1
0.5
1.0

0 5 10 15 20 25

PGD step

0

1

2

3

4

5

6

D
iff

er
en

ce
in

C
le

an
T
ar

ge
t

V
al

ue

GINE MolHIV (budget 3, λ0 = 0.01)

negative slope
0.0
0.01
0.05
0.1
0.5
1.0

Figure 5.3: Negative Slope (higher is better)

Comparison to Bruteforce

To evaluate the performance of the PGD-based attacks for low budgets, we com-
pare them to the brute-force attacks. As metrics, we present the relative MAEs for
regression tasks, the gap between label differences for classification tasks, and how
often the PGD-based attacks find a target value that matches the value found by the
brute force attacks. For DropGINE and ESAN, which are not deterministic, we also
count a match if PGD finds a strictly stronger attack.

The table below presents these values for MolHIV, and table A.5 for ZINC12k.
Overall, the gradient-based attacks perform reasonably well relative to the brute
force attacks.

AdjPGD - MolHIV
Model Type Bruteforce - AdjPGD lbl. diff. % of matched lbl. diff.

meanGINE 0.014± 0.008 31.0%± 8.0%
GIN 0.008± 0.007 70.8%± 8.7%
GINE 0.072± 0.074 24.1%± 18.0%
SignNet 0.280± 0.182 10.1%± 9.0%
DropGINE 0.020± 0.013 39.4%± 4.2%
ESAN 0.059± 0.039 36.7%± 9.1%
PPGN 0.020± 0.007 5.9%± 3.1%

AttrPGD - MolHIV
Model Type Bruteforce - AttrPGD lbl. diff. % of matched lbl. diff.

meanGINE 0.078± 0.035 45.7%± 1.7%
GINE 0.077± 0.035 41.1%± 12.2%
SignNet 0.213± 0.060 14.3%± 5.4%
DropGINE 0.089± 0.013 24.4%± 4.7%
ESAN 0.207± 0.119 8.0%± 4.2%
PPGN 0.063± 0.024 4.2%± 0.7%

Table 5.8: Effectiveness of AdjPGD and AttrPGD on budget 1

5. Experiment and Results 43

5.6 Impact of Adversarial Training

In this section, we present data for the random perturbation experiments, as well as
brute force and PGD attacks on models that were trained on the MUTAG dataset,
both using a typical ERM training procedure as well as using adversarial training.

We apply adversarial training as outlined in Section 4.6, effectively by training the
model on the strongest adversarial examples in each epoch. To find such adversarial
examples, we use the strongest attack AttrPGD with an absolute budget of 1. To
improve the speed of the training, we reduce the number of PGD steps to just 3 and
only sample 10 graphs from the obtained distributions. We fix the learning rate to
the average of the values that were chosen during the hyperparameter optimization
for the non-adversarially trained models. We do so because hyperparameter tuning
is computationally expensive and adds much overhead, especially when the dataset
is small. We only test the impact of adversarial training on the MUTAG dataset
since adversarial training on the other datasets was too slow for our time budget.

The hyperparameters selection and model training were done with the same pa-
rameters as the other models.

Clean Model Performance

Model Type acc. ↑ acc. (adv.) ↑ ∆ ↑ lbl. diff. ↓ lbl. diff. (adv.) ↓ ∆ ↓
Baseline 0.484± 0.146 - - 0.462± 0.041 - -
meanGINE 0.874± 0.047 0.747± 0.044 −0.127 0.172± 0.076 0.292± 0.032 0.120
GIN 0.947± 0.037 0.874± 0.060 −0.073 0.085± 0.024 0.186± 0.033 0.101
GINE 0.989± 0.024 0.853± 0.058 −0.136 0.019± 0.012 0.157± 0.048 0.138
SignNet 0.958± 0.058 0.726± 0.242 −0.232 0.153± 0.050 0.337± 0.125 0.184
DropGINE 0.947± 0.037 0.916± 0.029 −0.031 0.054± 0.026 0.102± 0.018 0.048
ESAN 0.979± 0.029 0.905± 0.058 −0.074 0.031± 0.013 0.118± 0.043 0.087
PPGN 0.853± 0.044 0.779± 0.024 −0.074 0.176± 0.013 0.274± 0.026 0.098

Table 5.9: Clean MUTAG Model Metrics (↑: higher is better, ↓: lower is better)

The GINE and ESAN models obtain the best test scores when trained on clean
data. As expected, all architectures perform worse on clean data when trained ad-
versarially. The gap between standard and adversarial training is the smallest for
DropGINE, which makes it the best-performing architecture on clean data under
adversarial training, closely followed by ESAN. It is unexpected that PPGN, the
only 3-WL-expressive architecture in the experiment, doesn’t have the smallest gap.
However, even the non-expressive architectures should be able to differentiate be-
tween original and attacked graphs for most perturbations of budget 1, especially if
it is an attribute perturbation12. Another factor could be the dataset, which has a
test set of only 19 graphs.

5. Experiment and Results 44

Adjacency Bruteforce
Model Type acc. ↑ acc. (adv.) ↑ ∆ acc. ↑ lbl. diff. ↓ lbl. diff. (adv.) ↓ ∆ lbl. diff. ↓
meanGINE 0.084± 0.121 0.211± 0.064 0.127 0.874± 0.078 0.758± 0.036 −0.116
GIN 0.000± 0.000 0.189± 0.103 0.189 0.957± 0.013 0.760± 0.059 −0.197
GINE 0.189± 0.088 0.400± 0.060 0.211 0.796± 0.079 0.591± 0.055 −0.205
SignNet 0.021± 0.047 0.326± 0.256 0.305 0.922± 0.125 0.657± 0.153 −0.265
DropGINE 0.200± 0.164 0.495± 0.071 0.295 0.797± 0.150 0.522± 0.072 −0.275
ESAN 0.147± 0.114 0.516± 0.101 0.369 0.857± 0.093 0.508± 0.076 −0.349
PPGN 0.589± 0.094 0.589± 0.024 0.000 0.488± 0.107 0.430± 0.028 −0.058

Adjacency and Attribute Bruteforce
Model Type acc. ↑ acc. (adv.) ↑ ∆ acc. lbl. diff. ↓ lbl. diff. (adv.) ↓ ∆ lbl. diff.

meanGINE 0.011± 0.024 0.137± 0.029 0.126 0.975± 0.016 0.820± 0.029 0.155
GINE 0.158± 0.118 0.379± 0.044 0.221 0.825± 0.094 0.603± 0.049 0.222
SignNet 0.021± 0.047 0.305± 0.267 0.284 0.922± 0.125 0.676± 0.161 0.246
DropGINE 0.137± 0.142 0.432± 0.058 0.295 0.857± 0.119 0.565± 0.049 0.292
ESAN 0.105± 0.064 0.495± 0.109 0.390 0.894± 0.057 0.532± 0.068 0.362
PPGN 0.558± 0.109 0.589± 0.024 0.031 0.515± 0.095 0.436± 0.024 0.079

Table 5.10: MUTAG Bruteforce Results (↑: higher is better, ↓: lower is better)

Brute Force Attacks

All adversarially trained models outperform their standard-training counterparts un-
der both types of brute force attacks, however, there is a stronger difference between
less and more expressive architectures. GIN and meanGINE are the weakest models.
The more-than 1-WL-expressive models beat the GIN(E)-based model, with Sign-
Net being the only exception. Interestingly, PPGN performs best under all scenarios
and even the unprotected models models outperform all adversarially trained mod-
els, with little difference between standard- and adversarially-trained PPGN models.
However, the other expressive architectures achieve stronger accuracy and label dif-
ference improvements with adversarial training than the less expressive GIN(E)-based
models.

Random Perturbations

The results in table 5.11 show that adversarial training mostly boosts CRR scores
under random adjacency perturbations with a relative budget. PPGN achieves the
highest CRR scores for both training types under random adjacency perturbations.

Even though the adversarial training uses AttrPGD to find perturbed graphs,
the adversarially trained models don’t seem to have significantly lower CRR scores
under random attribute changes. Furthermore, the attribute perturbation results
don’t suggest a most robust architecture, however the adversarially trained GIN(E)-
based models seem least robust.

12In graph-level MPNNs, attributes are combined in a series of MPNN layers, but ultimately ag-
gregated into a graph-representing vector. This vector is processed using MLPs, which are universal
approximators.

5. Experiment and Results 45

Adjacency Changes CRR - absolute budget
Model Type acc. acc. (adv.) ∆ acc. lbl. diff. lbl. diff. (adv.) ∆ lbl. diff.

meanGINE 9.818± 6.097 3.153± 0.478 −6.665 0.057± 0.041 0.016± 0.003 −0.041
GIN 3.135± 0.699 2.906± 0.319 −0.229 0.016± 0.002 0.018± 0.001 0.002
GINE 3.597± 0.309 5.512± 0.555 1.915 0.019± 0.001 0.032± 0.002 0.013
SignNet 3.001± 0.757 4.211± 3.617 1.210 0.013± 0.006 0.018± 0.019 0.005
DropGINE 7.135± 3.008 6.845± 2.968 −0.290 0.045± 0.017 0.045± 0.017 0.000
ESAN 4.321± 0.147 8.293± 1.296 3.972 0.023± 0.001 0.055± 0.005 0.032
PPGN 10.806± 2.390 19.964± 3.946 9.158 0.052± 0.012 0.113± 0.031 0.061

Adjacency Changes CRR - relative budget
Model Type acc. acc. (adv.) ∆ acc. lbl. diff. lbl. diff. (adv.) ∆ lbl. diff.

meanGINE 16.182± 6.879 7.370± 0.672 −8.812 0.102± 0.054 0.035± 0.004 −0.067
GIN 5.546± 0.526 7.102± 1.234 1.556 0.032± 0.003 0.041± 0.006 0.009
GINE 6.497± 0.501 12.149± 0.833 5.652 0.039± 0.004 0.081± 0.002 0.042
SignNet 4.442± 1.870 9.643± 9.128 5.201 0.021± 0.011 0.046± 0.053 0.025
DropGINE 5.445± 1.302 11.616± 0.801 6.171 0.031± 0.006 0.078± 0.004 0.047
ESAN 8.109± 0.418 21.181± 2.568 13.072 0.053± 0.003 0.145± 0.019 0.092
PPGN 23.936± 3.370 23.715± 3.279 −0.221 0.157± 0.035 0.158± 0.028 0.001

Attribute Changes CRR - absolute budget
Model Type acc. acc. (adv.) ∆ acc. lbl. diff. lbl. diff. (adv.) ∆ lbl. diff.

meanGINE 10.655± 5.491 2.611± 0.346 −8.044 0.063± 0.035 0.015± 0.002 −0.048
GIN 2.388± 0.646 3.394± 0.500 1.006 0.018± 0.005 0.019± 0.002 0.001
GINE 24.683± 1.420 13.030± 2.217 −11.653 0.189± 0.013 0.072± 0.011 −0.117
SignNet 33.240± 6.997 8.945± 5.926 −24.295 0.209± 0.046 0.027± 0.023 −0.182
DropGINE 21.607± 3.706 18.709± 2.338 −2.898 0.160± 0.036 0.128± 0.021 −0.032
ESAN 21.769± 3.184 18.383± 3.879 −3.386 0.160± 0.030 0.120± 0.028 −0.040
PPGN 16.180± 2.602 18.064± 2.949 1.884 0.081± 0.028 0.089± 0.028 0.008

Attribute Changes CRR - relative budget
Model Type acc. acc. (adv.) ∆ acc. lbl. diff. lbl. diff. (adv.) ∆ lbl. diff.

meanGINE 17.948± 6.270 5.975± 0.967 −11.973 0.119± 0.058 0.031± 0.007 −0.088
GIN 5.119± 2.103 7.649± 1.142 2.530 0.037± 0.016 0.044± 0.007 0.007
GINE 36.762± 2.779 24.910± 2.599 −11.852 0.306± 0.027 0.178± 0.018 −0.128
SignNet 42.405± 5.501 15.430± 12.100 −26.975 0.273± 0.051 0.059± 0.067 −0.214
DropGINE 36.279± 2.885 26.826± 1.903 −9.453 0.304± 0.028 0.207± 0.022 −0.097
ESAN 32.673± 2.186 31.643± 2.047 −1.030 0.267± 0.019 0.234± 0.022 −0.033
PPGN 23.290± 1.215 22.128± 3.723 −1.162 0.157± 0.011 0.135± 0.033 −0.022

Table 5.11: CRR scores under random perturbation (higher is better)

PGD-based Attacks

The results can be found in Fig. 5.4 on the next page.

All of the adversarially trained models except SignNet and PPGN are more ro-
bust than their counterparts that originated from standard training, although the
performance of the adversarially trained SignNet is slightly better for some budgets.
On AdjPGD, the unprotected PPGN is the most robust. The adversarially trained
PPGN loses performance at similar rates as the unprotected version but ultimately
performs worse due to its lower initial performance. Interestingly, PPGN is rivaled
by the adversarially trained ESAN when attacked with AttrPGD.

5. Experiment and Results 46

0 1 2 3 4 5

Absolute budget ε

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

AdjPGD - absolute budget ↑

0 1 2 3 4 5
Relative budget ε/M (%)

0

20

40

60

80

100
A

cc
ur

ac
y

(%
)

AdjPGD - relative budget ↑
GINE
GINE-adv
DropGINE
DropGINE-adv
PPGN
PPGN-adv
SignNet
SignNet-adv
ESAN
ESAN-adv
meanGINE
meanGINE-adv
GIN
GIN-adv

0 1 2 3 4 5

Absolute budget ε

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

AttrPGD - absolute budget ↑

0 1 2 3 4 5
Relative budget ε/M (%)

0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

AttrPGD - relative budget ↑
GINE
GINE-adv
DropGINE
DropGINE-adv
PPGN
PPGN-adv
SignNet
SignNet-adv
ESAN
ESAN-adv
meanGINE
meanGINE-adv
GIN
GIN-adv

Figure 5.4: MUTAG AdjPGD and AttrPGD

Chapter 6

Conclusion and Future Work

We conclude by answering the questions posed in the introduction.

Are expressive GNNs more or less robust on graph-level tasks than
less-expressive GNNs?

Concerning adversarial brute force and gradient-based attacks, the experimental
data indicates that PPGN is the most robust architecture on a range of datasets
compared to the other tested architectures.

PPGN is in many ways a special architecture. First of all, it achieves 3-WL-
expressiveness and is thus the most expressive architecture in the hierarchy of WL-
tests that we tested. Although it is not strictly more expressive than the other
models1, it should in principle be better equipped to differentiate between graphs
than the other architectures. However, since expressivity is concerned with adja-
cency structure and not with attributes, we would expect architectures that are
more robust due to their expressivity to perform similarly to non-expressive archi-
tectures under adversarial attribute perturbations. The fact that PPGN outperforms
other architectures under attribute brute force and AttrPGD attacks indicates that
its robustness may not be due to its expressivity2. The other expressive architec-
tures, SignNet, DropGINE, and ESAN, only achieve good robustness irregularly (e.g.
SignNet on IMDB under AdjPGD, ESAN on MolHIV under AttrPGD, DropGINE
on ZINC12k under attribute brute force) and cannot differentiate themselves from
the less-expressive GIN(E)-based models. This further implies that more expressive
architectures are not necessarily more robust.

Another difference between PPGN and the other architectures is that it is natively
differentiable with respect to the adjacency matrix. This allowed us to use the model
as is in the attacks without the need for surrogate models. Since PGD-based attacks
are least effective on PPGN (see tables 5.8 and A.5), they might benefit from special
surrogate models that yield better gradients3. However, PPGN also appears robust
under brute force attacks.

1In the sense that there may be graphs that cannot be differentiated by the 3-WL test and
PPGN but by some other architecture. See [12] for an architecture that achieves strictly greater
than 1-WL expressivity only on some pairs of graphs.

2Note that the adjacency and attribute attacks of PPGN prefer attribute changes, as shown in
tables 5.5 and A.4.

3For example, [23] proposes a linearized surrogate model for graph convolutions to solve the
attack optimization problem.

47

6. Conclusion and Future Work 48

The reason for the robustness of PPGN may stem from its non-MPNN architec-
ture. It operates on a dense representation of the input graph, which allows it to
directly operate on adjacency information and combine it with attribute information
into per-node-pair vectors. An adjacency change only modifies a few entries (the ones
for the adjacency and the edge features) of each input node-pair vector in PPGN. In
contrast, an adjacency change in MPNNs with sum aggregation alters every entry of
the adjacent node embeddings after each layer, which might be less robust.

Regarding robustness under random perturbations, our data gives mixed results
depending on the dataset with high uncertainties and thus doesn’t allow establishing
a hierarchy of robustness under random perturbations. Nonetheless, PPGN and
SignNet appear unstable under high-budget random adjacency perturbations because
they have extreme MAEs on the ZINC12k dataset.

In conclusion, our results do not indicate that the expressiveness of GNNs corre-
lates with their robustness. However, they show that PPGN is a robust architecture
across datasets for low-budget attacks.

How does the expressiveness of a model relate to robustness
improvements due to adversarial training? Does the expressiveness of a

model improve its performance on clean data when trained
adversarially?

The unprotected PPGN achieves very high robustness on the MUTAG dataset,
upon which the adversarially trained PPGN cannot improve. Excluding PPGN, the
other expressive architectures (especially ESAN and DropGINE) achieve stronger
accuracy and label difference improvements with adversarial training than the less
expressive GIN(E)-based models, both under brute force and gradient-based attacks.
This limited experiment thus indicates that more expressive models are indeed able
to learn more robust decision boundaries.

As to the performance of adversarially trained models on clean data, there doesn’t
seem to be a significant improvement for the more expressive architectures, which
could be a result of the small MUTAG test dataset.

Further Research

Our feature threat model allows for adjacency and feature changes but keeps the
number of nodes fixed. As an extension, we could also consider adding or removing
nodes as part of the threat model, which might be a reasonable attack vector in
some domains. These changes could model the ability of an attacker to create or
delete accounts in a social network. In the molecular domain, an attacker may add
or remove nodes by adding or removing functional domains from the corresponding
molecule.

Due to memory and time constraints, we weren’t able to explore poisoning at-
tacks on the expressive models. Especially the IMDB datasets, which classify movie
genres based on actor collaborations, can be imagined in a setting where models are
continuously trained in an online fashion, where an attacker is potentially able to
poison the training data.

6. Conclusion and Future Work 49

We also did not consider threat models that are specialized in the application
domain. In the molecular domain, non-molecular graphs are easily detected and
should thus not be part of a realistic threat model. Also, the notion of budget could
be adapted to how similar molecules are, e.g. when analyzed by mass spectrometry,
such that perturbations with a higher budget are more easily noticed. Besides the
required domain knowledge, the challenge with specialized threat models is to find a
formulation that allows for efficient attacks.

Bibliography

[1] F. Monti, F. Frasca, D. Eynard, D. Mannion, and M. M. Bronstein, “Fake news
detection on social media using geometric deep learning,” 2019.

[2] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph neural
networks for social recommendation,” in The world wide web conference, 2019,
pp. 417–426.

[3] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural
message passing for quantum chemistry,” in International conference on machine
learning. PMLR, 2017, pp. 1263–1272.

[4] J. Xiong, Z. Xiong, K. Chen, H. Jiang, and M. Zheng, “Graph
neural networks for automated de novo drug design,” Drug Discovery
Today, vol. 26, no. 6, pp. 1382–1393, 2021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1359644621000787

[5] K. Han, Y. Wang, J. Guo, Y. Tang, and E. Wu, “Vision gnn: An image is worth
graph of nodes,” Advances in Neural Information Processing Systems, vol. 35,
pp. 8291–8303, 2022.

[6] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?” in International Conference on Learning Representations, 2019.

[7] P. A. Papp, K. Martinkus, L. Faber, and R. Wattenhofer, “Dropgnn: Random
dropouts increase the expressiveness of graph neural networks,” Advances in
Neural Information Processing Systems, vol. 34, pp. 21 997–22 009, 2021.

[8] H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman, “Provably
powerful graph networks,” in Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2019/
file/bb04af0f7ecaee4aae62035497da1387-Paper.pdf

[9] B. Bevilacqua, F. Frasca, D. Lim, B. Srinivasan, C. Cai, G. Balamurugan, M. M.
Bronstein, and H. Maron, “Equivariant subgraph aggregation networks,” in In-
ternational Conference on Learning Representations, 2022.

[10] D. Lim, J. Robinson, L. Zhao, T. Smidt, S. Sra, H. Maron, and S. Jegelka, “Sign
and basis invariant networks for spectral graph representation learning,” 2022.

[11] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan,
and M. Grohe, “Weisfeiler and leman go neural: Higher-order graph neural net-
works,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33,
no. 01, 2019, pp. 4602–4609.

50

https://www.sciencedirect.com/science/article/pii/S1359644621000787
https://www.sciencedirect.com/science/article/pii/S1359644621000787
https://proceedings.neurips.cc/paper_files/paper/2019/file/bb04af0f7ecaee4aae62035497da1387-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bb04af0f7ecaee4aae62035497da1387-Paper.pdf

Bibliography 51

[12] K. Martinkus, P. A. Papp, B. Schesch, and R. Wattenhofer, “Agent-based graph
neural networks,” in The Eleventh International Conference on Learning Rep-
resentations, 2023.

[13] F. Mujkanovic, S. Geisler, S. Günnemann, and A. Bojchevski, “Are defenses
for graph neural networks robust?” Advances in Neural Information Processing
Systems, vol. 35, pp. 8954–8968, 2022.

[14] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available:
http://arxiv.org/abs/1412.6572

[15] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in International
Conference on Learning Representations, 2018. [Online]. Available: https:
//openreview.net/forum?id=rJzIBfZAb

[16] J. Chen, X. Lin, H. Xiong, Y. Wu, H. Zheng, and Q. Xuan, “Smoothing adver-
sarial training for gnn,” IEEE Transactions on Computational Social Systems,
vol. 8, no. 3, pp. 618–629, 2021.

[17] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec,
“Open graph benchmark: Datasets for machine learning on graphs,” arXiv
preprint arXiv:2005.00687, 2020.

[18] T. Sterling and J. J. Irwin, “Zinc 15 – ligand discovery for everyone,” Journal
of Chemical Information and Modeling, vol. 55, no. 11, pp. 2324–2337, 2015,
pMID: 26479676. [Online]. Available: https://doi.org/10.1021/acs.jcim.5b00559

[19] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato,
B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel,
R. P. Adams, and A. Aspuru-Guzik, “Automatic chemical design using a
data-driven continuous representation of molecules,” ACS Central Science,
vol. 4, no. 2, pp. 268–276, 2018, pMID: 29532027. [Online]. Available:
https://doi.org/10.1021/acscentsci.7b00572

[20] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ser. KDD ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 1365–1374. [Online]. Available: https:
//doi.org/10.1145/2783258.2783417

[21] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann,
“Tudataset: A collection of benchmark datasets for learning with graphs,” in
ICML 2020 Workshop on Graph Representation Learning and Beyond (GRL+
2020), 2020. [Online]. Available: www.graphlearning.io

[22] K. Xu, H. Chen, S. Liu, P.-Y. Chen, T. W. Weng, M. Hong, and X. Lin, “Topol-
ogy attack and defense for graph neural networks: An optimization perspective,”
in International Joint Conference on Artificial Intelligence. International Joint
Conferences on Artificial Intelligence, 2019.

http://arxiv.org/abs/1412.6572
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://doi.org/10.1021/acs.jcim.5b00559
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1145/2783258.2783417
https://doi.org/10.1145/2783258.2783417
www.graphlearning.io

Bibliography 52

[23] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks on
neural networks for graph data,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, ser. KDD
’18. New York, NY, USA: Association for Computing Machinery, 2018, p.
2847–2856. [Online]. Available: https://doi.org/10.1145/3219819.3220078

[24] M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch Ge-
ometric,” in ICLR Workshop on Representation Learning on Graphs and Man-
ifolds, 2019.

[25] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and J. Leskovec,
“Strategies for pre-training graph neural networks,” in International Conference
on Learning Representations (ICLR), 2020.

[26] B. Weisfeiler and A. Leman, “The reduction of a graph to canonical form and
the algebra which appears therein,” 1968.

[27] L. Babai, “Graph isomorphism in quasipolynomial time,” in Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing, 2016, pp. 684–
697.

[28] J.-Y. Cai, M. Fürer, and N. Immerman, “An optimal lower bound on the
number of variables for graph identification,” Combinatorica, vol. 12, no. 4, pp.
389–410, Dec 1992. [Online]. Available: https://doi.org/10.1007/BF01305232

[29] U. von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395–416, Dec 2007. [Online]. Available:
https://doi.org/10.1007/s11222-007-9033-z

[30] D. Zügner and S. Günnemann, “Adversarial attacks on graph neural networks
via meta learning,” in International Conference on Learning Representations,
2019. [Online]. Available: https://openreview.net/forum?id=Bylnx209YX

[31] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural net-
works,” in 2017 ieee symposium on security and privacy (sp). Ieee, 2017, pp.
39–57.

[32] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-
performance deep learning library,” Advances in neural information processing
systems, vol. 32, 2019.

https://doi.org/10.1145/3219819.3220078
https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/s11222-007-9033-z
https://openreview.net/forum?id=Bylnx209YX

Appendix A

Further Experimental Details

Model Type MolHIV ZINC12k IMDB-BINARY IMDB-MULTI MUTAG

Baseline 328’501 282’001 280’501 281’103 275’701
meanGINE 966’906 920’406 918’906 922’518 914’106
GIN 966’906 920’406 - - 914’106
GINE 966’906 920’406 918’906 922’518 914’106
SignNet 258’456 498’301 493’829 485’270 492’309
DropGINE 513’026 920’406 918’906 922’518 914’106
ESAN 105’829 96’201 95’885 96’143 94’899
PPGN 194’625 3’981’001 3’979’501 3’980’103 3’974’701

Table A.1: Parameter Count of Models

Node Feature Values
Atom Number 1, . . . , 118, misc
Chirality unspecified, tetrahedral (CW / CCW), other, misc
Node Degree 0, . . . , 10, misc
Formal Charge -5, . . . , 5, misc
of Hs 0, . . . , 8, misc
of radical electrons 0, . . . , 4, misc
Hybridization SP, SP2, SP3, SP3D, SP3D2, misc
is aromatic true, false
is in ring true, false

Edge Feature Values
Bond Type single, double, triple, aromatic, misc
Stereo stereo (none / z / e / cis / trans / any)
is conjugated true, false

Table A.2: MolHIV Node and Edge Features

A-1

Further Experimental Details A-2

Model Type MolHIV - label difference ZINC12k - normalized MAE
abs. budget rel. budget abs. budget rel. budget

meanGINE 0.784± 0.439 0.872± 0.453 0.878± 0.053 1.015± 0.105
GIN 0.154± 0.136 0.178± 0.145 0.709± 0.050 0.522± 0.052
GINE 0.026± 0.038 0.033± 0.046 1.031± 0.038 1.032± 0.102
SignNet 0.032± 0.013 0.701± 0.955 0.897± 0.118 0.631± 0.188
DropGINE 0.192± 0.044 0.482± 0.206 0.968± 0.066 0.894± 0.121
ESAN 0.051± 0.072 0.084± 0.116 1.178± 0.069 1.208± 0.124
PPGN 1.069± 0.700 1.163± 0.686 1.156± 0.033 1.028± 0.046

Model Type IMDB-BINARY
absolute budget relative budget

accuracy lbl. diff. accuracy lbl. diff.

meanGINE 0.179± 0.128 0.072± 0.099 0.205± 0.167 0.100± 0.125
GINE 0.317± 0.174 0.179± 0.182 0.355± 0.119 0.213± 0.192
SignNet 5.309± 3.056 0.005± 0.011 5.497± 2.925 0.001± 0.003
DropGINE 1.154± 1.466 0.367± 0.080 1.151± 1.505 0.422± 0.206
ESAN 0.464± 0.243 0.305± 0.161 0.562± 0.372 0.375± 0.218
PPGN 2.572± 0.947 1.771± 0.964 3.096± 0.878 2.164± 0.909

Table A.3: CRR scores for random edge rewirings

Perturbation Target meanGINE GIN GINE SignNet DropGINE ESAN PPGN

added edge increase 3.5% 2.7% 3.5% 2.7% 2.9% 1.2% 3.7%
decrease 69.2% 66.9% 83.2% 82.6% 82.3% 86.0% 91.2%

dropped edge increase 4.1% 1.6% 2.7% 6.1% 3.8% 4.7% 3.7%
decrease 23.3% 28.9% 10.6% 8.5% 10.9% 8.0% 1.3%

Perturbation Target meanGINE GINE SignNet DropGINE ESAN PPGN

adjacency increase 0.2% 1.3% 3.6% 1.6% 1.5% 2.8%
decrease 5.4% 19.2% 53.4% 21.3% 39.5% 39.2%

node attr. increase 5.7% 4.3% 8.0% 4.1% 3.6% 6.2%
decrease 88.2% 75.1% 34.1% 72.7% 55.0% 51.6%

edge attr. increase 0.0% 0.0% 0.1% 0.1% 0.0% 0.0%
decrease 0.5% 0.1% 0.8% 0.2% 0.4% 0.2%

Table A.4: Distribution of perturbation types amongst bruteforce attack on ZINC12k
(original label)

Further Experimental Details A-3

0 5 10 15 20 25 30 35 40

Absolute budget ε

40

50

60

70

80

90

A
cc

ur
ac

y
(%

)

MolHIV - absolute budget ↑

0 5 10 15 20 25 30 35 40 45 50
Relative budget ε/M (%)

70

75

80

85

90

95

A
cc

ur
ac

y
(%

)

MolHIV - relative budget ↑
GINE
DropGINE
PPGN
SignNet
ESAN
GIN
meanGINE

0 5 10 15 20 25 30

Absolute budget ε

100

102

104

106

no
rm

al
iz

ed
M

A
E

(o
ri

gi
na

ll
ab

el
)

ZINC12k - absolute budget ↓

0 5 10 15 20 25 30 35 40 45 50
Relative budget ε/M (%)

10−1

100

101

102

103

no
rm

al
iz

ed
M

A
E

(o
ri

gi
na

ll
ab

el
)

ZINC12k - relative budget ↓
GINE
DropGINE
PPGN
SignNet
ESAN
GIN
meanGINE

0 5 10 15 20 25 30

Absolute budget ε

100

102

104

106

no
rm

al
iz

ed
M

A
E

(c
yc

le
-c

or
re

ct
ed

la
be

l)

ZINC12k - absolute budget ↓

0 5 10 15 20 25 30 35 40 45 50
Relative budget ε/M (%)

10−1

100

101

102

103

no
rm

al
iz

ed
M

A
E

(c
yc

le
-c

or
re

ct
ed

la
be

l)

ZINC12k - relative budget ↓
GINE
DropGINE
PPGN
SignNet
ESAN
GIN
meanGINE

0 5 10 15 20 25 30 35 40

Absolute budget ε

50

55

60

65

70

75

A
cc

ur
ac

y
(%

)

IMDB-BINARY - absolute budget ↑

0 5 10 15 20 25 30 35 40 45 50
Relative budget ε/M (%)

50

55

60

65

70

75

A
cc

ur
ac

y
(%

)

IMDB-BINARY - relative budget ↑
GINE
DropGINE
PPGN
SignNet
ESAN
meanGINE

0 5 10 15 20 25 30 35 40

Absolute budget ε

36

38

40

42

44

46

48

50

A
cc

ur
ac

y
(%

)

IMDB-MULTI - absolute budget ↑

0 5 10 15 20 25 30 35 40 45 50
Relative budget ε/M (%)

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0

A
cc

ur
ac

y
(%

)

IMDB-MULTI - relative budget ↑
GINE
DropGINE
PPGN
SignNet
ESAN
meanGINE

Figure A.1: Random Adjacency Perturbations - Accuracy Each point is the
average over 5 models and 10 samples per graph (5 with added edges and 5 with
removed edges). The standard deviation is over the 5 models.

Further Experimental Details A-4

0 5 10 15 20 25 30 35 40

Absolute budget ε

0.1

0.2

0.3

0.4

0.5

0.6

La
be

lD
iff

er
en

ce

MolHIV - absolute budget ↓

0 5 10 15 20 25 30 35 40 45 50
Relative budget ε/M (%)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

La
be

lD
iff

er
en

ce

MolHIV - relative budget ↓
GINE
DropGINE
PPGN
SignNet
ESAN
GIN
meanGINE

0 5 10 15 20 25 30 35 40

Absolute budget ε

0.30

0.35

0.40

0.45

0.50

La
be

lD
iff

er
en

ce

IMDB-BINARY - absolute budget ↓

0 5 10 15 20 25 30 35 40 45 50
Relative budget ε/M (%)

0.30

0.35

0.40

0.45

0.50

La
be

lD
iff

er
en

ce

IMDB-BINARY - relative budget ↓
GINE
DropGINE
PPGN
SignNet
ESAN
meanGINE

0 5 10 15 20 25 30 35 40

Absolute budget ε

0.410

0.415

0.420

0.425

0.430

0.435

0.440

La
be

lD
iff

er
en

ce

IMDB-MULTI - absolute budget ↓

0 5 10 15 20 25 30 35 40 45 50
Relative budget ε/M (%)

0.410

0.415

0.420

0.425

0.430

0.435

0.440

0.445

La
be

lD
iff

er
en

ce

IMDB-MULTI - relative budget ↓
GINE
DropGINE
PPGN
SignNet
ESAN
meanGINE

Figure A.2: Random Adjacency Perturbations - Label Difference Each point
is the average over 5 models and 10 samples per graph (5 with added edges and 5
with removed edges). The standard deviation is over the 5 models.

Further Experimental Details A-5

0 5 10 15 20 25 30 35 40

Absolute budget ε

82

84

86

88

90

92

94

96

A
cc

ur
ac

y
(%

)

MolHIV - absolute budget ↑

0 5 10 15 20 25 30 35 40 45 50
Relative budget ε/M (%)

88

90

92

94

96

A
cc

ur
ac

y
(%

)

MolHIV - relative budget ↑
GINE
DropGINE
PPGN
SignNet
ESAN
GIN
meanGINE

0 5 10 15 20 25 30 35 40

Absolute budget ε

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

La
be

lD
iff

er
en

ce

MolHIV - absolute budget ↓

0 5 10 15 20 25 30 35 40 45 50
Relative budget ε/M (%)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

La
be

lD
iff

er
en

ce

MolHIV - relative budget ↓
GINE
DropGINE
PPGN
SignNet
ESAN
GIN
meanGINE

0 5 10 15 20 25 30

Absolute budget ε

10−1

100

101

no
rm

al
iz

ed
M

A
E

ZINC12k - absolute budget ↓

0 5 10 15 20 25 30 35 40 45 50
Relative budget ε/M (%)

10−1

100

no
rm

al
iz

ed
M

A
E

ZINC12k - relative budget ↓
GINE
DropGINE
PPGN
SignNet
ESAN
GIN
meanGINE

Figure A.3: Random Attribute Perturbations Each point is the average over 5
models and 10 samples per graph (5 with changed node features and 5 with changed
edge features). The standard deviation is over the 5 models.

Further Experimental Details A-6

0 5 10 15 20 25 30 35 40

Absolute budget ε

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5
A

cc
ur

ac
y

(%
)

MolHIV - absolute budget ↑

0 5 10 15 20 25 30 35 40 45 50
Relative budget ε/M (%)

82

84

86

88

90

92

94

96

A
cc

ur
ac

y
(%

)

MolHIV - relative budget ↑
GINE
DropGINE
PPGN
SignNet
ESAN
GIN
meanGINE

0 5 10 15 20 25 30

Absolute budget ε

10−1

100

101

no
rm

al
iz

ed
M

A
E

(o
ri

gi
na

ll
ab

el
)

ZINC12k - absolute budget ↓

0 5 10 15 20 25 30 35 40 45 50
Relative budget ε/M (%)

10−1

100

no
rm

al
iz

ed
M

A
E

(o
ri

gi
na

ll
ab

el
)

ZINC12k - relative budget ↓
GINE
DropGINE
PPGN
SignNet
ESAN
GIN
meanGINE

0 5 10 15 20 25 30

Absolute budget ε

10−1

100

101

no
rm

al
iz

ed
M

A
E

(c
yc

le
-c

or
re

ct
ed

la
be

l)

ZINC12k - absolute budget ↓

0 5 10 15 20 25 30 35 40 45 50
Relative budget ε/M (%)

10−1

100

no
rm

al
iz

ed
M

A
E

(c
yc

le
-c

or
re

ct
ed

la
be

l)

ZINC12k - relative budget ↓
GINE
DropGINE
PPGN
SignNet
ESAN
GIN
meanGINE

0 5 10 15 20 25 30 35 40

Absolute budget ε

50

55

60

65

70

75

A
cc

ur
ac

y
(%

)

IMDB-BINARY - absolute budget ↑

0 5 10 15 20 25 30 35 40 45 50
Relative budget ε/M (%)

55

60

65

70

75

A
cc

ur
ac

y
(%

)

IMDB-BINARY - relative budget ↑
GINE
DropGINE
PPGN
SignNet
ESAN
meanGINE

0 5 10 15 20 25 30 35 40

Absolute budget ε

34

36

38

40

42

44

46

48

50

A
cc

ur
ac

y
(%

)

IMDB-MULTI - absolute budget ↑

0 5 10 15 20 25 30 35 40 45 50
Relative budget ε/M (%)

34

36

38

40

42

44

46

48

50

A
cc

ur
ac

y
(%

)

IMDB-MULTI - relative budget ↑
GINE
DropGINE
PPGN
SignNet
ESAN
meanGINE

Figure A.4: Random Edge Rewirings Each point is the average over 5 models
and 5 samples per graph. The standard deviation is over the 5 models.

Further Experimental Details A-7

0 1 2 3 4 5

Absolute budget ε

10−1

100

101

102

no
rm

al
iz

ed
M

A
E

(c
yc

le
-c

or
re

ct
ed

la
be

l)

ZINC12k - AdjPGD - absolute budget ↓

0 1 2 3 4 5
Relative budget ε/M (%)

10−1

100

101

no
rm

al
iz

ed
M

A
E

(c
yc

le
-c

or
re

ct
ed

la
be

l)

ZINC12k - AdjPGD - relative budget ↓
GINE
DropGINE
PPGN
SignNet
ESAN
GIN
meanGINE

0 1 2 3 4 5

Absolute budget ε

10−1

100

101

102

103

no
rm

al
iz

ed
M

A
E

(c
yc

le
-c

or
re

ct
ed

la
be

l)

ZINC12k - AttrPGD - absolute budget ↓

0 1 2 3 4 5
Relative budget ε/M (%)

10−1

100

no
rm

al
iz

ed
M

A
E

(c
yc

le
-c

or
re

ct
ed

la
be

l)

ZINC12k - AttrPGD - relative budget ↓
GINE
DropGINE
PPGN
SignNet
ESAN
GIN
meanGINE

Figure A.5: AdjPGD and AttrPGD on ZINC12k with cycle-corrected labels
(lower is better)

AdjPGD - ZINC12k (without discarding top 5%)
Model Type AdjPGD / Bruteforce MAE % of matched MAE

meanGINE 0.801± 0.049 32.7%± 7.4%
GIN 0.682± 0.082 43.1%± 9.4%
GINE 0.415± 0.034 6.9%± 1.5%
SignNet 0.318± 0.340 19.0%± 26.9%
DropGINE 0.502± 0.060 10.6%± 2.4%
ESAN 0.773± 0.066 34.1%± 6.1%
PPGN 0.160± 0.099 3.0%± 2.7%

AttrPGD - ZINC12k (without discarding top 5%)
Model Type AttrPGD / Bruteforce MAE % of matched MAE

meanGINE 0.783± 0.124 25.6%± 5.2%
GINE 0.783± 0.015 38.7%± 11.5%
SignNet 0.689± 0.130 20.8%± 17.4%
DropGINE 0.752± 0.019 19.6%± 2.8%
ESAN 0.719± 0.100 12.8%± 3.5%
PPGN 0.333± 0.188 4.2%± 3.2%

Table A.5: Effectiveness of AdjPGD and AttrPGD on budget 1 - ZINC12k

Further Experimental Details A-8

0 5 10 15 20 25 30 35 40

Absolute budget ε

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Adjacency Perturbations - absolute budget ↑

0 5 10 15 20 25 30 35 40 45 50
Relative budget ε/M (%)

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Adjacency Perturbations - relative budget ↑
GINE
GINE-adv
DropGINE
DropGINE-adv
PPGN
PPGN-adv
SignNet
SignNet-adv
ESAN
ESAN-adv
meanGINE
meanGINE-adv
GIN
GIN-adv

0 5 10 15 20 25 30 35 40

Absolute budget ε

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Attribute Perturbations - absolute budget ↑

0 5 10 15 20 25 30 35 40 45 50
Relative budget ε/M (%)

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Attribute Perturbations - relative budge ↑
GINE
GINE-adv
DropGINE
DropGINE-adv
PPGN
PPGN-adv
SignNet
SignNet-adv
ESAN
ESAN-adv
meanGINE
meanGINE-adv
GIN
GIN-adv

0 5 10 15 20 25 30 35 40

Absolute budget ε

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Rewirings - absolute budget ↑

0 5 10 15 20 25 30 35 40 45 50
Relative budget ε/M (%)

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Rewirings - relative budget ↑
GINE
GINE-adv
DropGINE
DropGINE-adv
PPGN
PPGN-adv
SignNet
SignNet-adv
ESAN
ESAN-adv
meanGINE
meanGINE-adv
GIN
GIN-adv

Figure A.6: MUTAG random perturbations - Accuracy (higher is better)

Further Experimental Details A-9

0 5 10 15 20 25 30 35 40

Absolute budget ε

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

La
be

lD
iff

er
en

ce

Adjacency Perturbations - absolute budget ↓

0 5 10 15 20 25 30 35 40 45 50
Relative budget ε/M (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

La
be

lD
iff

er
en

ce

Adjacency Perturbations - relative budget ↓
GINE
GINE-adv
DropGINE
DropGINE-adv
PPGN
PPGN-adv
SignNet
SignNet-adv
ESAN
ESAN-adv
meanGINE
meanGINE-adv
GIN
GIN-adv

0 5 10 15 20 25 30 35 40

Absolute budget ε

0.0

0.1

0.2

0.3

0.4

0.5

0.6

La
be

lD
iff

er
en

ce

Attribute Perturbations - absolute budget ↓

0 5 10 15 20 25 30 35 40 45 50
Relative budget ε/M (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

La
be

lD
iff

er
en

ce

Attribute Perturbations - relative budget ↓
GINE
GINE-adv
DropGINE
DropGINE-adv
PPGN
PPGN-adv
SignNet
SignNet-adv
ESAN
ESAN-adv
meanGINE
meanGINE-adv
GIN
GIN-adv

0 5 10 15 20 25 30 35 40

Absolute budget ε

0.0

0.1

0.2

0.3

0.4

0.5

0.6

La
be

lD
iff

er
en

ce

Rewirings - absolute budget ↓

0 5 10 15 20 25 30 35 40 45 50
Relative budget ε/M (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

La
be

lD
iff

er
en

ce

Rewirings - relative budget ↓
GINE
GINE-adv
DropGINE
DropGINE-adv
PPGN
PPGN-adv
SignNet
SignNet-adv
ESAN
ESAN-adv
meanGINE
meanGINE-adv
GIN
GIN-adv

Figure A.7: MUTAG random perturbations - Label Difference (lower is bet-
ter)

Further Experimental Details A-10

Rewiring - absolute budget
Model Type acc. acc. (adv.) ∆ acc. lbl. diff. lbl. diff. (adv.) ∆ lbl. diff.

meanGINE 7.682± 4.829 3.189± 0.437 −4.493 0.041± 0.029 0.016± 0.002 −0.025
GIN 12.770± 7.136 3.389± 0.615 −9.381 0.083± 0.052 0.019± 0.001 −0.064
GINE 17.356± 7.011 12.868± 4.776 −4.488 0.126± 0.057 0.082± 0.033 −0.044
SignNet 6.357± 4.196 11.353± 9.446 4.996 0.036± 0.026 0.052± 0.050 0.016
DropGINE 14.039± 7.016 14.285± 3.224 0.246 0.096± 0.057 0.088± 0.032 −0.008
ESAN 18.003± 3.289 16.010± 2.604 −1.993 0.125± 0.033 0.101± 0.025 −0.024
PPGN 25.905± 3.352 23.759± 3.079 −2.146 0.176± 0.033 0.163± 0.030 −0.013

Rewiring - relative budget
Model Type acc. acc. (adv.) ∆ acc. lbl. diff. lbl. diff. (adv.) ∆ lbl. diff.

DropGINE 19.946± 5.904 20.867± 2.165 0.921 0.147± 0.054 0.150± 0.018 0.003
ESAN 25.792± 1.860 22.914± 1.985 −2.878 0.201± 0.021 0.171± 0.017 −0.030
GIN 20.405± 7.608 7.860± 1.560 −12.545 0.148± 0.062 0.042± 0.006 −0.106
GINE 25.296± 4.297 19.942± 2.394 −5.354 0.199± 0.044 0.137± 0.025 −0.062
PPGN 31.397± 3.403 24.821± 2.969 −6.576 0.230± 0.032 0.174± 0.029 −0.056
SignNet 11.938± 2.073 15.220± 12.637 3.282 0.063± 0.020 0.069± 0.077 0.006
meanGINE 15.100± 7.332 8.202± 1.567 −6.898 0.093± 0.057 0.039± 0.004 −0.054

Table A.6: CRR scores under random edge rewirings (higher is better)

	Acknowledgements
	Abstract
	1 Introduction and Related Work
	2 Machine Learning on Graphs
	2.1 Graph Data
	2.2 Message Passing Neural Networks

	3 Expressive Graph Neural Networks
	3.1 Expressiveness and the Weisfeiler-Lehman isomorphism test
	3.2 Equivariant Sub-graph Aggregation Network
	3.3 DropGNN
	3.4 Provably Powerful Graph Network
	3.5 SignNet

	4 Robustness and Attacks
	4.1 Adversarial Attacks
	4.2 Threat Models
	4.3 Random Perturbations and Simple Attacks
	4.3.1 Random Perturbations
	4.3.2 Brute Force

	4.4 Adjacency Projected Gradient Descent
	4.4.1 Algorithm
	4.4.2 Attacking GNNs with features
	4.4.3 Hyperparameters

	4.5 Feature and Adjacency Projected Gradient Descent
	4.5.1 Algorithm

	4.6 Adversarial Training

	5 Experiment and Results
	5.1 Methodology
	5.2 Experimental Setup
	5.3 Robustness under Brute Force Attack
	5.4 Robustness under Random Perturbations
	5.5 Robustness under Gradient-Based Attacks
	5.5.1 Attack Strength

	5.6 Impact of Adversarial Training

	6 Conclusion and Future Work
	Bibliography
	A Further Experimental Details

