
Distributed

 Computing

Wikipedia Walker
Bachelor’s Thesis

Niklas Pohl

nipohl@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Luca Lanzendörfer, Judy Beestermöller

Prof. Dr. Roger Wattenhofer

August 26, 2023

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervi-
sors, Luca Lanzendörfer and Judy Beestermöller, for their invaluable guidance
and support throughout this thesis.

I would also like to extend my thanks to Prof. Dr. Roger Wattenhofer and
the Distributed Computing Group for providing me with the opportunity and
technical support to complete this project

i

Abstract

This thesis introduces a program designed to master the Wikipedia Game, which
is a competitive challenge where participants aim to find the shortest path be-
tween two Wikipedia articles using only internal hyperlinks. The program com-
putes real-time paths within the live Wikipedia environment, driven by an up-
to-date database of articles and their connections. This database can also be
used in the future for further investigations of articles and there respective inter-
connections. In contrast to existing solutions, this program addresses limitations
in path accuracy and link visibility, resulting in a tailored and effective tool for
mastering the Wikipedia Game.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Wikipedia Game . 1

1.2 Related Work . 1

2 Collecting Data 3

2.1 Wikipedia API . 3

2.2 Challenges . 4

2.3 Scraping . 5

2.3.1 Initial Scrape . 5

2.3.2 Live Feed . 6

2.3.3 Monthly Metadata Scraping 6

2.3.4 Redirect Edge Management 7

2.4 Recovery . 7

3 Databases 9

3.1 Neo4j . 9

3.1.1 Neo4j on Disk . 9

3.1.2 Performance . 10

3.1.3 Shortest Path . 11

3.1.4 Data Layout . 12

3.2 Redis . 12

4 API 14

4.1 Endpoints . 14

4.1.1 Shortest Paths . 14

iii

Contents iv

4.1.2 Interesting Paths . 15

4.1.3 Neighborhood . 16

4.1.4 Random Walk . 17

4.1.5 Search . 19

5 Frontend 20

5.1 Framework . 20

5.2 Website . 20

6 Deploying 24

6.1 Docker . 24

Bibliography 26

Chapter 1

Introduction

The objective of this thesis is to develop a program capable of mastering the
Wikipedia Game. The program’s core functionality involves real-time path com-
putation within the live Wikipedia environment, necessitating a consistently up-
to-date database of Wikipedia articles and their corresponding connections. This
database can also be leveraged for future investigations into articles and their in-
terconnections, serving as a foundation for further exploration.

1.1 Wikipedia Game

The Wikipedia Game is a popular online challenge where participants have to
navigate from one Wikipedia article to another using the fewest number of links.
The goal of the game is to find the shortest path, in terms of linked articles,
between two given articles on Wikipedia. Participants start from a source article
and must reach a target article by clicking on hyperlinks within the articles. The
catch is that players can only navigate by following the internal links present
within the articles; they are not allowed to use the search function or directly
input URLs.

1.2 Related Work

There already exists a similar program to ours, called 6 Degrees of Wikipedia [1]
which is able to compute the shortest paths between two Wikipedia articles.
However, this program is not well-suited for the Wikipedia game, where players
have to navigate from one topic to another as fast as possible, using the fewest
number of link clicks due to two main reasons. Firstly, it lacks the ability to
navigate through Wikipedia articles effectively, as it only identifies the existence
of a connection without providing the actual link names. Secondly, 6 Degrees of
Wikipedia builds its database from Wikipedia dumps, which are updated twice
a month. Consequently, it cannot guarantee the shortest path between articles,
nor can it ensure the path’s existence, given Wikipedia’s rapidly changing nature

1

1. Introduction 2

with numerous edits occurring every hour.
To address these limitations and offer the flexibility to filter the shortest paths
based on interesting criteria, such as the most viewed path among all possible
shortest paths, we made the decision to develop our own program. This custom-
built solution allows us to effectively handle these challenges, providing a more
tailored and accurate experience for the Wikipedia game.

Chapter 2

Collecting Data

In order to query the data, we must first collect it. Previous programs, such as 6
degrees of Wikipedia built their graph from a Wikipedia dump, which is provided
by Wikipedia twice a month. Initially, we also considered constructing our graph
from these dumps. However, during our research, we discovered that not all links
are included in these dumps.
As a result, we reached the conclusion that we need to scrape Wikipedia directly
from scratch. Scraping Wikipedia allows us to gather the most up-to-date data,
ensuring the accuracy and completeness of our graph. By implementing a scrap-
ing mechanism, we can extract relevant information directly from Wikipedia’s
API, including article, links and metadata.
In the following sections, we will dive into the details of our Wikipedia scraping
process, exploring the methods employed and the data collected.

2.1 Wikipedia API

Wikipedia provides an API which significantly facilitates the scraping process.
The Wikipedia API allows us to filter and retrieve only the relevant data, op-
timizing the data collection process. Moreover, the API enables us to access
additional metadata, such as page views, which would not be accessible through
a direct web scrape of Wikipedia.
We decided to collect the following key properties for each Wikipedia article to
build our database:

• Links to Other Wikipedia Pages: This data is vital for constructing
the graph, as it establishes the connections between different articles.

• Protection Status of the Page: The protection status of Wikipedia
articles indicates the level of editing and moving rights granted to user
groups, serving as a safeguard against vandalism and unauthorized changes.

3

2. Collecting Data 4

• Page Views: The monthly views of the article .

• Article Length: The length of the article in bytes.

• Plain Text: Instead of storing the HTML code, we opted to save memory
space by storing the plain text of the Wikipedia articles which can be
directly fetched from the API.

2.2 Challenges

Throughout the scraping process, we encountered several challenges namely:

Lack of link names: In 6 degrees of Wikipedia, they provided the shortest
paths between articles; however, the absence of link names has made it impracti-
cal for the Wikipedia game. Recognizing this limitation, we aimed to address it.
The issue arose from the inability to directly request actual link names through
the Wikipedia API. As a solution, we had to retrieve also the HTML code of the
Wikipedia pages and develop a parsing mechanism to extract the precise names
of the links. So that they can be found through CTRL + F.

Hidden Links: Furthermore, we encountered links that were present on the
page but hidden within drop-down menus, usually located at the end of the
page. These hidden links posed a unique challenge, as they could not be discov-
ered merely by searching for the link names, which again made them impractical
for our purpose. To address this, we modified our parsing code to detect whether
a link was hidden within a drop down menu or if it is visible. This modification
enabled us to include an attribute with which we can later filter the paths.

Redirect pages: These are pages containing only one link to another Wikipedia
article, and they automatically redirect you to this article. According to the
Wikipedia Foundation, the purpose of these redirect pages is to ensure that al-
ternative article names or closely related topics redirect to the most appropriate
article, enhancing the ease of searching for specific articles. Redirects are created
automatically when an article is moved or manually [2]. The issue we faced with
redirects was that they introduced an extra step in our graph representation,
counting as a distance of two between two articles Figure 6.1 (left side). How-
ever, in practice, users will never land on the redirect page when clicking links,
as Wikipedia automatically redirects them to the intended article. To accurately
model this behavior in our graph, we decided to mark them as redirect nodes and
establish a direct redirect edge between articles without the intermediate redirect
page Figure 6.1 (right side).

2. Collecting Data 5

Figure 2.1: Graph Representation with Internal Redirects: Orange nodes denote
redirect pages, while blue nodes indicate article pages

2.3 Scraping

We have organized the data collection process into four distinct sub-programs

1. Initial Scrape: The first sub-program is responsible for scraping all Wikipedia
articles once to construct the graph.

2. Continuous Updates: The second sub-program handles the real-time
monitoring of Wikipedia’s live change feed. And it promptly updates the
graph with the changes made to Wikipedia.

3. Monthly Metadata Scraping: The third sub-program scrapes monthly
new metadata, including page views or protection status for each article.

4. Redirect Edge Management: The fourth sub-program focuses on up-
dating and adding redirect edges within the graph. This ensures that redi-
rect pages are appropriately linked

2.3.1 Initial Scrape

During the planning phase of our scraping process, we explored various techniques
to ensure the comprehensive collection of all Wikipedia articles. Initially, we con-
sidered using a Breadth-First Search (BFS) algorithm to traverse Wikipedia and
gather all articles, but a fully connected graph would be required for this ap-
proach to work.
To overcome this, our program dynamically downloads the latest file containing
all current Wikipedia article names, provided twice a month by Wikipedia. Uti-
lizing this list, we can individually scrape each article, even if the graph is not
fully connected.
For each article, we request its links to other Wikipedia pages, the plain text,
and the HTML code to extract link names and check their visibility. We perform
this process in parallel to accelerate the data collection, although the number
of threads is limited by the Wikipedia API, which will slow down individual re-
quests.

2. Collecting Data 6

Given Wikipedia’s extensive data, with approximately 17 million articles, includ-
ing 10 million redirect pages and roughly 700 million distinct links, the complete
scraping process took 20 days. Despite its relative slowness compared to build-
ing the complete graph from the Wikipedia dump, this approach significantly
improves the correctness of our graph.

2.3.2 Live Feed

Having successfully built a complete graph of Wikipedia, the next critical step
is to devise a method to keep this graph up to date and incorporate all the
latest changes happening on Wikipedia. To achieve this, we leverage Wikipedia’s
live recent change feed, which provides a real-time listing of all updates made to
Wikipedia. By connecting to this feed, we can monitor the changes and promptly
update our graph accordingly. The live recent change feed provides information
about articles that have been updated, deleted, created, or moved. Based on this
information, we perform the following actions

• Updated Articles: If a page is updated, and we have not yet scraped
it, we simply ignore the update for the time being. We know that we
will eventually collect the newest version of the page during the scraping
process. However, if the page has already been scraped, we perform a new
scrape for that page to obtain the latest content, links, and text. We then
compare this new data to the existing data in our database and update it
accordingly. This ensures that our graph remains accurate and reflects the
latest information available on Wikipedia.

• Deleted/Moved/Created Articles: For articles that have been deleted,
moved, or created, we directly propagate the updates to our graph database.
We do not wait for scrape in these cases to maintain the correctness of the
graph. By promptly updating our graph with these changes.

By continuously tracking all changes on Wikipedia and updating our graph ac-
cordingly, we can maintain an almost up-to-date representation of the Wikipedia
graph at any given time.

2.3.3 Monthly Metadata Scraping

To maintain up-to-date metadata for our Wikipedia articles, we implement a
monthly update process. Each month, we collect all article titles present in
our database. We then iterate through each title and request the corresponding
article’s length, views, and protection status from the Wikipedia API. Once we
have updated all metadata for the articles in our database, the program waits
for a month before repeating the process.

2. Collecting Data 7

Figure 2.2: Left: Dotted node represents an article that has not been scraped yet.
Orange node is a Redirect node which has been scraped, and redirect edges have
been updated accordingly. Right: Dotted node has been scraped now. However,
no redirect edge is present for this article.

2.3.4 Redirect Edge Management

To ensure the integrity of redirect edges within our graph database, we have devel-
oped a separate sub-program dedicated to their maintenance. This sub-program
regularly iterates through all redirect nodes in our database and examines the
incoming edges from articles that link to these redirects. It creates redirect edges
for those articles if they do not already exist, pointing them to the appropriate
target articles.
There is a reasons why we handle redirect edge maintenance separately from our
normal update method. Our normal update method is used for both the initial
scrape of nodes and the continuous updates. If we were to add redirect edges
during the initial scrape in the same manner described above, we would not have
a guarantee that we have added these redirect edges to all nodes that point to
these redirects. This is because there may be nodes that we have not yet scraped,
which could potentially point to these redirects figure 2.2. Therefore, we would
need to iterate through all neighbors of a article node to check if they point to
a redirect and add the redirect edge accordingly. Similarly, during updates, we
would need to check all new links and examine if any redirect nodes are among
them. Additionally, for any deleted links in the update, we would need to re-
move potential redirect nodes. Performing these operations within the normal
update method would introduce significant overhead and slow down the overall
process. Thus, to ensure efficient updating and keep pace with the live feed, we
implemented this functionality in a separate sub-program.

2.4 Recovery

To address the challenge of the initial scrape’s relative duration and the incon-
venience of rebuilding the entire graph from scratch after server maintenance,
we have implemented a recovery mode that ensures the up-to-date version of the

2. Collecting Data 8

graph, even if the program was down for a few days.
Therefore, we store the rcid (revision change ID) in our database, which is a
unique number provided by the Wikipedia API during the live feed scraping.
This rcid indicates the latest update received, along with the date of the call.
When the program restarts, it checks for the presence of this rcid in the database
and verifies if the server downtime was within a predefined threshold period. If
this condition is met, the program retrieves the latest update from the feed and
updates the nodes accordingly until it is up-to-date again. However, if the down-
time exceeds the predefined threshold, we need to clear the databases and initiate
the initial scrape.

Chapter 3

Databases

In the initial stages of the thesis, we conducted a comparison between SQL
Databases and Graph Databases to determine the most suitable option for our
requirements. Through a series of small-scale tests and by referring to the pa-
per titled The Shortest Path Algorithm Performance Comparison In Graph and
Relational Database on a Transportation network [3], which evaluates the perfor-
mance of Postgres, an SQL database system, and Neo4j, a Graph Database, in
finding the shortest path. The findings of the paper indicated that Neo4j achieved
up to a 35% better performance compared to the Postgres database, despite its
higher memory consumption. Given our primary concern for performance rather
than memory usage, we opted to utilize Neo4j as our primary database.

3.1 Neo4j

Neo4j [4] is a graph database management system that offers a different approach
to storing and querying data as traditional relational databases. Neo4j does not
rely on tables and rows, instead it leverages the graph data model to represent
data.
In Neo4j, nodes represent entities or objects, while relationships define the con-
nections between these entities. Nodes can have properties that store additional
information, and relationships can also have properties to capture attributes of
the connections. This graph-based representation allows for way more efficient
traversal and analysis of complex relationships.

3.1.1 Neo4j on Disk

On disk, Neo4j stores data in linked lists. All properties of a node are stored in a
single list, where each element contains the actual property value and a pointer
to the next property in the list. Similarly, relationships between nodes are stored
in linked lists, with elements containing pointers to the start and end nodes, as
well as a pointer to the next relationship between these nodes.

9

3. Databases 10

The nodes themselves have two pointers: one pointing to the start of the prop-
erties linked list and the other to the start of the relationships linked list. This
memory schema allows for extreme flexibility, as each node, even if they belong
to the same type, can have a different number of properties [5].
However, this flexibility comes with a drawback in terms of search performance.
When searching for a specific property, all nodes have to be queried, and each
property list must be examined, which can lead to relatively slow search opera-
tions.

3.1.2 Performance

We conducted a series of performance tests to determine the impact of data
modeling on achieving optimal performance. These tests were performed on the
German Wikipedia dump, which consisted of approximately 5 million nodes and
roughly 200 million edges. Our initial investigation focused on evaluating the
influence of large nodes, i.e., nodes with a significant amount of data, on the
runtime of Neo4j’s shortest path algorithm.
To investigate this, we created two separate instances of the graph based on the
German Wikipedia dump. In the first instance, the nodes only stored their re-
lationships with other nodes and did not contain any additional data. In the
second instance, the nodes were enriched with extensive additional data, includ-
ing the text from the corresponding Wikipedia articles and additional metadata.
We then selected the same subset of nodes in both instances and computed the
shortest path between them.
In our tests Neo4j performs approximately 50% better when the nodes do not
contain additional data or have less data compared to the nodes with substantial
additional data. Furthermore, it can be observed that this performance improve-
ment does not increase as the path length between two nodes grows.

The second test focused on evaluating the performance of the shortest path al-
gorithm when constantly deleting nodes and edges in the graph. Since we con-
tinuously scrape Wikipedia and update our database with changes, the database
needs to handle such operations, which may occur frequently.
For this experiment, we again selected a subset of nodes and computed the short-
est path between a node A and B. Afterward, we deleted a node that was part
of the shortest path and reran the algorithm to observe the impact on runtime.
The objective was to determine whether Neo4j recomputes the shortest path from
scratch.
The result was that the runtime was not affected by the deletion; in fact, it was
even faster. However, this improvement in runtime can mainly be attributed to
the data already being present in the cache.

In the third and final experiment, we compared the runtime performance of

3. Databases 11

Figure 3.1: The graph displays the average time Neo4j’s shortest path algorithm
requires when searching the source and target nodes with their respective article
names or directly with their Neo4j index.

Neo4j’s shortest path algorithm when searching for nodes based on their re-
spective Wikipedia article names versus using Neo4j’s index. Each node in the
graph had a property called title, which represented the name of the article.
We conducted the shortest path computation for the same subset of nodes, and
the results are presented in Figure 3.1, highlighting the significant difference ob-
served.
Figure 3.1 demonstrates the considerable impact this choice has on the runtime.
While Neo4j excels in traversing the graph efficiently from a given node, it strug-
gles when searching for nodes based on specific attributes. This discrepancy can
be attributed to the underlying disk storage mechanism employed by Neo4j. On
average, we achieved almost an 600% performance boost when utilizing Neo4j’s
index instead of searching nodes based on their attributes.

3.1.3 Shortest Path

Internally, Neo4j employs a fast bidirectional breadth-first search algorithm when
predicates can be evaluated during traversal [6]. This optimized approach allows
for efficient and speedy path computations. However, if the predicates cannot be
evaluated during traversal or if we need to consider the entire path as a whole,
Neo4j switches to the slower but exhaustive breadth-first search algorithm. This
ensures the correctness of the shortest path.

3. Databases 12

Figure 3.2: Data Layout in the Database where the left node is a normal article
node and the right node is a redirect node.

3.1.4 Data Layout

Given that the observed performance downgrades when storing all data in the
nodes, while noticeable, do not fall into the category of being excessively extreme,
we have chosen to adopt a more convenient approach for data retrieval. This
involves directly storing all data in Neo4j nodes, focusing more on indexing, which
has demonstrated a significantly higher impact on runtime improvement. Each
individual article will be represented as a dedicated node, featuring attributes
such as the article’s plain text, views over the last month, protection level, article
length, modification date, categories, and for redirect nodes, the name of the
node to which the redirection points Figure 3.2. Additionally, we will establish
directed edges between nodes whenever a link exists between them. These edges
will be equipped with attributes such as isVisible, indicating whether the link is
searchable using CTRL+F, title representing the link’s name, and date signifying
when the link was added.

3.2 Redis

As our investigation has highlighted, the most substantial efficiency enhance-
ment arises when directly indexing nodes in Neo4j rather than accessing them
through properties. Consequently, we require an efficient mapping for titles to
indices. This is where Redis enters the equation. Redis, recognized for its remark-
able speed as a key-value database, supports a variety of data types, including
strings and lists. Notably, operations such as retrieval, setting, or deletion in the
database are executed with an O(1) time complexity for string data types [7],
making it an optimal choice for fulfilling our title to index mapping.
The reason for our choice of an additional database, as opposed to a simple hash
map, lies in the fact that we would otherwise reconstructing the hash map entirely
from scratch each time the program restarts would be far from ideal. Now when

3. Databases 13

searching for nodes based on article names or titles, we can use Redis to quickly
retrieve the relevant node id and then directly access those nodes in Neo4j, thus
avoiding the slower property-based search.

Chapter 4

API

In our backend, we have chosen to utilize FastAPI [8], which is known for its high
performance and efficiency as one of the fastest Python frameworks available. Its
lightweight nature and user-friendly design have enabled us to swiftly initiate our
project.
Furthermore, to establish direct connections to our databases from Python, we
rely on the Python libraries for neo4j and redis.

4.1 Endpoints

4.1.1 Shortest Paths

The /shortestPaths endpoint enables users to find the shortest path between
two Wikipedia articles. Users can specify the source node and the target node
by providing their titles. Additionally, they have the option to set the number of
paths to be returned (use max to retrieve all possible paths), choose whether to
resolve redirects, and filter for visible edges only.

Field Type Description
source string title of the source node
target string title of the target node
numPaths string how many paths get returned (max for all)
redirects bool resolve redirects
visible bool only use visible edges

Implementation

At the beginning of the API call, we check whether the source and target are part
of our Redis database. If they exist, we retrieve their respective IDs; otherwise,
we return an error to the client. Subsequently, we prepare our Neo4j query for
the shortest path, incorporating all the relevant parameters. Firstly, we locate

14

4. API 15

both the source and target nodes using the received IDs from our previous query.
Next, we use the built-in shortest path function from Neo4j to find the shortest
paths that meet our requirements, such as whether the algorithm is allowed to
use redirect edges or only normal edges, and whether it can use invisible edges.
Furthermore, we limit the number of paths returned if the parameter numPaths
is not set to max. Finally, we return the individual paths with their respective
Wikipedia article names, all nodes that are part of a shortest path, and all edges
that are part of a shortest path. After retrieving the necessary data from the
Neo4j database, we proceed to sort and format the return values. This step is
crucial as it enables us to directly input the data into our graph library in the
frontend without requiring any additional computation on the client side.

1 startID = redis.get(source)
2 endID = redis.get(target)
3

4 ...
5

6 query = f"""
7 MATCH (n) WHERE id(n)={int(startID)}
8 MATCH (m) WHERE id(m)={int(endID)}
9 MATCH p=allShortestPaths ((n)-[e{": edge" if not redirects else

""}*]->(m))
10 {"WHERE all(r IN relationships(p) WHERE r.isVisible)" if

visible else ""}
11 WITH nodes(p) AS path , relationships(p) AS rel
12 RETURN [node in path | node.title] as path ,
13 [node in path |
14 [id(node),node.title ,node.articleLength ,node.pageViews

]],
15 [e in rel|
16 [id(startNode(e)),id(endNode(e)),e.title ,e.isVisible ,

type(e)]]
17 {f"LIMIT {int(numberPaths)}" if numberPaths !=" max" else ""}
18 """

4.1.2 Interesting Paths

The /interestingPaths endpoint enables users to filter the shortest path be-
tween two Wikipedia articles based on specific metadata from the articles. For
instance, users can filter for the most viewed path among all shortest paths. To
use this endpoint, users need to specify the source node and the target node by
providing their titles. Additionally, they have the option to set the number of
paths to be returned (use max to retrieve all possible paths), choose whether to
resolve redirects, and filter for visible edges only.

4. API 16

Field Type Description
source string title of the source node
target string title of the target node
numPaths string how many paths get returned (max for all)
redirects bool resolve redirects
visible bool only use visible edges
order string ASC (maximize) or DESC (minimize)

attribute string the attribute for which we want to filter the
shortest paths (e.g., views)

Implementation

The implementation for finding interesting paths is very similar to the one for
the shortest path. The key difference is that we now sum up each path for the
given attribute and sort the results accordingly, either in ascending or descending
order, depending on whether we want to maximize or minimize the attribute
value. Apart from this, the rest of the query and function remains almost the
same.

1 query = f"""
2 ...
3

4 reduce(res=0, x in [node in path|node.{ attribute }]| res + x
) as sum

5 ORDER BY sum {order}
6

7 ...
8 """

4.1.3 Neighborhood

The /neighborhood endpoint allows users to compute the neighborhood of a
given node in the graph. Users can specify the source node by providing its
title. Additionally, they have the option to retrieve incoming and outgoing edges,
control the number of incoming and outgoing edges to fetch, resolve redirects if
needed, and filter for visible edges only.

4. API 17

Field Type Description
source string title of the node
incoming bool if we want to get the incoming edges
numIncoming string how many incoming edges ("max" for all)
outgoing bool outgoing edges
numOutgoing string how many outgoing edges ("max" for all)
redirects bool resolve redirects
visible bool only want visible edges

Implementation

In the same manner as for the shortest paths, we begin by searching for the node
ID of the source article in our Redis database. Next, we query our database for
all outgoing edges from this node if the outgoing flag is set to true, limiting the
returned neighbors to the specified parameter numOutgoing. Similarly, we do the
same for incoming edges. After retrieving all the necessary neighbor nodes from
the Neo4j database, we proceed to sort and format the return values, following
the same process as we did for the shortest paths.

1 nodeID = redis.get(source)
2

3 ...
4

5 query_outgoing = f"""
6 MATCH (n) WHERE id(n)={int(nodeID)}
7 MATCH (n) -[e{": edge" if not redirects else ""}]->(m)
8 {"WHERE e.isVisible" if visible else ""}
9 RETURN

10 [id(startNode(e)),id(endNode(e)),e.title ,e.isVisible ,type(e
)],

11 [id(m),m.title ,m.articleLength ,m.pageViews]
12 {f"LIMIT {int(numOutgoing)}" if numOutgoing !=" max" else ""}
13 """

4.1.4 Random Walk

The /randomWalk endpoint allows users to initiate random walks in the graph,
starting from a specified source node. Users can determine the length of the
random paths pathLength and the number of random walks to be performed
numWalks from the source node. Additionally, users have the option to filter for
visible edges only and resolve redirects during the random walk process.

4. API 18

Field Type Description
source string title of the source node for the random walk
pathLength int how long the random paths should be

numWalks int how many random walks we take from the source
node

visible bool only use visible edges
redirect bool resolve redirects

Implementation

Since Neo4j does not directly support a random walk function, we have imple-
mented our own. Firstly, we obtain the nodeID of our source article. Then, we
utilize two nested loops: one for the number of walks and the other for each
step in the walk. During each step, we perform two database calls. The first
call calculates the number of valid outgoing edges for the current node, and the
second randomly selects one edge from them. To achieve this, we query for all
outgoing edges and then skip the first p × numberEdges edges, where p ∈ [0, 1]
is randomly generated at the beginning of each step. Additionally, we restrict
the number of returned nodes to 1, as we require only one random neighbor. We
repeat this process until we reach the desired path length. If the path length is
reached, we reset the node to the source node and proceed with another walk
until the specified number of walks is completed. Afterward, we sort and format
the result before returning it to the client.

1 nodeID = redis.get(source)
2

3 ...
4

5 for walk in range(numWalks):
6

7 ...
8

9 for length in range(pathLength):
10 p = random.random ()
11

12 numEdges = f"""
13 MATCH (n) WHERE id(n)={int(nodeID)}
14 MATCH (n)-[e{": edge" if not redirects else ""}]->(m)
15 {"WHERE all(r IN relationships(p) WHERE r.isVisible)"
16 if visible else ""}
17 RETURN COUNT (*)
18 """
19

20 ...
21

22 source = f"""
23 MATCH (n) WHERE id(n)={int(nodeID)}
24 MATCH (n)-[e{": edge" if not redirects else ""}]->(m)

4. API 19

25 {"WHERE all(r IN relationships(p) WHERE r.isVisible)"
26 if visible else ""}
27 RETURN
28 COUNT (*) as number ,id(m) as id,
29 [id(n),id(m),e.title ,e.isVisible ,type(e)] as edge ,
30 [id(n),n.title] as source ,
31 [id(m),m.title] as target
32 SKIP {int(p*numEdges)} LIMIT 1
33 """
34

35 ...

4.1.5 Search

Since our Redis database relies on an exact match, providing the correct spelling
of the desired article is crucial, as there is no spelling correction or elastic search.
To tackle this challenge, we implemented recommended articles while typing,
utilizing the Wikipedia API for searching, which performs the elastic search for us.
This ensures that users receive accurate spelling suggestions and recommended
articles while searching

Field Type Description
id string The string which was type until now

Chapter 5

Frontend

With the entire infrastructure now in place, encompassing the storage and contin-
uous updates of the Wikipedia graphs, the website serves as a powerful method
to showcase and visualize the results.
The primary objective of the website is to present the graphs in an user-friendly
manner. By creating an intuitive and interactive platform.

5.1 Framework

For our Frontend, we utilize React [9]. React is a popular and powerful JavaScript
library for building interactive and dynamic user interfaces. It is widely adopted
in web development due to its component-based architecture, which allows de-
velopers to create reusable and modular UI elements. React’s virtual DOM effi-
ciently updates only the necessary parts of the UI, leading to enhanced perfor-
mance and responsiveness. This makes React an ideal choice for building modern,
scalable, and maintainable web applications.
Additionally, we have incorporated two essential libraries, namely Redux [10]
and react-vis-network-graph [11], to enhance our website’s functionality.
The incorporation of Redux makes it easier to manage the state of the appli-
cation across multiple components in react. This powerful state management
library streamlines the handling of data flow and ensures consistency throughout
the user interface.
As for rendering the final computed graph to the display, we rely on the react-
vis-network-graph library which makes it easy to plot network graphs.

5.2 Website

Our primary objective was to create a user-friendly and aesthetically pleasing
website that seamlessly integrates all the required functionalities. We focused on
designing a clean and intuitive interface to ensure a smooth and enjoyable user
experience while encompassing the full range of functionalities we aimed to offer.

20

5. Frontend 21

Figure 5.1: The home screen of the website

5. Frontend 22

Figure 5.2: The images display all possible features and filters that are available.

Figure 5.3: Home Screen of the Website Displaying a Graph

5. Frontend 23

Our home screen has a minimalist design, primarily comprising input fields
for the desired articles (refer to Figure 5.1). Additional functionalities are tucked
away within a collapsible sidebar, providing options to select different modes and
tailor the final graph (refer to Figure 5.2). The graph itself maintains a simplicity-
first approach, revealing further details upon hovering. Hovering over an edge
exposes the actual link name, while hovering over a node provides additional
information about the respective article. Positioned below the graph is a display
of all paths within it, facilitating individual investigation (refer to Figure 5.3).

Chapter 6

Deploying

As a final step, we were required to deploy our program to a server where it can
run efficiently. For this purpose, we chose a Linux server with 64 GB RAM and
32 cores, providing the necessary computational power to track all changes on
Wikipedia. The initial scrape, using this configuration, took approximately 20
days to complete. The limiting factors were the Wikipedia API, which slowed
down our requests if we made too many in a short period, and the memory,
as the Neo4j database ultimately occupied 103 GB. Consequently, not the en-
tire database could be loaded into memory, impacting the overall progress. In
comparison, the Redis database occupied only 1.5 GB in memory

6.1 Docker

For the deployment of our program, we utilized Docker. Docker serves as a
powerful and widely-used containerization platform, simplifying the deployment,
management, and execution of applications in an isolated and consistent envi-
ronment. Containers function independently, encapsulating their own software,
libraries, and configurations, while also enabling seamless communication through
well-defined channels. Notably, they share the services of a single operating sys-
tem kernel, leading to resource-efficient performance compared to conventional
virtual machines [12].

Figure 6.1: The diagram illustrates the program’s architecture, with each block
representing a distinct Docker container.

24

6. Deploying 25

In our case, our program is designed to operate within five distinct Docker con-
tainers, each responsible for specific components: one for each database, the
API, the website, and the scraping program. Leveraging Docker’s portability, our
program enjoys the flexibility to run seamlessly on Linux, Windows, or macOS
systems, empowering us to effortlessly switch between different environments.

Bibliography

[1] “6 degree of wikipedia.” Jacob Wenger. [Online]. Available: https:
//www.sixdegreesofwikipedia.com/

[2] “Redirects.” Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/
Wikipedia:Redirect

[3] D. O. MARIO MILER, DAMIR MEDAK, “The shortest path algorithm per-
formance comparison in graph and relational database on a transportation
network.” [Online]. Available: https://hrcak.srce.hr/file/183346

[4] Neo4j. [Online]. Available: https://neo4j.com

[5] “Neo4j on disk.” Neo4j. [Online]. Available: https://neo4j.com/developer/
kb/understanding-data-on-disk/

[6] “Shortest path planning.” Neo4j. [Online]. Available: https://neo4j.com/
docs/cypher-manual/current/execution-plans/shortestpath-planning/

[7] Redis. [Online]. Available: https://redis.io/docs/about/

[8] Fast API. [Online]. Available: https://fastapi.tiangolo.com/

[9] React. [Online]. Available: https://react.dev/

[10] Redux. [Online]. Available: https://redux.js.org/

[11] Vis. [Online]. Available: https://visjs.github.io/vis-network/docs/
network/

[12] Docker. [Online]. Available: https://docs.docker.com/

26

https://www.sixdegreesofwikipedia.com/
https://www.sixdegreesofwikipedia.com/
https://en.wikipedia.org/wiki/Wikipedia:Redirect
https://en.wikipedia.org/wiki/Wikipedia:Redirect
https://hrcak.srce.hr/file/183346
https://neo4j.com
https://neo4j.com/developer/kb/understanding-data-on-disk/
https://neo4j.com/developer/kb/understanding-data-on-disk/
https://neo4j.com/docs/cypher-manual/current/execution-plans/shortestpath-planning/
https://neo4j.com/docs/cypher-manual/current/execution-plans/shortestpath-planning/
https://redis.io/docs/about/
https://fastapi.tiangolo.com/
https://react.dev/
https://redux.js.org/
https://visjs.github.io/vis-network/docs/network/
https://visjs.github.io/vis-network/docs/network/
https://docs.docker.com/

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Wikipedia Game
	1.2 Related Work

	2 Collecting Data
	2.1 Wikipedia API
	2.2 Challenges
	2.3 Scraping
	2.3.1 Initial Scrape
	2.3.2 Live Feed
	2.3.3 Monthly Metadata Scraping
	2.3.4 Redirect Edge Management

	2.4 Recovery

	3 Databases
	3.1 Neo4j
	3.1.1 Neo4j on Disk
	3.1.2 Performance
	3.1.3 Shortest Path
	3.1.4 Data Layout

	3.2 Redis

	4 API
	4.1 Endpoints
	4.1.1 Shortest Paths
	4.1.2 Interesting Paths
	4.1.3 Neighborhood
	4.1.4 Random Walk
	4.1.5 Search

	5 Frontend
	5.1 Framework
	5.2 Website

	6 Deploying
	6.1 Docker

	Bibliography

