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Abstract

In this work, we propose an approach which uses large language model augmen-
tation to boost contrastive sentence representation learning. This thesis builds
upon the unsupervised SimCSE approach by using paraphrases generated by
large language models such as ChatGPT and Vicuna. First, we generate a new
sentence dataset and then empirically determine a suitable prompt for paraphrase
generation, using metrics that measure sentence similarity and lexical and syn-
tactical structure. After generating paraphrases for each sentence in the dataset,
we use them as positive examples during contrastive learning, whereas unsuper-
vised SimCSE only relies on dropout. Our models manage to outperform the
unsupervised SimCSE models on semantic textual similarity tasks, by employ-
ing our paraphrase training method or only using the new sentence dataset in
the unsupervised SimCSE training framework. We also perform an analysis on
the STS datasets and compare alignment and uniformity of our models to the
SimCSE models.
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Chapter 1

Introduction

In Computer Science, more specifically in the field of Natural Language Process-
ing (NLP), learning sentence embeddings is a fundamental problem which has
been studied thoroughly in past papers. Learning deep representations of sen-
tences allows us to perform various downstream tasks such as text classification,
sentiment analysis and machine translation, as the learned embeddings contain
information about semantic, syntactic and lexical structures of the sentence.

One method to obtain meaningful sentence representations is through training
machine learning models by employing self-supervised contrastive learning. Con-
trastive learning works by pulling embeddings of semantically similar sentences
closer together and pushing embeddings of sentences with different meanings fur-
ther apart. In the SimCSE [1] paper, the authors demonstrate the effectiveness of
contrastive learning combined with pre-trained language models such as BERT
[2] or RoBERTa [3].

In this work, we build upon the SimCSE model by using data augmentation
methods provided by ChatGPT and other large language models (LLM). Due
to the self-supervised contrastive objective, data augmentation plays a big part
for this type of training. However, this has been a difficult challenge in NLP
because of the discrete characteristics of the human language. As large language
models have risen in popularity and have become commercially available, users
have discovered that they are useful tools for data augmentation methods such
as paraphrasing. This thesis showcases the effectiveness of using paraphrases
generated by LLMs for the contrastive learning objective.
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Chapter 2

Background

2.1 Contrastive Learning

The aim of contrastive learning is to generate effective embeddings of sentences
by pulling representations of semantically similar neighbors together and pushing
dissimilar neighbors apart. This self-supervised learning method thus requires a
set of sentence pairs D = {(xi, x+i )})mi=0 where xi and x+i are semantically similar
sentences and x+i is called the positive example for xi. As our work is based on
the SimCSE [1] framework, we also follow the contrastive objective proposed in
SimCLR [4], which uses the cross-entropy loss function with in-batch negatives.

Let hi and h+i be the embeddings of xi and x+i , obtained by feeding the inputs
through a pre-trained embedding model like BERT [2] or RoBERTa [3]. Then
the training objective for (xi, x

+
i ) in a batch of N pairs of sentences is:

l(xi, x
+
i ) = − log

exp(sim(hi, h
+
i )/τ)∑N

j=1 exp(sim(hi, h
+
j )/τ)

, (2.1)

where τ is the temperature hyperparameter and sim(hi, h
+
i ) measures the simi-

larity, in this case the cosine similarity h⊺
i h

+
i

||hi||·||h+
i || .

One challenge in contrastive learning is the prerequisite of having semantically
related example pairs. Methods such as word deletion, reordering or substitution
have been tried, however, just using dropout as we will see in 2.3 has proven to
work better than the previously mentioned approaches, as shown by the SimCSE
paper.

To characterize the effect of contrastive learning, Wang and Isola [5] pro-
pose metrics called alignment and uniformity. Alignment describes the expected
distance between embeddings of positive sentence pairs. Conversely, uniformity
calculates how uniformly distributed the embeddings are in the latent space.
Thus, contrastive learning aims to increase alignment of positive pairs by reduc-
ing the distance between positive pairs while seeking to increase the uniformity
so embeddings of random sentences are further apart.

2



2. Background 3

2.2 Pre-trained Encoder Models

Pre-trained encoder models are language models which are trained on large
amounts of unsupervised text data using self-supervised learning to learn a dis-
tribution on the given vocabulary of words. This allows the model to understand
context of words and sentences and capture semantic relationships within the
language. The following subsections will introduce two pre-trained encoders.

2.2.1 BERT

Bert, which stands for Bidirectional Encoder Representations from Transformers,
is a machine learning model based on transformers [6], which uses the attention
mechanism to allow the model to focus on context and enables parallel computa-
tion. It utilizes the encoder part of transformers by stacking blocks of attention
layers and feed-forward neural networks on top of each other.

Pre-training the BERT model works by employing the two following methods
in parallel: Masked Language Modeling (MLM) uses a large corpus of text, which
is first turned into input tokens. Then, some percentage of tokens are randomly
masked and the model is tasked with predicting the original masked tokens based
on the surrounding context. This process enables the model to understand deep
bidirectional relationships between words in a sentence. On the other hand, Next
Sentence Prediction (NSP) allows the model to learn sentence-level relationships
and coherence by giving the model two sentences and letting the model predict
whether or not they appear consecutively in the original text. Here, the second
sentence is actually the next sentence in the original sequence 50% of the time,
else a random sentence from the corpus is taken.

After pre-training, BERT can be fine-tuned to downstream tasks such as
text classification, machine translation and sentiment analysis, by using the pre-
trained parameters and tuning them with data from the respective task.

2.2.2 RoBERTa

RoBERTa, which stands for Robustly Optimized BERT Approach, is an encoder
model which shares many similarities in architecture and training strategy with
BERT. The key differences are the following: RoBERTa is trained on a larger
corpus of text than BERT. While BERT uses MLM and NSP for pre-training,
RoBERTa removes the NSP task and instead focuses only on MLM. In addition,
the sentences used for pre-training are longer and a larger batch size is used, along
with other small tweaks to the training procedure. Furthermore, RoBERTa also
uses the transformer architecture, however, with more parameters, which allows
it to capture more complex language representations.
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2.3 SimCSE

SimCSE is a simple contrastive learning framework for sentence embeddings.
It takes the pre-trained BERT and RoBERTa models and then continues to
train the parameters using contrastive learning, making use of the contrastive
objective presented in section 2.1. The authors propose both an unsupervised
and a supervised method and evaluate the model on standard semantic textual
similarity (STS) [7, 8, 9, 10, 11, 12] tasks.

2.3.1 Unsupervised SimCSE

Unsupervised SimCSE utilizes a simple key idea: given a set of sentences {xi}mi=1,
take x+i = xi in the contrastive loss formula given in 2.1. In order for the con-
trastive objective to work, the framework uses independently sampled dropout
masks for the two inputs. These are the same type of masks described in the orig-
inal transformers paper, which are placed on the fully-connected layers and atten-
tion vectors. During training, each input is fed to the encoder with the respective
dropout mask. Thus, the model generates two different embeddings, which are
then used in the contrastive loss function. In the original implementation, unsu-
pervised SimCSE is trained with one million randomly sampled sentences from
English Wikipedia.

By using dropout as a form of data augmentation, the model achieves better
scores for various STS tasks than methods such as word deletion, word replace-
ment or using the next sentence as a positive example. The default value of
p = 0.1 is used for dropout as determined by the authors of SimCSE through
experiments.

Our work builds upon unsupervised SimCSE by taking x+i = pij where pij
represents the j-th paraphrase of xi with j ∈ {1, .., 5}. The exact training setup
is showcased in section 4.1.

2.3.2 Supervised SimCSE

Supervised SimCSE leverages smaller, supervised datasets to perform contrastive
learning. Natural language inference (NLI) datasets [13, 14] contain supervised
data about the relationship between two sentences, namely entailment, neutral
or contradiction. For each given sentence, human subjects are tasked to write
another sentence which is definitely true (entailment), one which might be true
(neutral) and one which is absolutely false (contradiction).

Due to the fact that for every sentence xi there is a positive example x+i and
a negative example x−i , the contrastive objective can be extended to incorporate
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the negative example as follows:

l(xi, x
+
i , x

−
i ) = − log

exp(sim(hi, h
+
i )/τ)∑N

j=1

(
exp(sim(hi, h

+
j )/τ) + exp(sim(hi, h

−
j )/τ)

) , (2.2)

where hi represents the respective embedding after feeding it into the encoder
during training. This new objective in combination with the supervised train-
ing data leads to a significant performance increase compared to unsupervised
SimCSE.

2.4 ChatGPT

On November 30, 2022 OpenAI announced ChatGPT1, an artifical intelligence
model trained to generate a detailed response given an instruction in a prompt.
The model architecture is based on GPT-3.5 from OpenAI’s series of GPT (Gen-
erative Pre-Training) models [15], however the exact structure of the original
model is undisclosed.

ChatGPT is trained using Reinforcement Learning from Human Feedback
(RLHF) [16] using human AI trainers. They provide conversations in which
they imitate both the user and the AI assistant. Furthermore, random model-
generated examples are selected and additional responses are sampled. Then,
AI trainers rank the generated responses by quality to create a reward model.
Finally, Proximal Policy Optimization (PPO) [17] is used to fine-tune ChatGPT
with the help of the gathered supervised data.2

ChatGPT gained massive popularity among the general public after its release
due to its question answering abilities and versatility. It allows users to customize
and guide a conversation towards their preferred length, style, level of detail and
language in virtually any domain.

2.5 Vicuna

Vicuna-13B3 is an open-source AI chatbot, published on March 30, 2023. The
model is trained by fine-tuning LLaMA [18] using data from ShareGPT4, where
users can share conversations they had with ChatGPT. The Vicuna team claims
over 90% quality of its model compared to ChatGPT by letting GPT-4 judge the
models’ responses in terms of helpfulness, relevance, accuracy and detail. One

1https://openai.com/blog/chatgpt
2https://openai.com/blog/chatgpt
3https://lmsys.org/blog/2023-03-30-vicuna/
4https://sharegpt.com/
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special aspect of Vicuna is the low training cost of only $300, using 8 A100 GPUs
for one day.

Vicuna is of particular interest for us, as it is open source and thus can be used
in our own cluster for paraphrase generation instead of paying for ChatGPT API.
Additionally, the proclaimed 90% quality compared to ChatGPT is promising.
Later in section 4.2.1 we showcase the quality of the paraphrases generated by
ChatGPT compared to the examples generated by Vicuna.



Chapter 3

Data Generation

This chapter showcases the methods we use to generate the data needed to con-
duct the experiment. This includes the training dataset with the original sen-
tences and the paraphrase dataset, containing 5 unique paraphrases for each
original sentence. Additionally, we examine the difference in quality of the para-
phrases generated by ChatGPT and Vicuna.

3.1 Training Dataset

The dataset for unsupervised SimCSE [1] contains 106 randomly sampled sen-
tences from English Wikipedia according to their published paper. After inspect-
ing the first few hundred sentences of the dataset, it can be concluded that the
authors sampled random Wikipedia articles and then split the text into sentences
using a sentence tokenization tool. As the raw article text contains titles for sec-
tions and tokenization tools are not fully reliable, the sentence dataset contains
numerous examples which are short phrases or even single words. These instances
pose a challenge for paraphrases generated by LLMs, as the answer is either that
is not possible to paraphrase the input or the response contains 5 paraphrases
with fictitious information generated by the LLM.

Consequently, we look for a way to generate a new sentence dataset with 106

sentences, which are more suitable for paraphrases. We decide to take sentences
from English Wikipedia like in the unsupervised SimCSE experiment, using the
Wikipedia dataset provided by Hugging Face1. This dataset contains over 6 mil-
lion cleaned articles where markdown syntax and unwanted sections like refer-
ences are removed. To parse the articles into sentences and words, we employ the
sent_tokenize and word_tokenize tools from NLTK2. However, as mentioned,
these tools are not fully reliable and struggle with the line breaks contained in
the raw article data, which is stored in a single string. Thus, we explore 3 ways
to sample 106 sentences from the Hugging Face Wikipedia dataset.

1https://huggingface.co/datasets/wikipedia
2https://www.nltk.org/

7
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One method is to sample a random article first and remove all line breaks,
characterized in Python strings as \n. Then, we use sent_tokenize and get an
array of strings which should contain a sentence each. If the result of the sentence
tokenization gives less than 10 sentences, we resample the article, as very short
articles tend to contain few suitable sentences for paraphrasing. Finally, we pick a
random sentence from the first 60% of the article, because often times the articles
in the dataset still contain references and external links at the end, although the
articles are cleaned. Additionally, we use word_tokenize to split the chosen
sentence into words and finally take the sentence if it contains between 10 to 50
words. This measure is taken to filter out examples, which are only a short phrase
or several sentences concatenated into one string. We repeat this procedure 106

times to generate the whole sentence dataset.

The second method differs in the order of operations. First, a random sentence
is sampled from a random article without filtering out line breaks. Then, only
sentences which do not contain line breaks are chosen for the dataset, with the
same conditions on word length as in the first method.

The third approach tries to generate sentences similarly to the unsupervised
SimCSE dataset. We sample a random article, this time containing more than 20
sentences, without removing line breaks from the article. Afterwards, we take the
article’s first 4 sentences which do not contain line breaks and consist of between
10 and 50 words.

We generate 3 datasets for each of the methods, resulting in 9 total sentence
datasets. To evaluate the quality of the sampled sentences we train the unsu-
pervised SimCSE model with BERT-base [2] as pretrained model with each of
the 9 datasets and compare the results to the unsupervised SimCSE-BERT-base
model from the SimCSE paper. We use the same evaluation setup as SimCSE
which conducts 7 semantic texual similarity (STS) tasks, namely STS 2012-2016
[7, 8, 9, 10, 11], STS Benchmark (STS-B) [12], which contains a collection of sen-
tences from previous STS datasets and lastly SICK-relatedness (SICK-R) [19].
Additionally, we use the same setting as in the SimCSE paper for comparing the
results, which means no additional regressor for STS-B and SICK-R datasets,
Spearman’s correlation as evaluation score and aggregating the results in the
"all" setting. This means for each STS task, which contains several subtasks, we
concatenate all examples and take the overall Spearman’s correlation instead of
reporting the average correlation of the subtasks. We also use the same training
setup as the SimCSE code, with 1 training epoch, learning rate of 3e − 5 and
batch size 64.

In table 3.1 the results of the models trained with the generated datasets can
be seen, compared to the scores achieved by unsupervised SimCSE with BERT-
base as pretrained encoder. Surprisingly, the first dataset generated with method
1 already scores a higher average than the SimCSE-BERTbase. In general, we can
see that method 1 performs better on average than the other procedures. Thus,
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Unsupervised
SimCSE-BERTbase 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25

Method 1-1 68.78 81.59 75.19 81.44 77.41 78.50 72.22 76.45

Method 1-2 67.45 79.38 72.55 81.34 77.89 76.87 71.25 75.25

Method 1-3 67.73 78.35 69.51 79.18 77.70 75.77 69.83 74.01

Method 2-1 64.93 78.56 69.67 79.26 75.57 74.31 69.11 73.06

Method 2-2 64.84 78.01 69.67 77.38 77.47 75.89 71.17 73.49

Method 2-3 68.80 80.22 71.40 78.17 76.42 76.11 69.06 74.31

Method 3-1 66.88 80.48 71.03 80.47 76.87 76.23 70.38 74.62

Method 3-2 63.05 74.20 67.24 76.63 76.65 75.23 69.37 71.77

Method 3-3 65.69 77.32 70.83 79.59 76.14 75.65 69.30 73.50

Table 3.1: Sentence embedding performance (Spearman’s correlation) of unsu-
pervised SimCSE models trained with our generated datasets compared to the
model from the SimCSE paper. Method x-y denotes the y-th dataset generated
using method x. The highest score among all models for each evaluation task is
highlighted.

we decide to take the dataset from Method 1-1 as the final dataset and use its
sentences to generate paraphrases.

3.2 Prompt

First, we need to define the word paraphrase in order to understand how we can
create a suitable prompt for our needs. In an online dictionary3, paraphrase is de-
fined as: "a restatement of a text or passage giving the meaning in another form,
as for clearness; rewording". To ensure that two sentences give the same meaning
in another form in our case, we can look at the contrastive objective in 2.1 and
observe the term sim(hi, h

+
i ). This measures the semantic similarity between 2

embeddings, which we should keep high for the generated paraphrases. Another
aspect of the definition concerns rewording. We can measure this property by
looking at the lexical and syntactical structure of the sentences.

In order to generate 5 paraphrases for each sentence xi in the sentence dataset,
we create the following prompts for ChatGPT and Vicuna:

1. Generate 5 paraphrases of the following: xi

2. Generate 5 new sentences, which are semantically similar but lexically and
syntactically divergent from the following: xi

3https://www.dictionary.com/browse/paraphrase
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3. I want you to act as a paraphrasing tool. I will provide you a sentence
and your task is to generate 5 paraphrases. These will act as augmented
data that I will use to train a sentence embedding model evaluated on a
semantic text similarity task. The sentence is: xi

4. On a scale of 1 to 5, where 1 is the most semantically similar but least
lexically divergent and 5 is the least semantically similar but most lexically
divergent, generate a paraphrase for each scale of the following: xi

5. Generate 5 paraphrases, where the first paraphrase has the highest semantic
similarity but the lowest lexical divergence and the last paraphrase has
the lowest semantic similarity and the highest lexical divergence, of the
following: xi

The first prompt is simple and general and is used to test the LLMs understanding
of the word paraphrase. The second prompt focuses more on the definition of
paraphrasing by separating the orthogonal metrics of semantic similarity and
lexical and syntactic structure of the generated paraphrase. Prompt 3 is inspired
by Awesome ChatGPT Prompts4 and describes the role the LLM should play
and the use of the generated paraphrases. The last 2 prompts aim to generate
paraphrases of different quality in terms of semantic similarity and rewording.

In order to test the quality of the prompts, we sample the first 100 sentences of
the sentence dataset and generate 5 paraphrases for each sentence with ChatGPT.
We repeat this for every prompt and obtain 5 paraphrase datasets. To empirically
evaluate the quality of the prompts, we measure the metrics semantic, lexical and
syntactical similarity using the methods described in the following subsections.

3.2.1 Parascore

Parascore [20] is a metric for evaluating the quality of paraphrases. It calculates
semantic similarity using the BERT-base model and uses normalized edit dis-
tance to measure lexical and syntactical divergence. The final score is a trade-off
between the two values and performs better than previously proposed paraphrase
evaluation metrics. Ultimately, we decide against using parascore as BERT-base
is a weaker model than SimCSE, which we want to improve on. Thus, we focus
on a simpler metric described in the next section.

3.2.2 Semantic Similarity and BLEU

To evaluate the quality of our generated paraphrases we use a simpler method by
first calculating the semantic similarity sim. This is done using the cosine simi-
larity of the original sentence embeddings and paraphrase embeddings generated

4https://github.com/f/awesome-chatgpt-prompts
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by the supervised RoBERTalarge SimCSE model. Then, we normalize the values
so they lie between 0 and 1. To measure the differences in lexical and syntactical
structure of the original sentence compared to the paraphrases we use the BLEU
score [21]. It counts how many unigrams, bigrams, trigrams and four-grams occur
in the hypothesis (original sentence), as well as in the reference (paraphrases).
Thus, for our generated paraphrases we aim to reach a high semantic similarity
score while keeping the BLEU score low. This leads us to the following metric:

S(xi, pi) =
sim+ 1−BLEU

2
, (3.1)

where xi is the original sentence and pi is the corresponding set of 5 paraphrases.
The score ranges from 0 to 1 and the higher the value the better paraphrase
quality we get. We understand that this metric is not fully reliable, as sentences
which are not related to each other at all would have a high score, because the
BLEU score would be close to 0. However, for our purposes we ensure that all
paraphrases have high enough semantic similarity in addition to comparing the
total scores.

The following table shows the results of averaging the semantic similarity,
BLEU and total scores across 100 sentences and their respective paraphrases:

Sim BLEU Total
Prompt 1 0.947 0.403 0.772
Prompt 2 0.926 0.353 0.786
Prompt 3 0.947 0.452 0.746
Prompt 4 0.911 0.331 0.790
Prompt 5 0.906 0.313 0.797

Table 3.2: Average scores of paraphrases generated by each prompt. For each of
the first 100 sentences of the sentence dataset, we generate 5 paraphrases and
then calculate similarity using cosine similarity and RoBERTalarge supervised
SimCSE. Note that for prompt 4 and 5 only 10 sentences were paraphrased to
test the effectiveness of the prompt. BLEU is calculated with sentence_bleu
from NLTK. Total score is calculated with equation 3.1.

We can observe that prompt 1 and 3 perform similarly, while prompt 2 has a
lower BLEU score and only slightly lower similarity score, resulting in a higher
total score. For the last 2 prompts it has to be noted that only 10 sentences
were paraphrased to test whether the generated paraphrases actually display a
gradient in terms of similarity and BLEU values. In this case, we do not observe
any gradual change in similarity values across all generated sets of paraphrases.
Additionally, the length of these 2 prompts lead to longer response times and
higher token usage, making them less feasable. Due to these results, we decide
to take the second prompt to generate all paraphrases for our sentence dataset.
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3.3 Paraphrase Generation

3.3.1 Paraphrase Generation with ChatGPT

On March 1, 2023 OpenAI announced the ChatGPT API, which gives developers
access to query ChatGPT on a large scale, instead of through the web browser
only. For every API request, the prompt, represented in the form of unstructured
text, is turned into tokens. These tokens can span from one to several characters
inside a word and the pricing for the API is set to $0.002 per 1k tokens.

In our case, we need to prompt the model 1 million times and parse each
response into 5 paraphrases. We first generate paraphrases for 150k sentences
and conduct the experiment to evaluate the effectiveness of the approach before
scaling it to 1 million sentences. Each API response takes around 10 seconds
and uses 300 tokens with deviations in both directions as the length of the input
sentence varies. Thus, we utilize the multiprocessing library from Python to
speed up the paraphrase generation process. We specifically use the Pool class,
where each worker is assigned a distinct interval of sentences. Afterwards, each
process sequentially prompts the model to generate paraphrases for the assigned
sentences. The results are then parsed and in the end we concatenate the results
into one JSON file.

One problem encountered while using the API were various errors (timeout,
internal server error) when sending requests. To combat this, we set timeouts
whenever errors occurred, which remedied the issue. Furthermore, despite using
the newly generated sentence dataset, which should only contain full sentences,
there were some examples where sentence parsing failed and ChatGPT could not
generate 5 different paraphrases. In this case, we skip these sentences and add
the index of the sentence to a list. After generating the rest of the paraphrases,
we go through the indices and replace the bad sentences by sampling new ones
using the first method described in section 3.1.

With this procedure, we are able to generate 5 paraphrases for each of the 1
million sentences in the Wikipedia dataset, costing around $500 in total.

3.3.2 Paraphrase Generation with Vicuna

To set up Vicuna on our own cluster to work like the ChatGPT API, we configure
a controller and register multiple model workers. Then, we create an API server
which works the same as the one used by OpenAI. Thus, we can reuse the code
for paraphrase generation for ChatGPT.

We first generate paraphrases for 150k sentences and conduct the experi-
ment to test the performance of Vicuna-generated paraphrases against ChatGPT-
generated paraphrases. We find that prompt 2 from section 3.2 does not work
well with Vicuna, as it generates new information not contained in the original
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sentence. Therefore, we use prompt 1 and find following evaluation results for
100 sentences and their respective paraphrases:

Sim BLEU Total
Prompt 1 with Vicuna 0.951 0.483 0.734

Table 3.3: Average scores of paraphrases generated by prompt 1 from 3.2. We
use the same 100 sentences used in 3.2.2 for evaluating.

The results show that the paraphrases generated by Vicuna are more similar
to the original sentence in terms of semantic similarity, however, in lexical and
syntactical structure as well. In section 4.2.1 we analyze whether these para-
phrases perform better or worse than examples from ChatGPT.



Chapter 4

Experiment

4.1 Setup

With the new sentence dataset and the generated paraphrase dataset we can
conduct our experiment which uses paraphrases as positive examples in the con-
trastive loss function. The training of the model works as follows: Let j = e
mod 5. During epoch e, for each input sentence xi, we take the j-th paraphrase
pij and feed both of them through the encoder, receiving hi and kij . These em-
beddings are used in the contrastive loss objective, which pulls the representations
of xi and pij (positive pair) closer together and pushes all other examples within
the batch (negative examples) further apart. Thus, the new training objective is:

l(xi, pij) = − log
exp(sim(hi, kij)/τ)∑N
l=1 exp(sim(hi, h

+
l )/τ)

. (4.1)

Here sim(·, ·) represents the cosine similarity, τ is the temperature hyperparam-
eter and h+l is the embedding of the l-th sentence of the batch generated by the
encoder, where l iterates over the indices within the current mini-batch. Due
to the chosen value of j we iterate through every paraphrase exactly once per 5
epochs, thus, for 10 epochs we would use each paraphrase twice.

We implement this training setup by modifying the code from SimCSE’s [1]
codebase. In their implementation of the model training, which is used to train
both supervised and unsupervised SimCSE, they use the default value of 0.1
for attention vector and fully connected layer dropout. This means that even
for training supervised SimCSE on NLI datasets, a dropout mask is used. We
modify the code so we can specify the dropout value ourselves and experiment
with using different dropout values during training.

Next, we implement paraphrase mode during training. The original code
concatenates 2 identical instances of the original sentence dataset together before
tokenizing each sentence. Instead, we concatenate the original sentence dataset
with paraphrase dataset Pi, where Pi consists of the i-th paraphrase for each
sentence in the original sentence dataset. Thus, we obtain 5 different datasets,
which we also pass to the tokenizer.

14
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After tokenization, we turn all the concatenated datasets into Dataloader
instances from Pytorch, using the get_train_dataloader function from Hugging
Face. Here, we initialize the Dataloader with a random sampler, which ensures
that for every epoch the dataset is shuffled into a random order. The result
is 5 Dataloaders, each containing one set of original sentences and one set of
paraphrases. Finally, for epoch e, we use the (e mod 5)-th dataset for training,
such that every dataset is used exactly once every 5 epochs.

We evaluate our models on 7 STS tasks, namely STS 2012-2016 [7, 8, 9, 10,
11], STS-Benchmark (STS-B) [12] and SICK-relatedness (SICK-R) [19]. We use
the same evaluation setup as SimCSE, where the score for each task represents
Spearman’s correlation. Additionally, we do not use an additional regressor for
STS-B and SICK-R datasets and aggregate results in the "all" setting, explained
in section 3.1.

4.2 Results

4.2.1 Experiment with 150k Sentences

First, we showcase the results from training with paraphrases for 150k sen-
tences. In the following, we compare the results from using paraphrases gen-
erated by ChatGPT with paraphrases generated by Vicuna. We use different
pre-trained encoder models with varying hyperparameters and present the mod-
els that achieve the highest average score for each encoder. The scores achieved
by the unsupervised SimCSE counterparts are also shown in table 4.1 for com-
parison. For all of our models in the table, we use a learning rate of 3e− 5 and
batch size of 64. The number of epochs and dropout used during training is
shown in table 4.2.

From these results, using 150k sentences with 5 paraphrases each, we see
that our model using RoBERTa [3] as pre-trained encoders performs better than
the SimCSE models when averaging the evaluation results. However, when us-
ing BERT [2] as pre-trained model, our model performs worse than SimCSE-
BERTbase on average. One peculiarity when looking at the evaluation scores of
our RoBERTa models is the difference in the SICK-R score. Our models using
RoBERTa as pre-trained model perform around 6 points better than the SimCSE
counterparts. We give our hypothesis for this phenomenon in section 4.3.

We also observe the difference in performance when using paraphrases gen-
erated by ChatGPT versus Vicuna. For BERT, the model trained with Vicuna-
generated paraphrases even outperforms the corresponding SimCSE model in
some cases, however the average score is still lower than the score achieved by
the model using ChatGPT’s paraphrases. For RoBERTa, the difference in the
average score is even more striking, as the model trained with Vicuna’s para-
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Unsupervised SimCSE reference models

SimCSE-BERTbase 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
SimCSE-RoBERTabase 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
SimCSE-RoBERTalarge 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90

ChatGPT-generated paraphrases

bert-base-uncased 69.5 80.41 72.18 78.76 78.88 76.41 71.77 75.42
roberta-base 71.89 81.44 72.43 80.01 80.32 79.66 74.11 77.12
roberta-large 72.10 82.91 76.06 83.70 82.78 81.52 77.64 79.53

Vicuna-generated paraphrases

bert-base-uncased 71.12 78.57 72.78 79.02 78.97 76.92 70.0 75.34
roberta-base 70.41 80.18 71.63 79.63 78.6 77.94 73.18 75.94

Table 4.1: Sentence embedding performance of models trained with our exper-
iment setup using 150k sentences. Unsupervised reference models refer to the
best unsupervised models presented in the SimCSE paper. For the ChatGPT
and Vicuna sections, the model denotes the pre-trained encoder used for con-
trastive learning. The highest number per column among models with the same
pre-trained encoder is highlighted.

Model Paraphrases Epochs Dropout
bert-base-uncased ChatGPT 10 0.0
roberta-base ChatGPT 5 0.1
roberta-large ChatGPT 5 0.1
bert-base-uncased Vicuna 10 0.0
roberta-base Vicuna 20 0.0

Table 4.2: Number of epochs and dropout value used during training of models in
4.1. Model refers to the pre-trained encoder used in the experiment. Paraphrases
denotes which LLM generated the paraphrases used in the respective experiment.
The dropout value is used for both fully connected layers and attention vectors.

phrases is worse in every evaluation category than its ChatGPT counterpart.
We attribute the difference in performance to the quality of the generated para-
phrases. When comparing the scores of prompt 2 in table 3.2 with the values
in table 3.3, we see that paraphrases generated by Vicuna have a higher simi-
larity score while having higher BLEU [21] score as well. Thus, the generated
paraphrases are more similar in syntactic and lexical structure to the original
sentence and the model sees a smaller variety of words and sentence structures
during training. For the RoBERTa-base model there is a larger difference in per-
formance, as our paraphrase method seems to perform better with the RoBERTa
architecture than BERT, hence the quality of the paraphrases is more crucial.

Due to the above findings, we decide to scale the experiment to 1 million



4. Experiment 17

sentences for ChatGPT. We extend our paraphrase dataset and generate 5 para-
phrases for each of the remaining 850k sentences in the sentence dataset using
ChatGPT.

4.2.2 Experiment with 1 Million Sentences

After generating the rest of the paraphrases, we have the original sentence dataset
with 1 million sentences and a paraphrase dataset with 5 million sentences in
total. With the same training setup as before, we obtain the results showcased
in table 4.3. We again use a learning rate of 3e− 5 and batch size of 64. Other
parameters such as epochs and dropout value are displayed in table 4.4.

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Unsupervised SimCSE reference models

SimCSE-BERTbase 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
SimCSE-RoBERTabase 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
SimCSE-RoBERTalarge 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90

Paraphrase method using 1 million paraphrases

bert-base-uncased 69.54 78.96 70.89 77.39 77.73 75.41 71.68 74.51
roberta-base 69.51 80.36 71.99 79.34 80.13 79.67 74.87 76.55
roberta-large 72.46 83.78 76.66 81.71 83.21 80.70 75.85 79.20

Table 4.3: Sentence embedding performance of models trained with our experi-
ment setup using 1 million sentences. Unsupervised reference models refer to the
best unsupervised models presented in the SimCSE paper. For the paraphrase
method section, the model refers to the pre-trained encoder used for contrastive
learning. The highest number per column among models with the same pre-
trained encoder is highlighted.

Model Epochs Dropout
bert-base-uncased 5 0.0
roberta-base 5 0.1
roberta-large 15 0.0

Table 4.4: Number of epochs and dropout value used during training of models in
4.3. Model refers to the pre-trained encoder used in the experiment. Paraphrases
denotes which LLM generated the paraphrases used in the respective experiment.
The dropout value is used for both fully connected layers and attention vectors.

From table 4.3 we see that when using 1 million sentences, only our model
using RoBERTa-large performs better than its SimCSE counterpart. Comparing
the average scores, we observe that all 3 models trained on 1 million sentences
perform worse than the models presented in table 4.1 using 150k sentences and
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ChatGPT-generated paraphrases. Our hypothesis for this phenomenon is over-
fitting and insufficient number of parameters of the models.

The SimCSE training framework uses the development set of STS-B [12] as
validation set during training. For our models trained on 1 million sentences,
we observe that the evaluation value reaches its maximum early during training.
Thus, we speculate, that our models overfit easily and further data does not
contribute to performance as the SimCSE framework chooses the best checkpoint
for final evaluation on the test sets.

Additionally, we hypothesize that our models using bert-base-uncased and
roberta-base as pre-trained encoders perform worse than its SimCSE counterparts
because the models have too few parameters. As the 3 encoders used in the
experiment all have different architectures, we can rank them by their number of
parameters. We see that bert-base-uncased has the lowest amount and roberta-
large uses the most. From the average scores in 4.3 we can also observe that our
model using bert-base-uncased performs notably worse than the corresponding
SimCSE model, while roberta-base achieves a similar score and roberta-large even
outperforms SimCSE.

Finally, we again notice the increase of evaluation scores in the SICK-R cat-
egory for our RoBERTa models compared to SimCSE. Looking at our roberta-
large model, the evaluation scores in all other categories are similar to its SimCSE
counterpart. We analyze the evaluation datasets in section 4.3 to investigate this
jump in performance.

4.3 Analysis

4.3.1 Evaluation Datasets

In order to understand the results of the experiments better, we take a closer
look at the evaluation datasets, namely STS12-16, STS-Benchmark and SICK-
relatedness. These consist of sentence pairs, each labeled with a similarity or
relatedness score.

We analyze each evaluation dataset by calculating the average amount of
words per sentence using NLTK’s word_tokenize. As each evaluation dataset
consists of several subsections we also provide an analysis for each category inside
the datasets. Table 4.6 displays the results of our analysis. We observe that many
STS tasks contain examples, which are not full sentences but rather short phrases
or expressions. The length of the examples also varies between categories within
the STS tasks.

To contrast these values, we additionally calculate the average number of
words per sentence of our original sentence dataset and compare it with the
original unsupervised SimCSE Wikipedia dataset. We show the results in table
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4.5, where we see that our sentence dataset contains longer sentences compared
to the SimCSE dataset and sentences from the evaluation datasets. However,
our inital hypothesis that our model performs well on SICK-R due to bias on the
length of the sentences does not appear to be true.

Nevertheless, we see that all SICK-R datasets contain full sentences, while
STS12-16 and STS-B contain examples which are phrases or expressions. As
our sentence datasets and paraphrase datasets only consist of full sentences as
opposed to the SimCSE sentence dataset, our models might perform better when
receiving full sentences as input.

Dataset Amount
Unsupervised SimCSE sentence dataset 22.6
Our original sentence dataset 25.9

Table 4.5: Average number of words per sentence per dataset.
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Name Description Amount

STS12
MSRpar Full sentences from news articles 20.7
MSRvid Short descriptions of videos 7.6
SMTeuroparl Sentences from speeches and debates in the 12.3

European parliament
OnWN Expressions and phrases from lexical resources 8.8
SMTnews Sentences and phrases from news articles 13.5

STS13
FNWN Full sentences from lexical resources 23.3
headlines News headlines 7.7
OnWN Expressions and phrases from lexical resources 8.2

STS14
deft-forum Short sentences and phrases from a forum 10.1
deft-news Full sentences from news articles 17.2
headlines News headlines 7.8
images Short descriptions of images 10.2
OnWN Expressions and phrases from lexical resources 8.8
tweet-news News titles and tweet comments 12.1

STS15
answers-forums Full sentences from answers posted in a forum 17.6
answers-students Short sentences and expressions of explanations 10.8
belief Spoken expressions and phrases 14.9
headlines News headlines 7.9
images Short descriptions of images 10.6

STS16
answer-answer Short sentences from answers 11.1
headlines News headlines 8.2
plagiarism Full sentences from lexical resources 15.2
postediting Full sentences from lexical resources 23.5
question-question Question sentences 11.7

STS-B
sts-dev Collection of examples from STS12-16 13.3
sts-test Collection of examples from STS12-16 14.3
sts-train Collection of examples from STS12-16 11.2

SICK-R
test_annotated Descriptions (Full sentences) 9.7
train Descriptions (Full sentences) 9.7
trial Descriptions (Full sentences) 9.9

Table 4.6: Analysis of each evaluation dataset and its subsections. Amount refers
to the average number of words per sentence of the sentences contained in the
datasets.



4. Experiment 21

To investigate the difference in performance between the STS tasks and
SICK-R further, we look at the distribution of similarity/relatedness score in
the datasets. Specifically, we look at STS-B, as it contains a collection of ex-
amples from STS12-16 and SICK-R. For STS-B, the similarity score ranges from
0 to 5 with 5 being labeled to sentence pairs, which are semantically the most
similar. For SICK-R, the relatedness score ranges from 1 to 5, where 5 means
the sentences are highly related to each other. The following figure shows the
distribution chart of the respective datasets:

Figure 4.1: Distribution of relatedness/similarity scores of SICK-R and STS-B.
Each sentence pair in both datasets is labeled with a score.

We see that SICK-R has more examples with higher scores assigned to them,
while STS-B contains many sentence pairs, which have low similarity score. We
can verify this by calculating the mean score of both datasets and normalizing
the values to the interval [0, 1]. We receive the following values:

Dataset Score
SICK-R 0.63
STS-B 0.52

Table 4.7: Mean relatedness/similarity score of SICK-R and STS-B normalized
to [0, 1].

From the results, we see that SICK-R indeed has a higher mean relatedness
score than STS-B.
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4.3.2 Alignment and Uniformity

In section 2.1 we mention the terms alignment and uniformity that measure how
well representations are distributed in the latent space. To reiterate, alignment
describes the average distance between positive pairs of inputs and uniformity
represents the average distance between any pairs of inputs. To characterize these
metrics, we use the definitions proposed by Wang and Isola [5]:

lalign = E
(x,x+)∼ppos

||f(x)− f(x+)||2 (4.2)

luniform = log E
i.i.d.

x,y∼pdata

e−2||f(x)−f(y)||2 (4.3)

Here, we take sentence pairs from STS-Benchmark with a similarity score higher
than 4 as ppos and all sentences from STS-Benchmark as pdata like in the SimCSE
paper. For both metrics, lower numbers mean better performance.

We calculate the alignment and uniformity scores for BERT-base, RoBERTa-
base, RoBERTa-large, our best performing models from 4.1 using ChatGPT-
generated paraphrases and their SimCSE counterparts. The results can be seen
in table 4.8.

We can see that our models greatly improve uniformity of the pre-trained
encoders, while the base models retain a very low alignment score. Especially
for the RoBERTa base models, we see that both alignment and uniformity are
extremely low, meaning most embeddings generated by these encoders occupy a
very small space. Compared to the SimCSE models, our models have a better
alignment score but worse uniformity. One possible explanation for this occurence
is that we perform data augmentation only on positive examples but still take
the in-batch sentences as negative examples in the contrastive objective 4.1.

Moreover, we see that the alignment and uniformity metrics are not sole
indicators of the model’s performance. SimCSE-RoBERTabase and SimCSE-
RoBERTalarge have very similar values for both alignment and uniformity, with
the model using BERT having marginally better scores. However, the average of
the RoBERTa based model is still higher. Specifically, we acknowledge that the
alignment score for example does not take into account that sentence pairs with
a higher similarity score should have a higher similarity value than less similar
sentence pairs within ppos.

We visualize the alignment and uniformity scores of the models in figure
4.2. Even though we know that lower scores are better for both metrics, it is
not clear how exactly they correlate with performance and what the trade-off
between alignment and uniformity is. We can see that our models generally have
lower alignment but higher uniformity than SimCSE models, but the difference
in performance is not large.
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Model Alignment Uniformity

Base pre-trained encoders

bert-base-uncased 0.0579 -0.2399
roberta-base 0.0008 -0.0079
roberta-large 0.0034 -0.1479

Unsupervised SimCSE models

SimCSE-BERTbase 0.2135 -2.6608
SimCSE-RoBERTabase 0.2136 -2.6478
SimCSE-RoBERTalarge 0.2309 -3.1722

Our models using paraphrases

bert-base-uncased 0.1523 -2.2253
roberta-base 0.1241 -2.0072
roberta-large 0.1358 -2.5677

Table 4.8: Alignment and uniformity scores of the given models calculated using
4.2 and 4.3. The lower the numbers the better.

Figure 4.2: Plot visualizing alignment and uniformity for models in table 4.8.
For both metrics, lower numbers are better.



Chapter 5

Conclusion

In this work, we utilize commercially available large language models such as
ChatGPT and Vicuna for data augmentation of sentences and use the gener-
ated data to improve the unsupervised SimCSE approach. First, we empirically
determine a suitable prompt to generate paraphrases by using paraphrase eval-
uation metrics. Then, we use the original sentences and their paraphrases to
enhance the simple unsupervised SimCSE model. We accomplish this by using
paraphrases during contrastive learning instead of only relying on dropout as
data augmentation.

We manage to achieve better performance on STS tasks than all proposed un-
supervised SimCSE models by either using a new generated sentence dataset and
employing the unsupervised SimCSE training framework or using our paraphrase
approach. Finally, we analyze the performance of our models by examining the
evaluation datasets and calculating alignment and uniformity values of our mod-
els, comparing them to the SimCSE models.
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