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Abstract

The TSP is a hard combinatorial optimization problem, which requires heuristics
to be solved in practice. We create two types of reinforcement learning envi-
ronments that allow an agent to find feasible solutions for this problem, which
correspond to two different approaches to design TSP heuristics. These environ-
ments represent the current state of the solution as graphs, so we employ graph
neural networks to control our agents. These graphs are dense and contain multi-
dimensional edge attributes. We find that existing graph attention layers struggle
to extract information from these edge attributes, and implement an extension
which overcomes these problems.
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Chapter 1

Introduction

Combinatorial optimization problems have many important applications in logis-
tics, network design, supply chain management, bioinformatics, or game theory.
To solve these problems, one must find the element from a discrete set of feasible
solutions that minimizes a given cost function. Unfortunately, feasibility regions
are often exceedingly large and finding the optimum turns out to be computa-
tionally hard.

Heuristics offer a practical and efficient approach to tackle complex combi-
natorial optimization problems. They use domain specific knowledge to explore
and navigate the problem space in order to arrive at close to optimal solutions
in reasonable time. Good heuristics often appear surprisingly simple but their
design requires in-depth expertise of the problem at hand. Using reinforcement
learning (RL), machine learning models can be trained to acquire this knowledge.
In the RL paradigm, the model is trained to maximize its reward when acting in
some environment. This framework has allowed machine learning to be applied
to a diverse set of problems, such as control tasks and games like chess and go.

In this project, we demonstrate the use of reinforcement learning to learn
heuristics for the Travelling Salesperson Problem (TSP). The TSP is a canon-
ical combinatorial optimization problem, where the goal is to find a tour (or
Hamiltonian cycle) through a complete graph with minimal total edge weights.
Because it is NP-hard, finding a good heuristic is especially attractive for any
practical application. Furthermore, one is often only interested in solutions for a
specific type of graph, either of some fixed size or whose weight matrix observes
some property: For instance, graphs with a weight matrix that obeys the triangle
inequality, or weights that correspond to node distances in a plane embedding.
Hence, it is desirable to create heuristics that are trained on some specific set of
graphs which have these properties.

Like many other combinatorial optimization problems, the TSP is modeled on
a graph, which complicates the use of standard neural networks. Instead, we pro-
pose to use graph neural networks (GNNs). GNNs are designed to be equivariant
under graph isomorphisms, similar to image convolution networks being invariant
under translations, and accommodate variable graph sizes, making them ideal for
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1. Introduction 2

a large number of graph problems. GNNs naturally produce one output per node.
This fits the RL use case well, since agents must generate either a probability
distribution or a value estimation over graph vertices, in order to continue the
optimization task.

The TSP accommodates two types of heuristics: 1) a constructive approach,
where the agent successively adds nodes until the tour is complete, or 2) a local
search approach, where the agent starts with a complete tour and then itera-
tively modifies this tour by swapping out some edges. We implement both of
these approaches and compare them. We test a number of RL methods and im-
plementations. While we implement these algorithms ourselves, we also compare
them against a set of implementations from a dedicated RL package. We com-
pare a number of well-established graph convolution schemes, and also provide a
custom convolution design, purpose-built to the given task.

Even though combining reinforcement learning and graph neural networks
in order to solve combinatorial optimization problems is a challenging task, our
results on the TSP show that it is possible to outperform other well-known heuris-
tics on certain problem instances.



Chapter 2

Background

This work lies in the intersection of three research directions of mathematics and
computer science: combinatorial optimization, reinforcement learning and graph
neural networks. In this chapter, we will briefly introduce these three fields, and
zoom-in on the topics which are most relevant for this thesis.

2.1 Combinatorial Optimization

In combinatorial optimization (CO), the goal is to find an optimal solution to a
combinatorial problem. A problem is called combinatorial if its space of feasible
solutions is discrete. As such, many problems with real life applications fall in
this category.

2.1.1 The Traveling Salesperson Problem

The Traveling Salesperson Problem (TSP) is a canonical CO problem. Given a
set of cities and travel costs between them, the goal is it to visit all cities exactly
once in the cheapest way possible, and finally return back home to the starting
city.

More formally, the cities can be represented as a (complete) graph G = (V,E)
with |V | = n. Additionally, an edge weight function w : E 7→ R captures the
travel costs between cities. The chosen route of visiting all cities induces an order
T = v0, v1, . . . , vn−1, vn over the nodes: vi ∈ V is the i’th city visited. Node v0
is the starting city, also referred to as the depot. In order to fulfill the above
constraints about the traveled route, T must encompass all vertices in V , must
be n edge hops long, and its first and last element must be identical. In other
words, T is a Hamiltonian Cycle. In the context of the TSP, such cycles are
usually referred to as tours.

The ultimate goal is to find a tour T with the smallest possible associated
travel cost. To that end, we introduce the cost function C which assigns travel

3



2. Background 4

cost C(T ) to tours T :

C(T ) :=

n−1∑
i=0

w(vi, vi+1)

Hence, the optimization problem becomes:

min
T

C(T )

s.t. V = {v0, v1, . . . , vn−1}
v0 = vn

(2.1)

This formulation appears deceptively simple but finding an optimum T ∗ for the
TSP is in general NP-hard [Mazyavkina et al., 2020]. Still there are a number of
applications for TSP formulations, e.g. in logistics, genome sequencing, drilling
problems, data clustering, etc. [Applegate et al., 2007].

2.1.2 Exact Algorithms

Even though the TSP turns out to be computationally difficult, there are a num-
ber of approaches which solve the problem exactly.

There are n! permutations of V , each inducing a different ordering in which
cities are visited, but some yield equivalent tours. Still, with increasing n, a
naïve brute force approach becomes infeasible very quickly. The Held-Karp algo-
rithm [Held and Karp, 1962] lessens the exploding runtime by utilizing dynamic
programming (DP). It defines g(S, v) for S ⊂ V and v ∈ V \ S as the shortest
path from the depot to v going through exactly every vertex in S in some order.
Observing that g(S, v) = mini g(Si, vi) + w(vi, v) with S = Si ∪ {vi} allows the
exploitation of the problem’s recursive nature. Finally, the minimum tour cost is
equivalent to minu g(V \{u}, u) and its actual tour can be found via backtracking
through the DP-table. All-in-all, the Held-Karp algorithm decreases the asymp-
totic runtime from the super-exponential term of a naïve brute-force approach to
Θ(n2 · 2n) but also uses Θ(n · 2n) space.

The TSP can also be formulated as a mixed integer linear program (MILP),
and there even is an MILP solver specialized on the TSP, called Concorde [Mazyavk-
ina et al., 2020]. But this approach comes with limitations. For example the
famous MILP formulation due to Chvátal et al. [2010] imposes an exponential
number of so called subtour elimination constraints. Another well-known formu-
lation, the Miller-Tucker-Zemlin formulation [Miller et al., 1960], only calls for n2

number of extra constraints. Instead, big-M constraints are utilized which often
suffer from worse relaxations.
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2.1.3 Heuristics

Heuristics produce solutions that are not optimal in general but are reasonable in
practice, and usually offer a substantially better runtime than exact algorithms.

We can differentiate two kinds of heuristics: First, a constructive approach
builds a solution step-by-step starting from scratch. In each step some parts
of a potential solution is either included or excluded due to some (often locally
optimal) criterion. For the example of the TSP, one might consider the following
procedure: Start at the depot, travel to the city that is closest to the current
location and has not been visited yet, repeat until every city has been visited,
then return to the depot.

Second, the local search approach starts with some feasible solution, which
might be randomly sampled or computed otherwise with some heuristic. This
initial solution is assumed to be suboptimal, and the goal is to improve it step-
by-step. The word local implies that each iteration only considers some small
subset of other feasible solutions, which is usually called the neighborhood of the
initial solution. The elements of this neighborhood can be computed efficiently
by modifying the given solution in some specified way.

For the TSP, the most well-known local search heuristic is the so-called two
exchange, or 2-opt technique: In each step, the solution is modified by selecting
two non-incident edges of the tour, which are then swapped out for two other
edges. Since there is only one way to reconstruct another valid tour once these
two edges have been removed, this technique is arguably the simplest local search
technique for the TSP.

Figure 2.1: Schematic of a two exchange. Swapping edges e, f in tour T
for edges g, h leads to new tour T ′. The cost difference is C(T ′)−C(T ) =
w(g) + w(h)− w(e)− w(f).

2.1.4 Approximation Algorithms

Approximation algorithms are similar to heuristics in the sense that they gener-
ally produce suboptimal solutions but admit reasonable runtimes even for larger
graphs. In contrast to heuristics, they come with some guarantees about how
good the found solution is. Usually, this is quantified using the so-called approx-
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imation factor α. An α-approximation algorithm outputs a solution that is at
most α times worse than the optimum.

For the metric TSP, there exists a famous 2-approximation algorithm, that
works as follows: First, construct a minimum spanning tree (MST) over the
input graph. Then double each edge in the MST, resulting in a closed walk.
Finally, take short-cuts by connecting repeated vertices of the closed walk directly.
The cost of the MST is guaranteed to be smaller than the optimal TSP tour.
Additionally, short-cutting will not increase the closed walk’s length, if edge
weights adhere to the triangle inequality, but will remove repeated vertices until
a valid TSP tour is found. Hence, α = 2.

The algorithm proposed by Christofides [1976] also employs an MST-based
approach, but is more advanced. Still, it employs the short-cutting mechanism.
Overall, it admits polynomial runtime coupled with an improved approximation
factor of 3/2.

Ultimately, both of these algorithms can guarantee their approximation fac-
tors only for TSP instances with symmetric edge weights which adhere to the
triangle inequality. Technically, their procedures can still be applied to more
general graphs but found tours may be worse than α times the optimum.

2.2 Reinforcement Learning

Reinforcement learning (RL) is a machine learning paradigm, where an agent’s
goal is to maximize its cumulative reward when acting in some given environment.
These RL environments are modelled using Markov Decision Processes (MDP)
[Bellman, 1957].

A MDP is a tuple (S,A, T,R). S is the state space and A the action space.
Taking action a ∈ A in space s ∈ S leads to a change in to a new state s′ ∈
S. Such changes are modeled by the transition function T where T (s′|s, a) =
Pr[s′|s, a], i.e. the probability of reaching s′ through a when in s. In our case, T
is deterministic. A (s, a, s′) triple is called a transition. Finally, R : S × A 7→ R
is a reward function, assigning a value R(s, a) to taking an action a when being
in state s.

The goal of reinforcement learning is to find a policy function π : S 7→ A such
that the cumulative reward

E

[
H∑
t=0

γtR(st, at)

]
= E

[
H∑
t=0

γtR(st, π(st))

]

is as large as possible. The discount factor 0 < γ ≤ 1 indicates how much the
agent prioritizes short-term gains in the reward. The number of summands in
the cumulative reward is bounded by horizon H.
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2.2.1 On-policy Methods

In the policy-based, or on-policy, approach, the agent’s policy is represented ex-
plicitly by πθ(a|s) to determine the probabilities of taking action a in state s. In
this project, this function will be represented by a neural network with weights
θ.

The goal of policy-based reinforcement learning is to optimize θ to obtain
as much cumulative reward as possible. This is done by gradient-ascent of the
following utility function:

U(θ) : = E
[ H∑
t=0

γtR(st, at)|πθ
]

= E
[
R(τ)|πθ

]
=

∑
τ∈(S,A)×(H+1)

R(τ)P (τ |πθ) (2.2)

where we have used the letter τ to denote an entire trajectory or rollout of state-
action pairs. And R(τ) denotes the cumulative discounted rewards, also called
the return.

Current methods for on-policy RL can be grouped into two categories: 1)
policy-gradient algorithms, and 2) trust-region methods.

Policy Gradient Methods Given the utility function U(θ) from Equation 2.2,
policy gradient methods [Sutton et al., 1999] are based on the following gradient
estimation:

∇θU(θ) =
∑

τ∈(S,A)×(H+1)

R(τ)∇P (τ |πθ)

=
∑

τ∈(S,A)×(H+1)

P (τ |πθ)R(τ)
∇P (τ |πθ)
P (τ |πθ)

= Eτ∼πθ
[
∇θ logP (τ |πθ)R(τ)

]
Note that this expectation can be approximated by simply sampling rollouts
according to the current policy πθ and averaging the bracketed expression. Due
to the log, we can reformulate:

∇θU(θ) = Eτ∼πθ
[ ∑
(st,at)∈τ

∇θ log πθ(at|st) R(τ)︸ ︷︷ ︸
:=Ât advantage est. of (st, at)

]
Hence, the gradient can be computed w.r.t. the log-probability output of the
policy network πθ.
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Note that most methods employ a modified version of this formula where
the advantage estimate for a given state-action pair only includes the rewards
of subsequent actions, as opposed to the whole trajectory. Another practical
modification involves per-timestep normalization of the advantage estimates.

While this basic policy gradient method enables gradient ascent of the utility
function U , more modern approaches have been developed in recent years. These
methods involve even more sophisticated ways to estimate the advantage of a
given state-action pair.

A popular choice are so-called actor-critic methods [Mnih et al., 2016]. They
utilize an additional value or critic network, which is used to predict the returns
that the policy will obtain starting from a given state. An even more general
way to estimate the advantage has been introduced by Schulman et al. [2018],
coined generalized advantage estimation (GAE). Since the critic network is used
to determine the value of a given state, these estimates are less prone to high
variance introduced by probabilistic environments. So these methods offer a
bias-variance trade-off.

Trust Region Methods The methods introduced above suffer from a specific
problem: Any data that is collected using the current parameters θt can only
be used for one gradient ascent update since the sampling must be done w.r.t.
πθt . Trust region methods are based on a different derivation that avoids this
sampling issue [Schulman et al., 2017a]:

U(θ) =
∑

τ∈(S,A)×(H+1)

R(τ)P (τ |πθ)

=
∑

τ∈(S,A)×(H+1)

P (τ |πθold)R(τ)
P (τ |πθ)
P (τ |πθold)

= Eτ∼πθold

[
R(τ)

P (τ |πθ)
P (τ |πθold)

]
This reformulation has two advantages:

1. The expectation can be approximated using old rollouts. Hence, we can
reuse data for multiple updates.

2. Only the numerator is a function of θ, while the denominator is constant.
This makes the expression suitable for backpropagation. Hence, this for-
mulation of U(θ) can be used as a surrogate loss, which can be optimized
using a plethora of optimizers.

In practice, there is one major drawback: Using rollouts collected by some policy
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πθold to update θ only makes sense in a small region around θold, called a trust
region. There are various ways to address this challenge:

1. The trust region can be enforced using a set of explicit constraints. This
approach is employed by the Trust Region Policy Optimization (TRPO)
[Schulman et al., 2017a] algorithm, where it leads to a constrained op-
timization problem. This complicates the use of well-establish gradient
descent based optimizers such as Adam [Kingma and Ba, 2017].

2. The trust region can be enforced implicitly using a regularization term.
This approach is used by one variant of the Proximal Policy Optimization
(PPO) [Schulman et al., 2017b] algorithm.

3. The trust region can be enforced implicitly by introducing clipping to the
surrogate loss. This approach is used by a second variant of the PPO
[Schulman et al., 2017b] algorithm.

Note that the latter two options enable the use of well-established optimizers
to improve the policy network. Furthermore, most of the advantage estimation
techniques that were presented in the previous paragraph can also be used for
these methods.

Implementation When implementing any on-policy method, a number of
choices must be made, e.g. the optimization algorithm or discount factors. The
literature contains several works that provide an overview of these options and
also attempt to find choices with decent performance in as many tasks as possible.
The survey of Engstrom et al. [2020] provides such an overview for TRPO and
PPO, while the work of Andrychowicz et al. [2021] tackles actor-critic methods

2.2.2 Off-policy Methods

While policy-based approaches try to optimize the parameters of a policy func-
tion, value-based approaches employ function approximation to predict the value
of taking some action a in state s, denoted Q(s, a). Formally, this so-called
state-action value or Q-value for an actor acting according to policy π is defined:

Qπ(s, a) := E [R(s, a) | s, a]

Additionally, for the optimal state-action value Q∗(s, a) = maxπ Q
π(s, a) the

Bellman equation is satisfied:

Q∗(s, a) = Es′∼T (· | s,a)
[
R(s, a) + γmax

a′∈A
Q∗(s′, a′) | s, a

]
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Deep Q-Networks The Q-value can be approximated by a neural network Qθ

with weights θ, such a network is called a deep Q-network (DQN). The following
loss L approximates the Bellman equation:

L(θ) :=
∑

(s,a,s′)∈D

1

2

(
Qθ(s, a)− (R(s, a) + γ ·max

a′∈A
Qθ′(s

′, a′))︸ ︷︷ ︸
target

)2 (2.3)

where Qθ′ is an additional DQN, called the target network, with weights θ′ to
decouple computation of targets from estimated Q-values. Qθ′ is of the same
shape as the online network Qθ. Inference is performed on the online network
by computing Q-value estimates Qθ(s, a) for all actions a in a state s and then
taking action a∗ = maxaQθ(s, a) to reach the next state.

The state-action-state triples are stored in some database D, called the replay
memory. This database is key to successful applications of Q-learning. The major
challenges are as follows:

1. Given the current Q-value estimate, how can we collect interesting rollouts?
While using the greedy policy to select argmaxa∈AQ(s, a) when in state s
yields the highest return (assuming the Q-value estimates are accurate),
there might be a benefit to exploration by sampling a random action some
times.

2. How do we sample from all the data we have collected? The formula above
shows a uniform weighting over the full data set, but not all samples have
the same importance. There may be a lot of actions with an average reward,
but actions that result in significantly higher or lower reward are usually
more relevant for training good policies.

Modern Off-Policy Methods Over the years a number of extensions to the
classical DQN algorithm have been proposed. Because the literature is very
extensive and rapidly evolving, we want to introduce the works that are relevant
for our project.

The work of Hessel et al. [2017] surveys common extensions to the classical
DQN algorithm and thoroughly tests them. While their experiments are con-
ducted on the Atari 2600 benchmark suite [Bellemare et al., 2013], the findings
are still of interest and help to discern which extension may or may not increase
performance. Four of these extensions, each shown to improve results in most of
the authors’ experiments are the following:

1. Double Q-Learning: Vanilla Q-Learning suffers from potentially harmful
overestimation bias. This problem is lessened by using the target network
Qθ′ only to evaluate target Q-values. Selecting the maximizing action is
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done by the online network Qθ. Hence, the Double Q-Learning target is of
the form:

R(s, a) + γ ·Qθ′(s
′, argmax

a′∈A
Qθ(s

′, a′))

2. Priority-based Replay: Conceptually, one may expect that Q-value es-
timates that are far off of the their corresponding target value are more
relevant for training. E.g. significantly under or overestimating an action
tells more in which direction the optimization should move rather than ap-
proximately correct estimates. Thus, instead of sampling uniformly random
from the replay memory, a priority-based approach samples a transition
(s, a, s′) proportional to its TD error :∣∣∣∣Qθ(s, a)− (R(s, a) + γ ·max

a′∈A
Qθ′(s

′, a′))

∣∣∣∣α
The hyperparameter α gives additional control over the actual underlying
sample distribution. Note that the TD error is already partially computed
in the optimization step once a transition has been sampled, allowing for a
more efficient implementation.

3. Dueling DQN: Based on the state-action function we can define the value
function V π(s), which estimates the quality of a certain state s according
to policy π, and the advantage Aπ(s, a), a measurement of the relative
importance of an action a in state s:

V π(s) := Ea∼π(s) [Qπ(s, a)]

Aπ(s, a) := Qπ(s, a)− V π(s)

A dueling DQN, instead of directly producing a state-action value estimate,
splits its computation into two streams: one produces an estimate Vξ(s, a)
for the value function, and the other streams models Aψ(s, a) as an advan-
tage estimate. Finally these two streams are combined. A simple addition
between the two estimate results in a problem of unidentifiability [Wang
et al., 2016], hence the combination is slightly more involved:

Qθ(s, a) = Vξ(s, a) +Aψ(s, a)−
∑

a′∈AAψ(s, a
′)

|A|

4. n-step Learning: In the loss defined in equation 2.3 only a single step
was considered when bootstrapping. Increasing the number of considered
steps to a sliding window of n transitions may lead to faster learning [Hessel
et al., 2017]. To that end define the truncated n-step reward Rn and an
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alternate loss L′:

Rn(st, at) :=

n∑
i=1

γi−1R(st+i, at+i)

L′(θ) :=
∑
τnt ∈D

1

2

(
Qθ(st, at)−Rn(st, at) + γn ·max

a′∈A
Qθ(st+n, a

′)
)2

The database D now keeps track of n consecutive action-state pairs at
each timestep t and replays them in the form of a partial trajectory τnt =
st, at, st+1, at+1, . . . , st+n, at+n.

2.2.3 Masked Policies

An issue that often arises in practice when applying RL methods are illegal
actions: Some actions from the fixed action space A may not be legal during
certain states of the environment. While it is in theory possible to force a policy
or Q-network to learn these illegal actions by introducing some penalty or similar,
it is often more efficient to mask the network outputs in a suitable manner. This
simplifies the reinforcement learning task, since the distinction of legal and illegal
actions does not have to be learned.

While the masking technique has been well-established in practice, recently
Huang and Ontañò [2022] have provided a theoretical justification for it, at least
for policy-based methods.

2.3 Graph Neural Networks

A Graph Neural Networks (GNN) is a type neural network that is well-suited for
graph problem. GNNs are based on the concept of graph convolutions, or message
passing : A graph convolution effectively consists of a communication round of a
synchronous distributed system, where the messages are chosen to be vectors of
some dimension. The computation performed on these messages is done by some
form of neural network. In this design, two aspects must be highlighted:

1. A node aggregates the messages of its neighbors in a permutation invariant
manner.

2. All nodes share the same parameters, hence the same copy of neural network
is running on every node.

These two properties lead to a parameterized function that is equivariant under
graph isomorphism, and can be optimized in much the same way as a classic
neural network.
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Another advantage of using GNNs as agent networks is that they are capable
of handling variable sized graphs. This allows the usage of heterogeneous training
sets, and more importantly, doing inference on graphs with a different number
of vertices than train graphs. Additionally, various graph structures can be pro-
cessed. Even though we restrict ourselves to undirected and symmetric TSP
instances in this work, GNNs can also be applied to directed and asymmetric
input graphs.

2.3.1 Mathematical Formulation

Each vertex v of a graph G = (V,E) has an associated feature vector xv ∈ Rd.
Analogously, edge feature µe ∈ Rp encodes properties of edge e. A graph convo-
lution consists of processing and aggregating the hidden vectors of all neighbors.
There are several equivalent ways to express this, however we present here the
conventions introduced by Paszke et al. [2019], for the PyTorch Geometric pack-
age:

xk+1
v = fk

xkv ,
⊕

u∈N(v)

gk(xkv , x
k
u, µ(v,u))


Messages from adjacent vertices are aggregated with a permutation invariant
function

⊕
, e.g. a sum or an average. fk and gk might be neural networks,

with parameters to optimize, or otherwise fixed differentiable mappings. Message
passing is usually performed over multiple rounds of communication, hence terms
corresponding to different iterations are indicated with a superscript k. The first
hidden vector is usually chosen to be the node feature vector: x0v := xv.



Chapter 3

Related Work

In the literature, there are several works tackling the TSP or other CO problems
using reinforcement learning. Some of these also employ GNNs. In this chap-
ter we will highlight the ones that we have found most useful when attempting
this project. Furthermore, we also introduce some relevant works in the rapidly
evolving field of GNNs.

3.1 Reinforcement Learning for Combinatorial Opti-
mization

Reinforcement learning has been successfully applied in order to solver various
CO problems. The work of Mazyavkina et al. [2020] surveys a number of different
publications about RL in combinatorial optimization. It highlights the diversity
of methods that are employed: For TSP one can find approaches that use Pointer
Networks [Bello et al., 2016], LSTMs [Chen and Tian, 2018], or GNNs [Cappart
et al., 2020] in combinations with either policy-based or values-based methods.

3.1.1 Approaches Using GNNs

One of the earliest works by Dai et al. [2018] that claims to get results compet-
itive with good heuristics utilizes a GNN architecture called Structure2Vec to
parameterize Q-value functions. A n-step Q-learning algorithm (see Subsection
2.2.2) is used to train the neural network architecture. The authors employ a
constructive approach: nodes correspond to actions and in each step the action
with the largest Q-value gets added to the partial solution, which is initially
empty. A particular way of inserting the chosen node v is used: instead of just
appending v, it is inserted at the best possible position in the partial solution
tour. This technique is called the best insertion helper.
We found it hard to find any success with Structure2Vec. The authors disclose
very briefly that they flip the sign for their proposed reward, which to our under-
standing would result in maximization of the selected edge weight. Additionally,
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they suggest a really small discount factor of γ = 0.1. Discount factors usually
lie in the range [0.9, 1.0] [Schulman et al., 2018]. A value of 0.1 means the actor
highly priorities short-term gains. This is leads us to the suspicion that their
approach trains an optimizer which is similar to a greedy max insertion heuristic:
always choosing the edge which is furthest from the current tail of the partial
solution, and inserting it at the position that minimizes the total cost of the tour.
A closer inspection of the best insertion technique reveals that it likely does a
lot of heavy lifting with respect to the reported performance. Indeed as we will
later see in Section 5.2, another heuristic of just choosing a random node that is
not yet in the partial tour and employing the best insertion helper when adding
it, generally already performs really well.

A local search solver based on the two exchange technique was presented by
de O. da Costa et al. [2020]. They employ a policy network that contains some
graph convolutional layers. However, they rely on a basic message passing layer
that only supports edge weights as opposed to multi-dimensional edge attributes.
We will later see that this use of multi-dimensional edge attributes is key in
our approach for representing which edges are part of the tour, as well as their
orientation. Furthermore, it enables us to use a positional encoding of edge
weights. Since the authors cannot rely on these mechanisms they also use a
recurrent neural network and represent the tour as a sequence.

3.2 Actor Network Design

The performance of RL approaches can be limited by the design of the trained ac-
tor. Since we opt to employ a GNN based actor, we present here key advances in
the area of graph convolution designs. Our approach relies on multi-dimensional
edge attributes to represent the current status of the TSP tour for the actor.
Hence, we will first discuss a selection of graph convolution layers that have sup-
port for such edge attributes, and also introduce a promising feature engineering
technique to extend these edge attributes.

3.2.1 Graph Convolution Layers and Edge Attributes

The design space for graph convolutional layers is much larger than that of e.g.
image convolution. As such, the literature contains a plethora of publications in-
troducing specific layer designs that are suited to various different situations. We
are interested in graph convolutional layers with support for multi-dimensional
edge attributes, since these are a key part of our observation spaces. We want to
highlight the following designs that fulfill this prerequisite:

• Graph attention (GAT) networks, introduced by Veličković et al. [2018], use
any given edge attributes in the computation of the attention score that is
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used when aggregating the messages of neighboring nodes. This design was
extended by Brody et al. [2022] to be slightly more expressive by reducing
parameter sharing. This version is known as GATv2.

• Graph isomorphism networks (GIN) were introduced by Xu et al. [2019].
They do not rely on attention, but instead simply aggregate all the messages
of neighboring nodes before passing the combined vector into a standard
MLP. This architecture was later extended by Hu et al. [2020] to also sup-
port edge attributes. These edge attributes are aggregated with the node
messages after a linear transform, which equalizes the dimensionality.

• Pathfinder discovery networks (PDN), introduced by Rozemberczki et al.
[2021], perform an element-wise multiplication of neighbor messages with
the corresponding edge attributes. This is done after both have been trans-
formed by two seperate MLPs (of equal output dimension), after which
they are aggregated.

• Another layer with natural support for multi-dimensional edge attributes
was introduced separately by Simonovsky and Komodakis [2017] as edge
conditioned convolution on the one hand, and Gilmer et al. [2017] on the
other. This layer type is best known as NN convolution. It is similar to
the PDN convolutional layer, but instead of performing an element-wise
multiplication, it uses the edge attributes to dynamically generate a matrix
for each edge. This matrix is then used to linearly transform the incoming
message of the neighbor before aggregation.

3.2.2 Fourier Features for Low-Dimensional Inputs

When attempting to solve the TSP, the key attribute of a graph is its edge
weights. The agent must learn to recognize which selection of edges yields a
tour of small cost. Deciding whether to include a certain edge in the tour over
some other edge will likely involve some form of numerical comparison between
the two edge weights. Such comparator functions have significant high frequency
contents and are thus difficult to approximate well with neural networks.

To enable neural network to learn high frequency functions, Tancik et al.
[2020] propose the use of Fourier features, consisting of sinusoids of increasing
frequency. They successfully apply this technique to coordinate representations
(e.g. to learn image functions) and other low dimensional inputs. Since the
weight of a given edge is effectively a one-dimensional attribute, such Fourier
features may be an effective representation.



Chapter 4

Our Approach

This chapter specifies how exactly our proposed RL agent interacts with a TSP
environment. In general, this includes what the agent sees of the TSP, the obser-
vation space, how it can act upon the environment, the action space, and what
its end goal is, the reward. Further, the proposed GNN architecture is outlined.

4.1 Environments for TSP

The input for a TSP problem instance is a graph G = (V,E) and a weighting
function w : E 7→ R. As previously mentioned in Section 2.3, the GNN input
is given as node features xv ∈ Rd and edge features µe ∈ Rp for vertices v and
edges e. The TSP usually considers complete graphs, i.e. all edges are present.
Since the edge weights contain all the relevant information, it is key that we
represent them in a way that allows the RL agent to learn a high-quality heuristic.
We speculate that good performance on the TSP task requires learning high-
frequency functions of these edge weights, e.g. comparator functions. Because of
this, we opt to represent the weights as a vector of Fourier features [Tancik et al.,
2020], consisting sines and cosines with increasing frequencies.

4.1.1 A Constructive Environment

A constructive environment includes a partial tour T , either represented as an
ordered set of vertices or as an (unordered) set of edges. Hence, taking an action
corresponds to selecting a node or an edge respectively. We consider two types
of initialization: empty initialization where T = ∅, or depot initialization, i.e.
we start with a predefined depot node v0, T = {v0}. See Figure 4.1 for a
demonstration of a trained agent acting in this environment.

Observations and Selection Strategy Consider a node selection approach.
Based on the state we derive four observations encoded in the input node features,
thus x0v ∈ R4.
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1. An indicator (∈ {0, 1}) to tell whether v is currently in T .

2. The normalized position of v in T if v is in T , otherwise 0.

3. The normalized length of T as number of hops.

4. The length of T as sum of weights.

Note that observations 3 and 4 are identical for all v ∈ V . When employing
the best insertion helper two additional observations, that would otherwise be
redundant, are added.

5. The normalized step when v was added to T if v is in T , otherwise 0.

6. The normalized position where v would be added to T if v was selected as
the next action.

On the other hand, an edge selection approach would look significantly different.
Conceptually, choosing actions to be the decision which edge should be added to
T gives the actor more freedom.

GNNs as described in section 2.3 produce an output per node. One way of
adapting to that is to work on the line graph L(G) of G. Each edge in G is
represented as a vertex in L(G). There is an edge between two vertices in L(G)
if the corresponding edge share an endpoint in G.

The original edge weights are now nicely mapped to vertex features and the
line graph can be considered to be unweighted with respect to its edges. However,
in TSP we often consider G to be a complete graph Kn and its line graph L(Kn)
is significantly larger: it contains m =

(
n
2

)
∈ O(n2) vertices and m(n−2) ∈ O(n3)

edges.

There are other ways of designing an edge selection pipeline as we will see in
Subsection 4.1.2. Yet, defining T to be an edge set comes with another drawback
that is more fundamental. For efficient training, the state needs be updated
relatively fast. For node selection, identifying the illegal actions was straight-
forward, here it is more elaborate. Any edge e not yet chosen should be considered
an illegal action if e closes any cycle in T . Hence, choosing n−1 valid edges implies
that T is a path visiting all nodes. At this point, we can stop the procedure and
add the edge which connects the path’s endpoints to get a valid tour. Checking
whether an edge closes a cycle can be done using an union-bound data-structure
but the procedure still needs to iterate over every edge at least once, whereas for
node selection setting a node to be an illegal action given its identifier only takes
constant time. This results in a significant runtime difference when it comes to
training.

Reward Both node and edge selection result in conceptually adding an edge
to the partial solution. Hence, the reward is just the negative weight of that
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edge. Negative because RL methods maximize reward which should translate to
minimizing the cost of the found tour. Two special cases have to be considered:
For the last added node or edge we also reward the negative weight of the edge
that closes the cycle by connecting the first and last vertex. Secondly, when
employing the best insert helper, a slight modification is needed: when a vertex
u gets inserted between vi and vi+1 already in the tour the reward is −(w(vi, u)+
w(u, vi+1) − w(vi, vi+1)) instead. With that the final cumulative reward will
correspond to the negative cost of the output tour.

4.1.2 A Local Search Environment

A local search environment keeps track of the current feasible solution, which is
then modified by the agent in some number of steps. For the TSP, this feasible
solution is a complete tour T . The updates are the previously explained two
exchange steps. See Figure 4.2 for a demonstration of a trained agent acting in
this environment.

Reward Every time the agent performs a two exchange update, the reward
is calculated to be the improvement of the tour length that this modification
produces, i.e. the weight difference of the two removed edges and the two added
edges. Note that this reward can be negative if the performed two exchange step
increases the length of the tour.

Selection Strategy Since we employ the two exchange technique for the local
search, the agent must select two non-incident tour edges to perform such a search
step. There are different ways to design the action space A to enable the agent
to perform this selection:

1. The agent selects a node in every step, hence A = V . With suitable mask-
ing, the agent will have selected four nodes (v1, v2, v3, v4) from V that define
two non-incident tour edges after four steps. The environment then swaps
out the edges {v1, v2}, {v3, v4} according to the two exchange rule.

2. The agent selects a tour edge in every step, hence A = ET , the set of tour
edges. Since GNNs naturally produce one output per node, we can employ
a bijection fT : V → ET , where fT maps any node v to the outgoing
tour edge at v. Hence, we can simplify this case to A = V , but we must
(arbitrarily) fix the orientation of the tour edges and then represent this
orientation in the observation.

3. The agent selects a pair of non-incident tour edges in every step, hence
A ⊂ ET ×ET . We can employ the same simplification as before using fT ,
so the agent must effectively select a pair of nodes in each step.
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(a) Initial observation: The constructive
environment starts with an empty tour by de-
fault.

(b) Step 1: The first node is added to the
tour. The tour contains no edges yet, hence
the reward of this action is 0.

(c) Step 2: A second node is added to the
tour. The agent receives the negative edge
weight as reward.

(d) Final state: The agent has added the
last node. The final edge is missing in this
visualization, but is considered in the reward
calculation.

Figure 4.1: Demonstration of the constructive environment: A
trained agent acts in the constructive environment, successively adding
nodes to the tour. Note that only the tour edges are shown, while the
graph topology for the GNN is always the same, namely a clique. Node
states are represented with colors, the edge colors indicate the cost. These
figures were rendered with the networkx package [Hagberg et al., 2008].
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Note that each of these environment implementations has both benefits and draw-
backs: From point 1 to 3, the observation and action spaces become successively
more complex, however the reward becomes less sparse since fewer environment
steps are necessary to perform a two exchange update.

Observations The environment must represent the current state of TSP in a
way suitable for the policy or Q-value GNN. Naturally, this representation is a
graph. It contains all the edges of the original graph (including the tour edges).
Furthermore, there is a feature vector associated with each node and each edge.

The edge features are as follows:

• The tour orientation of the edge: Either an edge is not part of the tour
at all, or it is either an incoming or outgoing edge. Note that the graph
representation required by the GNN contains only directed edges. So every
edge is represented by two directed edges. This also means that every tour
edge has an incoming and an outgoing copy.

• The positional encoding of the edge cost.

The node features are as follows:

• The status of the node: Depending on the selection strategy, there are
between one and three node statuses. E.g. for the node selection strategy,
the node status shows if the node has been selected to be part of the next
two exchange step, and whether a neighbor has already been chosen or not.

• A scalar value in [0, 1], indicating how many local search steps remain until
the environment terminates.

• Optionally, the positional encoding of the incoming and outgoing tour edge
length. By default this is turned off.

4.1.3 Masking Implementation

When performing local search or constructive environment steps, only a subset of
the actions from the fixed action space A are actually valid. Consider for instance
the constructive approach: Once some subset of nodes has already been added,
these nodes cannot be selected again.

Another concrete scenario can be given for a two exchange environment when
performing local search: Assume the policy selects a tour edge in every step, so
a two exchange update occurs every two steps. Since the selected tour edges
mustn’t be incident (or identical) to each other, only a subset of the tour edges
are valid actions in the second step.
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(a) Initial observation: In the local search
environment, a tour is randomly sampled to
serve as the initial feasible solution.

(b) Step 1: The agent has selected node 1,
shown with the color change. The nodes act as
representatives for their outgoing tour edge.
Hence, the agent has selected edge (1, 3) for
the next two exchange. Now, the agent has
to select a second node to perform a two ex-
change update. Since no two exchange update
has taken place, the reward of this step is 0.

(c) Step 2: The agent has selected node 2,
which represents the tour edge (2, 6). The en-
vironment performs a two exchange update,
removing edges (1, 3) and (2, 6), and adding
edges (2, 1) and (6, 3). The next observation
already shows the updated graph, with reset
node states. The reward is calculated as the
improvement in tour length.

(d) Final state: After n two exchange up-
dates, the environment terminates. The re-
sulting tour is much shorter than the initial
tour, because we use a trained agent for this
demonstration.

Figure 4.2: Demonstration of the local search environment: A
trained agent acts in the local search environment. Note that only the
tour edges are shown, while the graph topology for the GNN is always the
same, namely a clique. Node states are represented with colors, the edge
colors indicate the cost. Because this figure shows the tour edge selection
option, there is a two exchange update every two steps. These figures were
rendered with the networkx package [Hagberg et al., 2008].
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To support the agent in making valid decisions, all environments supply a
mask vector with each observation, encoding the valid actions from A during this
step. Our masking strategy is different for policy and Q-networks:

• A policy network will produce a vector of unnormalized log probabilities.
For any illegal actions, this value is replaced by a suitably large negative
number, such as −106. Furthermore, we opt to introduce a lower bound
for the log probabilities of any legal actions by way of the ELU [Clevert
et al., 2016] activation function. In combination, these two measures ensure
that the probabilities of invalid actions are negligible after the softmax
activation.

• Since Q-values are not bounded either above or below, we simply replace
them by the smallest Q-value estimate minus some safety margin. Another
issue arises when collecting rollouts with a random strategy (e.g. ε-greedy
exploration). Here too, the invalid actions must be avoided.

4.2 GNN Architecture and Attention Layer

There are a plethora of message passing layers implemented in the PyTorch Ge-
ometric [Fey and Lenssen, 2019] package. Furthermore, the package enables an
easy implementation even of complex message passing schemes. Our goal is to
compare a selection of existing layers to each other, and also introduce a custom
message passing scheme which we designed with the TSP optimization task in
mind.

4.2.1 Architecture for Complete Graphs with Edge Features

While these message passing layers can simply be chained together similar to
image convolutional layers, it is common to combine them with dense layers,
which perform some computation on the node messages in between rounds of
message passing.

We do this in a generic architecture that is agnostic to the type of message
passing layer used. Our architecture can be seen as a chain of communication
rounds, using different parameters but identical structure. A single such round
is summarized in Figure 4.3.

The following design choices were made with the TSP optimization task in
mind:

1. Since our input graphs contain edge features which are not available for
loop edges, the common practice of adding self loops to each node has been
replaced by a skip layer.
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Graph 
Convolution

Multi-Layer 
Perceptron

Skip 
Layer

Node Features:

Node Features:

+

Edge Features:

Figure 4.3: Schematic of the proposed generic architecture blueprint. Dif-
ferent types of layers can be plugged into the graph convolution layer box.
Skip layers help to preserve local features between message passing rounds,
similar to added graph loops, and multi-layer perceptrons add additional
modeling power.



4. Our Approach 25

2. A considerable amount of computation is done in between the message
passing layers. Since the TSP task involves complete graphs, information
can propagate through the tolopology in few communication rounds. Our
architecture contains a reasonable number of parameters, even when using
few message passing layers.

4.2.2 TSPConv: an Attention-based Message Passing Layer

TSPConv

Node 
Features

Weighted  
Sum

Node Features 
Edge Features 
for 

Score:

Soft-max 
Weights

Figure 4.4: Attention mechanism behind TSPConv. The node features
of a vertex i, the node features of its neighbours j and the features of the
edges (i, j) connecting them produce values v, keys k and queries q. Which
finally get aggregated and output as a weighted sum.

As described in section 2.3, a GNN layer can be seen as a message passing
algorithm. Since the TSP is concerned with finding a certain subset of edges
of a complete graph, we propose an attention-based GNN layer that takes edge
features into account.

We introduce a simple dot-product attention layer using a softmax weighting
strategy. Dot-product attention can be described in terms of keys, queries, and
values, all of which are vectors obtained by a separate linear transform. Crucially,
our layer uses not only the node features but also the edge features to compute
all three of these vectors. We use the features of the sending node to compute the
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keys and values, and the features of the receiving node for the queries. As usual,
the attention mechanism is split into several heads. A single head is summarized
in figure 4.4.

As mentioned above, we designed this layer with the TSP optimization task
in mind: The goal was to enable a GNN to extract relevant edge features in an
efficient manner. Since the TSP task involves dense graphs where most of the in-
formation is associated with edges rather than nodes, edges must be processed as
efficiently as possible without ignoring their attributes completely. The proposed
layer enables this by letting information from the edge attributes propagate into
the node hidden vectors. There they can be processed more efficiently simply
because there are much fewer nodes than edges.

Comparison to GAT Convolution Our design is directly inspired by the
idea of graph attention networks [Veličković et al., 2018, Brody et al., 2022].
Notably, we include the edge attributes in the value computation, whereas the
implementations of GAT and GATv2 that we are aware of only utilize the edge
attributes in the computation of attention scores. Another smaller difference
is the fact that GAT uses both sender and receiver hidden vectors in attention
scores and values, though our design could certainly be extended in this way if
the need were to arise.



Chapter 5

Results

In this chapter, we outline the experiments we performed and interpret the results
we obtain. Due to the large design space of this project, we take a sequential
approach: We tackle one or two design choices at a time while leaving all other
settings at a reasonable default which we obtained during preliminary testing.

5.1 Experimental Setup

Before presenting the results of the different experiments, we introduce here the
general approach.

5.1.1 Datasets

Even though there exists an often used TSP instance library called TSPLib
[Reinelt, 1991], we heavily rely on randomized graphs for training and testing.
TSPLib’s main drawback is its irregular problem size distribution. The most
graphs of the same size are six graphs of 100 nodes.

Using randomly generated graphs allows more flexibility when it comes to
graph and dataset sizes. All graphs used are complete graphs, hence they can
be specified by their weight (or distance) matrix. Two different procedures to
generate this weight matrix MG ∈ Rn×n for a complete graph G are used:

1. Euclidean: For n nodes draw x and y coordinates from U(0, 1). Set mi,j

to be the euclidean distance between node i and j. We will refer to these
graphs also as 2d graphs.

2. Symmetric: Draw elements bi,j of a temporary matrix B ∈ Rn×n from
U(0, 1), then let MG = 1/2 · (B +BT ).

where U(0, 1) represents the uniform distribution over [0, 1). As a last step the
diagonal entries of MG are set to zero, i.e. G should contain no loops.

27



5. Results 28

Since our approach is completely agnostic to the embedding of the nodes
into a geometric space, we use the symmetric non-euclidean graphs as a default.
Unless otherwise specified, we use a train set of 64 graphs each with 32 nodes
for training, and to evaluate a holdout set of the same dimensions. As such,
experimental results are always a distribution of found tour lengths over the
holdout set, shown as boxplots. Whiskers extend to the furthers sample in a
range of 1.5 times the interquartile range below the first and above the third
quartile respectively. Any datapoints outside the whisker and interquartile range
are classified as outliers and shown individually as diamonds.

By now all TSPLib instances have been solved and their optimal tour costs
are publicly available [Reinelt]. Hence, we will report optimality gaps for TSPLib
graphs in subsection 5.2.6 to highlight generalization capabilities. But all models
are exclusively trained on random graphs.

5.1.2 Baselines

We will show results from tests of up to 128 node graphs. Employing exact algo-
rithms at this size becomes increasingly infeasible. Hence, results are compared
against a number of baseline heuristics. These are:

1. Two Approximation: The well-known MST-based two-approximation
algorithm, see Subsection 2.1.4.

2. Greedy Minimum Hop: Consider starting at an arbitrary node. From
your current position take the minimal outgoing edge to an unvisited node.
Repeat until all nodes have been visited. Finally, close the cycle by adding
the edge from your last position to the starting node. This is the greedy
minimum hop heuristic: locally minimal edges are greedily added until a
tour was found.

3. Minimum Insertion: The minimum insertion heuristic also only considers
minimum edges to unvisited nodes. The main difference is that the closest
node from the current position is inserted at best possible position of the
partial solution at the current timestep. The current position is always the
last node in the sequence of visited nodes. Note that this corresponds to
the previously introduces best insertion technique.

4. Random Insertion: To highlight the power of said best insertion helper
we will also show found tour lengths of the random insertion heuristic. It’s
equivalent to minimum insertion except that a random node is chosen to
be insertet instead of the closest one.

5. Maximum Insertion: Another variant of insertion heuristics. This vari-
ant always chooses the farthest node to be inserted at the best possible
position.
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In Section 5.2, experiments compare against all five baselines. For clarity some
plots will only show the average tour length of the best performing baseline
indicated with a dashed line.

5.1.3 Design Space Overview and Default Options

Our experiments attempt to cover the extensive design space consisting of TSP
heuristic design (in the RL environment), the GNN based RL agent, and the
actual RL method used. An overview of the options with the corresponding
default is given below:

1. RL method: We test all methods from the Stable-Baselines3 [Raffin et al.,
2021] package that support our action and observation spaces. These meth-
ods are: DQN [Bellemare et al., 2013], PPO [Schulman et al., 2017b], and
A2C (a version of A3C [Mnih et al., 2016]). Furthermore, we test our own
custom implementations of PPO, Dueling-DQN [Wang et al., 2016] trained
with a 4-step double Q-learning algorithm with priority-based replay (im-
plemented with a sum-tree data structure proposed by Schaul et al. [2016]),
and an actor-critic policy gradient method based on generalized advantage
estimation [Schulman et al., 2018]. The default is our custom PPO im-
plementation, because it yielded consistent high-quality results. We use a
default discount factor of 0.98, and train for a total of 500k timesteps.

2. GNN architecture: In Subsection 4.2.1 we introduced a generic GNN
scheme that allows testing a number of different graph convolution layers.
We tested the PyTorch Geometric [Fey and Lenssen, 2019] implementations
PDNConv [Rozemberczki et al., 2021], GATv2Conv [Veličković et al., 2018,
Brody et al., 2022], GINEConv [Hu et al., 2020], and TSPConv (ours, im-
plemented as a custom layer type). We use our own custom layer as the
default option. The default network architecture includes 3 communica-
tion rounds, and messages of dimension 64. Note that we also tested the
NNConv [Gilmer et al., 2017, Simonovsky and Komodakis, 2017] layer type,
but were unable to obtain reasonable results.

3. TSP heuristic design: We always test both the constructive and the
local search environments. The constructive environment has the best-insert
heuristic turned off by default. An additional option for the constructive
approach is its starting set. By default it starts with a completely empty
set. Alternatively, it can be initialized to start with an arbitrary starting
node. The local search environment, based on two-exchange, uses the tour
edge selection strategy by default and will reset to a random tour after n
two-exchange steps. The default settings for the two environments are also
shown in Figures 4.1 and 4.2, respectively.



5. Results 30

Unless stated otherwise all testing parameters are set to their corresponding
default value.

5.2 Experimental Results

In this section we show results from experiments that benchmark the previously
mentioned design choices for reinforcement learning environments, but also differ-
ent RL methods and different graph convolution layers. The results are structured
in subsection and for the reader’s convenience we provide a table of figures for
this section:

5.1 Comparison of RL Methods . . . . . . . . . . . . . . . . . . . . . 31

5.2 Comparison of sb3 RL Methods on Smaller Trainset . . . . . . . 32

5.3 Comparison of Different Discount Factors . . . . . . . . . . . . . 33

5.4 Comparison of Varying Training Durations . . . . . . . . . . . . . 34

5.5 Comparison of Different GNN Sizes . . . . . . . . . . . . . . . . . 34

5.6 Comparison of Different Graph Convolution Layers . . . . . . . . 35

5.7 The Impact of Positional Encoding . . . . . . . . . . . . . . . . . 36

5.8 Comparison of Performance on Differently Sized Symmetric Graphs
(Including Train Set) . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.9 Comparison of Performance on Differently Sized 2d Graphs (In-
cluding Train Set) . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.10 Comparison of Construction Heuristic Options . . . . . . . . . . 39

5.11 Results of Using Tour Edge Features Redundantly as Node Features 41

5.12 Comparison of Two Exchange Heuristic Options . . . . . . . . . . 42

5.2.1 Reinforcement Learning Algorithm

Choice of RL Method We have tested a large selection of RL methods for
both tasks. While most of these yielded good results in some experiments, the
main issue was stability and consistency. Most methods required several restarts
to yield good results. We have shown the results of a typical comparison experi-
ment in Figure 5.1.

Methods based on Stable-Baselines 3 are especially unstable in the afore-
mentioned experiments. We identified the main mechanism to feed in multiple
graphs as one major cause for variance, most likely due to normalization across
the different input graphs. Indeed, limiting the training set to only one graph and
reducing the number of total timesteps, paradoxically produces better results, see
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Figure 5.1: The comparison between reinforcement methods clearly fil-
ters out some implementation as non-competitive. The top plot shows the
performance of constructive RL environments in a blue palette. In the
bottom plot the two exchange RL approach’s tour lengths in orange tones.
Finally, the baselines in greens. The different solvers are indicated on the
x-axis.
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(a) 100k total timesteps
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(b) 250k total timesteps

Figure 5.2: RL methods based on the Stable-Baseline3 library perform
better with less train set samples, here only one graph. The left plot shows
the found tour lengths compared against our baselines after 100’000 total
timesteps. On the right the performance after 250’000 total timesteps.
Longer training leads A2C to diverge from previous better solutions.

Figure 5.2. But increasing the number of timesteps may already lead to some of
the methods collapsing.

In general, the performance of each RL method seems to be independent of the
choice of environment type. Two exceptions: Stable-Baseline3’s A2C performs
significantly better with two exchange, and custom policy gradient also slightly
favors two exchange. A possible explanation for this is the fact that local search
methods can succeed even with an inaccurate critic network: Given that the
critic network is used to predict the returns beyond some partial rollout of k
steps (where usually k ≈ 5), even if this prediction is inaccurate, the reward from
the k collected steps are enough to learn a greedy local search strategy.

Discount Factor Figure 5.3 shows a comparison between different discount
factors used in the RL pipeline. As we can see, the two exchange method performs
very similarly with a wide range of discount factors. In the local search setting it
is possible to have local minima that require a long series of two exchange steps to
find a better solution, however these long step sequences are very unlikely to be
found during RL exploration. Hence, we might expect the actor to learn shorter,
greedier, search sequences even with higher discount factors, which explains why
the lower values do not affect performance.

For the construction approach, the discount factor plays a more important
role: It performs better with higher discount factors, with the default choice
of 0.98 being close to optimal. This might be explained by the fact that the
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Figure 5.3: The choice of the discount factor has a larger impact on the
constructive approach (left). Whereas, the two-exchange method’s medians
(right) outperform the best performing baseline’s average for every tested
discount factor.

construction approach will only yield decent results, if rewards from the later
construction steps are also taken into account. Consider the later construction
steps: The possible actions are severely constrained by the previous decisions.
Hence, the only way to obtain good reward in these later steps is to choose
suitable construction actions in the earlier parts of the construction.

Total Timesteps Figure 5.4 shows a comparison of different training times, in
terms of total environment steps. This confirms our choice of 500k as a default,
but also indicates that shorter training times are viable.

5.2.2 Actor Network

GNN Size We compare a number of different network sizes, varying the num-
ber of communication rounds and the size of the messages. The sizes are sum-
marized below:

S M L XL

com. rounds 3 3 4 4
message size 32 64 128 256
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Figure 5.4: How long it takes a machine learning algorithm to train is a
huge factor whether it can practically be employed. In our case 500k total
environment steps seems to be the sweet spot where both the constructive
(left) and the two-exchange approach (right) perform well. But the tour
lengths of the modeled trained with less timesteps all produce competitive
results.
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Figure 5.5: Surprisingly, networks on the smaller end perform generally
better than larger ones. With a constructive approach (left) GNN sizes
S,M,L perform better than XL. For the two-exchange environments (right)
it is even more extreme: size S has clearly the lowest median tour length.
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Figure 5.6: Choosing the right graph convolution layer seems to be key
to good performance. Our proposed architecture performs best for both
type of environments. GATv2 favors the constructive over two exchange
approach where edge features are more important to encode the agent’s
state. For the GINE approach it is the other way around. For PDNConv,
performance is more balanced.

We see that the smaller networks perform better. We can think of two possible
explanations for this:

1. Since the graphs are complete, they have longest-shortest paths of one
hop. So information is quickly distributed to all vertices, and additional
communication rounds only increase the number of parameters.

2. Because we are in a RL setting, we lack direct supervision. So it is difficult
to optimize a large number of parameters.

GNN Architecture The performance of the tested graph convolution layers
is shown in Figure 5.6. We can see that our custom layer outperforms all others
by a small margin, and it is the only layer that is able to outperform the baselines
on both tasks. Note that both the GATv2 [Brody et al., 2022] and the GINE
[Hu et al., 2020] layer only performed well on one of the two environments. This
is discussed further in Section 5.2.5. While the PDN [Rozemberczki et al., 2021]
layer did learn a reasonable heuristic for both tasks, it was unable to outperform
the baselines.
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Figure 5.7: On the left the impact of positional encoding is shown for
the constructive approach, and on the right the impact when using two-
exchange environments. The resolution of the positional encoding corre-
sponds to the smallest period of the sinusoids used. For the standard set-
ting this is 10−2, and 10−4 for the fine setting. Contrary to our previously
stated speculation, positional encoding of graph edges does not increase
performance.

Positional Encoding We have speculated that the positional encoding of edge
weights may help the network learn to compare them. But our results show that
these additional features do not lead to improved performance. This is summa-
rized in Figure 5.7. The results suggests that the used graphs simply do not
require high frequency comparator functions to be learned for good performance.
Another issue that might impede the use of positional encoding is the fact that
RL tasks lack direct supervision: The work of Tancik et al. [2020] applies this
encoding to tasks where the network must learn a known mapping, e.g. from
image coordinates to pixel color. In our approach, there simply might not be
enough supervision to learn high frequency functions even if these were key to
better performance.

5.2.3 Different Graph Types

We evaluate the performance of our agents on both the 2d and symmetric graph
types, presented in Section 5.1.1. We also compare the performance on graphs
of different sizes, varying the number of nodes from 32 to 128. The number of
nodes is the same for training and inference. The results are shown in Figures
5.8 and 5.9.
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Figure 5.8: These plots show the performance of the baselines and the
default RL solver under varying graph size. The top row of plots correspond
to found tours of the train set, and the bottom row is the usual performance
on the holdout set. The agents are trained and tested on a dataset of
64 symmetric graphs of the size marked at the top. Unsurprisingly, the
performance on the train set is slightly better but it generally translates
well to the holdout set. Up to 64 nodes the RL approach outperforms
all baselines. For graphs of 128 nodes (right) the greedy minimum hop
baselines is the winner. However, the two exchange based RL approach
comes in as a close second. The constructive approach failed to learn
any reasonable tours. This may indicate that training RL agents becomes
increasingly harder with larger problem instances.
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Figure 5.9: For these experiments 2d graphs were used. For a second
time we show the performance on the train set graphs in the top row
plots. The holdout set tours can be seen in the bottom row. Even on
training graphs, our RL-based approaches get outperformed by some of
the baselines. The relative performances translate almost one-to-one to
the holdout set. While, both random and maximum insertion lag behind
the greedy minimum hop baseline on symmetric graphs, they are at the
top for 2d graphs.

We can see that our agents are capable of beating the baselines on the sym-
metric graphs, but not on the 2d graphs. This is likely due to the fact that our
formulation is completely agnostic to the embedding of the nodes in the 2d-plane,
and is only based on the n × n distance matrices. Additionally, the insertion-
based baselines are much better on 2d graphs. There the best performing one is
maximum insertion or random insertion depending on the graph size.

The performance comparison between the baselines and our learned heuristics
is similar for all graph sizes, although on one occasion (symmetric graphs with
n = 128), the agent struggled to learn a decent constructive heuristic. This might
indicate that learning a constructive heuristic becomes harder on larger graphs,
though we do not have enough empirical evidence to claim this, and instead
suggest that future work investigate this further.
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(b) Best insertion helper

Figure 5.10: The two decisions that lead to different kinds of constructive
RL heuristics: whether to start from scratch or from a fixed depot (left),
and whether to employ the best insertion helper (right). The choice of
start type seems to have less of an impact than whether one opts to choose
the helper function, where using it on symmetric graphs has an negative
impact on found tour lengths.

5.2.4 Construction Heuristic Options

In Subsection 4.1.1, some different choices that go into designing a constructive
environment were already highlighted. Two of these decisions are tested here.

Empty vs. Depot Start When looking at non reinforcement learning heuris-
tic, constructive approaches usually start with a fixed depot. However, due to
the final tour’s cyclic property, any vertex can theoretically act as a starting
point. Moreover, the RL framework facilitates our actor to start with an empty
vertex set and every node being a valid first action. In Figure 5.10a, we see the
comparison of an RL actor that starts totally from scratch, with one that starts
with an arbitrary depot.

We observe that the median of the empty start lies below the median of
starting with a fixed depot, but differences are mostly negligible.

Best Insertion Helper At first glance, best insertion might seem strictly more
powerful than just appending a chosen vertex to the partial solution, because it
includes the possibility to insert at the tail. But this is generally not the case
(see Appendix A.1) and we also see this in practice. In Figure 5.10b, an actor
utilizing an environment without the best insertion helper clearly outperforms a
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comparable actor using the helper. Generally, a properly trained policy should
indeed be able to generate a sequence of actions that correspond to a decent tour
without any added reshuffling.

In Subsection 5.2.3 we showed that the insertion-based baselines’ relative
performances vary with the used graph type. One might hope that a similar
effect applies to the RL-based approach. We found this to not be the case: Even
on 2d graphs opting to not use best insertion helper results in shorter tours. A
possible explanation is that the RL-agent is not expressive enough to train the
more complex behaviour of the best insertion over just appending a solution.
Additionally, the fact that the maximum outperforms the minimum insertion
baseline, may indicate that a more complex reward system is needed when using
the helper.

5.2.5 Two Exchange Heuristic Options

We test a number of different options for the two exchange task. These options
can be specified in the environment, to yield a different RL task which then
enables the agent to learn better or worse heuristics.

Edge Attributes vs. Node Attributes As we have noted in Section 4.1.2,
there is an option to copy the attributes of the incoming and outgoing tour edges
into the attributes of the respective node. Since we effectively duplicate informa-
tion that is already present in the edge attributes, this should not significantly
impair performance. Moreover, we use this experiment to gauge how well a given
graph convolutional layer type can extract information from edge attributes. If
there is a large performance improvement when the tour edge attributes are added
to the node attributes, then we may conclude that the graph convolution layer
was unable to extract this information from the edge attributes by itself.

The results are shown in Figure 5.11. As we can see, our custom layer TSP-
Conv outperforms the others by a small margin. More interesting is the com-
parison to the GATv2 convolution: While our layer is very similar to GATv2,
it performs much better when the tour edge attributes are not present in the
node attributes. We can therefore conclude that our attention layer is better at
extracting information from edge attributes that is not present in the nodes. An
explanation for this was already presented in Section 4.2.2: Commonly available
implementations of graph attention do not allow for edge attributes to propagate
into the node hidden vectors, because they only utilize the edge attributes for
computing attention scores.

Note that trends of this subsection’s data mirrors the observations about GNN
types from Subsection 5.2.2, where we saw that GATv2 performs much better with
a constructive approach which encodes all the agent’s state in the node features
and only keeps edge weights and positional encodings in edge attributes.
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Figure 5.11: Results from running experiments with the two exchange
approach that adds tour edge features redundantly to node features. Our
proposed architecture, TSPConv, shows the shortest median tours in both
cases. GATv2 performs better with more expressive node features, possibly
because it fails to extract the relevant information from the edge features.
Results from GINE, PDN and NNConv are more balanced than GATv2’s
but still worse than TSPConv’s.
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(b) Starting from greedy solution

Figure 5.12: Three different selection strategies have been proposed for
the two exchange approach. In the left plot we can see that the edge
selection scheme produces the cheapest tours. It needs a less complicated
masking scheme than the node, and a less complex action space than the
edge pair selection strategy. On the right the impact of the starting tour
to the local search approach: the median tour length is almost identical.

Selection Strategy As explained in Section 4.1.2, there are several ways to
model the action space for two exchange. Either the agent selects nodes (which
requires 4 environment steps per two exchange), or tour edges (requiring 2 steps
per two exchange), or it selects a two exchange step directly in the form of a
non-incident tour edge pair.

The comparison is shown in Figure 5.12a. We can see that the tour edge
selection strategy outperforms the others by a small margin. We speculate that
this approach beats the node selection strategy because the latter has a more
complicated masking strategy (where every second step, the agent can only select
a neighbor of the previously selected node). On the other hand, we conjecture
that it beats the tour edge pair selection strategy because the latter has a more
complicated action space: Since the agent has to select a pair of nodes in one step,
the per-node outputs of the GNN are concatenated pairwise, and then processed
again to yield an n × n matrix of scalar values, used either as log probabilities
or Q-values. This more complicated architecture might inhibit performance to
some degree.

Starting from a Greedy Solution The local search strategy has the benefit
that the initial feasible solution can be constructed in a number of ways. While
the default setting uses a random tour, we can also start from a tour that is
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obtained by a greedy heuristic. However, as we can see in Figure 5.12b, this
makes very little difference. Note that both approaches make n two exchange
updates, hence the edges of the initial tour can be completely replaced anyways.

5.2.6 Evaluation on the TSPLib Dataset

Table 5.1 shows the performance of our RL agents trained with default settings
on all graphs from TSP dataset with upto 100 vertices. Since the dataset mostly
contains graphs that fulfill the triangle inequality, we also compare agents trained
on the two different graph generation schemes, introduced in Section 5.1.1.

We can summarize the results as follows:

• In general, our RL agents generalize poorly to the TSPLib instances. In
almost all cases, the agents cannot outperform the baseline heuristics.

• The constructive approach generalizes significantly better than the local
search approach.

• The agents that are trained on the euclidean graphs perform very slightly
better on average than those trained on graphs which do not have a plane
embedding or satisfy metric properties such as the triangle inequality. The
number of nodes seems to affect generalization as well: The training data
consists of graphs with 32 nodes, hence the agents perform rather well on
TSPLib graphs of sizes 22, 26, and 29, but rather poorly on graphs of size
100.

This suggests that the performance of RL methods on the TSP is dependent on
the type of training data used.

5.3 Summary

We summarize the most important findings from our experiments:

• Both the constructive and the local search approach enable the GNN-based
agent to learn TSP heuristics that are competitive with a number of baseline
heuristics on randomly generated graphs. But this performance does not
seem to generalize to other classes of graphs, such as the TSPLib dataset
[Reinelt, 1991].

• Our custom attention layer outperforms the canonical implementation of
graph attention layers when the task requires the extraction of information
from the edge attributes. This is likely due to the fact that these other
implementations only utilize the edge attributes for computing attention
scores.



5. Results 44

Used training data: symmetric 2d

graph name best baseline 2-ex construction 2-ex construction

att48 1.055043 1.315017 1.170117 1.519477 1.269383
bayg29 1.03354 1.140373 1.144721 1.200621 1.054037
bays29 1.063862 1.09901 1.037129 1.155446 1.102475
berlin52 1.033545 1.453991 1.346195 1.291435 1.24516
brazil58 1.051703 1.885725 1.311282 1.627643 1.202481
burma14 1.057177 1.15498 1.183569 1.132711 1.244959
dantzig42 1.02289 1.284692 1.310443 1.254649 1.153076
eil51 1.049296 1.262911 1.119718 1.41784 1.117371
eil76 1.074349 1.8829 1.291822 1.947956 1.150558
fri26 1.01921 1.113127 1.258271 1.073639 1.140875
gr17 1.001439 1.076259 1.189448 1.282974 1.197122
gr21 1.0 1.162911 1.141485 1.157 1.096417
gr24 1.036164 1.193396 1.158019 1.091981 1.080189
gr48 1.020808 1.185295 1.137138 1.536861 1.087594
gr96 1.088084 3.052926 1.278306 2.95508 1.33884
hk48 1.041532 1.253468 1.158276 1.371521 1.201553
kroA100 1.083028 3.207547 1.32793 3.221925 1.185415
kroB100 1.065851 3.141005 1.23802 3.023757 1.193036
kroC100 1.098125 3.247241 1.208444 3.451347 1.209311
kroD100 1.07805 3.03245 1.231896 3.327651 1.196065
kroE100 1.038291 2.92369 1.325992 2.782082 1.250952
pr76 1.028338 2.401603 1.249318 2.080798 1.15038
rat99 1.113955 2.718415 1.1891 2.732453 1.251858
rd100 1.068521 3.507585 1.256258 3.594058 1.359671
st70 1.13037 2.031111 1.165926 1.921482 1.202963
swiss42 1.053417 1.269442 1.323645 1.195601 1.113119
ulysses16 1.005978 1.171745 1.226272 1.220732 1.151625
ulysses22 1.004848 1.177385 1.160702 1.156566 1.15015

average 1.050621 1.869507 1.219265 1.883045 1.182022

Table 5.1: Performance on TSPLib instances: The tour lengths are nor-
malized to the known optimum. Hence, the table shows the approximation
factor on these instances. TSPLib instances come with their unique names
indicated on the left: the suffixed numbers indicate the number of nodes.
Results are summarized in average at the bottom. The constructive ap-
proach generalizes better than two exchange but both approaches are beat
by the best performing baseline.
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• We have speculated that a positional encoding of the edge weights may
enable the agents to learn to compare them with higher accuracy. Our
experiments show that the use of the positional encoding does not improve
performance.

Overall, our results prove the viability of RL in combination with GNN-based
agents even for hard CO problems.



Chapter 6

Conclusion

We have applied reinforcement learning to the TSP, enabling GNN-based RL
agents to learn high-quality heuristics. We have thoroughly analyzed how the
design of the RL environment impacts the quality of the learned heuristic. Our
demonstrations show that both approaches, constructive and two exchange, are
viable options. They come with strengths and weaknesses, e.g. constructive
approaches generalize better to unseen graph structures, whereas two exchange
performs better with certain RL learning schemes such as A2C and vanilla policy
gradient. Additionally, both types admit a number of different configurations of
environments that yield decent results compared to non-parameterized heuristics.
This suggests that the GNN-based agents have a high degree of flexibility.

We have compared a variety of different graph convolution layers. The results
show that many of these layers perform well out-of-the-box under the condition
that the RL environment encodes the information accordingly. This too proves
the flexibility of GNN-based approaches. We have also proposed an extension
to the popular attention based graph convolutions, which enables better perfor-
mance in the presence of edge attributes.

Even though our agents perform well on test data drawn from the same
distribution as the training data, generalization to other instances is relatively
poor, whether they are trained on random symmetric or euclidean graphs. This
suggests that using training data that matches the problem instances of the final
application is key to real world performance. If this cannot be done, we suggest
that the construction-based approach be preferred over the local search method,
because it generalizes better to novel problem instances.

Future Work Having demonstrated the viability of combining RL with GNNs
to solve CO problems, there are several promising research directions:

• Reformulating other CO problems as RL tasks may result in high-quality
heuristics for previously inaccessible problems. Finding suitable formula-
tions for CO problems that do not involve graphs but sets or other struc-
tures, might result in new neural network architectures.

46
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• Improving the generalization of GNNs in general, may enable the agents
to learn heuristics that perform well on new problem instances.

• We considered a general version of the TSP, only requiring that the edge
weights be symmetric. A more restricted version of the TSP could
be considered, where the nodes are known to be embedded in some k-
dimensional space. The corresponding coordinates may be presented to the
GNN as node features. Or alternatively, asymmetric or directed graphs
may be of interest, as they arguably correspond to more realistic scenarios,
e.g. sloped pathways that upon which travelling downhill is much faster
than going up, or one-way-streets.
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Appendix A

Construction Heuristic Design

In this appendix, we list additional contents regarding the design of the construc-
tion heuristic that would otherwise hinder the flow of reading.

A.1 Best Insertion Helper

The experiments in Section 5.2 showed that the best insertion technique can
improve performance under certain conditions. Especially on euclidean graphs,
it pushes baseline implementation to extract shorter tours. For RL approaches,
its application was less successful. As it is relatively easy to find an example where
using the best insertion helper produces a better solution, one may conjecture
that, for fixed action sequences, it will always find shorter tours than the more
naïve approach of just appending a node to the partial solution. This is not the
case, and it shown proofing the following lemma:

Lemma A.1. Given an ordering v1, v1, . . . , vn−1 in which vertices are to be added
to the solution, which is initialized with depot v0, there are graphs G = (V,E)
with |V | = n such that using the best insertion technique results in a longer tour.

Proof. Consider the complete graph G = K5 described in Figure A.1. Just ap-
pending nodes to constructive partial solution results in tour T = {v0, v1, v2, v3, v4, v0}
with cost C(T ) = 1.5. Using best insertion gives rise to tour T ′ = {v0, v1, v3, v2, v4, v0}
with worse cost C(T ′) = 2.8. Problematic is the insertion of v3 as the third city.
It shoehorns the agent in to a costly insertion in the consecutive step for v4.

A-1
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Figure A.1: Example for a graph where the best insertion technique
results in a worse tour T ′ than just appending nodes.



Appendix B

Implementation Issues

The distributed systems laboratory is an opportunity for students to gain prac-
tical insights into active areas of research. Since this project combined multiple
disciplines of mathematics and computer science, we have collected some of these
insights, which might be of use for other students and researchers.

B.1 Practical Insights

The algorithms and data structures that we implemented for this lab project can
be grouped by their respective disciplines:

1. Reinforcement learning algorithms

2. TSP heuristic design

3. Message passing neural networks

We will now describe some practical insights and pitfalls that we encountered
when combining these three disciplines in our project.

B.1.1 Compatability Issues

Whereas for GNNs, Pytorch Geometric [Fey and Lenssen, 2019] has established
itself as the major library used for implementation, for RL methods there is no
such clear first choice. In this work we chose to both implement our own RL
algorithms, as well as utilize the Stable-Baselines3 [Raffin et al., 2021] package.
While it provides a number of well documented algorithms, it lacks built-in GNN
support. Pytorch Geometric is most comfortably used with its custom data
structures and its unique batching mechanism, differing from standard neural
networks.

Like most RL packages, Stable-Baseline3 requires that custom environments
comply with the OpenAI Gym [Brockman et al., 2016] environment interface.

B-1
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Hence environments need to specify their action and observation spaces. While
newer versions of the OpenAI Gym library support graph observations, this was
not supported by the Stable-Baselines3 rollout buffers. Hence, we refactored our
graphs into a dictionary of fixed sized tensors. This also required us to fix the
topology of the graphs (at least during training). So we limited ourselves to
complete graphs with a fixed number of nodes for training.

In our case major parts of the Stable-Baselines3 library had to be rewritten
to accommodate GNNs. This in turn meant that we had to familiarize ourselves
with all of the library’s source code related to the needed algorithm. As is the
case with many bigger libraries, the code is structured in a hierarchical way, with
many sub and super classes making it hard to track the exact control-flow.

Implementing an RL algorithm oneself has both benefits and disadvantages.
Well-established libraries are often more robust due to being used by many people.
However, writing custom RL code for a limited set of tasks can greatly simplify
the most complex data structures of RL algorithms, namely the rollout buffers.
Given that all our environments used the same observation space and similar
action spaces, we took advantage of this.

To summarize the key compatibility issues we encountered:

• The custom batching mechanism of Pytorch Geometric.

• The lack of support for graph observations in most RL libraries.

B.1.2 Throughput Issues

Another issue we encountered was the throughput of the TSP environments:
Since these data structures must be called several times per gradient update, they
can easily inhibit the learning speed of the actor. During earlier experiments, we
tested environments that didn’t simply return the original graph with suitable
features, but instead transformed the topology of the graph based on the current
state of the TSP solution.

For example, an alternative version of the constructive approach we intro-
duced, returns a line graph where nodes correspond to edges of the original
graph. Similarly, we considered a two-exchange environment that returned a
graph whose nodes corresponded to possible two-exchange steps. These envi-
ronments turned out to be much too slow to be of any use for learning a good
heuristic using RL. In particular, these environments resulted in O(n2) for steps
calls, which was not acceptable.
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B.1.3 Performance and Correctness

RL algorithms are sensitive to most of the standard normalization techniques
that are used in neural networks, such as batch normalization [Ioffe and Szegedy,
2015]. We encountered such a problem, where a predefined multi-layer perceptron
class from the PyTorch Geometric [Fey and Lenssen, 2019] package contained such
layers by default. Only after disabling them, were we able to get good results.

Methods like PPO [Schulman et al., 2017b] (with clip loss) compute the prob-
ability ratio for a chosen action between the current policy and the policy used
during the last rollout. Depending on the advantage of this action, the ratio
(which should equal 1 right after collecting the rollout) is then marginally ad-
justed up or down using SGD. In our experience, batch normalization layers affect
this ratio so much that it is no longer in a reasonable range (around 1) even at
the start of training.

B.1.4 Unspecified Implementation Details in the Literature

Publications in this field of research are usually not very explicit on how they
train models. Training set size, number of epochs or exact training procedures
are not always mentioned. We found that once a method has shown success, these
hyperparameters have not a huge impact on the performance (maybe hence they
are sometimes omitted). For us, if an agent was unable to learn a good heuristic,
it was usually due to some other issue, and time spent in trying to diagnose the
problem in the training procedure was needlessly wasted.
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