
Distributed

    Computing 

Improving the Interface of the Jass AI
Distributed Systems Laboratory

Nicolas Kupper

nkupper@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Benjamin Estermann

Prof. Dr. Roger Wattenhofer

June 12, 2023



Acknowledgements

First of all I want to thank my supervisor Benjamin Estermann for all the great
discussions, inputs on how to improve things, ideas for new features, testing feed-
back and guidance during this semester thesis. You truly created a very pleasant
working environment and made this thesis a joyful experience. Furthermore, I
want to thank my friend Nicola Bögli for his expertise and discussions about
state of the art technologies and practices in the context of frontend develop-
ment. I also would like to thank Roger Wattenhofer for testing new features and
providing feedback.

i



Abstract

The Jass AI project is a platform where you can play Jass against a Jass AI.
It is developed by the distributed computing group of ETHZ and is the result
of several student projects. It has grown rapidly over many student projects.
Leaving its frontend in a technological outdated state. A Npm install yields
151 security vulnerabilities. Furthermore, the project lacked essential frontend
features and a modern development workflow. In this project the frontend part
of the Jass AI was updated to a state of the art stack. As part of this update
the outdated state management tool Flux was completely replaced with Redux.
With the performed update all 151 security vulnerabilities were closed. As a next
step a test environment as well as automated deployment pipeline for the test
and the production environment were set in place. Furthermore, new frontend
features were introduced, including an analyzer which lets users analyze their
games and provides feedback on how accurate they played. To make sure all
features are found on the page, onboarding tours guiding users through the page,
were implemented. The Jass AI frontend is now on a modern software stack
leaving it ready for development in further student projects.

ii



Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Package Upgrade 2

2.1 Node upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 React upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Bootstrap upgrade . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.4 Replacing Flux with Redux . . . . . . . . . . . . . . . . . . . . . 3

2.5 Upgraded Packages Summary . . . . . . . . . . . . . . . . . . . . 3

3 Development Workflow 5

3.1 Test environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Automatic Deployment . . . . . . . . . . . . . . . . . . . . . . . . 6

4 New features 7

4.1 Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Onboarding Tours . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Conclusion 19

Bibliography 20

iii



Chapter 1

Introduction

Over the years and many student projects the Jass AI project has grown rapidly.
In these projects most of the focus was on the AI aspect of the project and not
on the frontend part of it. This has left the frontend part of the project in an
outdated technological state. This is a major security concern as those outdated
packages contain many security vulnerabilities. It also makes developing harder as
there are missing features and not state of the art practices involved with those old
packages. Furthermore, the current development workflow is very manual which
is really prone to errors and not very maintainable. The goal of this semester
project is therefore to in a first step bring the technological stack of the frontend
side to a modern stack. Then in a second step introduce a proper development
workflow including a deployment pipeline. And finally, in a third step develop
new frontend features.

1



Chapter 2

Package Upgrade

A simple npm [1] install on the current package.json file yielded 151 security
vulnerabilities of which 9 were categorized low, 37 moderate, 82 high and 23
critical. In this section the steps taken to upgrade to a software stack with 0
security vulnerabilities and newest versions of the core components of this project
is described. The steps to achieve this goal were:

• Upgrade Node.js [2] to current LTS version

• Upgrade React [3] to v17 including all side packages

• Upgrade Bootstrap [4] to v5

• Replace Flux [5] with Redux [6]

• Upgrade React to current v18 version

2.1 Node upgrade

The project was running in a docker [7] container with Node.js (shortly referred to
as Node) version 12.22.2 which comes with Npm (node package manager) version
6.14.13. Node 12 LTS was released in 2019 and the LTS support for it ended in
2022. When trying to run the project with the current Node LTS version 18.14
which comes with Npm 9, Npm raised a broken dependency graph error. This
means that Npm was unable to resolve the listed dependencies from all declared
packages as they contradicted each other. Concretely some packages demanded
react v15 but React v16 was installed in the project. The reason this did not
show up in the old node version is that Npm did not have transitive dependency
checking prior to v7. In order to solve this broken dependency graph the packages
demanding React v15 were upgraded to the version that used React v16. If the
packages were discontinued they were either removed or replaced with similar
packages achieving the same functionalities.

2



2. Package Upgrade 3

2.2 React upgrade

The reason the upgrade of React and all side packages had to be made in two
steps is that one of the most essential core components of the project, the state
management tool Flux is in maintenance only mode and only supports React
up to v17. The state management tool is responsible for all data flow within
the frontend such as keeping track of the state of the game and navigating the
client through the page. It was therefore clear, that in order to get to a modern
technology stack Flux will have to be replaced.

2.3 Bootstrap upgrade

Bootstrap is an open source css framework that is used for styling in the Jass
frontend. The version in the project was v4 and the current version was v5. As
this is a major upgrade, to no surprise it came with multiple breaking changes
such as changes in the way components are spaced and renaming or removing of
components which were used in the Jass project. As there is no "make bootstrap
5 look like bootstrap 4" solution, the affected components were replaced in a
fashion were the looks of the page is as close as possible to what it looked like
before.

2.4 Replacing Flux with Redux

As briefly mentioned Flux is in maintenance only mode and states on their Npm
page The Flux project has been archived and no further changes will be made.
We recommend using more sophisticated alternatives like Redux, MobX, Recoil,
Zustand, or Jotai. Based on the popularity and the widespread usage it was
decided to migrate to Redux. However, there is no easy migration guide as Flux
and Redux have different architectures. One core difference is that Flux uses a
global dispatcher which dispatches actions when called from the frontend to its
different stores (multiple stores) while Redux only has one global store and uses
so called reducers to change the state of the store which are called when actions
are dispatched directly from the frontend. Therefore, one has to include Redux
in the project and then port each action manually from Flux to Redux. In the
Jass project this were 61 actions with in total around 1200 lines of code.

2.5 Upgraded Packages Summary

A minor version upgrade is an increment of the second number of a package ver-
sion so for example from 12.2 to 12.3. This usually means no manual intervention



2. Package Upgrade 4

has to be made while a major version upgrade, which is an increment of the first
number, for example from 12.2 to 13.0 means that there are breaking changes
which needs manual intervention. In the following table all packages that have
been upgraded are listed. If a package was not upgraded, was removed from the
project or only a minor upgrade was done it is not listed. If a package was intro-
duced newly to replace a discontinued package it will be written rdp (replaced
discontinued package).

Package name Old version New version Major upgrades
@babel/core 6.24.1 7.21.0 1

babelify 7.3.0 10.0.0 3
bcrypt - 5.1.0 rdp

browserify 14.3.0 15.2.0 1
bootstrap 4.5.0 5.2.3 1

core-js - 3.29.0 rdp
express-handlebars 5.3.4 6.0.7 1

glicho2 0.8.4 1.1.0 1
less 3.5.1 4.1.3 1

mysql2 2.3.2 3.2.0 1
react 16.13.1 18.2.0 2

react-bootstrap 1.3.0 2.7.2 1
react-router-dom 5.2.0 6.9.0 1

react-transition-group 1.2.0 4.4.5 3
react-redux - 8.0.5 rdp

redux - 4.2.1 rdp
ws 7.3.1 8.13.0 1



Chapter 3

Development Workflow

There was neither test environment nor a deployment pipeline in place in the
Jass project. This means that developers wrote code locally. When they wanted
to deploy it to the server they had to manually connect to the server, checkout
the git repository, set the environment variables such as the MySQL [8] password
and google OAuth keys and then build the docker containers and run it. Not only
is this a very time consuming workflow but also it requires the developer to have
access to the server, have the knowledge on how to build and deploy the docker
container and forced them to access essential passwords such as the MySQL root
password and the OAuth secret keys. Furthermore, if errors occurred which were
not present in the local environment this was only found out after deploying onto
the live web page.

3.1 Test environment

To avoid finding errors that only occur on the server side just after deploying to
the production, a test environment was needed. For this a new Google OAuth
client appropriate was setup for the test environment. This is needed to make
logins with the google account possible. Furthermore, the IT team from ETHZ
TIK made an ETH internal dns entry for http://test.jass.ethz.ch which points
to the server where the Jass application is running. After this a new site was
configured in the webserver (NGINX) [9] which listens on test.jass.ethz.ch and
forwards its traffic to port 3002. Furthermore, the docker configuration was
extended with two additional containers for the test environment, the application
container on port 3002 and an additional mysql-test container for a separate
database from the production database. Docker compose profiles were used to
decide which environment to start or stop. For example

docker-compose --profile test up

will only start the two docker containers for the test environment (application
and database).

5

http://test.jass.ethz.ch


3. Development Workflow 6

3.2 Automatic Deployment

To address the issue of developers needing to have the knowledge and access to
passwords an automatic deployment was needed. For this the server where the
Jass application is running was configured as a gitlab [10] runner. Then in gitlab
following variables were configured:

Variable Environments Description
MYSQL_PASSWORD prd, test Jass database mysql password

MYSQL_ROOT_PASSWORD prd, test Jass database mysql root password
MYSQL_URL prd, test mysql (prd) or mysql-test (test)

GOOGLE_CLIENT_ID prd, test Credentials for google OAuth
GOOGLE_CLIENT_SECRET prd, test Credentials for google OAuth

PORT test Custom port for test
SSL prd SSL for websocket communication

CERT prd Certificate for SSL
PRIVKEY prd Private key for certificate

Afterwards a .gitlab-ci.yml was created with two environments: test and prd for
the corresponding docker containers. The deployment script gets the variables
from gitlab and then builds and starts the docker containers. Following rules are
enforced for the separate stages:

• build-deploy-test - Trigger: Commit branch ̸= master

• build-deploy-prd - Trigger: Commit branch = master

• cleanup - Trigger: Always

This means that whenever a developer pushes a commit to a branch which is not
the master branch, this state will be automatically checked out and deployed on
the test environment http://test.jass.ethz.ch. Furthermore, as the master branch
is a protected branch and one can not directly push to it, this also means that
after an approved merge request to the master branch the changes are directly
deployed to the production page https://jass.ethz.ch. The cleanup job is used to
remove unused docker containers in order to free up disk space. A permission
issue occured during the build where the docker clean up left files with root
privileges in the build directory of the gitlab-runner user. This caused the next
build to fail with permission denied errors. To fix this, a Linux access control
list (ACL) was used to make sure that no matter who creates a file in the build
directory of the gitlab-runner, it always belongs to the group gitlab-runner.

http://test.jass.ethz.ch
https://jass.ethz.ch


Chapter 4

New features

4.1 Analyzer

Losing in a game of Jass is frustrating but what is even more frustrating is losing
over and over again without knowing what you could have done better. For this
reason a analyzing feature for past games was urgently needed. Following things
had to be decided:

• When and how to analyze the game?

• What analyzing information should be displayed to the user?

• Where and how should this information be displayed?

Analyzing the game

There were two particular options when to analyze games. Either the games
are analyzed upon saving them to the database and the analyzing information is
saved to the database or the games are analyzed in real time during the replay.
Since the first option would mean that games that were played in the past could
not be analyzed and also that whenever a better engine comes out to analyze the
games, the old games could not benefit from the new engine, it was decided to
analyze the game during the replay.
The best AI agent trained in previous theses and used to currently play Jass will
also be used as feedback for the performance of the players. This agent is written
in Python [11]. However, the frontend application is written in node and react.
This means that for analyzing the game a Python agent has to be launched and
communicated with upon playing moves as each application (the Python agent
and the frontend) keeps track of the game state on its own. Meaning whenever a
move is played it is broadcasted on the websocket where the frontend application
as well as the Python agent are listening on. Up on receiving this message the
Python agent or the frontend application updates its game state. As one can see
these two states have no knowledge of each other and are only synchronous if they

7



4. New features 8

updated their states in the same matter. This caused major problems because if
a message is for some reason lost in the communication or is sent in a different
order the state of the two applications can differ which breaks the communication
flow and with that stops providing analyzing information because the frontend
application might for example request an evaluation for a state which is not even
reached yet in the Python agent. To fix those issues following measures were
implemented:

• Evaluations are only requested on replaying the next card but not on re-
playing the previous card. This is because when going back in a replay, all
turns prior to the current turn have already been analyzed.

• The full game round is analyzed upon joining the replay. For this the game
is quickly played through and then returned to the first move. This is done
behind a loading animation 4.1 and not visible to the user.

• A queue has been implemented on the frontend side that checks if the
evaluation information received is successive to the previous one. If not the
evaluation is added to the queue. Upon receiving an evaluation the queue
is checked. This fixes the issue when an evaluation for a turn is returned
before another one but the turn is later in the game. For example the
evaluation information for turn 0 and 1 are both requested at the same
time but the information for turn 1 is returned before turn 0. This issue
can arise due to asynchronous messaging.

• Sometimes when loading a new round the state of the Python agent was
not quick enough to update before the request for the evaluation of the
first few turns of the new round came through. This resulted in losing the
evaluation information for the first or/and second turn and hence in being
stuck when displaying the evaluation information as they are calculated
based on previous turns. To fix this issue the round is restarted and the
analyzing information is freshly requested whenever this happens. This
again happens during the loading animation and is not visible to the user.



4. New features 9

Figure 4.1: Loading animation

Analyzing information displayed

When displaying information to users there is always a small degree of displaying
too much information in a sense that it overwhelms users and not displaying
enough information in the sense that it has not a lot of use to them. It was
decided to display the following information to the user:

• A table that shows the accuracy of each player.

• A table that shows analyzing information for the current turn.

• A history for each player which makes it possible to see how he performed
in which turn.

The accuracy table shows for each player the weighted sum average of the accu-
racy up to this turn. To calculate this the information provided by the AI agent
was used. The AI agent provides for a given turn the probabilities of playing
each possible card.



4. New features 10

Figure 4.2: Accuracy table

This accuracy is calculated in the following way:

X =
1

k

k∑
i=1

pc
pb

Where k is the current turn, starting at 1, pb is the probability of the best card
and pc is the probability of the card that was played.



4. New features 11

The current turn table shows the probability for each possible card for the current
turn. The cards are sorted from best to worst card. The card that will be played
next is highlighted. This allows the user to already compare the card he played
to the other cards he could have played. Hovering over a card will magnify it.

Figure 4.3: Current turn table

In the history panel all previous turns can be seen. For each turn the turn
accuracy as well as the sum accuracy up to that turn is shown. Furthermore,
the card played and the best card for this given turn is shown. There is also a
jumpto icon that will resume the replay to that turn.

Figure 4.4: Player cards history



4. New features 12

Placement and space concerns

As one can see the replay section is already pretty overloaded and there is not a
lot of space left for analyzing information.

Figure 4.5: Replay overview

To make the best out of the available space it was necessary to make use of space
saving features. The first of those is using tabs to switch between the accuracy
table and then current turn view. The active tab is always highlighted.

Figure 4.6: Tabs

The next feature that was used is in the current turn view. In the worst case,
from a space concerning point of view, there are nine cards that can be played.
Displaying nine cards would totally overfill the user interface. To solve this
problem a pagination was introduced which displays up to three cards per page.

Figure 4.7: Pagination



4. New features 13

To display the player card history a modal was used. The modal can be reached
clicking on the goto icon in the accuracy overview tab 4.2.

4.2 Onboarding Tours

The best feature has no use if nobody knows about it. For this particular reason
a new feature was needed that guides an user through the page and the features
that are available in the page. A lot of things on the page like "Quick Game" or
"Create a Table" are pretty self-explanatory. However, other things like finding
your past games, replaying your past games and analyzing a game are a bit more
complex. It was decided that two onboarding tours will be created for the page:

• Main page onboarding tour that guides logged in users to their past games

• Replay onboarding tour that guides the user through the analyzing feature

The onboarding tours were implemented using the package react-joyride [12].

Main page onboarding

After logging in the user is created with the onboarding message.

Figure 4.8: Step 1

Clicking the SKIP button will immediately exit the onboarding tour.
Clicking the Next button will lead to step 2. In step 2 the username of the logged
in user is highlighted with the following message:



4. New features 14

Figure 4.9: Step 2

After clicking on the username, the user is taken to his user page and is informed
about his personal stats.

Figure 4.10: Step 3

In the next step the user is informed on how to disable or enable the onboarding
tours. The onboarding tour settings are saved as cookies in the browser.

Figure 4.11: Step 4



4. New features 15

In the final step the user is informed on where to find his past games and the
possibility of analyzing them.

Figure 4.12: Step 5

Replay onboarding

Upon joining the replay the user is welcomed to the replay onboarding tour.

Figure 4.13: Step 1

Again pressing the SKIP button will immediately exit the tour.
In the next step the user is informed about the possibility of enabling the ana-
lyzing info by pressing the switch.



4. New features 16

Figure 4.14: Step 2

Upon pressing the switch the user is taken to the slider which can be used to
jump to a specific turn.

Figure 4.15: Step 3

Once a position has been clicked on the slider the replay jumps to this turn and
the onboarding tour highlights the accuracy table.



4. New features 17

Figure 4.16: Step 4

As a next step the user is informed that he can click on the detail icon.

Figure 4.17: Step 5

Once clicking the detail icon, the card history modal is opened and highlights the
first turn.

Figure 4.18: Step 6

As a next step the goto icon of the first step is highlighted.



4. New features 18

Figure 4.19: Step 7

On click the goto icon, the user is taken to the first turn and the "Current Turn"
tab is highlighted.

Figure 4.20: Step 8

A click on the current turn tab will end the replay onboarding tour and show the
current turn information as described in chapter 4.1.



Chapter 5

Conclusion

With the package upgrade the frontend of the Jass AI project is now on a modern
software stack without any known security vulnerabilities. The newly introduced
test environment together with the automatic deployment pipelines makes devel-
oping and testing much easier. The new onboarding tour feature ensure that users
make full use of all features available. The analyzer provides helpful feedback and
lets users improve on their Jass skills. In conclusion we severely improved the
software maintainability of the Jass AI frontend and it is ready for further student
projects.

19



Bibliography

[1] “Npm,” https://www.npmjs.com/, accessed: 30.05.2023.

[2] “Node.js,” https://nodejs.org/, accessed: 30.05.2023.

[3] “React,” https://react.dev/, accessed: 30.05.2023.

[4] “Bootstrap,” https://getbootstrap.com/, accessed: 30.05.2023.

[5] “Flux,” https://facebookarchive.github.io/flux/, accessed: 30.05.2023.

[6] “Redux,” https://redux.js.org/, accessed: 30.05.2023.

[7] “Docker,” https://www.docker.com/, accessed: 30.05.2023.

[8] “Mysql,” https://www.mysql.com/, accessed: 30.05.2023.

[9] “Nginx,” https://www.nginx.com/, accessed: 30.05.2023.

[10] “Gitlab,” https://about.gitlab.com/, accessed: 30.05.2023.

[11] “Python,” https://www.python.org/, accessed: 30.05.2023.

[12] “React joyride,” https://react-joyride.com/, accessed: 30.05.2023.

20

https://www.npmjs.com/
https://nodejs.org/
https://react.dev/
https://getbootstrap.com/
https://facebookarchive.github.io/flux/
https://redux.js.org/
https://www.docker.com/
https://www.mysql.com/
https://www.nginx.com/
https://about.gitlab.com/
https://www.python.org/
https://react-joyride.com/

	Acknowledgements
	Abstract
	1 Introduction
	2 Package Upgrade
	2.1 Node upgrade
	2.2 React upgrade
	2.3 Bootstrap upgrade
	2.4 Replacing Flux with Redux
	2.5 Upgraded Packages Summary

	3 Development Workflow
	3.1 Test environment
	3.2 Automatic Deployment

	4 New features
	4.1 Analyzer
	4.2 Onboarding Tours

	5 Conclusion
	Bibliography

