
Distributed

 Computing

Distributed Setup for Trackmania
Reinforcement Learning

Distributed Systems Laboratory

Pius Kriemler

kpius@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Benjamin Estermann, Luca Lanzendörfer

Prof. Dr. Roger Wattenhofer

July 28, 2023

Abstract

This report focuses on the exploration, description, and evaluation of approaches
aimed at achieving scalability for rollout workers in the RL framework tmrl, which
hosts the Trackmania Roborace League. The competition offers participants the
opportunity to benchmark their vision-based autonomous car racing strategies on
Trackmania 2020 through solving Real-Time Gym environments. However, the
limitation of rollout workers being only executable on Windows machines hinders
scalability and policy improvement.

To address this limitation, we present a solution that enables the deployment
of rollout workers on Linux-based machines. By utilizing Lutris, Trackmania is
run on Linux, and an extension to the tmrl library allows seamless interaction
with the game environment from a Linux system. The successful deployment of
rollout workers on Linux opens up new possibilities for scaling and enhancing
policy learning in the tmrl framework.

The project is nearly complete, with the establishment of most components
required for a fully automated pipeline to run workers on a Linux cluster. The
final phase involves integrating the necessary pieces by creating a Docker con-
tainer that initiates the Xvfb-server, launches Lutris, and sets up Trackmania.
Fortunately, the individual scripts for these actions are functional and ready for
orchestration within the Docker container.

Furthermore, the tmrl-extension, which enables Linux support, has been sub-
mitted as a Pull Request to the main repository. Pending review and integration
into the main codebase, this extension will enhance the official project, benefiting
other users and potentially increasing participation in the Trackmania Roborace
League.

i

Contents

Abstract i

1 Introduction 1

2 The tmrl-Framework 3

2.1 Architecture . 3

2.1.1 tlspyo . 3

2.1.2 rtgym . 4

3 Running a Windows OS in a Singularity container 5

3.1 Attempt 1: Running a Windows OS with QEMU, without KVM 5

3.2 Attempt 2: Running a Windows OS with QEMU, with KVM . . 6

4 Running Lutris in a Docker container 7

4.1 Setting up Trackmania 2020 with Lutris on a local machine . . . 7

4.1.1 Installing Trackmania . 8

4.1.2 Wine and Lutris . 8

4.1.3 Installing OpenPlanet . 8

4.1.4 Wine runners . 9

4.2 Setting up Trackmania 2020 with Lutris on a headless VM 9

4.2.1 Xvfb . 9

4.2.2 VNC . 10

4.3 Adding a Linux Interface to the tmrl library 10

4.3.1 Sending keys to Trackmania 11

4.3.2 Capturing screenshots . 11

4.4 Automating the deployment with Docker 11

4.4.1 Starting and setting up Trackmania 12

5 Conclusion and outlook 13

ii

Contents iii

Bibliography 14

Chapter 1

Introduction

Trackmania [1] is a popular racing video game series developed by Nadeo and
published by Ubisoft. It is known for its unique blend of fast-paced racing, cre-
ativity, and community-driven content. Its combination of creative track design
and multiplayer competitions has made it a favorite among racing game enthusi-
asts and casual gamers alike.

The RL framework tmrl [2] is the host of the Trackmania Roborace League.
The competition offers a way for participants to benchmark their vision-based
autonomous car racing strategies on Trackmania 2020. It involves solving Real-
Time Gym environments allowing competitors to test their self-racing policies.
tmrl hereby provides a custom version of the gym [3] framework tailored for real-
time applications, enabling seamless interaction with Trackmania for vision-based
autonomous car racing strategies. Unfortunately, only very few teams competed
so far.

One significant limitation of tmrl is that rollout workers (workers), respon-
sible for generating experiences for the reinforcement algorithm, can only be
executed on full-fledged Windows machines. This restriction arises from Track-
mania’s native compatibility with Windows operating systems. Consequently, the
experience creation process cannot be easily scaled, leading to slower policy im-
provement. Additionally, deploying tmrl on high-performance clusters becomes
complicated due to the lack of native Windows support on most clusters. Train-
ing a policy to successfully complete a track typically requires approximately two
days of continuous learning on a single Windows machine [2].

This report offers valuable insights into the tmrl project, focusing on the
exploration, description, and evaluation of various approaches aimed at achieving
scalability for workers.

The final result of this project is a setup that allows the deployment of
workers on Linux-based machines. Trackmania is run on Linux by utilising Lutris
[4]. An extension of the tmrl library has been implemented to enable seamless in-
teraction with the game environment from a Linux system. This accomplishment
overcomes the previous limitation of running workers only on Windows machines

1

1. Introduction 2

and opens up new possibilities for scaling and improving policy learning in the
tmrl framework. The initial attempts to achieve fully automatic deployment
have proven successful through the use of Docker.

Chapter 2

The tmrl-Framework

tmrl is a python framework designed to facilitate the training of policies using
deep Reinforcement Learning (RL) for real-time applications such as Trackmania
2020. The framework offers a scalable setup for running the tmrl library, allowing
users to train policies by mapping observations to appropriate actions. It supports
distributed training with the help of rtgym [5] and tlspyo [6], allowing users to
collect samples locally on one or several computers and train the policies remotely
on High-Performance Computing clusters.

In this instance, the observation comprises the four most recent frames, car
speed, gear, and rpm. The actions consist of gas, brake and steering angle.

2.1 Architecture

The fundamental architecture comprises three main components:

1. worker: This component, also called rollout worker, is responsible for exe-
cuting and interacting with Trackmania 2020 to collect experiences.

2. trainer: The trainer component trains the policy networks with the entries
in the replay buffer, and calculates updated weights for the workers.

3. server: The Server component facilitates communication by sending the
worker’ experiences to the trainer and distributing the freshly calculated
weights from the trainer to the workers.

2.1.1 tlspyo

The communication is done with tls-python-object (tlspyo) library, that is de-
signed to facilitate the easy and secure transfer of Python objects over a network.
It provides a simple API for transferring objects between machines or processes
known as Endpoints. Endpoints can be part of one or several groups and connect

3

2. The tmrl-Framework 4

Figure 2.1: Remote training architecture [6]

to a central Relay, the server in this case, for communication. It relies on Trans-
port Layer Security (TLS) for secure object transfers over the network, ensuring
robust and safe communication

2.1.2 rtgym

All the RL related processing is handled by the Real-Time Gym (rtgym) li-
brary, which is a python framework built on top of Gymnasium [3], designed
for real-time implementations of Delayed Markov Decision Processes. It allows
users to elastically constrain the times at which actions are sent and observations
are retrieved transparently. Users can interact with this environment following
the usual Gymnasium pattern, making it compatible with various Reinforcement
Learning (RL) frameworks. The core mechanism of Real-Time Gym environ-
ments involves elastically constraining time-steps to their nominal duration.

Chapter 3

Running a Windows OS in a
Singularity container

The initial solution to address scalability limitations for the workers was to
utilize a container running the original Windows-based setup proposed from the
tmrl framework. This approach would re-create the setup used in tmrl and has
the benefit of being able to use the rest of the tmrl pipeline as it is proposed
in the repository. It involved running Trackmania on a Windows OS, which was
virtualized by QEMU [7] within a Singularity [8] container on a Linux-based
cluster.

Singularity was chosen as the containerization method due to its compatibility
with the available cluster, instead of using Docker.

The emulator of choice was QEMU [7], as it was already used in the lab and
proved to work on the cluster in a Singularity container. Another driver to use
QEMU was that the Kernel-based Virtual Machine (KVM) support could be eas-
ily enabled and disabled. Enabling KVM brings massive performance benefits by
directly leveraging the host operating system’s kernel, enabling efficient virtual-
ization and resource utilization for virtual machines. But, kernel access on the
cluster is prohibited, as it poses a security risk.

3.1 Attempt 1: Running a Windows OS with QEMU,
without KVM

Emulating Windows OS using QEMU without KVM support is technically pos-
sible but impractical due to severely degraded performance, making the setup
virtually unusable. Enabling KVM was essential to achieve workable perfor-
mance, reducing the installation process from potentially days to a reasonable
timeframe.

5

3. Running a Windows OS in a Singularity container 6

3.2 Attempt 2: Running a Windows OS with QEMU,
with KVM

Despite being unable to run the setup on the cluster, I proceeded with KVM
support to explore a Singularity containerized setup. The VM’s performance was
excellent, and Trackmania 2020 was successfully installed. However, attempts to
run the game resulted in the Windows OS terminating the process with Error
Code 0xc0000005, indicating an access violation error [9]. Despite following the
official guide for resolution, the issue persisted, and it is suspected that the error
may be related to virtualization.

Chapter 4

Running Lutris in a Docker
container

Having faced difficulties with emulating the complete Windows OS for running
the tmrl library’s setup, I decided to explore other approaches to run Trackmania
on a Linux system. Moreover, I adopted a new strategy, focusing on getting
functional components of the solution working swiftly and then incrementally
building upon them. This iterative approach allowed for quicker progress and
enabled me to tackle challenges more effectively during the development process.

One widely used solution for gaming on Linux is Lutris. Lutris is an open-
source gaming platform and launcher specifically designed for Linux users. Its
primary goal is to streamline the installation, configuration, and management of
video games. With Lutris, gamers can access and play a diverse range of games,
including both native Linux games and Windows games through compatibility
layers such as Wine and Proton.

4.1 Setting up Trackmania 2020 with Lutris on a local
machine

The initial step towards a functional solution on Linux involves ensuring Track-
mania 2020 runs seamlessly on a Linux machine. However, running a GUI appli-
cation on a headless server presents additional challenges, which will be addressed
later. To proceed, the focus is on setting up and installing Lutris and Trackma-
nia, a straightforward process. For instance, on Ubuntu systems, Lutris can be
directly installed using the package manager apt:

apt update && apt install Lutris

7

4. Running Lutris in a Docker container 8

4.1.1 Installing Trackmania

Once Lutris is set up, Trackmania can be installed through the Ubisoft Connect
[10] application. In Lutris, simply install Ubisoft Connect and follow the provided
instructions. After installing Ubisoft Connect, launch the application, and it will
prompt you to log in to your Ubisoft Connect account. Please note that a free
account from Ubisoft Connect is required at this stage. After logging in, you can
proceed to install and start Trackmania directly from within the Ubisoft Connect
application.

4.1.2 Wine and Lutris

In this subsection, I will provide a brief discussion on how Wine and Lutris
works. Wine serves as a compatibility layer facilitating the execution of Win-
dows applications on Unix-like systems, including Linux and macOS. By trans-
lating Windows API calls into corresponding Unix-like system calls, Wine enables
these non-Windows systems to run Windows executables (EXE files) and utilize
Windows Dynamic Link Libraries (DLLs). Additionally, Wine offers emulation
for specific Windows behaviors that are not directly compatible with Unix-like
systems, emulating Windows registry settings, environment variables, and other
components to create a Windows-like environment for seamless application exe-
cution. When you install a Windows application through Wine, it creates a new
Wine prefix for that application. This prefix contains a virtual Windows file sys-
tem, registry settings, and other necessary components to make the application
work within the Wine environment.

On the other hand, Lutris takes charge of handling the setup and configura-
tions of Wine to facilitate the smooth running of a particular game. Wine, being
a somewhat improvised method to make Windows games work on non-Windows
systems, often requires a setup that works for each specific game. Once such a
setup is found, users can upload and share it on Lutris, making it more accessible
and user-friendly. Lutris simplifies the management of Wine and streamlines the
process of running Windows games on Unix-like systems.

In this scenario, both Trackmania and Ubisoft Connect coexist within the
same Wine prefix, meaning they share the same Windows environment.

4.1.3 Installing OpenPlanet

To obtain crucial information such as the car’s speed, current gear, and engine
rotations, necessary for creating observations in the reinforcement learning en-
vironment, an additional component called OpenPlanet [11] is required. Open-
Planet is a plugin and modding platform for Trackmania that offers additional
features and customization options, allowing players and developers to create

4. Running Lutris in a Docker container 9

custom scripts and access game internals. To set up OpenPlanet, you need to
manually download the installer EXE and add it to Lutris. Afterward, you can
install OpenPlanet using the provided installation wizard, which is thoroughly
explained on their website.

4.1.4 Wine runners

While Wine provides a functional compatibility layer, it is not flawless. In ad-
dition to the standard Wine version, the community has developed numerous
modded Wine-runners to address specific game requirements. Certain games
may require a custom-modded runner to function correctly. It is essential to note
that experimenting with different runners can often resolve various compatibility
issues. Throughout this project, it became evident that trying multiple runners
is a valuable troubleshooting approach when encountering problems.

4.2 Setting up Trackmania 2020 with Lutris on a head-
less VM

On a headless server, graphical user interface (GUI) applications typically require
an X server to function properly. The X server is responsible for receiving display
requests from the graphical applications and translating them into instructions
for the graphics hardware or display driver. It handles tasks such as creating and
managing windows, rendering graphical elements, and updating the display as
needed. However, on a headless server, there is no physical display or graphics
hardware to interact with. To address this, I used a virtual X server called Xvfb
(X Virtual Framebuffer).

In a previous attempt, I experimented with X forwarding as a substitute
for the missing X server. X forwarding, also known as X11 forwarding, is a
lightweight feature in Unix-like systems that enables remote display of GUI appli-
cations on a local machine. While it proves efficient for lightweight applications,
it fell short in replacing a full X server and lacked the necessary functionality to
make Trackmania work effectively.

4.2.1 Xvfb

Xvfb provides a virtual framebuffer in memory, allowing GUI applications to run
on the server without the need for a physical display. This setup enables the
seamless execution of graphical applications on headless systems.

4. Running Lutris in a Docker container 10

4.2.2 VNC

Having a virtual X server running enables connecting to it with x11vnc, which is
an open-source VNC server for Unix-like systems. It is a technology that allows
remote access and control of a computer or server over a network. This enabled
me to view the graphical desktop environment and interact with the computer
as if I was sitting in front of it. VNC also played a crucial role in setting up and
installing Trackmania on the headless server since the GUI interface of Lutris
and Ubisoft Connect required interaction.

4.3 Adding a Linux Interface to the tmrl library

tmrl is built on top of rtgym, and to integrate with rtgym, you only need to imple-
ment interfaces specific to your application, making it compatible with the boiler-
plate pipeline provided by rtgym. In this context, I created a new interface called
TM2020InterfaceLinux, which is defined in the file tmrl/custom/custom_gym_interfaces.py.
The required Class and functions are outlined in the pseudo code below:

class TM2020InterfaceLinux (RealTimeGymInterface) :

// app l i e s the ac t i on given by the po l i c y
def send_control (s e l f , c on t r o l) :

// r e s e t s the environment and the agent to the i n i t i a l p o s i t i o n
def r e s e t (s e l f) :

// no−op ac t i on for the agent
def wait (s e l f) :

// r e tu rn s the observat ion , the reward , and a terminated s i g n a l
def get_obs_rew_terminated_info (s e l f) :

// r e tu rn s obse rvat i on space
def get_observation_space (s e l f) :

// r e tu rn s the ac t i on space
def get_action_space (s e l f) :

// i n i t i a l a c t i on at ep i sode s t a r t
def get_default_act ion (s e l f) :

In order to appropriately execute the controls given in send_control and pro-
vide observations when get_obs_rew_terminated_info is invoked, supplemen-
tary interfaces for sending keys to Trackmania and capturing screenshots were im-

4. Running Lutris in a Docker container 11

plemented. The code can be found in the files tmrl/custom/utils/control_keyboard.py
and tmrl/custom/utils/window.py, respectively.

4.3.1 Sending keys to Trackmania

To control Trackmania, I used the popular scripting library xdotool [12]. xdotool
is a command-line tool for simulating keyboard input and mouse activity on X11-
based systems (Unix-like operating systems with X Window System support). It
allows users to automate and script tasks that involve interacting with graphical
user interfaces, such as clicking on buttons, typing text, moving the mouse, and
more.

It should be emphasized that this approach only permits binary control input.
In the Windows version of tmrl, the author resolved this by implementing a
virtual gamepad, enabling continuous steering inputs in Trackmania. However,
in this version, the control is limited to either steering right or not, which doesn’t
significantly affect the performance of human players and can be expected to be
learned by a policy.

4.3.2 Capturing screenshots

The key requirement for taking screenshots is that it is fast, as otherwise the
timesteps start to time-out. The python module fastgrab [13] is an open-source
screen capture package that offers high frame rates and satisfied the speed re-
quirements on a local machine.

4.4 Automating the deployment with Docker

The end-goal was to get an easy scalable worker. As previously stated, Singular-
ity was the favored choice for HPC clusters. However, Docker boasted a larger
community and a distinct approach to handling permissions inside a container,
offering a potentially faster route to containerize Trackmania. Additionally, Sin-
gularity possessed a feature that allowed the transformation of any Docker con-
tainer into a Singularity container. Hence, I made the decision to initially create
an automated deployment within a Docker container.

For the worker to be operational, Trackmania must be launched and prepared
for gameplay, meaning the track is selected and game is ready to play. Once
this condition is met, the worker can begin gathering experiences by interacting
with the game. To achieve this on a freshly started machine, three steps are
required: initiating the Xvfb-server, launching Lutris, and starting and setting up
Trackmania through Lutris. The first two steps are straightforward when working
with a command line interface, while the last step required some scripting.

4. Running Lutris in a Docker container 12

Trackmania itself runs in the Docker container with the same setup as de-
scribed above.

4.4.1 Starting and setting up Trackmania

The general process of reaching the desired setup was as follows, assuming that
Lutris is opened and everything is installed as described before:

1. Open Ubisoft Connect

2. Within Ubisoft Connect, launch Trackmania

3. Once Trackmania is open, start playing a track

Launch Ubisoft Connect

The window of Lutris exhibits deterministic behavior, allowing it to be opened
and repositioned using xdotool. This property allowed launching Ubisoft Con-
nect by simulating mouse clicks on specific screen coordinates.

Launch Trackmania

The behavior of the Ubisoft Connect window lacks determinism, leading it to open
at different positions and making it resistant to manipulation with xdotool, for
reasons that are not fully understood. To achieve a consistent window position
for the purpose of opening Trackmania with mouse clicks, I utilized computer
vision. The script captures a screenshot once Ubisoft Connect is launched and
then identifies the location of the top bar of the window by looking for it’s unique
color. It proceeds to perform a double-click action on that location, causing the
window to resize to fullscreen mode. This, in turn, allows for the use of simulated
mouse clicks on specific screen coordinates to successfully open Trackmania.

Start playing a track

The Trackmania window still exhibits non-deterministic behavior, but the layout
of the menu remains consistent, and it can be controlled using the keyboard. To
address the window’s non-determinism, a workaround has been found: randomly
changing the screen size and then minimizing it consistently leads to the desired
minimal window size. This minimal window size is essential as the screenshots
taken while playing need to be cropped to the correct dimensions. Once this non-
determinism is effectively resolved, starting a track becomes a straightforward
process of navigating the menu using the keyboard.

Chapter 5

Conclusion and outlook

The project is currently nearing completion, with most components in place to
establish a fully automated pipeline for running workers on a Linux cluster. The
remaining task involves integrating the final pieces by creating a Docker container
that performs the following actions upon startup:

1. Initiates the Xvfb-server

2. Launches Lutris

3. Sets up Trackmania

Fortunately, the individual pieces required for these steps already exist and are
functional in the form of separate scripts. The last phase involves combining and
orchestrating these scripts within the Docker container to achieve the desired
automated pipeline.

The tmrl-extension has been submitted as a Pull Request to the main repos-
itory. Now, the maintainers of the repository will review the changes and, if
everything looks good, they may merge the Pull Request into the main codebase.
This will make the tmrl-extension a part of the official project, allowing others
to benefit from the added functionality and improvements, and hopefully boost
the participations in the Trackmania Roborace League.

13

https://github.com/trackmania-rl/tmrl/pull/57

Bibliography

[1] “Trackmania,” accessed: 21.07.23. [Online]. Available: https://www.ubisoft.
com/de-de/game/trackmania/trackmania

[2] Y. Bouteiller, “tmrl,” https://github.com/trackmania-rl/tmrl, 2020, com-
mit: b142b8e.

[3] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, “Openai gym,” 2016.

[4] “Lutris,” accessed: 21.07.23. [Online]. Available: https://lutris.net/

[5] Y. Bouteiller, “rtgym,” https://github.com/yannbouteiller/rtgym, 2020,
commit: 213df48.

[6] Y. Bouteiller, “tlspyo,” https://github.com/MISTLab/tls-python-object,
2022, commit: 743b8f4.

[7] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Proceedings
of the Annual Conference on USENIX Annual Technical Conference, ser.
ATEC ’05. USA: USENIX Association, 2005, p. 41.

[8] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific con-
tainers for mobility of compute,” PLOS ONE, vol. 12, no. 5, pp. 1–20, 05
2017.

[9] “Application error 0xc0000005,” accessed: 21.07.23. [On-
line]. Available: https://answers.microsoft.com/en-us/windows/forum/all/
application-error-0xc0000005/6224ae45-a251-4f21-b076-74524618d00a

[10] Ubisoft, “Ubisoft connect,” accessed: 21.07.23. [Online]. Available:
https://ubisoftconnect.com/de-DE/

[11] “Openplanet,” accessed: 21.07.23. [Online]. Available: https://openplanet.
dev/

[12] “xdotool,” accessed: 21.07.23. [Online]. Available: https://wiki.ubuntuusers.
de/xdotool/

[13] M. Herkazandjian, “fastgrab,” https://github.com/mherkazandjian/
fastgrab, commit: 499ed87.

14

https://www.ubisoft.com/de-de/game/trackmania/trackmania
https://www.ubisoft.com/de-de/game/trackmania/trackmania
https://github.com/trackmania-rl/tmrl
https://lutris.net/
https://github.com/yannbouteiller/rtgym
https://github.com/MISTLab/tls-python-object
https://answers.microsoft.com/en-us/windows/forum/all/application-error-0xc0000005/6224ae45-a251-4f21-b076-74524618d00a
https://answers.microsoft.com/en-us/windows/forum/all/application-error-0xc0000005/6224ae45-a251-4f21-b076-74524618d00a
https://ubisoftconnect.com/de-DE/
https://openplanet.dev/
https://openplanet.dev/
https://wiki.ubuntuusers.de/xdotool/
https://wiki.ubuntuusers.de/xdotool/
https://github.com/mherkazandjian/fastgrab
https://github.com/mherkazandjian/fastgrab

	Abstract
	1 Introduction
	2 The tmrl-Framework
	2.1 Architecture
	2.1.1 tlspyo
	2.1.2 rtgym

	3 Running a Windows OS in a Singularity container
	3.1 Attempt 1: Running a Windows OS with QEMU, without KVM
	3.2 Attempt 2: Running a Windows OS with QEMU, with KVM

	4 Running Lutris in a Docker container
	4.1 Setting up Trackmania 2020 with Lutris on a local machine
	4.1.1 Installing Trackmania
	4.1.2 Wine and Lutris
	4.1.3 Installing OpenPlanet
	4.1.4 Wine runners

	4.2 Setting up Trackmania 2020 with Lutris on a headless VM
	4.2.1 Xvfb
	4.2.2 VNC

	4.3 Adding a Linux Interface to the tmrl library
	4.3.1 Sending keys to Trackmania
	4.3.2 Capturing screenshots

	4.4 Automating the deployment with Docker
	4.4.1 Starting and setting up Trackmania

	5 Conclusion and outlook
	Bibliography

