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Abstract

Electronic voting, online social networks, and resource distribution
all suffer from a common issue: individuals creating multiple accounts,
commonly referred to as Sybil attacks. Within the realm of blockchain,
various strategies have been developed to address this challenging prob-
lem, and can be coined under the term of proof-of-personhood. Among
these approaches, the Encointer protocol distinguishes itself by offer-
ing a decentralized, privacy-centric, and secure solution that is based
on physical meetings within local communities, each equipped with its
own currency and economy. However, the Encointer protocol focuses
on a local approach to proof-of-personhood, working within a bounded
geographic area. In this work, we introduce an extension of the En-
cointer protocol for a global proof-of-personhood framework founded
upon local communities’ proof-of-personhood. This global protocol re-
lies on a trust-graph connecting these communities. We also propose a
design for a decentralized currency exchange, tailored to the specificity
of Encointer economies and that serves as a foundation to derive the
trust-graph, leveraging economic incentives.
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1 Introduction

The question of identity and pseudonyms on the Internet has been a topic
of concern since the advent of the digital era. If the possibility of expressing
oneself under a pseudonym is sometimes seen as an opportunity for freedom
of speech [14], it is also this ease of creating pseudonyms that became an
obstacle to online voting: how to ensure that each person has one voice, and
one voice only, when it’s so easy to obtain a multitude of accounts. The
illegitimate creation of multiple accounts is known as a Sybil attack and is
associated with undesirable practices such as ballot stuffing, astroturfing, or
sock puppetry.

If preventing Sybil attacks can be considered through identifying users, it is
actually not required to do so, but just to make sure they do not own several
accounts. Various solutions to these problems have been proposed, each with
their specific strengths and weaknesses, and are generally coined under the
term of proof-of-personhood. Among these solutions, the Encointer protocol
[3] offers a proof-of-personhood protocol with strong guarantees for local
communities. Each Encointer community organizes regular physical and
local meetings, and delivers its certifications to participants.

The goal of this work is to develop mechanisms to allow interactions be-
tween local communities. The primary focus is on designing a decentralized
exchange (DEX) between communities, which all have their own currency.
The particular nature of Encointer economies requires some adaption from
standard type of decentralized exchanges, such as Constant Product Market
Makers (CPMM). The second is to derive a global proof-of-personhood pro-
tocol based on the local protocols. Our approach is based on establishing a
web-of-trust among communities, leveraging economic incentives that rely
on our DEX.

Our main contributions are a classification of proof-of-personhood approaches
and their applications, an adaptation of CPMM to demurrage, with a de-
murrage reduction mechanism aimed at incentivizing liquidity providing, a
mechanism to derive a web-of-trust between Encointer communities leverag-
ing economic incentives, and a classification of communities between trusted
and not, based on a PageRank [5] analysis of the web-of-trust and an initial
trusted setup.

In the next section we provide a definition of proof-of-personhood, detail
some promising applications, and provide an overview of some existing ap-
proaches.
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2 Proof-of-Personhood: the Solution to Sybil At-
tack

2.1 Context

Blockchains are a type of distributed ledger technology (DLT). They ba-
sically are peer-to-peer decentralized (i.e., without central authority) and
immutable records, where it is possible to store data in an append-only
mode. Since the creation of Ethereum [6], some blockchains also allow the
decentralized execution of code. Such programs are called smart contracts.
A data stored on a blockchain is said to be on-chain.

We consider a set of persons who can own accounts. Accounts are typically a
username/password couple, or more frequently in the context of blockchains,
a public key/private key couple. A person owns an account if they know the
associated password or private key. An account is publicly identified by its
address, which is generally its public key or its username.

2.2 Proof-of-Personhood: Definitions

Definition 1. A proof-of-personhood protocol is a series of rules that defines
a set of accounts that are said to be certified. This set must be such that any
certified account satisfies two properties: 1) it is owned by a person, and 2)
the owner does not own more than one certified account of the protocol at
a time.

We call a certification the fact that an account is certified.

Definition 2. A protocol that emits certifications that do not satisfy the two
properties of Definition 1 is said to be a Sybil protocol. Such certifications are
said to be Sybil certifications. A Sybil protocol is not a proof-of-personhood
protocol.

Given the two properties defined in Definition 1, that constitute the essence
of proof-of-personhood, several choices are still to be made in the design.

Definition 3. A certification is said to be perishable if it has a fixed ex-
piration date, after which the certification is no longer valid. A protocol is
said to be perishable (resp. non-perishable) if all its certifications are
perishable (resp. non-perishable). Note that a non-perishable certi-
fication is not necessarily definitive, as it can be revoked for other reasons
than an expiration date.
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Definition 4. A protocol is said to be t-renewable if a user can have a new
account certified every t units of time. Having a new account certified always
requires the former certification to be no longer valid (expired or revoked).
Within the t time frame, a user cannot change its certified account. A system
where a user can never change its certified account is said to be ∞-renewable.
We said that a protocol is renewable if it is t-renewable with t < ∞.

As we will see, whether a protocol is renewable or not has implications on the
possible applications. Some specific applications can require the protocol to
be ∞-renewable. However, when this is not required, a t-renewable protocol
with t < ∞ can provide higher privacy guarantees, as changing account
prevents from linking past activities to present ones.

Definition 5. Two protocols are said to be disjoint if it is impossible for
a person to have accounts certified in both protocols at the same time.

If two protocols are disjoint, then considering both protocols certifications
as valid constitutes a proof-of-personhood protocol, i.e., only a human can
have a certified account, and it is not possible to have two certified accounts
at the same time.

Definition 6. Given a sequence of disjoint proof-of-personhood protocols
{Pi}i, we define the union protocol of {Pi}i by the protocol in which the set
of certifications is equal to the union of the sets of certifications of {Pi}i. It
is a proof-of-personhood protocol.

As we will see, the range of applications is wide. In the next subsections, we
provide a non-exhaustive classification of proof-of-personhood applications.

2.3 Applications

2.3.1 Voting

Voting generally implies three requirements:

1. a person can only vote once

2. only allowed persons can vote (for example, only resident of a region
can vote for an election, or only members of the board for a decision
within a company etc.)

3. coercion resistance: it is hard to buy votes, i.e., it is hard for a voter
to prove to a vote buyer that they actually voted for the demanded
outcome.
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When votes take place in person, requirement 3 was traditionally achieved
with voting booths. It is harder to satisfy in the case of electronic voting, but
protocols such as [17] focus on offering layers to achieve coercion resistance.

Proof-of-personhood is naturally focused on satisfying requirement 1. In
the case of Encointer, as we will see, a proof-of-personhood certification is
associated with the physical presence in a specific area. Therefore, in the
case of a local community vote, with the assumption that residents are the
one allowed to vote, the Encointer proof-of-personhood protocol can also be
used to satisfy requirement 2.

Democracy: Proof-of-personhood allows achieving 1-person-1-vote, and by
extension, it becomes possible to run referendums, or elections, in a decen-
tralized way. Generally, we do not need a ∞-renewable protocol for these
applications. Renewable protocols are often even better, as they guarantee
a higher level of privacy.

Rating on social networks: Social networks are often not resilient to Sybil
attacks. When it comes to likes, followers, upvotes or downvotes, which are
forms of votes, the creation of multiple accounts can allow giving credit to
an idea, make it look more consensual. Proof-of-personhood could typically
be a solution to this problem. The protocol can either be ∞-renewable or
renewable as long as votes are taken into account only if their author is an
address currently certified (in particular, it is not revoked or expired).

Consensus: Bitcoin consensus uses proof-of-work. In a nutshell, partici-
pants’ voting power is proportional to their computing power. This gives a
considerable edge to participants having money, living in a country where
electricity is cheaper, or where cooling is easier. With proof-of-stake, par-
ticipants’ voting power directly depends on the amount of money they have
locked, and therefore on their wealth. Proof-of-personhood could be used
alternatively, to run a more democratic and fairer consensus protocol. It
would also be more energy-efficient than proof-of-work.

Dispute Resolution: In dispute resolution protocols, such as Kleros [8],
jurors are randomly selected to arbitrate a dispute. To prevent Sybil attacks
(a big number of jurors is created in order to increase the chance of an
attacker to decide on the outcome of a dispute), jurors are selected with a
probability proportional to the amount of Kleros tokens staked. A proof-
of-personhood-based selection system has the potential to enable a justice
equally run by the people, regardless of individuals’ wealth.

It is worth noting that the Kleros dispute resolution protocol is used to
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arbitrate the Proof-of-Humanity protocol, which will be discussed in the
next subsection.

Decentralized oracle: Bringing real world data on-chain in a decentralized
way is a hard problem known as decentralized oracles. Proof-of-personhood
could be a pillar for democratic decentralized oracles, where participants
would vote for the outcome they consider to be true.

2.3.2 Resource Distribution:

Fair resource distribution may be achieved through proof-of-personhood.
Universal basic income is a kind of resource distribution, and is already
implemented by several proof-of-personhood protocols [3] [24].

Another example of resources distribution is fair air drop, which would work
as 1 person 1 drop. In most cases, a renewable protocol works well. In
the case of a resource that should be given only once in a lifetime, a ∞-
renewable protocol could fit the application better. For example, a ∞-
renewable protocol could be used to provide freemiums and trial versions.
A free trial period could be distributed to each person, without fearing the
Sybil attack that would consist in creating multiple accounts to benefit from
trial periods again and again. A t-renewable protocol could also be used,
with a limited use of the software per person and per t units of time.

2.3.3 Anti-Spam and Anti-Bot:

Proof-of-personhood can be used to limit the use of bots. Indeed, an online
service can decide to answer only to certified addresses. Persons are still
able to use bots, but only one per person, and a per-person rate limit can
be enforced. It is also useful to prevent from spam, or DOS-like attacks,
as soon as it is easier for a server to check if an address is certified, than
actually answering the request.

2.3.4 Identity Verification and Self Sovereign Identity:

Proof-of-personhood and self sovereign identity are two solutions aimed at
solving two different problems. Still, it is worth noting that one could help
to build the other.

On the one hand, if identities are unique, providing them through a self-
sovereign-identity protocol would be a form of proof-of-personhood. As we
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have already mentioned, however, it could be desirable to not be forced to
provide one’s identity in order to prove one’s personhood.

On the other hand, proof-of-personhood could be used as a building brick
for a self sovereign identity system. Indeed, identity attributes are often
data that by essence cannot change through time, or only under particular
circumstances; names, date of birth etc.

In a ∞-renewable proof-of-personhood protocol, no one is able to change its
certified address, which becomes a unique identifier for humans. Proof-of-
personhood alone is not enough to run a self sovereign identity protocol. For
example, in the context of a ∞-renewable protocol, we know that a person
can claim only once their name, birthdate etc. So, we can be sure that no
one can change their birthdate, for example. However, proof-of-personhood
alone does not allow checking that the initially announced birthdate was
true.

2.4 A Classification of Proof-of-Personhood Protocols

In this subsection, we provide a classification of known approaches to proof-
of-personhood.

2.4.1 Centralized Identity Verification

Preventing Sybil attack can be considered through identifying user based on
identity documents. However, this solution is currently not possible for a
significant part of the population, which do not have access to identity docu-
ments [23]. Moreover, simply relying on images of such documents struggles
to be a fraud-resistant and privacy-protective solution. If the privacy and
security of an identity documents based proof-of-personhood protocol could
be improved through cryptographic primitives, enabling a global and stan-
dard solution that would fit in the environment of the decentralized web still
seems challenging.

2.4.2 Biometric Proof

Collecting biometric data can be used to check the uniqueness of a user be-
fore providing them a certification. Faces, or irises, are biometric attributes
that are considered to have high enough entropy among the world’s popula-
tion so that no two humans have the same image of the attribute through a
sufficiently precise sensor (e.g., a camera with a high enough resolution). In
such protocol, in order to get a certification, a user must provide an image
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of a biometric attribute. This image is then compared with the database of
already certified users. If it is different enough from them, the new image is
added to the database and the user gets a certification.

Such techniques have the advantage to be more inclusive than identity docu-
ments based solutions, as almost everyone has a face, or irises, etc. However,
they can face security, privacy, and centralization issues.

The first option is that the user provides themself the image of their bio-
metric attribute. For example, in the Proof-of-Humanity protocol, users are
asked to upload a video of them speaking with their address visible [16]. It
is hard to guarantee that the provided image is not fake. The advances in
deepfake, and other image generation techniques make it hard to rely on
self-provided biometric images in the long term, even if it is claimed that
faking such videos is still difficult [16].

The other option is that users do not provide the image themselves. The
Worldcoin protocol uses a specific hardware called the Orb to capture users’
irises [24]. Only an image captured by a trusted Orb is accepted. Users
must go to an operator who organizes the registration with an Orb, in order
to have their irises captured. In this case, it is harder for a random user
to provide a fake image of their irises. However, it results in a raise in the
centralization of the protocol, where the operators and manufacturers of the
Orb concentrate the power.

The issue of privacy can also be discussed. Despite potential improvements
through encryption, biometric protocols inherently pose challenges to pri-
vacy.

2.4.3 Social Trust

Several approaches of Sybil-resistant and decentralized identities registry
protocols are based on social trust. In 1992, the PGP creator Phil Zim-
mermann describes his so-called web-of-trust, which is a graph where nodes
are public keys, and edges are a signature of a public key and the associ-
ated identity by another user who trusts the signed key/identity couple. In
this context, if a key/identity couple is signed by a lot of other users, it is
reasonable to assume that the key indeed belongs to the claimed identity.
Even though the goal was not to create a proof-of-personhood protocol, but
rather a public key infrastructure, this approach paved the way to social
trust-graph based methods. In the context of online social networks, Sybil-
Rank [7] is aimed at detecting Sybil identities by analyzing the social graph
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of friendships on online social networks. Based on PageRank [5] the algo-
rithm is able to detect big regions of interconnected Sybil nodes. However,
it does not offer a high enough accuracy (false positive and false negative)
to be used in the context of proof-of-personhood.

Protocols such as brighId [4] or Upala [20] use social trust to achieve proof-
of-personhood. A user is given a certification if they are trusted enough
by other users. However, as stated in [9], it is hard to assume that even
the closest relative to a person can be able to trust that they own only one
account.

2.4.4 Simultaneous Tests

A wide range of protocols are based on simultaneous tests. A series of
tests happen simultaneously, and is repeated on a regular basis. The tests
are such that it is impossible to pass two at the same time, and only a person
can pass a test. The users who passed their test get a certification, that is
valid (i.e., not perished) until the next series of tests. As all tests happen
simultaneously, one person can only get one certification.

We call a cycle the timeframe that starts at the beginning of a series of tests,
and ends just before the next one, and we call the cycle period, the time
between two series of tests (that is usually constant). The choice of the cycle
period relies on the following tradeoff: on the one hand, the bigger it is, the
more convenient it is for users as they need to take tests less frequently; on
the other hand, new users risk to have to wait longer until the next series
of tests to get a certification. Also, missing a series of tests is more serious,
as the time the user will spend without a certification is bigger. We outline
two main class of simultaneous tests.

Reverse Turing Tests Based

A reverse Turing Test is a problem that is designed to be hard to solve for
a computer. CAPTCHAs (for Completely Automated Public Turing test to
tell Computers and Humans Apart) are typical reverse Turing tests. The
Idena protocol works with Flip tests, which are problems proposed by the
community, to implement a proof-of-personhood protocol [15]. The user
gets their perishable certification if they manage to solve enough problems
within a limited time. This solution has the advantage to be easy, as it
only requires an internet connection and a few minutes to get a certifica-
tion. However, the gain in terms of convenience results in a loss in terms
of security. Indeed, even if it is clear that one human is not able to solve
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enough Flip tests to get hundreds or thousands of certifications, it is not
clear that a well-trained human would not be quick enough to get 2 or a
few more certifications. Moreover, even if the current public AI technologies
seem incapable of solving flip test, it is not to exclude that a model able
to solve flip tests could be developed in a more or less near future. Such
a technology could be kept secret and result in a massive Sybil attack that
could go unnoticed.

Physical presence Pseudonym parties are in-person meetings, where users
must show their physical presence in order to pass the test. As it is impos-
sible to be physically at two meetings at the same time, the presence at a
meeting, when all meetings occur at the same time, constitutes a valid test
for a simultaneous based proof-of-personhood protocol. The presence of a
person is assessed by other persons, either users or organizers, depending on
the type of meeting. The presence of a user is generally put on record by
organizers or other users signing their public key.

Pseudonym Parties traditionally allow anyone around the globe to organize
a party [9] [10]. Then, in order for a party to be trusted, they should allow
anyone to witness that the party is well organized, and mainly that the
number of certifications produced is not bigger than the number of persons
present. For communities that are very far away, where witnessing is hard,
this implies producing proofs, such as videos of the events to convince other
members to trust this party. Indeed, it is easy for an attacker to claim
that they organized a party in a place they know nobody will be able to
come to witness the valid execution, and produce more certifications than
the number of people actually present. The users of the protocol might
expect a video of the party in that case, along with a proof that it was not
filmed in advance. But using videos as a proof, such as in biometric-based
protocols, represents serious flaws. The first one is a security weakness, that
relies on the fact that a video can be faked, edited, AI-generated, etc. The
progress in artificial intelligence shows more and more realistic deep fakes,
and videos can less and less be accepted as proofs. Moreover, the diffusion of
such videos might jeopardize the users’ privacy. Indeed, they allow linking a
group of addresses with a group of faces (or other recognizable traits). Even
when these groups are big, after aggregating this data on several parties, it
may become possible to identify the owners of the certified addresses.
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3 The Encointer Local Protocol

3.1 Encointer Proof-of-Personhood

Similarly to the traditional Pseudonym Parties proposal [10], the Encointer
protocol [3] is based on simultaneous test of physical presence. In the En-
cointer protocol, certifications are produced within local communities. Each
community of the Encointer protocol is bounded to its own geographic area
and has its own proof-of-personhood protocol. Users can choose to join
their community according to where they live. Contrary to the traditional
Pseudonym Parties proposal [10], users cannot choose to which parties they
can go. Instead, they are randomly assigned to one of the meetings of their
community. Each meeting involves a small enough number of people to
not require organizers, and takes place within the community geographic
area, which guarantees small travel distances for participants. They happen
at a predefined frequency, and—as in the traditional Pseudonym Parties
proposal—all at the same time. Certifications are produced during meet-
ings, and are valid during one cycle (i.e., until the next series of meetings),
which guarantees that a person can at most have one certification at a
time. Encointer communities’ protocols are therefore perishable and T -
renewable protocols based on simultaneous physical presence tests, with T
the (constant) period of cycles.

As users do not choose the place nor the people with whom they will meet,
there is no need to convince the other members of the community that this
particular meeting was executed correctly. Each member of the community,
by participating, witnesses meetings and is able to assess the honesty of
the other members. Even if there is a secret collusion (or several), it cannot
control the fact that there will be honest participants assigned in their meet-
ings, who will prevent them from faking a certification. There are witnesses
in all parties by default.

The fact that all meetings take place in a defined community, bounded
within a geographic area, in addition with small and randomized meetings,
make it possible for a member of a community to have a great trust in the
protocol of their community and its certifications, without requiring videos
or other kind of proofs.
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3.2 Encointer Economy: Universal Basic Income and De-
murrage

Encointer protocol aims at allowing communities to run a local and equal
opportunity economy where each community has its own currency. It imple-
ments a universal basic income (UBI), which members earn each time they
participate in a meeting. These incomes come from freshly minted tokens.

Minting big amounts of tokens regularly without burning some would result
in a constant increase in the supply of the currency, leading to high inflation.
Encointer therefore includes a burning mechanism called demurrage. A per-
centage of the supply is constantly burned at a fixed rate. This traditionally
affects all wallets and other form of holding equally. In Section 5, however,
we introduce an exception to this rule for liquidity providing.

Demurrage along with UBI can be seen as a form of wealth redistribution.
The amount of the UBI and the demurrage rate are decided by each com-
munity.

4 Problem Statement

As we have seen, the Encointer solution to proof-of-personhood has many
advantages, including strong privacy. The protocol of a given community is
secure when a big enough percentage of the population is honest (or when the
biggest collusion represents a small enough percentage of the population).
This assumption can be reasonably made for a participant of the community,
who is able to assess the honesty of the other participants and the proper
execution of its local community protocol.

However, assessing and trusting the proper execution of a foreign community
may require more work. It is hard to expect from individuals to maintain
an up-to-date list of the foreign communities that are trustworthy. More-
over, for certain applications such as protocol governance or global voting,
communities of the protocol must reach a consensus on the set of communi-
ties that are trusted, and whose certifications can be taken into account in
voting. Each community can of course run a vote to ask its member which
foreign communities they trust. But firstly, we cannot expect members to
do this demanding work and rely on it if they do not have skin in the game
and incentives to do it well. Secondly, even if each community knows which
they trust, it is not trivial to derive from this information the set of com-
munities that can be trusted, as several dishonest communities can claim to
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trust each other.

We consider a set of Encointer communities C. Each community A ∈ C runs
its proof-of-personhood protocol, and has its own set of certified addresses,
its own currency whose symbol is denoted ¤A, and its demurrage rate de-
noted DA. We note SA, NA and wA respectively the supply of tokens ¤A,
the population of community A (i.e., the number of certifications) and the
amount of the UBI of community A in terms of ¤A.

A community is said to be honest or non Sybil if its protocol is not Sybil.
On the contrary, a community is said to be Sybil or dishonest if it produces
Sybil certifications.

We say that a person is honest if they behave accordingly to the protocol.
In particular, they are not willing to own more than one certification, and
they do not sign the keys of absent persons during meetings.

We assume that there can be a large number of Sybil communities, and they
can create an arbitrarily large number of Sybil certifications.1

Moreover, an honest community can become Sybil at any time. In practice,
this can happen if the number of participants become very low. In this case,
a collusion can take control of the community and create fake certifications
as there are no longer honest participants in the meetings.

The goal is to create and maintain, in a decentralized way, a set of trusted
communities that we can reasonably assume to be honest. We call it the
trusted set T ⊂ C. It is critical that the trusted set contains no Sybil
communities. It is desirable that a large part of the honest communities is
included in the trusted set.

If the communities’ protocols of the trusted set are disjoint—which is the
case if they agree on the same schedule2 for the cycles so it is impossible
to attend two meetings at the same time—the trusted set becomes itself a
proof-of-personhood protocol, at a global scale.

Before building the trusted set layer, we address, in the next section, the

1In practice, there is a limit in the Encointer protocol on the growth per unit of time
of the number of certifications a community produces during each cycle.

2In fact, the meeting schedules of different communities can be slightly different. The
requirement that must hold is that it is impossible to attend two meetings of the same
cycle. For any communities A,B ∈ C the delay between the meetings of A and the
meetings of B must be strictly inferior to the minimum time needed to travel between the
two communities’ areas. Because of time zones, it may be useful to allow such delays.
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problem of foreign exchange between Encointer communities, which will be
a foundation for the former. The particularities of Encointer communities’
economies, and especially demurrage, can raise liquidity issues.

5 Foreign Currencies Exchange for Encointer Com-
munities

Currencies exchanges require the availability of liquidity and a price oracle
mechanism, that is, defining the rate at which currencies are traded. In
traditional order book exchanges, the price is defined by the meet between
supply and demand. The liquidity of the exchange is very sensitive to the
transactions volume.

In the decentralized context of web3 and cryptocurrencies, automated mar-
ket makers (AMM) have become very popular for their high liquidity avail-
ability, that comes from the fact that an AMM hold liquidity that is con-
stantly ready to be traded.

However, in the case of Encointer, the demurrage makes it difficult to expect
pooling large amounts of liquidity, resulting in high slippage for users, which
is a type of additional cost inherent to AMMs.

In the next subsection, we recall the specification and main mechanisms of
a CPMM. More details can be found in specific publications [25] [1].

5.1 Recall on CPMM

An AMM is a smart contract that is able to hold assets, and to trade them
with users.

Constant function market makers (CFMM) are a specific class of AMM
where trades are allowed if and only if they keep invariant a particular
function of the exchange variables. In particular, a constant product market
maker (CPMM) between two base currencies ¤A and ¤B allows any trade
that keeps the invariant rArB unchanged, with rA (resp. rB) the quantity
of currency ¤A (resp. ¤B) held by the CPMM, named the reserves. The
reserves of the CPMM are provided by the so-called liquidity providers.
They receive in exchange share tokens that represent their shares in the
reserves and allow them to trade back their base tokens. We note ¤AB the
symbol of the share tokens.

Formally, a CPMM exports the following operations for users:
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Operation: swap for B(xA)

Requirement: xA > 0 and user owns more than xA¤A

Outcomes:
• xA¤A are transferred from the user’s wallet to the CPMM reserve
• xA

rB
rA+xA

¤B are transferred from the CPMM reserves to the user’s
wallet

Operation: swap for A(xB)

Requirement: xB > 0 and user owns more than xB¤B

Outcomes:
• xB¤B are transferred from the user’s wallet to the CPMM reserve
• xB

rA
rB+xB

¤A are transferred from the CPMM reserves to the user’s
wallet

Operation: provide(xA, xB)

Requirement: xA > 0 and xB > 0 and xA
xB

= rA
rB

and user owns more
than xA¤A and xB¤B

Outcomes:
• xA¤A and xB¤B are transferred from the user’s wallet to the
CPMM reserves

• xA
rA

SAB¤AB are minted and transferred to the user’s wallet, with
SAB the supply of share tokens before the minting
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Operation: withdraw(xAB)

Requirement: xAB > 0 and user owns more than xAB¤AB

Outcomes:
• xAB

SAB
rA¤A are transferred from the CPMM reserves to the user’s

wallet
• xAB

SAB
rB¤B are transferred from the CPMM reserves to the user’s

wallet
• xAB¤AB are burned from the user’s wallet

It can be checked that a swap operation always preserves the product rArB,
while a liquidity provision or withdrawal operation preserves the ratio rA/rB,
and by extension the price.

Definition 7. The marginal price when buying xB¤B (resp. xA¤A) is
defined by rA/rB (resp. rB/rA). It corresponds to the price in terms of asset
¤A (resp. ¤B) paid when xB (resp. xA) is negligible compared to rB (resp.
rA).

The marginal price is also referred to as internal exchange rate, or spot price
in the literature [1] [25] .

Definition 8. The swap price when spending xA¤A to buy ¤B (resp.
spending xB¤B to buy ¤A) is defined by rB

rA+xA
(resp. rA

rB+xB
). It corre-

sponds to the price actually paid, in terms of ¤A (resp. ¤B).

The swap price is also referred to as swap rate or realized price in the
literature [1] [25].

Each time an asset is bought from the CPMM, it becomes more expensive,
as the amount of this asset in the reserves decreases while the other in-
creases. Equivalently, each time an asset is sold to the CPMM, it becomes
less expensive. This property is central.

An AMM is useful if it offers a swap price close to the market price, which
is the price defined by supply and demand and that reflects the real value
of the base assets. CPMMs exhibit two favorable properties, which make
them a popular type of AMM: budget solvency and price discovery [1] [25].

Proposition 1. Price discovery: In the presence of arbitrageurs, which
are agents trading with the CPMM in order to maximize their net worth com-
puted regarding the market price, the marginal price of the CPMM eventually
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aligns with the market price.

We assume the presence of arbitrageurs.

Proposition 2. Budget solvency: It is impossible to empty the reserves
of the CPMM, which means that it is always possible to trade.

In practice, users pay the swap price, which is always higher than the
marginal price, and by extension the market price. This discrepancy is
called the slippage. It is associated with the fact that as one is buying an
asset, its price increases. When the size of the trade is negligible compared
to the reserve, the slippage is negligible, but if the size of the trade is too
big compared to the reserves, the slippage becomes too high for the trade
to be acceptable.

For the sake of simplicity, we have not included fees in the above specifi-
cation. In practice, in order to reward the liquidity providers, each swap
is charged with a certain percentage of fees. These fees are then spread
between liquidity providers proportionally to the amount of share tokens
they own. However, liquidity providers also face a loss in their net worth
each time there is a change in the market price between the two assets that
eventually results in a change in the marginal price. This loss is usually
referred to as impermanent loss, or sometimes divergent loss [25].

Proposition 3. Impermanent Loss: The impermanent loss is defined by
1 − Wprovided

Whold
with Wprovided the net worth of the liquidity providers after a

market price change and the associated arbitrage, and Whold the net worth
of the liquidity providers if they had kept their liquidity out of the AMM
during the price change. For a price change equal to a multiplication by ρ,

the impermanent loss is equal to 1−
2
√
ρ

1 + ρ
.

It is referred to as impermanent because if the market price returns to
its original value without liquidity providers withdrawing their funds, the
impermanent loss becomes null again. Liquidity providers do not fear price
fluctuations around the mean, but rather long-term crashes or pumps.

In a nutshell, liquidity providers want to provide liquidity for a stable pair
whose average price does not vary much in order to minimize their imper-
manent loss. They also want to provide liquidity for a pool that can offer
high fees reward, i.e., a pool with a lot of transaction and/or with high fees.

In the next two subsections, we propose an adaptation of the CPMM ap-
proach to the specific case of Encointer. For each pair of Encointer commu-
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nities, we consider a pool that exports the above operations of a CPMM.
We note AB-pool the pool between two communities A,B ∈ C, and we
note rAB

A , rAB
B its reserves respectively in ¤A and ¤B. When there is no

ambiguity on the pool considered, we simply write rA, rB.

5.2 Pairing Contract to Balance Liquidity Providing Opera-
tions

AMMs typically implement liquidity providing operations that have no im-
pact on the price. For CPMM, liquidity providing must be balanced, i.e.,
the ratio between the reserves is kept after the operation.

This implies that a liquidity provider provides both tokens. However, in the
context of Encointer, participants of a community typically own only one
type of token, which is their community’s token.

We can either assume that liquidity providers will somehow acquire the
tokens they need to provide liquidity (by trading with a peer for example,
over the counter), or we can include in the design a way to provide liquidity
with peers.

Note that some CFMM does allow unbalanced liquidity provision such as
Balancer [19] for example. But in this case, the AMM performs a sequence
of swaps with itself before providing liquidity, so the unbalanced liquidity
operation can be decomposed in a sequence of swaps, and a pure liquidity
(balanced) operation. In this case, unpure liquidity providing operations do
have a price impact and a slippage cost.

We suggest another solution based on a smart contract aimed at balancing
liquidity providing operation, by pairing funds from users owning one type of
asset and users owning the other. A pairing contract is associated with each
pool. When a user i wants to provide xA¤A in the AB-pool, they deposit
their funds in the corresponding pairing contract. If there is already yB¤B

waiting in the smart contract, then it automatically takes the maximum
funds of both tokens that respects the ratio rA/rB of the AB-pool and
provides these funds to the reserves.

Formally, with LA, LB the reserves of the pairing contract,3 as soon as
LALB ̸= 0, one of the following operations of the CPMM is called by the

3Since we focus on one pool, we simply write LA, LB and not LAB
A , LAB

B .
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pairing contract:{
provide(LA, LA

rB
rA
) is called if LArB ≤ LBrA,

provide(LB
rA
rB

, LB) is called else.

The pool share token minted upon this operation are equally shared between
the providers.

User i now owns shares in the pool, that represent ownership of tokens ¤A

and tokens ¤B. It is equivalently to i trading some of its tokens ¤A for
tokens ¤B at the marginal price, to provide liquidity (without slippage but
with possible wait time).

If there are no tokens ¤B in the smart contract, then the funds of i wait
until some tokens ¤B are added to the contract.

This pairing contract could accept some additional requirements by the user,
for example a certain price range in which the user is ready to provide
liquidity. Outside this price range, the smart contract would not use the
funds of that user.

5.3 Demurrage Reduction

Our pools export the same operations with the same specification as the
standard CPMM defined above, with only one difference: the demurrage.
Indeed, a demurrage can be applied to the reserves. We discuss the conse-
quences on the exchange behavior, after discussing our demurrage reduction
mechanism.

In typical CFMM, liquidity providers are incentivized to provide their funds
by swap fees paid by the users, and that are distributed to the liquidity
providers proportionally to their provision, i.e., the number of shares tokens
they own.

However, in the case of Encointer, where a demurrage is constantly applied to
liquidity, holding is expensive—and liquidity providing is a form of holding.
To promote liquidity providing and keep it profitable, we suggest applying
a smaller demurrage rate inside pools.

Each community applies its own demurrage rate to the supply. For the rea-
son explained above, we suggest that a smaller rate is applied to pools. The
choice of the pool demurrage reduction of a community has consequences
on the evolution of its supply and its inflation.
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A constant null demurrage rate removes the non-inflationary property of
Encointer economies. A non-null, constant pool demurrage keeps the non-
inflationary property, but is more or less equivalent to changing the demur-
rage rate of the economy, as everyone can use the pool to hold their fund
(exception made of impermanent loss).

The idea is thus to limit the amount of funds that can benefit from a demur-
rage reduction, using a dynamic demurrage rate inside pools, that depends
on the total amount of funds provided in all the pools, and that tends to
the standard rate when it reaches a certain limit.

Formally, a community A decides at creation on a pool demurrage rate

function dA : R+ −→ [0, DA] with DA the standard demurrage rate of the
community. The demurrage applied on tokens ¤A inside pools is then
dA(RA), with RA the total amount of tokens ¤A provided in pools, that
is RA =

∑
B∈C\{A} r

AB
A .

Null pool demurrage rate: dA = 0

Constant pool demurrage rate: dA = d, with d ∈ [0, DA]

Dynamic pool demurrage rate: dA : R+ −→ [0, DA]

5.3.1 Targeted Amount of Liquidity

We suggest one of the following pool demurrage rate functions, which allows
keeping the non-inflationary property of Encointer economies, and incen-
tivizes liquidity providing up to a certain target of liquidity TA ∈]0, SA[.

Step pools demurrage rate:

dA(RA) =

{
0 if RA ≤ TA

DA else

with TA a certain target of liquidity inside pools. It must be chosen wisely,
as liquidity providers are not incentivized to provide more funds than this
target. It can be chosen considering a slippage target given an average size
of trade, and the number of commonly used pools.

Sigmoid pools demurrage rate:

One could want a continuous function, with the same idea, to prevent border
effects. Sigmoid functions are typical continuous approximations of the step
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Figure 1: Step pool demurrage rate

function, with good regularity properties (the target being the inflection
point).

For example, one could use a logistic function

dA(RA) =
DA

1 + e−k(x−TA)
, with k ∈ R+

or, an algebraic function

dA(RA) =
DAx√

1 + (x− TA)2
.

Outside the case of a stationary economy (i.e., the population is constant)
at equilibrium, the supply is not constant. In order to have a constant
proportion of the supply committed to DEXs, we suggest using a target
that depends on the supply. Formally, TA = λASA with λA ∈ [0, 1[.

Remark 1. If community A has a stationary economy and a non-null de-
murrage, its final supply with a percentage λA of the supply that is not af-
fected by demurrage is SA = NAwA

1−(1−DA)(1−λA)−λA
¤A.
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Figure 2: Algebraic pool demurrage rate

Proof. The supply in this case follows an arithmetico-geometric sequence:
SA(t + 1) = SA(t)((1 − λA)(1 − DA) + λA) + NAwA that converges to

NAwA
1−(1−DA)(1−λA)−λA

.

5.3.2 Consequences of the Demurrage Applied to Pools Reserves

For an AB-pool, if the pool demurrage applied to tokens ¤A is equal to the
pool demurrage applied to tokens ¤B, that is dA = dB, the demurrage is
equivalent to a pure withdrawal operation. Indeed, as the same proportion
of tokens ¤A and tokens ¤B are removed (and burned), the ratio rAB

A /rAB
B

is preserved.

If dA ̸= dB, it is equivalent to performing a swap followed by a liquidity
withdrawal operation (the withdrawn funds are burned). Therefore, ap-
plying demurrage to the reserves is compatible with the standard CPMM
specification and we keep their properties.

Proposition 4. Applying demurrage dA, dB ∈ [0, 1[ to a CPMM reserves is
equivalent to performing a swap operation followed by a withdrawal operation
if dA ̸= dB. Only a withdrawal operation is needed if dA = dB.
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Proof. We note rA(0), rB(0) the initial reserves, and we show that it is pos-
sible to arrive at rA(2) = rA(0)(1 − dA) and rB(2) = rB(0)(1 − dB) in a
future state, with standard CPMM operations.

The first operation is a swap operation aimed at reaching the final reserves
ratio, that is:

rA(1)

rB(1)
=

(1− dA)rA(0)

(1− dB)rB(0)
= c

rA(0)

rB(0)
, with c =

1− dA
1− dB

.

Moreover, a swap operation is possible if and only if it preserves the product
invariant, that is

rA(1)rB(1) = rA(0)rB(0).

If dA = dB, the ratio is already reached and no swap operation is needed.
Else, we have c ̸= 0 and we can find a possible swap operation that reaches
the right ratio by solving for rA(1), rB(1) with the two precedent equations.

We find rA(1) =
√
crA(0) and rB(1) =

√
1
c rB(0).

We can now perform any withdrawal/deposit operation that preserve the
reserves ratio, that is

rA(2)

rB(2)
=

rA(1)

rB(1)
.

Moreover, we want to reach rA(2) = rA(0)(1−dA) and rB(2) = rB(0)(1−dB).
This is possible through a withdrawal/deposit operation because it preserves
the ratio, that is

(1− dA)rA(0)

(1− dB)rB(0)
=

rA(1)

rB(1)
.

Finally, this corresponds to a withdrawal operation because rA(2) ≤ rA(1)
since dA ∈ [0, 1[.

However, if dA ̸= dB, it creates a constant unbalancing of the marginal price
rAB
A /rAB

B as the two reserves decrease at a different rate. The presence of
arbitrageurs guarantees that this marginal price will be realigned with the
market price, but this will result in a specific loss for liquidity providers that
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is equivalent to an impermanent loss triggered by a change in the market
price. We call this loss the unbalancing loss.

Theorem 1. We consider an AB-pool that is affected by a pool demurrage
dA (resp. dB) for tokens ¤A (resp. ¤B). Liquidity outside the pool is
affected by the same demurrage. The application of demurrage results in an

unbalancing loss of 1 −
2
√

1−dB
1−dA

1 + 1−dB
1−dA

. It is equivalent to an impermanent loss

triggered by a market price multiplication by ρ = 1−dB
1−dA

.

Proof. Token ¤A is the numéraire, i.e, the token in terms of which we express
worth and prices. This choice can be done without loss of generality. We
assume a constant market price π expressed as the price of one token ¤B in
terms of the numéraire ¤A.

We first compute the net worth of liquidity providers in the case where they
invest their liquidity in the pool, and then in the case where they hold their
liquidity.

We note rA(t), rB(t) the reserves of the pool at state t.

First case: liquidity provided State 0: the initial reserves are rA(0), rB(0).
This liquidity has been provided at the market price, i.e., rA(0)/rB(0) = π.
The state is at equilibrium.

The net worth of liquidity providers is W (0) = rA(0) + πrB(0) = 2rA(0).

State 1: The demurrage is applied. The new reserves are rA(1) = (1 −
dA)rA(0) and rB(1) = (1− dB)rB(0).

State 2: Trades are issued by arbitrageurs until the marginal price of the
pool realigns with the market price. Therefore, we have rA(2)/rB(2) = π.
Because state 0 was at equilibrium, this gives

rB(2) = rB(0)
rA(2)

rA(0)
(1)

Between state 1 and state 2, only swap operations are performed. The prod-
uct invariant is kept: rA(2)rB(2) = rA(1)rA(1). Substituting with equation
from state 1 wet get

rA(2)rB(2) = (1− dA)(1− dB)rA(0)rB(0) (2)
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Solving for rA(2) with equations 1 and 2 we get rA(2) = rA(1)rB(1)
rB(2) =

(rA(0))2(1−dA)(1−dB)
rA(2) and thus rA(2) = rA(0)

√
(1− dA)(1− dB).

We can now compute the net worth of liquidity providers after the demurrage
was applied:

W (2) = rA(2) + πrB(2) = 2rA(2) = 2
√

(1− dA)(1− dB)rA(0)

Second case: liquidity hold In this case, the liquidity providers keep
their liquidity outside the pool. Liquidity still undergoes demurrage, but
not arbitrage. We keep the notation rA and rB for the tokens owned by
liquidity providers, but these tokens are now outside the pool and are not
the reserves of the pool.

State 0: Liquidity providers hold rA(0)¤A and rB(0)¤B outside the pool.

State 1: Liquidity undergoes demurrage: rA(1) = (1−dA)rA(0) and rB(1) =
(1− dB)rB(0).

State 2: There is no arbitrage, which would have had an effect on the liq-
uidity: rA(2) = rA(1) and rB(2) = rB(1).

We compute the net worth

W (2) = rA(1) + πrB(1)

= (1− dA)rA(0) + (1− dB)rB(0)
rA(0)

rB(0)

= (1− dA + 1− dB)rA(0)

Loss With the ratio of these two net worth, we get the loss:

L(dA, dB) = 1−
2
√
(1− dA)(1− dB)rA(0)

(1− dA + 1− dB)rA(0)
= 1−

2
√

1−dB
1−dA

1 + 1−dB
1−dA

Note that L(dA, dB) = L(dB, dA), which justifies that the choice of the
numéraire token has no importance.

This unbalancing loss could be small enough to be acceptable for liquidity
providers. For example, in the conditions of Theorem 1, with dA = 0%
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and dB = 10% expressed as monthly rate, the unbalancing loss is approxi-
mately 0.14% per month. Moreover, in practice, the demurrage applied to
liquidity outside pools will always be bigger, which minimizes the actual loss
associated with the unbalancing of reserves triggered by different demurrage
rates.

Still, if this loss is considered too big, it can make sense to apply either
the max or the mean of the two demurrage rates on the pool’s reserves to
prevent unbalancing.

5.3.3 Encouraging Useful Liquidity Providing

With this design, there are two behaviors that could be desirable.

First, we want to encourage people to spread their liquidity between all
trustworthy communities. Indeed, we do not want all the liquidity being
concentrated on the most famous community, neglecting other communities
that could be less canonical but still trustworthy to a certain point.

Second, we want to avoid people creating fake communities, to benefit from
demurrage reduction without actually being useful to any real DEX.The
problem is mainly utilitarian: demurrage reduction should be a reward for
the service of providing liquidity to a useful pool.

Swap fees incentivize liquidity providers to provide liquidity for communities
where there is little liquidity in the pool, as they will get a greater percentage
of the swap fees in these pools. Therefore, liquidity providers are incentivized
to provide for any pair that is trustworthy enough and for which there is
a demand for trades. Swap fees are therefore the most natural answer to
the two matters introduced above, as they incentivize liquidity providers to
spread their funds wherever it is useful.

If it is observed that swap fees do not constitute a high enough incentive to
foster these behaviors, the following options could be explored.

Liquidity Distribution Factor An additional factor is applied to com-
pute the demurrage rate and act as a bonus/malus on demurrage reduction.
This factor can be computed at different levels: per community, per pool,
or per person.

The factor could measure the spread of funds provided across pools by a
community A. It would be used to tune the demurrage reduction applied on
any tokens ¤A in pools: the reduction tends to zero when the funds are too
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concentrated. This way, if liquidity providers do not spread enough their
funds, they will face a higher demurrage rate. The same mechanism could
be considered at a person level. In this case, there is one factor per person,
that measures the spread of their own funds. This would have the advantage
that each person faces the consequences of its own behavior. However, it
adds complexity as there would be several demurrage rates inside a same
pool for the same token.

At the pool level, the factor could depend on the amount of liquidity in a
particular pool. The more there is liquidity in a given pool, the smaller
the demurrage reduction would be. The demurrage reduction thus not only
depends on the total amount of tokens provided in any pools, but also on
the amount in the particular pool. This way, the demurrage reduction would
be higher in underfunded pools, which would incentivize liquidity providers
to spread their funds between trustworthy communities.

6 Extending Local Proof-of-Personhood

We utilize liquidity providing as an economically incentivized choice of which
communities can be trusted as non Sybil. We derive a trust-graph between
communities from this information. Then, we outline a mechanism based
on PageRank [5] to build our trusted set T .

6.1 A Web-of-Trust Based on Liquidity Providing

We want to derive a graph representing the trust relationship between com-
munities that could be used to decide on which communities can be trusted.
The intuitive idea is that if community A trusts community B, and com-
munity B trusts community C, then, to a certain extent, community A can
trust community C. A trust-graph thus allows communities to get informa-
tion on the trustworthiness of foreign communities, and possibly extend the
set of communities they trust.

Definition 9. A trust-graph is a directed graph whose nodes are entities of
the system—the communities in our case—where an edge from a node A to
a node B represents the trust of A in B.

In our solution, we consider a weighted graph, in order to represent contin-
uous levels of trust. The nodes being the communities around the world, we
need a way to derive the trust edges between nodes to build the graph.

A first idea could be to build these edges through voting. Indeed, each
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community runs its proof-of-personhood protocol and is thus able to run
voting on any issue. One must keep in mind that the trust in a community
should not be fixed and constant. Rather, it evolves, in function of the
state of the trusted community, because an honest community can become
dishonest at any time. In this context, the vote should be repeated regularly,
or be continuous (i.e., voters can change their vote at any time, and the
trust edges are constantly updated accordingly).4 However, voting presents
a major weakness. Voters have little skin in the game. Their incentive to
invest time and energy to keep their vote up-to-date and well-informed is
weak. Even worse, they could give false information on purpose, without
risking or loosing anything. A claim that a foreign community is trustworthy
can be considered more relevant if it is backed by a collateral staked by the
claimer.

In our context, there is a particular activity when people risk their own
money, by trusting foreign communities’ proof-of-personhood protocols: liq-
uidity providing. Indeed, if a foreign community is able to create Sybil
certifications, it is also able to print unlimited money, since the amount of
money printed for universal basic income is proportional to the number of
certifications in the community. It becomes then possible to deplete the re-
serve of the honest token of the pool, which is owned by liquidity providers,
or equivalently, it triggers a severe price change resulting in impermanent
loss for liquidity providers. Thus, when a liquidity provider decides to de-
posit money in a pool between their community and a foreign community,
they must trust the economic stability of that foreign community, and by
extension, they must trust their proof-of-personhood protocol. Based on
this argument, we extract the trust information from liquidity providing.

Definition 10. We define the trust from community A to community B by

τAB =
1√

UA

√
SA

∑
i∈UA

√
pAB(i)

with UA is the set of certified accounts in community A, UA = |UA|, and
pAB(i) the amount of tokens ¤A provided by certified account i in an AB-
pool.

This trust will be the weight of the edge from A to B in the trust-graph.

4This could be done with on chain smart contracts, by giving a vote token to each
member of a community, and for each foreign community. The voters then deposit their
tokens in either the yes, the no, or the neutral digital urn.
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The square root introduces a sort of quadratic voting.5 We show that the
effect is that the influence of a single person, even with a lot of money,
is reduced. Money is not enough to have an impact on trust, proof-of-
personhood certifications are also required.

Theorem 2. The trust from A to B can be expressed as the product of a
term that represents the spread of liquidity provided by users, and a term
representing the percentage of the supply committed to the particular pool:

τAB =

∑
i∈UA

√
αAB(i)√

UA

√
˜RAB√
SA

Proof. Let ˜RAB =
∑

i∈UA
pAB(i) the amount of tokens ¤A provided in a

AB-pool, by users with a proof-of-personhood certification in A. For all
i ∈ UA, let αAB(i) =

pAB(i)
˜RAB

, which implies
∑

i∈UA
αAB(i) = 1.

With this substitution, we get the result.

Figure 3: Gini coefficient and spread metric as defined above,
for Pareto samples of shape between 0.1 and 20 on the x-axis.
The sample size is 1000 and the scale parameter is 1.

5Though the choice of the exponent can be discussed, 1/2 is common and was proved
to have optimality properties [18].
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The first term can be viewed as a spread metric. Indeed, as we will see,
the case that maximizes this metric is when funds are equally provided by
liquidity providers, and in this case the term is equal to the square root of
the percentage of users who provide liquidity.

Proposition 5. We have 0 ≤ τAB ≤ 1, and more generally

0 ≤ τAB ≤
√

LA

UA

√
R̃A

SA
≤ 1

with LA the number of certified users of community A who provide liquidity
in the AB-pool.

Moreover, the first upper bound is reached when the amount of funds provided
by users of community A, in the AB-pool, is equally spread among these
users. The second upper bound, which is 1, is reached when, additionally,
every user from community A is involved in liquidity providing with B, and
all the supply of A is provided by these users.

Proof. The Cauchy-Schwartz inequality applied with the Euclidean scalar
product to vectors (

√
αAB(1), . . . ,

√
αAB(n)), (1, . . . , 1) ∈ Rn gives

(
∑
i∈LA

√
αAB(i))

2 ≤ n
∑
i∈LA

αAB(i) = n

with n = LA and LA = {1, . . . , n} the subset of certified users that provide
liquidity.

Moreover, the inequality is an equality if and only if the two vectors are
linearly dependent, i.e., (αAB(i))i∈LA

∝ (1, . . . , 1), which is equivalent to
the funds being equally spread.

In addition, since by definition, i ∈ UA \ LA =⇒ αAB(i) = 0, we have

∑
i∈UA

√
αAB(i) =

∑
i∈LA

√
αAB(i) ≤

√
LA.

This inequality along with Theorem 2 gives the result.
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These interpretations of the trust are crucial. In order to increase the trust
from A to B, two resources are needed: 1) certified addresses with the
proof-of-personhood of community A, and 2) a quantity of tokens ¤A.

Proposition 6. The total trust outgoing from a community is bounded when
the number of communities is bounded. More precisely, with A ∈ C, we have

∑
B∈C\{A}

τAB ≤
√
|C| − 1.

Moreover, the bound is reached when all the population and the supply of
community A is involved in liquidity providing, and the funds are equally
spread between liquidity providers and between foreign communities.

Proof.

∑
B∈C\{A}

τAB =
∑

B∈C\{A}

∑
i∈UA

√
αAB(i)√

UA

√
˜RAB√
SA

≤
∑

B∈C\{A}

√
LA√
UA

√
˜RAB√
SA

=

√
LA

UASA

∑
B∈C\{A}

√
˜RAB

≤
√

LA

UASA

√
|C\{A}|

√ ∑
B∈C\{A}

˜RAB

The last inequality is obtained with the Cauchy-Schwartz inequality, applied
similarly as Proposition 5.

The last term corresponds to the square root of the total amount of tokens
A committed to pools by users with certifications from A. As each token
can be committed to only one pool at a time, the last term is bounded by√
SA.

We thus get

∑
B∈C\{A}

τAB ≤
√
|C| − 1.
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This proposition expresses the fact that the total trust that a community
can give is limited.

As we have seen, the two resources required to create trust are certified
accounts and money. Any dishonest organization is able to buy tokens from
a community, as well as to get a certified address for each person of the
organization who can attend meetings. They are thus able to buy trust
from this community toward a potential dishonest community.

Proposition 7. If a dishonest organization owns a fraction γ ∈ [0, 1] of
the certifications of a community A, and a fraction σ ∈ [0, 1] of the supply of
community A, it is able to buy an increase in the trust edge weight of

√
γσ

to any other community B.

Proof. We divide the set of certified addresses between the ones controlled
by the dishonest organization and the others: UA = DA∪̇HA. We have

τAB =
1√

UA

√
SA

∑
i∈HA

√
pAB(i) +

1√
UA

√
SA

∑
i∈DA

√
pAB(i)

The second term corresponds to the trust bought by the dishonest organiza-
tion. We note τDAB this term. According to Theorem 2, it can be rewritten

as τDAB =

∑
i∈DA

√
αAB(i)

√
UA

√
˜rAB√
SA

, with ˜rAB the amount of tokens provided by

addresses in DA in a pool between A and B.

According to Proposition 5, the best strategy for the dishonest organiza-
tion is to spread equally the funds between its member, and in this case we
have

τDAB =

√
|DA|√
UA

√
˜rAB√
SA

If, moreover, the dishonest organization commits all of its tokens to pool
(which is clearly the best strategy to maximize the trust), we get the result

τDAB =
√
γσ.
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6.2 Graph Analysis and Trusted Set

Anyone can use the trust-graph as they want, and in particular use any
trust-graph analysis algorithm to decide on a set of community they will
trust. For example, a website from community A can decide to allow only
requests made by a user with a certification from a community connected
enough to A.

However, for some applications such as protocol governance or global voting,
a standard analysis method is needed, as honest communities around the
globe must reach a consensus on who is allowed to vote, i.e., they must
derive a trusted set T .

We suggest an analysis based on PageRank [5]. Indeed, we want to evaluate
the communities’ trustworthiness based on their position in the trust-graph,
and it is natural that communities that are highly trusted by trustworthy
communities are themselves trustworthy. PageRank allows exactly this: a
node pointed to by well ranked nodes is itself well ranked. This recursive
mechanism, the efficient computation by the power method [12], and the fact
that it is only based on graph topology analysis and no other data makes
PageRank a good choice for our problem.

6.2.1 Recall on PageRank

PageRank is a graph algorithm developed in 1998 and that was the foun-
dation of Google’s search engine [5]. It was designed to assign scores of
importance to web pages, based on their incoming hypertext links. The
algorithm relies only on the graph of the web (the pages as nodes and the
links as directed edges) and not on the content of the pages. The idea is to
base the scoring on the probability of presence of a random walker across the
graph, where the probability of going from a node A to a node B corresponds
to the ratio between the weight of the edge from A to B (0 if no edge) and
the outdegree of A. This constitutes a Markov chain where the transition
matrix is defined by the hypertext links ratios. However, general Markov
chains do not necessarily admit a stationary distribution, which would be
this probability of presence. Indeed, in general, graphs can admit sinks (i.e.,
nodes with a null outdegree) or regions that imprison the random walker.
The approach of PageRank is to add a probability of random restart before
each step that teleports the walker to a random node, and to perform a
forced restart when the walker is on a sink.

Formally, PageRank is an algorithm that takes a graph (that in our case

35



is directed and weighted) as input and derives a score for each node of the
graph, that represents their importance.

We represent a weighted directed graph by a set of nodes and a weight
function: F = (V, ω), with V = {1, . . . , n} and where ∀v1, v2 ∈ V, ω(v1, v2)
is the sum of the weights of the edges from v1 to v2 with the convention that
ω(v1, v2) = 0 is equivalent to no edges from v1 to v2. We do not consider the
number of edges from one node to another, but just the total weight from
one node to another. We note deg+F (v) =

∑
u∈V ω(v, u) the outdegree of

node v.

For a graph F = (V, ω) and a subset of its nodes U ⊂ V , we note F [U ] the
subgraph of F induced by U , defined by F [U ] = (U, ω|U2).

Definition 11. For a graph F = (V, ω), we note PRF,δ ∈ R|V | the PageRank
scores vector, which is defined by

PRF,δ = δ PRF,δ T + (1− δ)J

where 1− δ is the probability of random restart chosen as a parameter, and
J and T are defined by J = (1/n, . . . , 1/n) and

∀i, j ∈ V, Tij =

{
ω(i,j)

deg+F (i)
, if deg+F (i) > 0

1
n , otherwise,

with n = |V |. We note PRF,δ(i) the i-th element of PRF,δ that corresponds
to the score of node i.

There are several possible normalizations of the PageRank scores. We con-
sider the normalization such that

∑
v∈V PRF,δ(v) = 1. It can be shown

that this PageRank vector corresponds to the stationary distribution of the
Markov chain described above.

As the parameter δ is often fixed in our work, we only write PRF when there
is no ambiguity.

6.2.2 Trusted Set

We note G our trust-graph defined by G = (C, ω) with ∀A,B ∈ C, ω(A,B) =
τAB.

We cannot simply rely on PRG to derive the trusted set T . Indeed, C can
contain an arbitrarily big number of Sybil communities, which allow them
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to have high scores. Considering a trust-graph consisting of two separate
clusters of nodes, one honest and one dishonest, if there are no edges from
the dishonest cluster to the honest cluster, then it can be shown that the
total PageRank score of the dishonest cluster is greater than ns

nh+ns
with

ns the number of dishonest nodes and nh = |C| − ns the number of honest
nodes. Since ns can be arbitrarily bigger than nh, the total PageRank of the
dishonest cluster tends to 1 while the total PageRank of the honest cluster
tends to 0.

This phenomenon is related to a kind of attack traditionally called spamdex-
ing in the context of search engine: creating a big number of dummy nodes
pointing to a target node to inflates its score.

A common response to this problem is personalized PageRank. When a
random restart occurs, instead of choosing the new node with a uniform
distribution over all the nodes, certain predefined nodes have higher chance
of being selected (a custom distribution is chosen for the vector J of Def-
inition 11). These nodes are called the seeds. As honest nodes are poorly
connected to Sybil regions, the fact that the walker starts from an honest
node makes its probability of presence higher in the honest regions.

For example, TrustRank [13] suggests a seed-based approach in the context
of search engine to prevent spamdexing. A set of recognized web pages are
used as seeds. In the context of detecting Sybil attacks on online social
network, SybilRank [7] proposes a seed-based approach where the seeds are
a set of hand-selected trustworthy accounts. Though this solution is useful
to detect broad regions of Sybil nodes, it fails to detect a significant amount
of Sybil nodes, making it hardly applicable to proof-of-personhood.

Moreover, in our context, we can hardly decide on a set of seeds in a de-
centralized way. And even if we could, this set of seeds would require to be
constantly updated, as we assume that an honest community can become
Sybil at any time.

In addition, since anyone is able to create Sybil communities, and perfectly
control their outgoing trust edges, it is particularly hard to distinguish Sybil
from honest nodes. Most likely, honest communities will be connected, but
Sybil ones can be too. This would result in a graph with clusters of honest
nodes, and cluster of Sybil nodes that are indistinguishable only looking at
the graph at a given moment. Whatever the honest cluster will look like, a
Sybil one can look the same. Therefore, we assume the first communities of
the protocol to be initially honest, and base our trusted set on this initial
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trusted setup. Note that initially honest does not mean that they cannot
become Sybil later (however, we do assume that a majority of honest com-
munity in the trusted set cannot all become Sybil at the same time).

For these reasons, we define the trusted set with a recurrence relation, i.e.,
the new state of the trusted set depends on its previous state.

We define an acceptance criterion aG,T : C → {0, 1} that depends on the
current trusted set T and that determines whether a community can be
included in the next trusted set. A community A ∈ C that is candidate is
included in the trusted set if and only if aG,T (A) = 1. We use the exact
same criterion to determine whether a community already included in the
trusted set T can stay. If A ∈ T and aG,T (A) = 0, then A is excluded from
the trusted set. Thus, the criterion to enter the trusted set is the same as
the criterion to stay in the trusted set.

Definition 12. We define the acceptance criterion by

∀A ∈ C, aG,T (A) =

1, if PRG[T ∪{A}](A) ≥ β

|T ∪ {A}|
0, otherwise

where A is the candidate community, and β ∈ [0, 1] is a tolerance parameter.

This formula simply expresses the idea that a community is accepted, if and
only if its score is not too much below the average PageRank score, which
is 1/n with n the number of nodes.

In practice, there can be several candidates at the same time. In this case,
the candidate with the highest PageRank is examined first. Formally, with
Γ ⊂ C \ T the set of candidates, the first candidate to be examined is
argmax

A∈Γ
PRG[T ∪{A}](A).

To know if a community in the trusted set is to be excluded, the PageRank
scores PRG[T ] are regularly computed, and any community that would not
satisfy the acceptance criterion is immediately excluded.

If a community in the trusted set becomes Sybil, liquidity providers will
withdraw their funds from its pools, resulting in making its PageRank score
low and the community to be excluded. We can expect a high reactivity
from the financial agents, and the community to be excluded before its
Sybil certifications have made damages.
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Parameter β must be chosen considering a tradeoff between inclusivity and
security: the bigger β, the more honest communities will be included in the
trusted set, but the bigger the risk is to include a Sybil community.

6.3 Potential Threat and Sketch of Defense

6.3.1 Spam

Though PageRank algorithm is well suited for big graphs, a spam attack
could consist in filling the set of candidate communities Γ with a big num-
ber of dummy communities. This would make it difficult to compute the best
candidate argmax

A∈Γ
PRG[T ∪{A}](A). Though there could be possible compu-

tational optimizations, it can make sense to charge fees or to require an
endorsement from a trusted community in order to be considered as a can-
didate. This would help to limit the size of Γ and spam attack on the
protocol.

6.3.2 Buying Trust

To provide trust in our model, two resources are needed: money and proof-
of-personhood certifications. Therefore, a dishonest organization that con-
trols a certain number of legit certifications in trusted communities, and that
can buy a certain amount of tokens, is able to have an influence on the trust-
graph. However, based on the way trust is computed, such an attack costs
a significant percentage of the supplies of a community, and a significant
percentage of the certifications of a community, as shown in Proposition 7.
What is taken into account in the PageRank for the probability to go from
node A to node B is the proportion of the edge from A to B over the total
outdegree of B. This means that if a community has a very low outdegree,
then buying trust from this community has more impact on the PageRank
scores. Thus, the presence of a community with a high PageRank score but
a low outdegree could be dangerous. A solution could be to increase the
probability of random restart for communities with low outdegrees, which
is equivalent to adding edges of small weights to all the other communities
in the PageRank computation. This way, every community would have an
outdegree of similar magnitude.

6.3.3 Twin Sybil Communities

When a community is not trustworthy anymore, incoming trust links vanish,
and the community is excluded from T .
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However, if a dishonest organization takes control of several communities in
T at the same time, as these communities can provide trust to each other,
they can keep a significant PageRank score and not be excluded.

If there are no edges from honest nodes to these controlled communities,
and there are no sinks among the honest nodes, the only way for the ran-
dom walker to go from honest nodes to the controlled cluster is through
random restart. However, even in this case, the total PageRank score of the
controlled communities can reach k

n , with k the number of controlled com-
munities and n = |T |. In particular, if there are no edges from the controlled
communities to honest nodes, and if the graph of controlled communities is
strongly connected with edges of equal weights, then each controlled com-
munity has a PageRank score of 1

n , which is enough for each of them to stay
in the trusted set.

To perform such an attack, the k communities must be taken at the same
time, so they continue providing trust to each other and not be excluded
from T . A number of controlled communities k ≥ 2 is enough for an attacker
to maintain two Sybil communities in T .

It is required that two communities become dishonest at the same time.
Indeed, if the first community is known to be no longer trustworthy before
the second community becomes dishonest, then the latter trust to the former
will quickly decrease, as well as the trust from other communities in the
trusted set, resulting in the first community being excluded. Taking control
of two communities at the exact same time seems hard, and assuming that
it will not happen could be reasonable.

Still, it is also possible to allow communities of the trusted set to vote
to exclude other communities, based on a 1-community-1-vote. This would
allow honest communities to exclude two dishonest communities maintaining
a high PageRank score by providing trust to each other, as explained above.

6.4 Security Models and Future Work

Formally studying the security of this approach is hard. It implies optimiza-
tion problems and requires economic models. We introduce four models to
study our solutions, from the simplest one to the most complete one. Several
problems stay open for future work.
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6.4.1 Dishonest communities only receive trust from dishonest
communities

In this model, we assume that dishonest communities get trust only from
dishonest communities. In particular, if an initially honest community be-
comes dishonest, all trust edges from honest communities are assumed to
disappear as soon as the community becomes dishonest. This also means
that liquidity providers from honest communities only provide liquidity for
communities they are sure to be honest.

In this case, we can show that the trusted set contains only honest commu-
nities. Consider a trusted set T initially honest. We assume that |T | ≥ 2
and that there are no sinks in G[T ] (this is reasonable, as only one token
provided by one user from each community is enough).

No dishonest communities can be included Let B a dishonest com-
munity that is candidate to be included in T . To compute its PageRank
score PRG[T ∪{B}](B), we can consider a Markov chain with two states: a
state [B] corresponding to the random walker being on node B, and a state
[T ] corresponding to the random walker being on one of the nodes already in
T . We note n = |T |+1. The probability for a walker in state [T ] to stay in
the same state is equal δ+(1− δ)n−1

n . Indeed, since there are no edges from
honest communities to B, and all communities of T are currently honest,
and there are no sinks in G[T ], exception made of the random restart, a
walker in state [T ] stays there. In case of random restart, the probability to
stay there is n−1

n . The best strategy for B is to be a sink, i.e., there are no
edges from B to any community in T . In this case, a walker in [B] will be
forced restarted and its probability to stay in [B] is equal to 1/n. We thus
have the following Markov chain.

[T ] [B]

(1− δ) 1n

n−1
n

δ + (1− δ)n−1
n

1
n

The probability of presence in state [B] obtained from the stationary dis-
tribution of the Markov chain above is equal to PRG[T ∪{B}](B) and can be

computed as 1−δ
n−δ . The condition for B to not be included is aG,T (B) = 0,

which thus translates into 1−δ
n−δ < β

n , or equivalently β > 1−δ
1−δ/n . With the
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classic choice of δ = 0.85 and n = 3 (worst case), we need β > 0.209302 to
guarantee that no dishonest communities can be included.

A community that becomes dishonest is excluded We now consider
the case of a community B initially honest and included in T that becomes
dishonest. By assumption, as soon as B becomes dishonest, all incoming
links from the other communities of T are removed, i.e., honest liquidity
providers withdraw their funds. We obtain the same Markov chain (with
this time n = |T |), where the probability for a walker to arrive in state [B]
is due to random restart and forced restart.

[T \ {B}] [B]

(1− δ) 1n

n−1
n

δ + (1− δ)n−1
n

1
n

With a similar reasoning than previously, we have that if β > 1−δ
1−δ/n , then

community B is excluded from the trusted set.

The condition on β are the same in the two cases. The criterion is so that
it is as hard to stay as it is to be included.

6.4.2 Dishonest communities can buy trust from any community
at the same price

In practice, as we have already discussed, it is possible to buy a trust edge
from any honest community, with two resources: money and a number of
persons. Our solution is designed so that it is very expensive in terms of these
two resources to get as much incoming trust as a well-recognized, honest
community. Parameter β must be large enough so that it is impossible to
buy an inclusion in the trusted set, given the maximum resources that we
assume a dishonest organization can have. Computing the cost of the attack
would be useful to choose such parameter.

In this model, we consider that all trusted communities have equal market
capitalization, and equal population size. With this assumption, the re-
sources of the attacker in terms of money represents the same percentage of
the supply regardless of the community considered. Likewise, the resources
of the attacker in terms of personhood represents the same percentage of
the population regardless of the community considered. Let γ ∈ R+ be the
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number of supplies the attacker can afford. For example, γ = 0.1 means
that the attacker is rich enough to buy 10% of the supply of a community
(recall that all supplies have the same value). Similarly, let σ ∈ R+, the
number of populations the attacker controls.

With these resources, the attacker wants to optimize the PageRank of a
dishonest community D. We note τ0AB the trust edge from A to B before the
attacker has bought trust, and τAB after the attacker has bought trust. The
optimization problem related to the best buying strategy for the attacker is

Maximize PRG[T ∪{D}](D)

Subject to G = (C, (A,B 7→ τAB))

∀A,B ∈ T ∪ {D}, τAB = τ0AB +
√
γABσAB∑

A,B∈T ∪{D}

γAB ≤ γ

∑
A,B∈T ∪{D}

σAB ≤ σ.

The question of the cost of the attack is, given parameter β, what would
be the resources needed for a dishonest community to be included in T by
buying trust. Or formulated differently, how large should be β, so that a
dishonest community with the optimal buying strategy cannot be included,
given the maximum resources we assume it can have.

6.4.3 Dishonest communities can buy trust from community with
specific prices

In reality, communities will have different market capitalization and differ-
ent population size. As a result, some communities edges are cheaper to
buy. However, we can expect that communities with the largest market
capitalization and the largest population are also communities that attract
liquidity providers the most, because their economy could be stronger and
they could generate plenty of transactions. Consequently, we can expect
that communities that have the highest PageRank scores are also commu-
nities that are the most expensive to buy trust from. Studying the system
in this context therefore requires economic considerations.
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6.4.4 Honest liquidity providers can make mistakes

Finally, we can relax the assumption that honest liquidity providers only
provide liquidity for honest community. They are economically incentivized
to not provide liquidity to dishonest communities, but in practice, they may
make mistakes. Thus, the model must account for the possibility that a
certain percentage of the liquidity provision from honest communities are
mistakes, i.e., they are provided to a pool with a dishonest community. In
addition, liquidity providers may also not react instantaneously to withdraw
their funds in the event of a community becoming dishonest unpredictably.
This could give time for a second community to become dishonest and lead
to the scenario introduced in Paragraph 6.3.3.

7 Conclusion

We addressed two problems related to enabling interactions between En-
cointer communities: foreign currency exchange with demurrage, and global
proof-of-personhood protocol. Concerning the design of a DEX, we showed
that demurrage is compatible with the standard specification of CPMMs, but
can raise liquidity issues. We suggested a demurrage reduction mechanism
to incentivize liquidity providing. The second part of the work, focused on
proof-of-personhood, suggests an approach that would allow benefiting, at
a global scale, from the numerous advantages of the Encointer local proof-
of-personhood protocol: decentralization, security and privacy. We based
this extension on a trust-graph that is derived from the behavior of liq-
uidity providers, as we argue that they have economic incentives to assess
the trustworthiness of foreign communities’ proof-of-personhood protocols.
Moreover, contrary to standard social trust and web-of-trust approaches, our
graph exhibits trusts between communities instead of individuals. Finally,
we derived a trusted set using a criterion based on a PageRank analysis of
the trust-graph, to constitute a global proof-of-personhood protocol.
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