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Abstract

Understanding emotions and expressions is vital for humans to communicate and
understand each others mental state. With the growth of virtual and augmented
reality and the aspiration to create realistic avatars representing humans in a
virtual world, being able to correctly classify their feelings and facial movements
from partial and multimodal data has become crucial. In this work, we investigate
the role of facial and speech features in classifying emotional states and the
benefits of combining both modalities in a single model. Moreover, we study the
utility of partial facial features (eyes, mouth and head pose) and of different types
of features, some being learnt for the specific task but computationally intensive
and some being handcrafted and rather lightweight and efficient. Interestingly, our
findings indicate that facial features and audio better work for different emotions,
highlighting their complementarity and the advantages of a multimodal approach.
Our results show that combining efficient features of both modalities give a nearly
10% accuracy improvement over the unimodal counterparts and our best model
achieves an accuracy of 83.57% on the RAVDESS dataset, surpassing humans at
emotion classification.
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Chapter 1

Introduction

1.1 Motivation

Humans communicate through spoken language, but more importantly, through
body language and facial expressions and perceiving the emotional state of an
individual talking is crucial in order to understand him and create a true connection.
Many different channels can be used to infer a person’s current emotion, such
as facial features and para-linguistic aspects of the voice like the pitch, and by
combining all of these different clues, humans manage to accurately discern each
others.

With the rise of virtual and augmented reality and the vast amount of online
meetings carried out nowadays, some growing interests for predicting emotions and
creating realistic avatars representing humans in a virtual world has emerged. Some
companies, like Magic Leap or Meta, have developed precise head mounted displays
(HMD) containing a lot of sensors gathering precious data about the people wearing
them, which can be used to infer their emotional state, possibly through artificial
intelligence, and either provide a more personalized live experience depending on
their mood or animate an avatar representing them. A concrete example of such
a model is the latest Magic Leap 2 device, released in September 2022, which
contains, among others, eye tracking cameras, microphones, inertial measurement
unit (IMU) sensors which can be used to infer the head pose and hand tracking
cameras (see Figure 1.1). All of these different modalities carry some information
about the person wearing them, but it is still not perfectly clear what the impact
of each of them is for classifying the emotion of the subject and how to best
combine these different data sources in order to increase the accuracy of the
prediction.

1.2 Preview

In this work, we investigate the role of different modalities, namely speech, facial
video and some of its sub-parts, specifically eyes, mouth and head pose for the
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1. Introduction 2

Figure 1.1: Magic Leap 2 device with some of its sensors used for emotion prediction.

task of emotion classification via deep learning. We also look at different type of
features representing these modalities, some being very computationally intensive
but famous for giving good results on other tasks and some rather lightweight
which could be used in real time on HMDs. We first study the impact of each of
the modalities for the prediction of particular emotions. Interestingly, our findings
show that some emotions can better be determined by some different modalities,
strengthening the idea that multimodal models can benefit from different sources.
We then conduct some experiments on multimodal approaches, highlighting their
great potential for emotion detection.

The rest of the document is structured as follows. In the second chapter,
we provide a more detailed introduction to the elements that are important for
understanding the problem in question. In the third chapter, we detail some of the
existing datasets and give a clear description of the one we chose for this project
and the reasons why it was chosen. In the fourth chapter, we summarize some of
the works already carried out by the scientific community. In the fifth chapter, we
include a detailed description of our approach, highlighting the different types of
features and the models we tried out. In the sixth chapter, we present and discuss
the experiments performed on the model and their corresponding results. In the
seventh and last chapter, we draw some final conclusions and outline possible
directions for future work.



Chapter 2

Preliminary Notions

In this chapter we include a brief introduction on notions related to our work.
Firstly, we introduce the different theories on the representation of emotions.
Then, we give a short introduction to the Facial Coding System (FACS) and the
Action Units (AU), two important concept widely used in avatar animation and
which are directly linked to emotion detection.

2.1 Emotional Models

Lately, two different theory on emotions, backed up by psychology, have been
confronted: a categorical and a dimensional one. In the categorical framework,
emotions are divided into different more or less fine-grained categories. Usually
and as initially supported by Ekman [1], six basic and universal emotions, namely
anger, disgust, fear, happiness, sadness and surprise are recognised as the main
ones. Nevertheless, these emotions can be further divided into more specific
subcategories as illustrated in Figure 2.1 on the left. On the other hand, Russell
[2] argued that this categorical model no longer explained adequately the vast
number of empirical observations from studies in affective neuroscience and
therefore proposed a dimensional model based on two fundamental dimensions:
valence which represents the pleasantness of the stimulus and arousal which refers
to the level of energy as illustrated in Figure 2.1 on the right. This dimensional
model has also been extended by other authors to more than 2 dimensions.
Dominance is sometimes used as a third axis representing how much control one
has over the emotion.

2.2 Facial Coding System

The Facial Coding System (FACS), originally developed by Hjortsjö [3], a Swedish
anatomist, refers to a set of facial muscle activation used to display emotions. It
originally contained 23 Action Units (AUs), which are the fundamental actions of
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2. Preliminary Notions 4

Figure 2.1: Emotional models.

individual muscles or groups of muscles, but was then adopted by Paul Ekman
and Wallace V. Friesen [4] and further developed in 2002 [5]. Their temporal
combinations is known to produce facial expressions and is widely used in psy-
chology and in animation. An AU can either be represented by a continuous
value representing how much the given muscle is activated or by a binary value
describing whether or not the muscle is triggered and is usually annotated by
professional human coders. Nowadays, some facial datasets are annotated with
the FACS and some AI models have been trained to regress action units. Usually,
only 12 to 18 of them are annotated as it requires a substantial amount of work
and already provides a good approximation of the facial movements which can be
used to reconstruct a real-looking face. Some examples of famous action units
are the Inner Brow Raiser (AU1), the Brow Lowerer (AU4) and the Lip Corner
Depressor (AU15) which, when they are all activated simultaneously, represent
sadness (see Figure 2.2).

Figure 2.2: Example of the animation of an avatar with AUs. On the left, a neutral face
without any AU activated. On the right, the same face with AU1, AU4 and AU15 fully
activated, representing sadness.



Chapter 3

Datasets

In this chapter, we will first give an overview of some of the most common datasets
for speech and facial emotion recognition without giving too many details. We will
then dive deeper into the Ryerson Audio-Visual Database of Emotional Speech
and Song (RAVDESS) dataset [6], which was chosen for this project. The goal is
to give an overview to anybody interested in the topic and a complete introduction
to the data used in our experiments.

Before introducing the datasets, it might be interesting to explain what kind
of data we are looking for in this project. First of all, since the main focus of the
project is on emotion and expression recognition, we would need to have videos
annotated with either categorical or dimensional emotions, ideally with a good
balance between the samples of every classes. AU annotation would be beneficial
as well, but is not strictly needed, especially because it can be extracted by other
tools like OpenFace. Furthermore, since we are interested by HMD devices, having
the eyes at a good resolution as one of the modality is needed, since it is one of
the main sensor common to almost all of the models on the market. Some other
modalities like hand and head tracking would be advantageous as well. We didn’t
find any datasets containing at the same time eyes and audio, hence we would
need to extract the eyes ourselves from the full video and therefore the resolution
should be good and the angle taken from the front. The size is important as well,
as most deep AI models need quite a lot of samples to be trained. Finally, there
should exist other studies on the dataset in order to make our results comparable.
RAVDESS was one of the only datasets that fulfilled all of these requirements
simultaneously and was freely available, therefore it was selected.

3.1 Overview

Audio datasets

– EmoDB: The Berlin Database of Emotional Speech (EmoDB) [7] contains 535
utterances in German of 7 emotions (6 basic emotions and neutral) vocalized
by 10 professional speakers at 16kHz.
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3. Datasets 6

– MSP-Podcast: The MSP-Podcast dataset [8] contains 100 hours of audio podcast
in English at 16kHz, split into shorter segments of 2.75 to 11 seconds. It was
annotated with crowd-source for valence, arousal and dominance and for 9
emotions (7 basic emotions, neutral and other)

Facial datasets

– JAFFE: the Japanese Female Facial Expression (JAFFE) Dataset [9, 10]
contains 213 grayscale images of size 256x256 of 7 facial emotions (6 basic facial
emotions and neutral) played by 10 Japanese female expressers.

– FER-2013: The FER-2013 dataset [11] contains 35’887 natural grayscale images
of only 48x48 pixels divided into a training and a testing set of 7 facial emotions
(6 basic facial emotions and neutral) for many different subjects. It was used
during the ICML 2013 Workshop on Challenges in Representation Learning.

– CK+: The CK+ dataset [12] contains 593 video sequences of 123 subjects from
18 to 50 years. It has a resolution of 30 frames per second and 640x480 pixels
and contains the annotation of 7 emotions (no neutral) and 30 action units for
the peak frame by professional FACs annotators.

– RaFD: The Radboud Faces Database [13] contains 5880 images of size 1024x681
of 8 emotions (7 basic facial emotions and neutral) played by 49 Caucasian
Dutch models with 3 different gaze angles and 5 camera angles.

– AffectNet: The AffectNet dataset [14] contains 450’000 images of different sizes
of 8 emotions (7 basic facial emotions and neutral) from many different subjects
of different ages annotated with valence and arousal.

multimodal datasets

– BAUM-2: The BAUM-2 dataset[15] contains 1047 video sequences of 286
subjects with a wide range of ages extracted from movies, with various head
poses, illumination conditions, accessories and temporary occlusions. It is
labelled with 8 emotions (7 basic emotions and neutral) and might have multiple
emotions at once. The audio is in English or in Turkish.

– Aff-Wild2: The Aff-Wild2 dataset [16] contains 564 video sequences (2.8M
frames) from people of various ages and ethnicity taken from Youtube and
cropped around the head. It was then manually labelled with 7 emotions (6
basic facial emotions and neutral), 12 AU, valence and arousal.

– IEMOCAP: The Interactive emotional dyadic motion capture (IEMOCAP)
database [17] contains 12 hours of audiovisual data with scenes played (or
improvised) by 10 actors. It contains 10 emotions (8 basic emotions, neutral
and other), potentially more than one simultaneously and is also annotated
with valence, arousal and dominance. Text, hand and head tracking are also
present and might be treated as other modalities. The videos are quite low
resolutions and taken slightly from the side.
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3.2 RAVDESS

The RAVDESS database is constituted of audio-visual videos of speech and song
acted by 24 professional actors, equally distributed between the two genders. The
data is split into two different sets, one containing speech and the other songs,
and we decided to use only the speech set as it made more sense in our setting.
The videos are rather short, varying between 2.9 and 5.2 seconds, and each one
is played with one of the 8 emotions present in the dataset, namely the 6 basic
emotions introduced by Ekman (anger, disgust, fear, happiness, sadness and
surprise) as well as neutral and calm. Two neutral lexical statements are vocalized
in a North American accent. Each expression is repeated twice and is produced at
two levels of emotional intensity (normal and strong) except neutral, making the
dataset balanced between all of the emotions, except for neutral which has half
as much samples. In total, the speech set contains 1440 videos, 60 for each actor
or 192 for each emotion (96 for neutral). The videos were each rated 10 times
on emotional validity, intensity, and genuineness (read [6] for more information)
ensuring an excellent overall quality. Humans raters achieved an accuracy of 80%
for audio-video, 72% for video-only and 62% for audio-only. The videos are filmed
from the front at a good resolution of 720x1080 pixels, at 30 frames per seconds
and 48kHz sampling rate for the audio. The filming conditions (lighting, angle
and distance) are always the same, without occlusions at any time making the
database rather simple and good for overall studies about emotions. Nevertheless
there is no guarantee that a model trained on it would work well in a real-life
setting, where many more parameters can vary and must be taken into account.

Figure 3.1: Example of 2 frames for the happy emotion played by the first actor in the
RAVDESS dataset.



Chapter 4

Previous Work

In this chapter we give an overview of the work of other scientists on the topic
of emotion recognition. We first look at Speech Emotion Recognition (SER),
which aims to predict emotions from linguistic and/or para-linguistic aspects of
an audio signal. We then focus on Facial Emotion Recognition (FER) and finally
on multimodal models proposed to enhance the accuracy of the unimodal ones.

4.1 Speech Emotion Recognition

Traditionally, feature engineering has been the foundation of speech emotion
recognition as shown in [18] which compares and summarizes previous works.
Some of the most common hand-crafted features included in the literature are the
Mel Frequency Cepstral Coefficients (MFCCs) and the (Log) Mel Spectrogram
which represent the overall envelope of a signal over time. Some other useful
aspects of the speech are the pitch, the zero-crossing rate and the energy. In [19],
the authors compared different audio features, mainly hand-crafted, and fed them
to different well known models such as Convolutional Neural Networks (CNNs) or
Recurrent Neural Network (RNN) and they achieved an accuracy of 66% on the 7
emotions times 2 genders (14 classes) of the RAVDESS dataset, using 20 actors
for training, 2 for validating and 2 for testing. They observed that the choice
of the features had a bigger impact on the accuracy than the actual model, Log
Mel Spectrogram yielding constantly better results than MFCCs and that the
models they tried directly on the raw signal weren’t very accurate, probably due
to the lack of data for training. They also argue that separating individuals by
gender might be beneficial due to the pitch and energy differences in the average
male and female voice, which makes patterns in male emotions different from
female emotions. In [20], the authors proposed a temporal model, called TIM-Net.
It works by extracting temporal features at different scales from MFCCs using
dilated convolutions and fusing them before passing them to a final Multi Layer
Percepton (MLP). It reached 91.93% accuracy on the RAVDESS dataset (and
comparable results on other datasets). However, the results were computed using
speaker-dependent data (same users are part of both the training and testing set),
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4. Previous Work 9

which makes the task much simpler and hence the results hardly comparable to
the previous works cited above. Another study [21] on the same dataset showed
the superiority of fine-tuning larger pretrained models. They achieved 76.58%
accuracy using a 5 folds cross-validation speaker-independent strategy by feeding
Mel Spectrogram to a 2D-CNN model pretrained on audio Spectrogram for sound
classification.

With the advent of deep learning, the field has seen a shift towards models
capable of operating on raw audio data or pre-trained features directly. Some
works [22, 23, 24] tried to first reduce the dimension of the audio signal by learning
a discriminative encoding of the signal with different encoder-decoder architectures
and trained a separate classifier for emotion prediction. The main advantage
being the use of unlabelled data, which is much easier to find online and makes
the model more robust to different shifts (conditions of recording, languages,
accents, noise) in the data. Lately, following the recent breakthrough in Natural
Language Processing (NLP) using attention [25], Wav2vec [26] and HuBERT [27],
two huge transformer models learning representations directly from raw signals
were proposed. They were pretrained on a lot of audio data and were proven
to achieve very good results on many different related tasks. [28] showed their
superiority to predict valence and their overall better generalization in regards
to CNNs. Interestingly, they also showed that these models were capable of
dealing with the lexical parts of the speech. In [29], the authors fine-tuned the
transformers module of Wav2vec on the RAVDESS dataset and by using the same
5 folds cross-validation speaker-independent strategy as cited before, achieved an
accuracy of 81.82%.

4.2 Facial Emotion Recognition

Facial emotion recognition followed almost the same evolution as speech emotion
recognition, namely using traditionally hand-crafted features but then shifting to
an end-to-end learning with deeper models. Some datasets contain images only
whereas others rather contain videos, which adds a temporal dimension to the
task that must be addressed. However, the extraction of some kind of features,
may it be learnt or engineered, is almost always present, either for a single image
or for each frame of a video.

The traditional features can be divided into two main categories: geometric
features which corresponds to geometric relations between landmarks such as the
euclidean distance or the angles between them and appearance features which con-
sists of statistic about the image and its texture such as the Histogram of Oriented
Gradients (HOG). In [30], the authors computed the pairwise distance between 18
landmarks on the face (generated with a Kinect), which they normalized and used
to compute a Structured Streaming Skeleton (SSS) to remove some intra-class
variations. In order to make the tracking of points of interests on the face simpler,
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some open toolkit like OpenFace [31, 32] have been developed. It works in real
time and can accurately detect 2D and 3D landmarks from images, as well as
estimating the AU activation, the head pose and the eye gaze. It was used in
many papers, such as [29] where the authors used the action units as input to a
bidirectional Long Short-Term Memory (bi-LSTM) network with attention and
achieved an accuracy of 62.13% on the videos of the RAVDESS dataset. In [33],
the authors rather compared the efficiency of different appearance features and
came to the conclusion that different features work better for different emotions
and different conditions of images, such as race, lighting or pose.

On the deep learning front, different models, some using transfer learning,
some self-supervised learning or other techniques have been proposed. In [21],
they fine-tuned a Spatial Transformer Networks (STN) on each individual frame of
the RAVDESS dataset, where the label was inherited from the video. They then
used a max-pooling strategy or a RNN to aggregate the frame classification at the
video level. This approach has the drawback that the label given for each frame
might be highly inaccurate, since the emotion might not be present at a precise
frame of the video and hence the fine-tuning might be sub-optimal. They reached
an accuracy of only 57.08% with their best model. Other researchers [34] also used
transfer learning and compared 4 different well-known CNN-like architectures for
emotion classification on images. They achieved high accuracy, especially with
MobileNet [35] and ResNet [36]. Some models take advantage of unlabelled data
by using self-supervised learning. FabNet [37] and the network from [38] are two
examples of such models, trained to learn a compressed embedding representing
the face and which can be used for downstream tasks such as emotion prediction.

Finally, very few studies have been carried out on the impact of sub-parts
of the face such as the eyes or the mouth, which are meaningful when people
wear HMDs. In [39], they removed the eyes on images by replacing them with
black stripes and still managed to achieve a high accuracy of 95.9% on the RaFD
dataset with their best CNN, demonstrating that the lower face carry enough
information for precise emotion classification.

4.3 multimodal Emotion Recognition

multimodal fusion aims to improve the accuracy of unimodal models by combining
different modalities in a common model. As explained in [40], which summarizes
the current literature, the fusion of the modalities can usually be done at 3 different
levels. The first one is at classification level (late fusion), where specialized models
using only one modality are trained individually and then, a new module taking
the predictions of the different models as input is trained to make a final decision,
which is also known as an ensemble of models. This has the advantage to be
fairly simple and that the best unimodal models can be used without any change,
but it has the drawback that relationships between the different modalities can
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not be learnt jointly. This technique was used in [29] and [21], where they made
an ensemble of their best models cited in the 2 previous sections, reaching an
accuracy of 86.70% (respectively 80.08%) on RAVDESS. The second type of fusion
is at feature level, where features are first extracted for each modality and then
concatenated and used as input to the multimodal model. In [41], they extracted
MFCC for the audio and facial features using EfficientFace [42] at each frame
and then used 1D convolutions and transformer blocks to fuse them. They also
proposed the modality dropout, which consists of removing (setting to zero) one
of the modality for some samples during the training, so that the model also
works when only one modality is present, which is quite common in real settings
and also adds regularization to the model. They achieved an accuracy of 81.58%
on RAVDESS. The last fusion method consists to create directly an hybrid model
which handles all the data sources jointly. The last type of fusion seems to be
the most promising as it takes the full advantage of multiple sources, however
the exact architecture to use is hard to find and still subject to researches, the
training more expensive and more inclined to ovefitting if proper regularization is
not used.



Chapter 5

Approach

In this chapter, we will explain our approach thoroughly, starting with a detailed
explanation on the extraction of new modalities and of different types of features
for each of them, which is one of the main contribution of this work in comparison
to what had previously been proposed. We will then explain the different models
we tried, some coming from the literature and one being newly engineered.

5.1 Modalities

As stated in chapter 3.2, RAVDESS initially only provides two modalities, audio
and full face video. Nevertheless, eyes and head pose are almost always present
on HMD devices, thus learning more about their influence is one of the goal
of this project. For that reason, we decided to implement a small pipeline to
extract them, as well as the mouth (which is a good complement to the overall
understanding of facial emotions, even though it is less likely to be tracked in
real applications). In order to do so, we used OpenFace [31, 32], which offers a
precise tracking of key-points on the face. It provides both 2D and 3D locations
of 68 landmarks distributed over the full face (Figure 5.1) and of 28 more precise
landmarks on each eyes (Figure 5.2). OpenFace also computes the head pose at
each frame, constituted of the 3D location of the head with respect to the camera
in millimeter and the rotation in radians around the 3 axes (pitch, yaw and roll).
The only preprocessing applied for this modality was to remove the mean vector
of each video in order to replace the origin and have values closer to 0 which is
often beneficial for AI models.

In order to extract the eyes and the mouth, the following procedure was
applied. For the mouth, we computed the 20 2D key-points related to it (numbers
48 to 67 in Figure 5.1) and for each of the eyes the 28 precise corresponding
landmarks. We then filtered the maximal and minimal values along both axes
and computed the middle point between them, giving us the center of the mouth
(respectively the eyes). Note that we might have only used the 4 landmarks at the
extremities and it would probably have yielded the exact same results, however

12
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Figure 5.1: Face key-points tracked by OpenFace

Figure 5.2: Precise eyes key-points tracked by OpenFace
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we took the maximal and minimal values across all the corresponding landmarks
to be more resilient to OpenFace’s potential errors. We then extracted a patch
around them. The patch was of size 128x128 pixels for each of the eyes (which is
not as precise as the usual tracking cameras on HMD devices which is for example
400x400 for the Magic Leap 2 device, but enough from an human perspective) and
of size 110x180 for the mouth. The sizes of the patches were chosen empirically,
so that they are big enough to fully contain the mouth (respectively the eyes) at
each frame of each video in the dataset, but not too much more information about
the face. Note that one of the video was removed from the mouth dataset as the
actor was moving his head a lot and his mouth disappeared from the camera for
a few frames. Figure 5.3 shows the result of the extraction for the eyes and the
mouth.

Figure 5.3: Example of the extraction of eyes and mouth for an happy video frame (top
2 rows) and for a fear video frame (bottom 2 rows) for two different actors.
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5.2 Features

We will here present different types of features used in our experiments. Features
are usually any kind of lower dimensional embeddings of the full modality repre-
senting and summarising it. We will first talk about hand-crafted features, i.e.
features engineered by humans based on their knowledge on what matters most
in a signal in order to solve a task. Then we will talk about learnt features, i.e.
extracted directly by AI modules by minimising a given loss.

5.2.1 Hand-Crafted

MFCC

The Mel Frequency Cepstral Coefficients (MFCCs) of a signal are a small set of
features which concisely describe the overall shape of a spectral envelope. They are
often the default features used in many acoustic experiments as they were proven
to work well for many applications such as speech recognition, emotion recognition,
gear fault detection, Electrocardiogram (ECG) and Electroencephalogram (EEG)
classification [43] or music information retrieval [44].

They can be computed using 5 consecutive steps, namely signal framing,
computation of the power spectrum via the Fourier transform, mapping it to
a mel scale, which is a perceptual scale of pitches based on the way human
perceive sounds, i.e. in a non-linear fashion, eventually computing the logarithm
(this step was skipped in our experiments as we used the default implementation
from Pytorch which uses the DB-scaled Mel spectrogram) and finally applying a
discrete cosine transform (hence MFCC can be seen as spectrum of a spectrum).
For further mathematical explanations, refer to [43].

These features are 2 dimensional (Figure 5.4), the first axis representing time
(the exact length depends on the window and hop length used to compute it) and
the second one being a compact representation of spectral features. It can hence
be seen as an image and can be used by models such as conventional 2D CNNs or
as a time-series and rather be used by temporal models such as LSTMs.

Figure 5.4: Example of the MFCCs of a signal with 13 coefficients. Two first coefficients
have been removed for visualization purpose.
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Log Mel Spectrogram

The Log Mel Spectrogram (LMS) is very related to the MFCCs as it is also
derived from the mel scale. It is computed using the 4 same initial steps as the
MFCCs (hence just skipping the final discrete cosine transform). Since it is a
spectrogram, its interpretation is however more straightforward as it represents a
signal in its popular time-frequency paradigm. It can also be treated as an image
or as a time-series (Figure 5.5).

Figure 5.5: Example of a Mel Spectrogram

Action Units

Action Units have already been introduced in section 2.2. OpenFace allows the
extraction of both binary and continuous values via two different models (hence
their values might not always match). The binary values are either 0 or 1 for each
frame of the video for 18 AUs. The continuous values originally range from 0 to 5
and were remapped to the 0-1 range and are present for 17 AUs at each frame.
We investigated the use of both types of AUs and their combinations. A table of
all the AUs used in our experiments is present in appendix A

Facial Key-Points Distances

The facial key-points distances have been used in some other studies such as
[45, 30], as they give quite a lot of information about the changes on the face and
can efficiently be used by temporal neural networks to extract emotions. Once
again, we relied on OpenFace to extract the 68 facial 3D key-points shown in
Figure 5.1. Since many landmarks were close to each other and in order to reduce
the feature dimensionality, we decided to select 40 of them and computed the
pairwise distance between them. It yielded a 780 dimensional vector (equation
5.1 with N = 40) for each frame of the video.
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Dim =
N × (N − 1)

2
(5.1)

In order to remove the inter-people variations such as the size of facial attribute
(nose, mouth, eyes, ...), we applied some normalization to these distances. We
tried 3 different types of normalization (plus no normalization at all). The first
method consisted to choose the most neutral frame of the same video, and dividing
each distance (for each frame) by the equivalent distance in that particular neutral
frame. The second method was quite similar, except that we took the most
neutral frame of the video labelled with the neutral emotion of the same actor
vocalizing the same statement. It has the advantage that the same normalization
is used between different videos of the same actors but the drawback that it
requires the model to have access to a neutral video of the same actor, which
was not a problem in our case since the dataset is annotated, but which would
require an additional step in a real-life setting where the person wearing the HMD
device would first be asked to pose with a neutral face. However, the results
were significantly better using this approach making this additional step worth
taking. We used equation 5.3 to compute the most neutral frame, which used
both the binary and continuous AU values and choose the frame with the least
activation by penalizing large continuous values for any of them. The last method
we considered was inspired by [30], where we represented the facial landmarks
as a connected graph and normalized each pairwise distance by the distance of
the path between the two key-points on the graph. Note that we used only 18
key-points (153 dimensional vector using equation 5.1 with N = 18) as they did
in the mentioned paper in order to use the same graph.

neutral_scoref =
18∑
i=1

binary_AUi,f+

17∑
i=1

continuous_AUi,f+

17∑
i=1

1(continuous_AUi,f > 1)+

17∑
i=1

1(continuous_AUi,f > 2)× 3

(5.2)

most_neutral_frame = argmin
f

{neutral_scoref} (5.3)
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Eyes Key-Points Distances

The eyes key-points distances follow the same idea as the facial key-points and the
same normalization schemes. The only difference resides in the landmarks chosen.
For these features, 12 precise eyes key-points (Figure 5.2) from each eyes were
selected and the pairwise distance for each individual eye was computed. Then 10
landmarks on the eyes and eyebrows (Figure 5.1) were taken in order to compute
some inter-eyes distances. The eye-gaze (angle for both axes in radians in world
coordinates averaged for both eyes) was added yielding a vector of dimension 179
(179 = 66× 2 + 45 + 2, where 66 and 45 come from equation 5.1 with N = 12,
respectively 10).

These features are particularly meaningful in the context of HMD devices,
because the eyes landmarks are already computed for other related tasks and
hence they don’t add much overhead (only normalization must be applied).

5.2.2 Learnt

Wav2Vec

Wav2Vec [26] is a model working directly on raw audio. It was trained in a
self-supervised manner by learning representation from unlabelled audio signal. It
is composed of a feature encoder which consists of several blocks of convolutions
followed by layer normalization and non-linear activation functions. The output
of this feature encoder is then fed to a Transformer module [25, 46, 47]. For
pre-training, a contrastive loss was employed, which requires to identify the true
quantized latent speech representation for a masked time step within a set of
distractors. See Figure 5.6 for a full sketch of the model.

Figure 5.6: Wav2Vec architecture. Original image comes from [48].
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Wav2Vec is present with two different versions: a base model having 95M
parameters and a large one having 317M parameters. In our experiments, we used
the base model for the binary experiments as it was enough to have a good overall
picture and we didn’t aim to achieve the very best accuracy, but the large one
for the multi-class setting in order to make our results more comparable to the
literature. We froze the feature encoder which had been trained on enough data
and fine-tuned only the transformer modules by using the context representations
(of shape 146× 1024 for the large model, 146× 768 for the base one) as features
and fine-tuning the model by feeding them to our temporal model. Note that these
features already contain temporal information learnt through the transformer
modules and therefore using a simple linear layer on a time-average of the context
representation (as it was done in [29]) instead of a full temporal model for the
fine-tuning works just as fine (might even prevent some overfitting), but we
decided to use the temporal model to have a common framework in regards to
the others features. To really test the efficiency of the temporal model, we might
rather have tried to use the latent speech representation as input features, but it
would probably have lowered the accuracy.

ResNet

ResNet [36] is a deep convolutional network pretrained for image classification on
the extensive ImageNet dataset[49]. It is a very deep network working efficiently by
adding residual connections between blocks of convolutions in order to propagate
the loss signal more easily into the network (see Figure 5.7). It was proven to work
very well for a lot of different visual tasks and is a common choice for transfer
learning applications.

Figure 5.7: ResNet18 architecture.

In our experiments, we used the smallest ResNet architecture (ResNet18)
which is less resource consuming than its bigger counterparts. To fine-tune it, we
removed the classification head and treated the output of the last layer (a 512
dimensional vector) as a feature vector. By computing the aforementioned feature
vector for different frames of the video, we end up with a time-series that can be
fed to our temporal model.
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Autoencoder

For the eyes, we also trained a fairly simple autoencoder (AE). The hope was to
be able to learn features specific to the eyes with a small model, potentially by
leveraging unlabelled data, since there isn’t any famous pretrained model for eyes
data specifically. We tried to train our model on the RAVDESS data only using a
simple reconstruction loss and to then use the latent code (hence removing the
decoder part) as features. We tried to both fine-tune the encoder for emotion
classification and to freeze it. We also pretrained our model with more data using
a private eye dataset from Magic Leap, which had however quite a big domain
shift due to different orientation and quality of the data. Our preliminary results
were however significantly worse than those obtained with ResNet and because of
time constraints, we didn’t explore this approach further. The main explanations
for the quite disappointing results are the simplicity of the model, which was just
constituted of two convolutional layers with batch normalization and max-pooling
followed by two linear layers for the encoder part and the equivalent opposite
layers for the decoder; and the small amount of data (with a strong domain shift)
used to train it. We still believe that this approach might be interesting, but also
that using a stronger model than a simple AE might be beneficial as it rarely
gives state-of-the-art (SOTA) results in current times and that crawling more
eyes data from the internet would also help.

FabNet

FabNet [37] is a model leveraging self-supervised learning in order to learn facial
attributes from videos of a human performing common tasks. It is composed of
an encoder mapping the image to a lower embedding space. For the pre-training,
two frames (source and target frames) were fed so that their embeddings were
computed and concatenated. Then a decoder learnt an offset which was used
by a bilinear sampler on the source frame to reconstruct the target frame and
a reconstruction loss was applied. It forced the encoder to learn useful facial
attributes that can be used for other downstream tasks. The authors claimed to
have state-of-the-art results at that time (2018) for self-supervised methods.

In our experiments, we tried to fine-tune the encoder on RAVDESS for emotion
prediction. The preliminary results obtained were also lower than the results
obtained by ResNet and therefore we didn’t extend our researches using it. It
is still interesting to mention that the results were not much worse, especially if
we take into account the fact that the model is more than 2 times smaller than
ResNet18.
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Figure 5.8: FabNet architecture from the original paper.

5.3 Models

In this section, we will introduce the models we tried for the actual emotion
classification. All of them take one or more features mentioned in the previous
section as input and output the probability of each of the 8 emotions. The 2 first
models (5.3.1, 5.3.2) were tried mainly to reproduce results from the literature in
a first stage and the last two models (5.3.3, 5.3.4) were the ones actually used as
main components for our experiments.

5.3.1 CNN-14

2D-CNN models have been proven to work well for many application and audio is
no exception. Nevertheless, a significant amount of data is required to train them.
For that reason and in order to partially reproduce (we didn’t use the exact same
preprocessing steps and hyperparameters) the best results obtained in [21], we
decided to fine-tune the CNN-14 model from PANNs [50]. This model was pre-
trained on the large-scale AudioSet dataset, which is composed of million of audio
events designed to classify sounds. It works by first computing a spectrogram
from the audio and treat it as an image by its convolutional layers.

5.3.2 Frame Classification and Pooling

Following the work from [21], we also tried to classify the emotion at the frame
level and use a max pooling strategy to aggregate the results for the full video.
To do so, each frame inherited the label from its parent video and we fine-tuned
ResNet, FabNet or trained a very simple self-made CNN (constituded of 4 layers of
convolutions, ReLU, max pooling and batch normalization followed by an average
pooling and a final linear layer) to classify each frame individually. A max-pooling
strategy was then applied to all the frames to predict the emotion which was
most present in the video as the final prediction (Figure 5.9). The main drawback
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from this method is however the labelling of the frames which is quite inaccurate,
because the emotion present in the full video might not be present at a given
frame (actually, most of the frames are rather neutral) and by inheriting the label
of the video, it gives a wrong learning signal to the model. In order to reduce this
labelling problem, we also tried to classify groups of 30 frames (1 second of video)
together using our simple CNN by concatenating the different frames along the
channel axis and then applying the max-pooling operator. This method happened
to give better results than the classification at frame level (even thought the CNN
model was much simpler than a full ResNet) and also better than classification of
the full video with frames concatenated as channels with the same small CNN,
showing the potential advantage of averaging over different intervals of the video
and classify more than one frame in order to reduce the labelling problem.

Figure 5.9: Frame classification and pooling framework.

5.3.3 TIM-Net

TIM-Net [20] is a recent temporal model which was proven to achieve a high
accuracy on different emotional datasets, including RAVDESS. The original
implementation used the MFCCs as input features, but any other time-series
could work as its main purpose is to learn temporal dependencies at different
scales. In our experiments, it was used as the main unimodal model with different
features from different modalities. Figure 5.10 shows the full architecture in detail.

The model works by taking the time-series as input and feeding it to two
similar branches, one reversed in time, in order to learn bi-directional relationships
(from the past and from the future). The temporal features are then fed to n of
so called Temporal-Aware Blocks (TABs), whose purpose is to capture temporal
dependencies at different scales. They are constituted of different layers (originally
2) of causal 1D convolution, batch normalization, ReLU activation and spatial
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Figure 5.10: TIM-Net model from the original paper.

dropout followed by a final sigmoid activation. The receptive field of each
TAB is specified by the dilation value of its convolution, which is an increasing
power of 2 (from to 20 to 2n−1). The features with the same receptive fields
in the two directions are then combined and averaged over time, providing n
features of different temporal scales. They are then fused in the multi-scale fusion
component where a weight is learnt for each of the scale and the features are
added proportionally to these weights. It outputs a final feature vector which
compiles the full modality and which is discriminative for emotion classification.
This feature vector is only processed by a final linear layer and a softmax for the
final prediction.

5.3.4 Multi-Net

We implemented our own multimodal model called Multi-Net (see Figure 5.11).
Its architecture is highly inspired by TIM-Net which is one of its main component.
It works by first extracting features for each of the modalities independently, then
feeding them to a TIM-Net module to extract discriminative features from all of
the different sources. These features are then concatenated and used as input to
a Multi-Layer Perceptron (MLP) made of linear layers, ReLU activations, batch
normalizations and dropouts. Finally a softmax is applied in order to output the
probability of each emotion. This model has the advantage to learn jointly from
different modalities in comparison to an ensemble of unimodal models where each
model is trained independently and relationships between them are harder to
make. On the other hand, this model is more likely to overfit to the training set
since it is quite big and receives a lot of input signals. Therefore it would benefit
from more training data.

It is interesting to mention that we also tried alternate architectures for our
model. Two main modifications were considered. The first one was to fuse the
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Figure 5.11: Multi-Net architecture

features at different scales (gi on the diagram) of different modalities together
before passing them to a single dynamic fusion module. For that, we tried to
either concatenate the features of the same scale of different modalities and learn
a common weight (see Figure 5.12) or to just apply the dynamic fusion on all of
the features at different scales of all of the modalities without concatenation.

Figure 5.12: Alternative architecture tried for Multi-Net
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The second idea was to add a multi-head attention module before the dynamic
fusion, in order to let the model adapt itself and rely more or less on one of the
modality depending on the input sample by scaling the features with attention.

None of these modifications improved the results significantly (the results were
overall very close or slightly worse, but we didn’t make any throughout statistical
analysis), so we stuck to the model from Figure 5.11 and used it as the main
multimodal model in the experiments.



Chapter 6

Experiments and Results

In this section, we will discuss about the different experiments we tried out and
their results.

6.1 Settings

In this section, we will shortly explain some of the settings that were used in our
experiments.

First of all, it is important to mention the way the dataset was split into
different sets. In the first part of the project, we mainly wanted to be able to
train many models and just have an overview of what seemed to work well and
what not, without any stronger guarantees. Nevertheless, we made the choice to
train our models by splitting the dataset by actors, meaning that all the videos
of one actor either end up in one set or in the other, ensuring a certain level of
robustness without adding any computational cost. This also implies that the
results would be lower since the models will never have seen the actors on which
they will be tested during training, but it is closer to what is usually experienced
in a real-life setting where the models must work with new users without having
to be retrained. For our preliminary experiments, we hence used the 20 first actors
as a training set, actors 21 and 22 as a validation set to apply early stopping and
choose the best checkpoint and actors 23 and 24 for the final testing of the model.
Note that all of the sets are therefore balanced between genders. We also tried a
lot of combinations of hyperparameters and only reported the results of the very
best models (which might just have been lucky runs). The results are hence not
very relevant statistically (the model might just have given good results to this
particular choice of actors) and should be taken with a grain of salt. For these
reasons, they are only presented in appendix E, mainly as additional information
and explanation to some of the choices we made, but should not be used for
comparison with other works or to make any stronger claims. In the second part
of the project, we wanted to be able to compare our results with some previous
studies and to have more confidence about the accuracy we obtained. Following

26
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the work from [21, 29], we decided to use a 5 folds cross-validation scheme, where
4 folds were used for training and 1 for testing, without proper early stopping
(we used early stopping on the training set itself, meaning we took the epoch
with the lowest training loss, which gave however results very close to the ones
we obtained when we just used the last checkpoint). The same folds where used
as in the mentioned papers, i.e.:

• Fold 0: actors 2, 5, 14, 15, 16

• Fold 1: actors 3, 6, 7, 13, 18

• Fold 2: actors 10, 11, 12, 19, 20

• Fold 3: actors 8, 17, 21, 23, 24

• Fold 4: actors 1, 4, 9, 22

We didn’t compute a confidence interval for our results, but since they are
averaged over 5 folds, the models are less likely to be very lucky or unlucky on all
of the folds at the same time (the variance is reduced) and also more robust to
different actors, letting us making stronger claims about the results. This training
scheme was used to compute the results displayed in tables 6.1, 6.2 and 6.3, where
the results on the testing sets are reported. Note that these results were overall
lower than the results we obtained without cross-validation and can be better
compared with previous works.

In our experiments, we always used label smoothing (with ϵ = 0.1) which is a
regularization technique that introduces noise for the labels. In real life, different
emotions might be present at the same time as a combination and therefore
having only 1 full emotion for each video might be to restrictive. Therefore, label
smoothing distributes the probability of the emotion more uniformly between all
of the emotions. Mathematically, it is formulated as follows:

pt = 1− (c− 1)ϵ

c
= 1− 0.0875 = 0.9125 (6.1)

pf =
ϵ

c
= 0.1/8 = 0.0125 (6.2)

Where pt is the new probability of the true emotion and pf the new probability
for all of the other emotions.

The last important elements concerning the experimental settings are the
preprocessing of the data and the chosen hyperparameters. Since they varied quite
a lot across experiments, further details about them are provided in appendices B
and C.
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6.2 Binary Experiments

In order to understand the real impact of the different modalities and their
corresponding features on all of the emotions, researchers often rely on confusion
matrices, which are matrices showing the true emotion on an axis and the predicted
one on the other. Even thought they usually give a pretty good overview of how
well the model worked, we realized in some of our experiments that they could
suffer quite a lot from the randomness of the seed and the local optimum reached
during training. Therefore, two very similar models (or sometimes even the same
model trained twice with a different random initialization) could sometimes end
up having quite different confusion matrices, even if their overall accuracy is very
close.

For this reason, we opted to train models which are specialized for the binary
classification of one emotion only (presence versus absence of that particular
emotion), which gave us very comparable results across different runs. If the
emotion can be classified well, it means that the features are discriminative for that
particular emotion. It also gives an overall idea of how well a multi-class model
could potentially work and where it might struggle. Moreover, it exhibits how
the different modalities could boost each other and what the best combinations
could be.

In order to run this experiment on our dataset, we set the label of all of the
videos having a different label than the emotion we were classifying as being not
of the given emotion. The main problem with this approach is that it makes the
dataset very unbalanced as almost (not exactly since neutral has half as much
samples) 7

8 of the samples will be labelled as not having the emotion. This usually
makes the model always predict the absence of the emotion and not learning
anything useful. In order to resolve this issue, we applied weighting of the two
classes, which penalizes more the model to fail to predict the presence of an
emotion (predicting its absence when it was present) than its absence (predicting
the presence when it was absent) and therefore encourages the model to predict
more often the presence of the emotion than it would otherwise. The weight of
class c (either the emotion or not the emotion) was computed with equation 6.3
in order to balance the dataset.

wc =
total_num_samples

num_classes × num_samplesc
=

1440

2× num_samplesc
=

720

num_samplesc
(6.3)

The results obtained with TIM-Net are presented in table 6.1. The macro-F1
score was used as the main metric as it takes into account the data unbalance by
averaging over the two classes, which would not be reflected in the accuracy. For
the full results including accuracy and F1-score of both classes for each emotion,
look at appendix D.
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Audio Speech LMS 0.83 0.83 0.85 0.76 0.79 0.70 0.68 0.81
Wav2Vec2-B 0.91 0.88 0.93 0.87 0.85 0.82 0.75 0.88

Video

Face
ResNet 0.81 0.82 0.84 0.76 0.90 0.75 0.75 0.70
KPD 0.78 0.82 0.85 0.73 0.89 0.79 0.76 0.67
AU 0.77 0.78 0.79 0.67 0.87 0.63 0.62 0.63

Eyes ResNet 0.68 0.72 0.77 0.75 0.75 0.68 0.69 0.65
KPD 0.69 0.69 0.69 0.73 0.73 0.73 0.69 0.59

Mouth ResNet 0.80 0.77 0.80 0.67 0.88 0.77 0.63 0.68
Head Pose RPY-3D 0.65 0.65 0.56 0.54 0.55 0.55 0.53 0.53

Table 6.1: Macro F1 Score for different emotions, modalities, features and TIM-Net as
temporal model. LMS = Log Mel Spectrogram, Wav2Vec2-b = Wav2Vec2-Base, KPD =
Key-Point Distances, AU = Action Units, RPY-3D = Roll, Pitch, Yaw and 3D location.

Many interesting discoveries can be highlighted out of this table. First of all,
the learnt features manage to give better results than the hand-crafted ones as
expected, Wav2Vec being overall the most accurate model. It’s interesting to
notice that while the audio works better for most of the emotions, video beats it
for happiness and sadness. Happiness seems to be mainly provided by the mouth
whereas sadness rather from the eyes. The key-points distances always give better
results than the AU and very close ones to the ResNet features, showing their great
potential. They are especially good for the neutral emotion, probably because the
lower number of samples doesn’t allow ResNet to learn enough information about
neutral characteristics. The mouth seems to provide more emotional information
than the eyes in general (except for fear and sadness) as the results obtained are
closer to the ones with the full face and the results from the eyes are overall quite
poor. Interestingly, some useful signal seems to reside in the head pose, mainly
for the classification of anger and calmness even thought this modality achieves
way worse results than the other ones as we would have expected.

6.3 Multi-Class Experiments

In this section we highlight our results for the multi-class emotion classification
with both unimodal and multimodal models. For the audio we used the large
Wav2Vec model as a learnt feature extractor since it is known to give very good
results, whereas we used the LMS as an efficient feature since it gave us better
results than the MFCCs on our preliminary experiments. We didn’t try the
autoencoder or FabNet as they were less accurate than ResNet in our previous
experiments. Furthermore, we only showed the unimodal results for the head
pose, but we tried to combine it with other modalities in some experiments as
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Modality
↓

→ Audio

Type
↓

→ Speech

Feature
↓

→ None LMS Wav2Vec-L

V
id

eo

- None - 65.6 81.63

Eyes ResNet 53.18 53.18 82.48
KPD 52.35 70.30 81.42

Mouth ResNet 61.58 59.97 82.04

Eyes + ResNets 63.48 60.98 83.51Mouth

Face
ResNet 71.20 69.58 83.57
KPD 67.13 76.82 81.63
AU 58.63 70.93 81.65

Head Pose RPY-3D 33.85 - -

Table 6.2: Accuracy for multimodal experiments. “None” in the first numerical row
and column indicates single-modality cases; other entries are multimodal. LMS = Log
Mel Spectrogram, Wav2Vec2-L = Wav2Vec-Large, KPD = Key-Point Distances, AU =
Action Units, RPY-3D = Roll, Pitch, Yaw and 3D location.

well without managing to increase their performance (except with the eyes where
the results were improved by 1.98% for the KPD and 0.56% for ResNet), so we
think that the signal present in that modality is too weak or redundant and hence
doesn’t help much. Table 6.2 shows the main results of our experiments and table
6.3 compare our best results from audio and video with the two other papers that
adopted the same data split and human accuracy.

Paper Audio Video multimodal multimodal
Acc. (%) Acc. (%) Acc. (%) Improvement (%)

Human accuracy [6] 62 72 80 8
[21] 76.58 57.08 80.08 3.5
[29] 81.82 62.13 86.70 4.88

Our (best features) 81.63 71.20 83.57 1.94
Our (efficient features) 65.6 67.13 76.82 9.69

Table 6.3: Comparison of our framework with previous works using the same evaluation
scheme and human accuracy. Best and second best models are highlighted for each
modality. Last column shows the improvement of the multimodal model with regard to
its best unimodal counterpart.

From these tables, we can confirm that learnt features work better and give
an overall higher accuracy. For the unimodal models, Wav2Vec features surpassed
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all of the other ones, followed by the ResNet features from the video and the
key-point distances. The action units performed surprisingly very poorly, which
might mean that OpenFace wasn’t able to extract them perfectly since there
should normally exist a one-to-one mapping between them and the emotions.
The eyes didn’t perform extremely well and are a weaker source of information
compared to the mouth. The head pose managed to give results significantly
better than randomness, but still not good enough to add information to the other
modalities (except for the eyes which are quite weak as well). On the multimodal
front, the combination of the bigger learnt feature extractors gave the best results,
but not a huge improvement over their unimodal counterparts. This is probably
due to the fact that the features overfitted to the unimodal setting and hence
could not be perfectly combined by the multimodal model. This theory seems
coherent when we look at the combination of learnt and handcrafted features, one
for each modality, which never worked well. The explanation could be that the
learnt feature extractors were overfitting, giving features which were way easier
to use than the hand-crafted ones from the other modalities and so the model
learnt to classify the emotion solely from them. On the other hand, the efficient
features seemed to have a great symbiosis, giving the best improvement of almost
10% over the unimodal models. It might be argued that one of the reason is that
there is more room for improvement for them than for the learnt features where
the unimodal models already achieved pretty good results, but we think that the
fact that our multimodal model can learn jointly from both sources is one of the
reason for these great improvement in comparison to an ensemble of models as
proposed in the two other papers. From an HMD perspective, it is also interesting
to see that the eyes key-point distances give a boost of 4.7% to the audio LMS, as
both can be very easily computed and therefore could be directly used on device.
As a final conclusion on these results, it is nice to point out the fact that our
best model, even if it isn’t state-of-the-art, is more accurate than humans are,
especially from the audio, showing the great potential of AI to detect emotions.
Even our model using more efficient features obtain results which are comparable
to human accuracy which is encouraging for future researches on the topic.
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Conclusion

This final chapter will first be used to give an overview of the main findings from
this project. Then we will conclude by giving some ideas for future researches on
the topic.

7.1 Overview

In this work, we focused on the emotion classification from multimodal sources
and we tried to understand which modality was most discriminative for different
emotions. We started by looking at what had previously be done and by searching
for the right dataset. As not much studies had been conducted on the impact
of partial parts of the face and on head-pose and therefore no dataset seemed
to fit exactly our requirements, we opted to focus on RAVDESS and to extract
ourselves the modalities and different features out of the full video. We then
used the full face to partially reproduce some results from the literature and
achieved results which were quite close using some of their techniques (CNN-14
and Wav2Vec fine-tuning, frame level classification with aggregation at video level
with max-pooling). Then, we wanted to better understand the impact of the
different modalities on each emotion. Since our focus was on HMD, we decided to
compute some efficient features which could be used in real-time and some more
heavy ones in order to make better comparisons between their performance. We
used these different features for the binary classification of the emotions, which
gave us many useful insights. The main finding was that video and audio were
more adapted to learn different emotions (anger and surprise by audio, happiness
by mouth and sadness by video, mainly from eyes), highlighting the intrinsic
advantage of using a multimodal approach. Finally, we aimed to compare the
accuracy of unimodal and multimodal models. To create a unimodal benchmark,
we decided to use TIM-Net as our temporal model on top of our different features.
Taking inspiration from it, we developed our own multimodal model called Multi-
Net, which learns discriminative features from different modalities with a temporal
model, concatenate them and fuse them with a final MLP. Using this model, we
ran many experiments combining the different features together. Our best model
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used the learnt features from Wav2Vec and ResNet and achieved an accuracy of
83.57%, surpassing human accuracy on the task. However, it didn’t improve the
unimodal results as much as we would have expected and didn’t achieve SOTA
results, probably due to the fact that the feature extractors partially overfitted to
the unimodal setting, making it hard for the model to process the two modalities
together. Nevertheless, Mutli-Net showed more promise when it was used with
efficient features, improving the unimodal counterpart by almost 10% with full face
key-points and by almost 5% with the eyes key-points when they were combined
with the log mel spectrogram. In summary, the main contributions of our work
are the following:

• We partially reproduced some experiments from the literature, establishing
a strong benchmark for different modalities.

• We analysed the impact of many modalities and different types of features,
some lightweight and some learnt, on the detection of 8 basic emotions,
showing that different modalities were better adapted for different emotions.

• We developed our own end-to-end multimodal model inspired by TIM-Net,
moving away from conventional ensemble-based approaches. It was proven
to work well for the fusion of efficient features, boosting their individual
performance by almost 10%. When used on top of learnt features, it even
managed to beat humans by reaching an accuracy of 83.57%.

7.2 Future Work

In this final section, we will discus some ideas for future work on the subject.

• Improving generalization: our model was only trained and tested on the
RAVDESS database, giving very few guarantees about its performance in
real-life settings when the data comes from another distribution. Also, it
was only trained on two different English sentences, thus we cannot attest
that it would generalize to other languages or different sentences in English.
Finally both modalities were always present, which is not the case in real-life
settings where the person wearing the HMD device might not talk for a
while and therefore our current model would probably fail in such scenarios.
Using modality dropout as proposed in [41] might be a solution to overcome
this issue. In general, we didn’t pay a lot of attention to generalization in
our study but it would definitely be an important step to conduct next,
especially if we would like to use the model on device.

• Better data labelling with clustering: it is still not extremely clear
why the current models fail to predict the emotions correctly, but it might
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somehow be linked to the way the actors are playing the emotions which
might not always be optimal. In order to see if some of the videos are
played poorly, it would be interesting to cluster the dataset by emotions and
analyze the outliers. By removing them from the training set, the model
might be able to predict the emotions more accurately and it would give
more insights about why it might struggle on some samples more than on
others.

• Per person training while wearing the device: usually the models
used on device are trained beforehand and deployed on device to work with
new users. However, it would be interesting to be able to add a component
to the architecture which learns specific features about the user gradually
while it wears it in order to improve the overall accuracy. It is still not
extremely clear how this could be best implemented in practice, but the
idea is worth thinking about.

• Make the model run in real-time on device: using the efficient features,
it should theoretically be possible to make the model run on device. However,
mainly due to time constraint, we were not able to demonstrate it. Hence it
would be interesting to develop a demo on device, proving the feasibility of
the approach.
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Appendix A

OpenFace’s Action Units

In this appendix, we give a complete overview of all the action units extracted
with OpenFace that were used in our experiments. All AUs were present with
both binary and continuous values except AU28 which was only in binary format.
The table and the images are taken from [51].

AU Description Facial Muscle Example

1 Inner Brow Raiser Frontalis, pars medialis

2 Outer Brow Raiser Frontalis, pars lateralis

4 Brow Lowerer Corrugator supercilii,
Depressor supercilii

5 Upper Lid Raiser Levator palpebrae superioris

6 Cheek Raiser Orbicularis oculi,
pars orbitalis

7 Lid Tightener Orbicularis oculi,
pars palpebralis
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OpenFace’s Action Units A-2

AU Description Facial Muscle Example

9 Nose Wrinkler Levator labii superioris
alaquae nasi

10 Upper Lip Raiser Levator labii superioris

12 Lip Corner Puller Zygomaticus major

14 Dimpler Buccinator

15 Lip Corner Depressor Depressor anguli oris

17 Chin Raiser Mentalis

20 Lip stretcher Risorius

23 Lip Tightener Orbicularis oris



OpenFace’s Action Units A-3

AU Description Facial Muscle Example

25 Lips part
Depressor Labii,

Relaxation of Mentalis,
Orbicularis Oris

26 Jaw Drop Masseter, relaxed Temporalis
and internal Pterygoid

28 Lip Suck Orbicularis oris

45 Blink
Relaxation of Levator palpebrae superioris;

Orbicularis oculi,
pars palpebralis

-

Table A.1: Action Units detected by OpenFace used in our experiments.



Appendix B

Data Preparation

In this appendix, we outline the steps taken to prepare each modality for our
experiments, ensuring the reproducibility of our results. This section is copied
from our paper called "The Role of Facial and Speech Features in Emotion
Classification" which was just submitted before the writing of this document
started and is currently under review and hence wasn’t added to the Bibliography.

– ResNet: ResNet served as the feature extractor for eyes, mouth, and face
in our experiments. All images were resized to 224x224 pixels. For facial
images, each frame was first center-cropped to 720x720 pixels to remove the
borders, which did not contain facial information. These cropped frames were
then scaled from 0.0 to 1.0 and normalized using mean=[0.485, 0.456, 0.406]
and standard deviation (std)=[0.229, 0.224, 0.225], following the pre-training
procedures outlined in PyTorch’s documentation. In unimodal and binary
experiments where fine-tuning was performed, we selected 20 equally spaced
samples from the full video. For multimodal experiments, we employed the
weights derived from the unimodal experiments, froze the ResNet extractor,
and utilized the 88 middle frames of each video. We experimented with using
88 center frames for the unimodal experiments (with a frozen ResNet fine-tuned
using 20 equally spaced samples from the video) to ensure that the superiority
of our multimodal results was not merely due to the increased number of
frames. However, this approach yielded slightly inferior results (0.3-1% reduced
accuracy), and therefore, these findings are not reported in our tables.

– Video key-points: For video key-points, we used OpenFace to extract 40 3D
landmarks from the initial 68, as some landmarks were closely positioned and
didn’t offer substantial additional information, hence were omitted to simplify
the feature space. We calculated the pairwise distance between each landmark,
constructing a 780-dimensional feature vector for each of the 88 middle frames
in the video. These distances were then normalized against those from the
most neutral frame—identified as the frame with the lowest activated action
units—from the first repetition of a neutral video where the actor vocalized
the same sentence. This process ensures a consistent and comparative basis for
analysis across different frames and videos.
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Data Preparation B-2

– Eyes key-points: For eyes key-points, we adopted an approach similar to the
one used for video key-points. We extracted 12 specific key-points within
each eye, designated as eye_lmk_i in OpenFace, and computed the pairwise
distances within each eye individually. Additionally, pairwise distances between
10 chosen key-points located on both eyes and the eyebrows were concatenated
to the initial distances to incorporate inter-eye values. These distances were
normalized using the same procedure previously described for video key-points.
The average gaze angles of both eyes across two axes were then calculated and
appended to the data, resulting in a 179-dimensional vector.

– Action units (AU): OpenFace supplies both binary action units (either activated
or not, for 18 AUs) and a continuous intensity measure (ranging from 0 to 5,
for 17 AUs). As these two sets of values are generated through different models,
there might be inconsistencies in their correspondence. To address this, we
integrated both types of values. The continuous intensities were first rescaled
to a range between 0 and 1. Following this, we concatenated the rescaled
intensities with the binary action units to form a combined 35-dimensional
vector for each of the 88 frames.

– Audio: We applied straightforward preprocessing to the audio. This involved
extracting a segment of 140,800 units in length from the center of the audio,
which is equivalent to the duration of 88 frames or approximately 2.9 seconds.
The stereo signal was then converted into a mono signal by averaging the
two channels. In the case of the Wav2Vec experiments, the audio signal was
resampled from 48KHz down to 16KHz and normalized by subtracting the mean
and dividing by the standard deviation. For the LMS computation, we used 24
coefficients, a window length of 4800, a hop length of 1600, and a maximum
frequency of 17kHz giving a 88x24 dimensional feature.



Appendix C

Hyperparameters

In this appendix, we offer a comprehensive overview of the architecture’s hyperpa-
rameters and provide detailed training information necessary for reproducing our
results. The complete set of hyperparameters, along with specific training details
are shown in Table C.1. This section is copied from our paper called "The Role of
Facial and Speech Features in Emotion Classification" which was just submitted
before the writing of this document started and is currently under review and
hence wasn’t added to the Bibliography.

In our experiments, the MutiNet network utilized three layers within its
temporal block, compared to the original TIM-Net’s two, and employed a kernel
of size 2 for 1D convolutions. We experimented with both 32 and 64 convolution
channels, with 64 yielding superior results in most cases (the exceptions being
the multi-class eyes ResNet and LMS + Eyes KPD experiments, reported with 32
channels only). The dilation factors used for multi-scale feature extraction were
always powers of two, consistent with the original paper. When scales equal n,
it indicates the use of n different temporal blocks with dilation factors ranging
from 20 to 2n−1. These factors were selected to ensure the largest temporal block
dilation factor was smaller than the total feature temporal length (hence for 88
frames, we chose 7 so that 26 = 64 < 88).
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Hyperparameters C-2

Model Experiment Learning Rate Batch Size Epochs Scales
Wav2Vec2-L both 0.00005 16 100 8Wav2Vec2-B

LMS both 0.001 64 100 7
Video ResNet

both 0.0002 8 60 5Mouth ResNet
Eyes ResNet
Face KPD multi-class 0.0005 64 100 7Eyes KPD
Face KPD binary 0.0002 64 100 7Eyes KPD

AU both 0.0002 64 40 7
Head Pose both 0.0002 64 100 8

Multimodal with Wav2Vec-L + ... multi-class 0.0001 64 100 7
Multimodal with LMS + ... multi-class 0.002 64 100 7

Table C.1: Hyperparameters used in our Experiments. Each experiment type is catego-
rized as binary, multi-class, or both; “both” is used when identical hyperparameters were
applied to both experiment types. “Scales” denotes the count of distinct scales at which
each modality’s features were extracted in the temporal model before being fused by the
dynamic fusion module.



Appendix D

Full Binary Experiments Results

In this appendix, we give the full results of our binary experiments with accuracy
and F1-score for both the presence and absence of the emotion

Modality Features Accuracy F1-score F1-score macro weighted
(%) angry not angry avg avg

Audio Log Mel Spectrogram 91.27 0.72 0.95 0.83 0.92
Wav2Vec (base) 95.92 0.84 0.98 0.91 0.96

Video
ResNet 90.08 0.69 0.94 0.81 0.91

Key-points Distance 88.50 0.64 0.93 0.78 0.89
Action Units 86.40 0.62 0.92 0.77 0.88

Eyes ResNet 81.80 0.47 0.89 0.68 0.83
Key-points Distance 82.63 0.48 0.90 0.69 0.84

Mouth ResNet 89.56 0.66 0.94 0.80 0.90
Head Pose Head Pose 77.50 0.45 0.86 0.65 0.80

Table D.1: Binary results on RAVDESS for angry emotion with different features types.

Modality Features Accuracy F1-score F1-score macro weighted
(%) calm not calm avg avg

Audio Log Mel Spectrogram 92.15 0.71 0.96 0.83 0.92
Wav2Vec (base) 94.57 0.80 0.97 0.88 0.95

Video
ResNet 90.92 0.69 0.95 0.82 0.91

Key-points Distance 90.08 0.70 0.94 0.82 0.91
Action Units 87.92 0.64 0.93 0.78 0.89

Eyes ResNet 85.48 0.53 0.92 0.72 0.86
Key-points Distance 82.23 0.49 0.89 0.69 0.84

Mouth ResNet 86.57 0.62 0.92 0.77 0.88
Head Pose Head Pose 77.18 0.44 0.86 0.65 0.80

Table D.2: Binary results on RAVDESS for calm emotion with different features types.
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Modality Features Accuracy F1-score F1-score macro weighted
(%) disgust not disgust avg avg

Audio Log Mel Spectrogram 92.95 0.75 0.96 0.85 0.93
Wav2Vec (base) 96.70 0.87 0.98 0.93 0.97

Video
ResNet 91.52 0.74 0.95 0.84 0.92

Key-points Distance 92.23 0.74 0.95 0.85 0.93
Action Units 88.38 0.65 0.93 0.79 0.89

Eyes ResNet 87.07 0.61 0.92 0.77 0.88
Key-points Distance 80.87 0.49 0.89 0.69 0.83

Mouth ResNet 88.54 0.67 0.93 0.80 0.89
Head Pose Head Pose 65.77 0.34 0.77 0.56 0.71

Table D.3: Binary results on RAVDESS for disgust emotion with different features types.

Modality Features Accuracy F1-score F1-score macro weighted
(%) fear not fear avg avg

Audio Log Mel Spectrogram 86.95 0.59 0.92 0.76 0.88
Wav2Vec (base) 94.42 0.78 0.97 0.87 0.94

Video
ResNet 88.47 0.59 0.93 0.76 0.89

Key-points Distance 86.45 0.54 0.92 0.73 0.87
Action Units 77.75 0.49 0.86 0.67 0.81

Eyes ResNet 88.10 0.57 0.93 0.75 0.88
Key-points Distance 85.83 0.54 0.92 0.73 0.87

Mouth ResNet 86.14 0.41 0.92 0.67 0.85
Head Pose Head Pose 65.53 0.30 0.77 0.54 0.71

Table D.4: Binary results on RAVDESS for fear emotion with different features types.

Modality Features Accuracy F1-score F1-score macro weighted
(%) happy not happy avg avg

Audio Log Mel Spectrogram 89.38 0.65 0.94 0.79 0.90
Wav2Vec (base) 93.23 0.74 0.96 0.85 0.93

Video
ResNet 95.28 0.83 0.97 0.90 0.95

Key-points Distance 94.70 0.81 0.97 0.89 0.95
Action Units 93.57 0.78 0.96 0.87 0.94

Eyes ResNet 87.38 0.58 0.92 0.75 0.88
Key-points Distance 86.48 0.54 0.92 0.73 0.87

Mouth ResNet 94.28 0.80 0.97 0.88 0.94
Head Pose Head Pose 66.97 0.32 0.78 0.55 0.72

Table D.5: Binary results on RAVDESS for happy emotion with different features types.
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Modality Features Accuracy F1-score F1-score macro weighted
(%) neutral not neutral avg avg

Audio Log Mel Spectrogram 89.13 0.45 0.94 0.70 0.91
Wav2Vec (base) 94.88 0.66 0.97 0.82 0.95

Video
ResNet 92.35 0.54 0.96 0.75 0.93

Key-points Distance 92.18 0.62 0.96 0.79 0.93
Action Units 80.25 0.38 0.89 0.63 0.85

Eyes ResNet 92.33 0.41 0.96 0.68 0.92
Key-points Distance 89.68 0.52 0.94 0.73 0.91

Mouth ResNet 92.90 0.58 0.96 0.77 0.94
Head Pose Head Pose 70.60 0.28 0.82 0.55 0.78

Table D.6: Binary results on RAVDESS for neutral emotion with different features types.

Modality Features Accuracy F1-score F1-score macro weighted
(%) sad not sad avg avg

Audio Log Mel Spectrogram 82.62 0.47 0.90 0.68 0.84
Wav2Vec (base) 88.13 0.57 0.93 0.75 0.88

Video
ResNet 87.58 0.57 0.93 0.75 0.88

Key-points Distance 87.28 0.60 0.92 0.76 0.88
Action Units 74.13 0.40 0.84 0.62 0.78

Eyes ResNet 84.15 0.47 0.91 0.69 0.85
Key-points Distance 83.35 0.47 0.90 0.69 0.84

Mouth ResNet 80.05 0.38 0.88 0.63 0.82
Head Pose Head Pose 64.08 0.29 0.76 0.53 0.70

Table D.7: Binary results on RAVDESS for sad emotion with different features types.

Modality Features Accuracy F1-score F1-score macro weighted
(%) surprise not surprise avg avg

Audio Log Mel Spectrogram 91.20 0.67 0.95 0.81 0.91
Wav2Vec (base) 94.41 0.80 0.97 0.88 0.95

Video
ResNet 84.33 0.49 0.91 0.70 0.85

Key-points Distance 81.72 0.45 0.89 0.67 0.83
Action Units 75.53 0.42 0.85 0.63 0.79

Eyes ResNet 82.05 0.40 0.89 0.65 0.83
Key-points Distance 78.55 0.32 0.87 0.59 0.80

Mouth ResNet 84.37 0.45 0.91 0.68 0.85
Head Pose Head Pose 63.08 0.32 0.75 0.53 0.69

Table D.8: Binary results on RAVDESS for surprise emotion with different features
types.



Appendix E

Preliminary Multi-Class Results

In this appendix, we give an overview of some of the results we obtained in our
preliminary surveys, where we always used the 2 last actors in the testing set
and the 2 before in the validation set. As mentioned earlier, these numbers are
mainly there as a complement to give an overview of a few more models we
tried out, but should not be used as a comparison to previous works as they lack
statistical significance and were sometimes computed using different preprocessing
steps, making them harder to compare. A simple summary of some meaningful
experiments and the best results on both validation and test set are given. Note
that many more experiments were tried out, but we only reported the ones that
seemed most meaningful.

Modality Features Model Test Validation
acc. (%) acc. (%)

Eyes FabNet TIM-Net on 20 equidistant frames,
extractor unfrozen 54 50

Eyes ResNet TIM-Net on 20 equidistant frames,
extractor unfrozen 53 58

Eyes Autoencoder

TIM-Net on 88 middle frames, no
fine-tuning of feature extractor,
pretrained on Magic Leap and

RAVDESS eyes

43 53

Mouth FabNet TIM-Net on 20 equidistant frames,
extractor unfrozen 48 60

Mouth ResNet TIM-Net on 20 equidistant frames,
extractor unfrozen 53 67

Video -
Max-Pooling on 88 first frames

classified with ResNet fine-tuned
on each frame with parent label

52 61

Video -

Max-Pooling on 88 first frames
prediction on groups of 30

frames separated by 5 frames
classified with own CNN trained
on each frame with parent label

61 62

E-1



Preliminary Multi-Class Results E-2

Modality Features Model Test Validation
acc. (%) acc. (%)

Video FabNet TIM-Net on 20 equidistant frames,
extractor unfrozen 68 64

Video ResNet TIM-Net on 20 equidistant frames,
extractor unfrozen 71 74

Video KPD
TIM-Net on 88 equidistant frames,
using 40 points and neutral frame

of same video normalization
55 66

Video KPD
TIM-Net on 88 equidistant frames,
using 40 points and neutral frame

of neutral video normalization
67 73

Video KPD
TIM-Net on 88 equidistant frames,
using 18 points and neutral frame

of same video normalization
60 62

Video KPD
TIM-Net on 88 equidistant frames,
using 18 points and neutral frame

of neutral video normalization
64 69

Video KPD TIM-Net on 88 equidistant frames,
using 18 points and path normalization 63 61

Video AU TIM-Net on 88 equidistant frames,
using AU regression values 53 68

Video AU TIM-Net on 88 equidistant frames,
using AU binary values 60 64

Video AU TIM-Net on 88 equidistant frames,
using AU both regression and binary values 63 66

Audio Spectrogram CNN-14 from PANN fine-tuning on
3 seconds of audio 71 76

Audio LMS

TIM-Net on LMS with 32 coefficients,
2048 window length, 512 hop length

max frequency of 24000 and
2.083 seconds of audio

70 76

Audio MFCCs

TIM-Net on MFCCs with 39 coefficients,
2048 window length, 512 hop length

max frequency of 24000 and
2.083 seconds of audio

67 66

Audio Wav2Vec-b TIM-Net on Wav2Vec features
using 2.93 seconds of audio 84 84

Audio, Video Wav2Vec-b, ResNet Multi-Net on 2.93 seconds of video
using late fusion 88 93

Audio, Video Wav2Vec-b, ResNet Multi-Net on 2.93 seconds of video
using early concatenation fusion 85 93

Audio, Video Wav2Vec-b, ResNet Multi-Net on 2.93 seconds of video
using early no concatenation fusion 86 93

Table E.1: Preliminary results used to guide our choices of models.
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