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Abstract

The Abstraction and Reasoning Challenge (ARC) is a benchmark designed to
evaluate the general intelligence and human-like cognitive abilities of intelligent
systems. Our work builds on top of an architecture introduced by a previous
thesis [Camposampiero et al., 2023] that aims at exploiting the prior knowledge
embedded in language models. Their architecture consists of a hard-coded cap-
tioner, a language model and a decoder.

In this thesis, we aim to further improve the building blocks of this architecture.
Similar to the prior knowledge embedded in language models, image captioning
models contain vast prior knowledge on the visual domain. We try to exploit
this visual prior knowledge for solving ARC tasks by adapting a pre-trained
image caption model to act as our captioner. We explore both fine-tuning and
reinforcement learning as means to train an image captioning model on producing
useful descriptions of ARC tasks. Additionally, we compare the capabilities of
multiple language models and test the fine-tuning of a language model for ARC
tasks.
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Chapter 1

Introduction

In recent years, the field of artificial intelligence (AI) has witnessed remarkable
strides in mastering specialized tasks. More recently, language models and mul-
timodal models started to show the potential of swiftly generalizing to unseen
tasks. However, quickly acquiring a new skill given a few examples still poses
a challenge. In order to make more deliberate progress towards more intelligent
and flexible artificial systems, François Chollet introduced the Abstraction and
Reasoning Challenge (ARC) [Chollet, 2019]. ARC is a collection of unique tasks.
Each task consists of learning how to transform an input grid into an output
grid, given only few examples. It is designed as a benchmark measuring progress
towards general artificial intelligence.

Figure 1.1: Task ba97ae07. Input grids shown on top, with corresponding output
grid underneath it. The ordering between the two rectangles or lines is changed.
The object initially in the background is moved to the foreground and vice versa.

A system that is able to solve these tasks needs to be familiar with a number
of different concepts. For example, an ARC task might require a system to be
familiar with occlusion, geometry, sorting, or collisions. Each task is unique in
how it is solved and may require a distinct set of prior knowledge.

Figures 1.1 and 1.2 show two tasks from the training set. Each task poses a differ-
ent challenge and requires a different set of prior knowledge: Figure 1.2 requires
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1. Introduction 2

Figure 1.2: Task 508bd3b6. The task consists of extending the diagonal until it
collides with the red rectangle and is redirected.

an understanding of physical collisions, and Figure 1.1 requires an understanding
of occlusion.

A promising approach to introduce prior knowledge into an artificial system seems
to be the use of a Large Language Model (LLM). LLMs are trained on enormous
amounts of human-written texts and incorporate vast knowledge in the form of
language. While LLMs might are familiar with much of the prior knowledge
required to solve ARC tasks, concepts more related to vision, for example occlu-
sion, can pose a problem. Additionally, leveraging the prior knowledge of LLMs
to solve ARC tasks, requires the task to be represented as a text (or as a list of
tokens).

In this thesis, we expand on a language model based approach to solve ARC tasks.
The original architecture consists of a hard-coded captioner, a language model
and a decoder. The hard-coded captioner turns a task into a text description of
it by following hard-coded rules. Based on this description, a language model is
prompted to produce a description of the missing output. Finally, hard-coded
decoder is used to turn this description back into a grid.

We aim to build a learned captioner based on an image captioning model. Just
like language models have been extensively trained on vast textual data, image
captioning models have similarly undergone extensive training on large datasets
of images.

By replacing the hard-coded captioner with one based on an image captioning
model, we hope to achieve a better understanding of vision related concepts, for
example occlusion.



Chapter 2

Related Work

The Abstraction and Reasoning Challenge (ARC) was introduced by François
Chollet [Chollet, 2019] in 2017. It consists of 400 training tasks, 400 validation
tasks and 200 secret test tasks. The challenge serves as a benchmark for general
artificial intelligence. Most approaches to solve ARC tasks focus on the use of
domain specific languages (DSL) and program searches [Fischer et al., 2020],
solving up to 30% of the tasks from the private test set. However, a study
estimates that humans are able to solve around 80% of ARC tasks [Johnson
et al., 2021]. While DSL-based approaches require a hand-crafted set of rules,
humans use a much wider range of language when asked to give instructions on
how to solve ARC tasks [Acquaviva et al., 2022].

Recent efforts started to include language models in their approach for solving
ARC tasks [Xu et al., 2023] [Camposampiero et al., 2023] [Tan and Motani,
2023]. For these approaches, the task first needs to be transformed into a text
description, before it can be given as a prompt to the language model. In this
work, we focus on building a learned captioner to produce text description of
ARC tasks.

Popular image captioning models like BLIP (Bootstrap Language Image Pre-
training) [Li et al., 2022] are primarily trained on real-world visual data and
struggle with describing more abstract graphics such as ARC tasks. Our aim
is to leverage fine-tuning and reinforcement learning methods to use an image
captioning model for describing ARC tasks.
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Chapter 3

Preliminaries

In this chapter, we provide a brief overview of notions and topics relevant to our
project. We start by introduction ARC, the Abstraction and Reasoning Chal-
lenge. Next, we describe the previous approach that was developed during a
prior semester project and serves as a starting point of this thesis. We continue
with describing language models and image captioning models. Finally, we dis-
cuss how these models can be trained using fine-tuning, in particular low-rank
adaptation, and how they can be trained using reinforcement learning.

3.1 Abstraction and Reasoning Challenge

The Abstraction and Reasoning Challenge (ARC) is a collection of tasks, designed
to measure machine intelligence and compare its similarity to human priors. The
collection is made up of 400 training tasks, 400 evaluation tasks and 200 test
tasks. The test tasks are intentionally undisclosed by the author to prevent bias
in the evaluation. Figure 3.1 shows one of the training tasks.

François Chollet introduced ARC [Chollet, 2019] with the purpose of encouraging
research in Artificial General Intelligence (AGI) by providing a benchmark for
the general intelligence of a system.

The objective of a task is to generate the correct output grid based on an input
grid. To learn the correct transformation, each task provides on average 3 training
examples. A training example consists of an input grid with the corresponding
output grid. Additionally, a task contains one or more test instances of only an
input grid.

The objective is to determine the correct output grid for each test instance, by
identifying and following the transformation rules used in the provided examples.
The required solution method to get from the input grid to the output grid is
unique for each task. Figure 1.1 and Figure 1.2 in Chapter 1 showed two examples
of how the prior knowledge required to solve a task can vary.

The tasks in the ARC benchmark rely on various concepts and many different as-
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3. Preliminaries 5

Figure 3.1: Task 5614dbcf. The input grids consist of 9×9 grids containing 3×3
squares in the background, and gray pixels in the foreground. The task consists
of removing the gray pixels and scaling the remaining objects down.

pects of knowledge. ARC explicitly groups these knowledge priors into 4 groups:

• Objectness priors: These include the ability to parse a grid into different
objects. The shape of an object might be persistent, even if it is partially
occluded behind other objects.

• Goal-directedness prior: Many of the input/output pairs can be seen as the
starting and endpoint of an intentional process.

• Numbers and Counting priors: include the understanding of numbers and
their relations, meaning the ability to count, compare, sort, add and sub-
tract.

• Basic Geometry and Topology priors: The tasks feature a range of elemen-
tary geometry and topology concepts. These might be concepts such as
lines, shapes, symmetries, reflections, rotations, scales, overlapping, con-
taining, connecting or copying.

When ARC was published in 2017, a competition on Kaggle1 was held. The
winning entry2 was able to solve 21% of the tasks from a test set. The majority
of ARC solutions, including the winning entry, hand-crafted a domain specific
language (DSL) of transformations applied to a grid. This approach then searches
a sequence of one or more transformations that correctly transforms the input
grid into the output grid.

In comparison, [Johnson et al., 2021] looked at human’s ability to solve ARC
tasks. The study considered a subset of 40 tasks. They found that among 95

1https://www.kaggle.com/c/abstraction-and-reasoning-challenge
2https://www.kaggle.com/code/icecuber/arc-1st-place-solution
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Figure 3.2: ARC tasks are turned into a text description using a captioner. Based
on this text description, a language model is prompted to create a text description
of the missing output. A decoder turns this description back into an image.

participants, on average humans are able to solve ARC tasks with an accuracy
of 83.8%.

3.2 Previous Approach

The work presented in this thesis expand on a prior semester project conduced
by Giacomo Camposampiero and Loic Houmard [Camposampiero et al., 2023].
In this section, we briefly introduce their thesis.

A central challenge in solving ARC tasks lies in incorporating prior knowledge.
The previously described DSL-based approaches make these priors explicit by
handcrafting heuristics. Unlike DSL-based approaches, the semester project ex-
plored the idea of introducing prior knowledge by including language models into
the solution method, as shown in Figure 3.2. Camposampiero and Houmard in-
troduce a framework that consists of first creating a textual description of an
ARC task using an encoder. This description is then given to a generic language
model. The language model is prompted to predict a description of the task
output. Finally, a decoder translates the predicted solution back to a grid.

The captioner in this architecture follows hard-coded rules to produce a descrip-
tion of a task. The visual prior knowledge is still hand-crafted, as the captioner
matches objects with a set of hard-coded shapes, including pixel, line, square,
rectangle, cross, diagonal or random object.

Based on this description, the language model predicts a description of the miss-
ing output. Language models are trained on enormous amounts of human-written
texts and incorporate large amounts of human knowledge. This prior knowledge
may be leverage to solve ARC tasks.

Not only is this approach successful in solving multiple ARC tasks, but it also
solved tasks that have not been solved previously by any other approach. From
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the training tasks, this approach solved 39 tasks, including 9 tasks that have not
been solved by a DSL-based approach.

While their project demonstrated the potential of such an approach, there still
are a number of potential improvements. The most promising improvement seems
to be a learned approach for the encoder producing the task descriptions. In this
work, we will build on top of their work and implement a number of potential
improvements.

3.3 Language Models

A language model is a statistical or probabilistic model used in natural language
processing (NLP) to estimate the likelihood of a sequence of words or characters
from a given training dataset. It is designed to capture the syntactic, semantic,
and contextual relationships between words within a text corpus.

Language models have found extensive applications in machine translation, sen-
timent analysis, text generation, and various other NLP tasks due to their ability
to understand and generate human-like text.

Language models work by estimating the probability of a token occurring within
a sequence of tokens. Markov models are a class of probabilistic models that
assume we can predict the next word based on only the most recent previous
words. This assumption is formulized by the Markov Assumption:

P (wn|w1 . . . wn−1) ≈ P (wn|wn−N+1 . . . wn−1)

N-gram models is a markov model that predicts the next word in a sequence
based on the occurrence frequencies of N-grams (sequences of N words).

Neural language models use a neural network as a probabilistic classifier, to com-
pute the probability of the next word. Recurrent Neural Networks (RNNs)
retain information from previous time steps by adding recurrent connections,
feeding the output back into themselves as input. Long Short-Term Memory
(LSTM) models better retain long-range dependencies by including memory cells
that selectively remember or forget information over long sequences.

First described in 2017, transformer models [Vaswani et al., 2017] use an atten-
tion mechanism to capture contextual information bidirectionally in a sequence.
This architecture has proven to result in better quality results, to be better par-
allelizable and thus needing less training time, and generalizing well to different
tasks.

Transformer models introduced a novel architecture based on the self-attention
mechanism. Self-attention allows the model to weigh the importance of different
words in a sequence, and thereby enables it to consider the context of a word
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Figure 3.3: The Architecture of a Transformer Model, taken from [Vaswani et al.,
2017].

within the entire input sequence. The self-attention mechanism computes atten-
tion scores between each pair of words in a sequence. The attention scores are
computed through three learned matrices: Query (Q), Key (K), and Value (V ).
The standard scaled dot-product attention can be written as

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

Figure 3.3 shows the architecture of a transformer model. It consists of an encoder
(shown on the left), and a decoder (shown on the right). The encoder maps the
input to a continuous embedding. The decoder receives this embedding, as well
as the output from the previous step, and generates an output.

3.4 Image Captioning Models

Image captioning models aim at creating textual descriptions of a given image.
Most image captioning systems use an encoder-decoder framework. An input
image is encoded into an intermediate representation, and then decoded into a
text description.
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a flock of birds flying over 
a lake at sunset

Causal Self-Att

Cross Attention

Feed Forward

Image Captioning:

Feed Forward

Self Attention

Image-grounded
Text Decoder

N ×

Image 
Encoder

N ×

Figure 3.4: BLIP architecture for image captioning.

3.4.1 BLIP

BLIP (Bootstrapping Language-Image Pre-training) [Li et al., 2022] is a transformer-
based image captioning model. The architecture contains different configurations
for image-text matching, visual question answering and image captioning. In the
following, we will look at BLIP’s architecture for image captioning, as shown in
Figure 3.4.

BLIP uses a visual transformer (ViT) [Dosovitskiy et al., 2020] as image encoder,
which splits the image into patches and encodes them as a sequence of embed-
dings. A text decoder initialized from BERT [Devlin et al., 2018] produces a text
description of the given image based on the image embedding.

3.5 Model Finetuning

When fine-tuning a language model, the model is initialized with pre-trained
weights and biases before adjusting model parameters through gradient updates.
The model is re-trained on a specific dataset, allowing it to adapt to a specialized
task. Running this process the open-source language model Llama 2 [Touvron
et al., 2023], with parameter sizes spanning from 7 billion to an impressive 70
billion, demands substantial computational resources. Different strategies exist
to make model adaption more compute- and parameter-efficient.

Adapter tuning [Houlsby et al., 2019], in its original design, adds two additional
adapter layers per transformer block. During adapter tuning, all pre-trained
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weights and biases are kept frozen, and only the adapter layers are updated.

BitFit [Zaken et al., 2021] is a fine-tuning method, where only the bias terms of
the language model are modified, while the weights are kept frozen.

More recently, Low-Rank Adaptation (LoRA) [Hu et al., 2021] introduced a
parameter-efficient fine-tuning approach that decomposes the weights matrices
of a model into low-rank approximations.

3.5.1 Low-Rank Adaptation

Low-Rank Adaptation (LoRA) [Hu et al., 2021] freezes the pretrained model
weights and injects trainable rank decomposition matrices into each layer of
the language model architecture. During training, only the parameters in the
rank decomposition matrices are updated. This reduces the number of trainable
parameters. For GPT-3, [Hu et al., 2021] reports a 10,000 times reduction of
trainable parameters.

For a pretrained weight matrix W0 ∈ Rd×k, LoRA constrains the update by
representing it with a low rank decomposition W0 + ∆W = W0 + BA, where
B ∈ Rd×r, A ∈ Rr×k for the rank r ≪ min(d, k).

During training W0 is frozen, while A and B receive gradient updates. The
forward pass can be written as:

h = W0x+∆Wx = W0x+BAx

Missing in this formula, LoRA scales the update matrix ∆W by a scaler α
r , where

α is a hyperparameter and r is the rank of the low rank decomposition of ∆W .
After training, the frozen weight matrix and the low-rank update matrix can
be merged, leaving the total number of parameters and the inference latency
unchanged compared to the pretrained model.

Wmerged = W0 +
α

r
∆W

To further improve on the memory efficiency of LoRA during training, QLoRA
[Dettmers et al., 2023] is a quantized adaptation of LoRA. The pretrained model
is quantized to 4 bits, before LoRA is used to fine-tune it.

3.6 Reinforcement Learning

Reinforcement Learning (RL) is a Machine Learning paradigm where an agent
learns to make decisions by interacting with an environment. For each action
an agent takes, it receives feedback in the form of a reward. The goal is that,
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through a process of trial and error, the agent learns a policy that maximizes its
cumulative reward.

The environment represents the context in which the agent acts. It might change
its state s on its own, or as a result of the agent’s actions. The agent sees the
environment as observations o, which are (partial) descriptions of an environ-
ment’s state. An actor’s policy µ or π decides on the next action, based on
an observation: at = µ(ot) in a deterministic setting, or for a stochastic policy
at ∼ π(·|st).
The set of all valid actions in an environment is called the action space. Similarly,
the set of all possible observations is the observation space.

The reward an agent receives is computed by a reward function rt = R(st, at, st+1).
The agent’s goal is to maximize the cumulative reward across multiple steps. We
can denote a sequence of states and actions in an environment as a trajectory
τ = (s0, a0, s1, a1, . . . ). The cumulative reward from this trajectory becomes:

R(τ) =

T∑
t=0

rt

The goal of Reinforcement Learning is to select a policy which maximizes the
expected cumulative reward J(π):

π∗ = argmax
π

E
τ∼π

[R(τ)] = argmax
π

J(π)

Many Reinforcement Learning methods are centered around estimating the value
function, the action-value function or the advantage function.

The value function V π(s) tells us the estimated total amount of reward an agent
will collect in the future, based on the current state s:

V π(s) = E
τ∼π

[R(τ)|s0 = s]

The action-value function Qπ(s, a) tells us the estimated total amount of reward
an agent will collect in the future, based on the current state s and the action a:

Qπ(s, a) = E
τ∼π

[R(τ)|s0 = s, a0 = a]

The advantage function Aπ(s, a) describes how much better taking action a in
the current state s is, instead of taking the next action based on the policy π.

Aπ(s, a) = Qπ(s, a)− V π(s)

A family of RL optimization methods that make use of estimations of those
functions are the on-policy methods. For these methods, each update to the
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policy only uses data collected while actions are taken according to the most
recent version of the policy. Since the policy is generating its own training data,
an undesirable policy update can cause the next batch of sampled data to be
collected from a poor policy. This can cause the optimization process to be
unable to recover from a bad policy update.

Trust Region Methods (TRPO) [Schulman et al., 2015] prevent this by constrain-
ing the size of the policy optimization by limiting the KL-differgence between the
old and new policy. This constraint prevents large changes from a single policy
update, ensuring the update to remain within a trustworthy region. However,
TRPO requires second order optimization due to the added constraint. This
complexity issue was solved by PPO, another on-policy algorithm that allows for
first-order optimization, while still limiting the policy updates to stay within a
trusted region.

3.6.1 Proximal Policy Optimization

Proximal Policy Optimization (PPO) [Schulman et al., 2017] is an on-policy op-
timization method. Similar to TRPO, PPO limits the policy update to prevent
large changes. However, it replaces the constrained used in TRPO with a clipping
probability ratios inside the objective function. This allows for first-order opti-
mization, while also constraining the policy updates. Compared to TRPO, PPO
is easier to implement and takes less computation time, while keeping TRPO’s
advantages.

PPO’s clipped surrogate objective function takes the minimum between the
clipped and non-clipped objective:

Lclip(θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(3.1)

where Ât is an estimator of the advantage function at timestep t. In an Actor-
Critic architecture, the “Critic” estimates the advantage function. The policy
distribution is modelled by the “Actor”.

rt(θ) denotes the ratio function:

rt(θ) =
πθ(at|st)
πθold(at|st)

Giving us an easy way to estimate the divergence between the previous policy and
the current one. The first part of Equation (3.1), comes from the Conservative
Policy Iteration (CPI):

LCPI(θ) = Êt

[
rt(θ)Ât

]
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The second part clip(rt(θ), 1− ϵ, 1 + ϵ)Ât clips the ratio function to stay within
the interval [1− ϵ, 1 + ϵ], eliminating the incentive to move rt(θ) outside this
interval.

The final Actor Critic Objective Function used by PPO adds two more terms to
the clipped surrogate objective function from Equation (3.1):

LCLIP+VF+S
t (θ) = Êt

[
LCLIP
t (θ)− c1L

VF
t (θ) + c2S[πθ](st)

]
Where c1, c2 are coefficients, S is an entropy bonus to ensure sufficient ex-
ploration and LVF

t is a squared-error loss of the value function: LVF
t (θ) =(

Vθ(st)− V target
t

)2
.

An actor-critic style PPO algorithm is shown here:

Algorithm 1 Actor-Critic Style PPO
for iteration = 1, 2, . . . do

for actor = 1, 2, . . . , N do
Run policy πθold in environment for T timesteps
Compute advantage estimates Â1, . . . , ÂT

end for
Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤ NT
θold ← θ

end for

During the training process, the actor initially interacts with the environment,
gathering experience by following its current policy. Policy refers to the strategy
an agent uses to make decisions. During each step of interacting with the environ-
ment, the actor collects the initial observation, actions taken, rewards received,
and resulting next states.

Based on the collected data, PPO computes an estimate of the advantage. The
advantage value describes how much better (or worse) the reward for an action
was compared to what was expected in that specific state.

In a second phase, the actor is updated based on the advantage estimates. The
probability of taking actions leading to a higher advantage is increased, and the
probability of taking worse actions is decreased. The critic is also updated to
produce better estimates of the reward the actor will receive.

This process can be repeated multiple times. First, data is collected from inter-
acting with the environment. Then, this data is used to update the model.

3.6.2 Reinforcement Learning from Human Feedback

Reinforcement Learning from Human Feedback (RLHF) [Ziegler et al., 2019] is
a technique to train a pre-trained Language Model on human feedback through
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Proximal Policy Optimization.

The reward an output from a language model receives is computed using a re-
ward model. The reward model should take a sequence of text, and return a
reward value, representing human preference. To train this reward model, a set
of prompts are given to the initial language model to produce text outputs. These
outputs are ranked by human annotators, and the ranking is used to score each
output.

The reward model can then be used to train the language model through PPO.

RLHF has been successfully used to train language models for summarization
[Stiennon et al., 2020], to browse the web [Nakano et al., 2021] or to better follow
instructions [Ziegler et al., 2019].



Chapter 4

Language Model

In this chapter, we explain our work and experiments related to the language
model used in the architecture. First, we describe changes we made to the lan-
guage model component in the previous approach. Next, we describe how we
fine-tuned a pretrained language model on our prompt format. Finally, we show
the results from our experiments and briefly discuss them.

As described in Section 3.2, [Camposampiero et al., 2023] implemented a pipeline
that solves ARC tasks using a 3-part architecture. A captioner turns tasks into
a text description, which is passed to a language model. The language model
then tries to predict a text description of the missing output grid, based on the
task description. A decoder turns the output description back into a grid. This
chapter focuses on the middle part of this pipeline, the language model.

4.1 Inference

To evaluate the influence of the pretrained language model on the full architec-
ture’s ability to solve ARC tasks, we adapted the code to easily replace the lan-
guage model. When running inference, the identifier of a text generation model
from Hugging Face is passed as a command line argument. The model is then
loaded from the Hugging Face Hub, allowing for fast and easy experimentation
with different models.

We also adapted the parsing of the language model output, to process the output
formats of various language models and extract the description of the predicted
output. During Inference, a captioner produces a text description of a task. The
task is then formatted to a prompt and passed to the language model. If the
prompt is too long for the language model, the task might be skipped.

From the text output, trailing text, the prompt and special tokens are removed
in order to extract the predicted description of the task output.

Our prompts follow zero-shot prompting format. Each task is formatted as a
single prompt. The language model is given the text description from the training

15
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(a)

(b)

Figure 4.1: (a) Task d631b094 and (b) the corresponding prompt passed to the
language model.

examples, namely the example input/output grid pairs of the ARC task, together
with the test input grid description. The test output grid description is left empty
for the language model to predict. Figure 4.1b shows the prompt the language
model will receive in order to solve the task shown in Figure 4.1a.

The example input and output grid pairs should enable in-context learning, where
we provide demonstrations in the prompt to show the language model how it can
solve a task. From these input output pair examples, the language model should
infer the transformation needed to produce the correct description of the output
grid from the test input grid description.

4.2 Fine-tuning

To go beyond the general knowledge of pretrained language models, fine-tuning
allows these models to adapt to specific tasks. We implemented LoRA fine-tuning
using the PEFT (parameter efficient fine-tuning) library [Mangrulkar et al., 2022]
from Hugging Face, allowing for the fine-tuning of any text generation model that
can be used for our inference.
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We fine-tune the language model on prompts generated for the ARC training
tasks. For data augmentation, we allow for the grids and objects within the grids
to be reordered.

During training, checkpoints of the model are stored and can later be used for
inference.

4.3 Experiments

This section outlines two sets of experiments we made related to the language
model, and report their results. The first set consists of testing various language
models of different parameter sizes. We explore how capable different language
model families are in solving ARC tasks, and how the parameter size within
a family affects the capability. The second set involves fine-tuning a language
model and comparing its performance against a baseline model that underwent
no fine-tuning.

4.3.1 Testing different Language Models

To find out how much the selection of the language model influences the ability of
our pipeline to solve ARC tasks, we tested numerous models. Between all those
runs we kept the captioner and decoder fixed.

We tried to select a diverse set of popular language models 1. We were also
interested in seeing how the parameter size of a model affects the result. This led
us to include models such as OPT or Bloom, where versions of many different
parameter sizes are available.

We report our results for the following language models:

Name Parameters
Bloom [Workshop et al., 2022] 500M, 1.1B, 1.7B, 7B
OPT [Zhang et al., 2022] 125M, 350M, 2.7B, 6.7B, 13B
OpenLlama [Geng and Liu, 2023] 3B, 7B, 13B
Llama 2 [Touvron et al., 2023] 7B, 13B, 70B
OpenChat [Wang et al., 2023] 13B
Orca Mini [Mathur, 2023] 3B, 7B, 13B
Vicuna [Zheng et al., 2023] 7B, 13B, 33B

In Figure 4.2, we show the results on the ARC training tasks. For each of the
400 tasks, we allowed the language model to make 6 guesses. If at least one of
those guesses is correct, a task is considered to be solved.

1These Experiments were done mainly in July and August 2023. Today, other models might
be considered more popular, or newer versions of these model might be available.
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Figure 4.2: Number of training tasks solved by different language models. All
models were run with objects sorted by size and the multichromatic captioner
with diagonal connections (SMuD).
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We observe that with increasing parameter size, the models are able to solve more
tasks. In particular for smaller model sizes, between 0 and 10 billion parameters,
increasing size leads to significantly more tasks solved. However, this increase in
performance diminishes with increasing model size.

For example, when comparing the 3 billion and 7 billion parameters versions of
Orca Mini, the number of solved tasks increases from 33 to 47 tasks solved (an
increase of 55%). However, the 13 billion parameters version of Orca Mini only
solves an additional 3 tasks, leading to a total of 50 tasks solved (an increase of
6.4%).

Another observation we can make is that while many language models perform
somewhat similar, there is also some difference in performance. Most notably,
the OPT models seem to perform significantly worse than other models.

The most surprising observation comes from the OpenLlama models. With an
increase in parameter size, fewer tasks are solved. Looking at the guesses made
for a task, we observed that the smaller version made better use of the guesses
by producing more diverse output grid descriptions. The larger model was more
consistent in producing a description similar to its first guess, potentially leading
it to solve fewer tasks. However, it is unclear why this has only been observed
for the OpenLlama models.

4.3.2 Error Analysis

In order to gain a deeper understanding of our results, we will take a closer look
at the answers generated from Llama-2 13B and the errors that occurred. For
each task, the language model makes 6 guesses. The language model chooses the
top 6 sequences by beam search. Beam search explores multiple possibilities by
keeping track of the top 6 sequences at each decoding step and selecting the most
probable continuations. Each of these guesses is passed to the decoder. A guess
is correct, if the output of the decoder perfectly matches the true test output.

The outcome of each task is shown in Figure 4.3. Correct Result contains all the
tasks for which at least one guess from our pipeline was correct. Wrong Result
includes all tasks for which the pipeline produced at least one output grid, but
not the correct one. Failed includes all tasks for which no grid was produced.
Finally, a task is skipped if the prompt produced from the captioner is too long.

For each one of the 400 training tasks, our language model produced 6 guesses.
Our decoder failed for 774 out of those 2’400 guesses. Figure 4.4 shows the cause
of these failures.

• Random Object / Patterns: Most commonly, failures are caused by
random objects or multichromatic patterns. We allow the captioner to de-
scribe shapes as random objects. These random objects are stored in a
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Figure 4.3: Outcome of solving the training tasks using the Llama-2 13B language
model.

Figure 4.4: Different types of errors observed when using Llama-2 13B.
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dictionary and can be referenced by the language model, for example by
describing a random object of shape "B".
The decoder can read the corresponding shape from the dictionary. If the
dictionary does not contain the specified key ("B" in the example above),
this causes a failure. In many cases, the language model “learned” to pre-
dict the next random object identifier. For example, if the task description
contained random objects "A", "B", "C" and "D", the language model
predicted the non-existing random object "E".
Similarly, the color pattern of multichromatic objects is described as pat-
tern "a", using some lower case letter as identifier. Similar to before, the
language model frequently predicted a non-existing pattern.

• Missing Information: Another source of failures is the language model
omitting necessary information, like the grid size.

• Bad Format: The output generated from the language model cannot be
parsed by the captioner. For small models, this happens because they strug-
gle to fully follow our description format. For larger models, we observe
that they occasionally add reasoning or “chain-of-thought” steps to their
response, causing the decoder to be unable to parse the generated text.

• Missing pixel values: If the grid is fully covered by objects, the captioner
may describe no background color. If the language model predicts the
output to not have a background color, it has to describe objects that fully
cover the grid, otherwise some pixels are left undefined.

• Others: Other failures are mostly caused by the language model specifying
colors that do not exist for ARC tasks. Most common is white, others
include magenta, pink or lightgray.

Table A.1 in the appendix shows the number of solved, wrong, failed and skipped
tasks for all language models we tested. In Appendix A.1 we show which tasks
are solved for different size of the Llama-2 model.

4.3.3 Fine-tuned Language Models

Based on the results from testing different language models, we selected Llama-2
13B to make additional experiments. We fine-tuned the model on the training
tasks of ARC and used the evaluation tasks to compare the performance with
the baseline llama-2 13B model without fine-tuning.

The data used for fine-tuning consists of the captions produced for the training
tasks. We report the results for two different fine-tuning, differing in the training
data. For the first run, Fine-tuning 1 in Figure 4.5, we used the captions of the
400 training tasks. For each task, we used the captions with the objects sorted
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Figure 4.5: Number of tasks solved against number of guesses made by the lan-
guage model. Comparing Baseline Llama 2 13B with fine-tuned versions.

randomly, by size and from left to right. This gives us a total of 1’200 training
examples. For the second run, we augmented those by reordering the objects
within a grid, leading to a total of around 12’000 training examples.

Appendix A.2 in the appendix contains additional information about the fine-
tuning process and shows which tasks have been solved by the fine-tuned models,
compared to the baseline Llama-2 13B model.

Figure 4.5 shows the number of evaluation tasks solved against the number of
guesses made by the language model. For example, when only allowing the
models to make 3 guesses, the baseline model was able to solve 20 tasks. The
two fine-tuned models were able to solve 21 and 23 task respectively within those
3 guesses. The difference between the baseline and the fine-tuned models is the
biggest when only allowing 1 or 2 guesses, with the fine-tuned models solving up
to 4 task more than the baseline model. However, when allowing more guesses,
the models solve almost an identical number of tasks.



Chapter 5

Learned Captioner

In this chapter, we focus on the first step in our pipeline, the captioner. The
captioner is responsible for the text description that is passed to the language
model. Since the language model does not receive any representation of the task
other than this description, its ability to solve tasks relies heavily on receiving a
high-quality task description.

In the following sections, we will describe how we build a learned captioner, based
on a pre-trained image captioning model. We first describe how we fine-tune a
pre-trained image captioning model on a synthetic dataset of image-caption-pairs
resembling ARC tasks. We then take a closer look at how we build this dataset.
Afterward, we outline how we continued training the fine-tuned captioner using
Reinforcement Learning.

Finally, we conclude this chapter by presenting and discussing our results.

5.1 Fine-tuning

The hard-coded captioner produces the text description of a task based on hand-
crafted rules. This limits the captioner’s ability to deal with challenges such as
overlapping shapes, handling noise, distinguishing touching or overlapping shapes
of the same color, or recognizing random objects based on occurrence in another
grid of the same task. Another issue we frequently observe is that it fails to
distinguish between two touching or overlapping shapes, and a single random
shape.

Ideally, a captioner should even be able to distinguish the level of abstraction
on which it describes a task. While some tasks might require information about
every object, other tasks include plenty of noise, meaning pixels or object that
do not affect the solution.

Task 7e0986d6, shown in Figure 5.1, is a good example. The pixels in the input
images overlap with the rectangles in the background. In the first training input,
two rectangles in the lower left corner also touch each other. For a human ob-

23
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Figure 5.1: Task 7e0986d6 from the ARC training tasks.

server, it is still easy to recognize 5 distinct green rectangles. To solve the task,
the level of detail we require for each object is also different. While we do not
need any details about the noisy pixels, we do need to know the position, shape,
and color of the rectangles in the background.

To make the captioner more versatile, we experimented with BLIP (Bootstrap
Language Image Pre-training) [Li et al., 2022], a pre-trained image captioning
model. BLIP is pre-trained on a large dataset of images paired with corresponding
textual descriptions. This dataset is primarily made up of real-world visual data,
leading to the model being largely proficient in understanding and associating
real-world visual content with descriptive text.

While it can generalize to some extent and may recognize basic shapes or abstract
representations, it struggles to produce useful description for ARC tasks. In
Figure 5.2, we show an example of captions produced by a BLIP model without
any fine-tuning. Without fine-tuning, the captions produced by BLIP lack plenty
of relevant information and most likely will not be useful.

Our goal for fine-tuning BLIP is to create a captioner that can describe objects
and grids of an ARC task one-by-one. During each step, the captioner is given
an image of the task as an input, and should produce a caption of a single object
or grid background as output.

For each grid, we iteratively use the captioner to describe the objects one-by-one.
Once all the objects in the grid are described, the captioner should produce a
description of the grid background. For example, for a grid containing a single
object, it should first output a description of that object:

pixel, in position (1, 12), of color blue.

In this example, this is the only object in the grid. The model is done with
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Figure 5.2: Captions produced by BLIP without any fine-tuning. The grid on
the left shows a grid from training task b190f7f5.

describing all objects in the grid, and should describe the grid background next:

15x21 grid, black background.

After the model described the background, we know that it is done with describing
this grid, and can move on to the next grid in the task.

In order for BLIP to know which object to describe next, it needs to know
which grids and objects it has described earlier. As mentioned before, the model
receives an image of the task as input at every step. In this image, we mask-out
objects and grids that have been described previously by brightening their color,
as shown in Figure 5.3b. Based on this masking, the model should understand
which objects and grids it described previously. In order for the model to know
which object to describe next, we teach it to describe them left-to-right, top-to-
bottom.

To summarize, we want to use fine-tuning to teach BLIP the following:

• Object description: correctly describing an object by providing all relevant
information: position, color, object type, and shape.

• Grid description: correctly describing a grid background by providing all
relevant information: color and shape.

• Masking: given a task image, the model should understand which objects
and grids have been described previously.

• Description ordering: based on the masked objects, the model should un-
derstand which objects it has to describe next. Objects are described left-
to-right, top-to-bottom. Once all objects are described, the model should
describe the grid background and afterward move on to the next grid.

To teach this to BLIP, we generate a large dataset of image-caption pair examples.
For each pair, the caption corresponds to the output we want the model to
generate, if it is given the corresponding image as input. We will describe the
generation of this dataset in the next section in more detail.
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During fine-tuning, we initialize a pre-trained BLIP and fine-tune it on our cus-
tom dataset. Compared to a language model, BLIP is relatively small, consisting
of around 250 million parameters. Because of its small size, full fine-tuning is
feasible, meaning we train all weights and biases. We also experimented with
keeping parts of the model frozen, namely the vision encoder.

In Appendix B we share additional information about the fine-tuning process of
BLIP. Table B.1 shows the parameters used for fine-tuning. We also added plots
showing the color, type, position, and shape accuracy for each of the object types
individually.

5.2 Data Generation

To create the dataset, we first randomly create tasks consisting of arbitrary grids.
These grids may contain objects, of the object types defined in the previous
approach: pixels, lines, diagonals, rectangles, squares, crosses or random objects.

For each task, we iterate over the grids and objects to produce image-caption
pairs. The image-caption pair represent the caption we want the captioner to
produce for the given image. When producing these pairs, previously described
objects get masked out by brightening their color. For example, when describing
the second object in the second grid, we mask out the complete first grid, as well
as the first object in the second grid. This way, the captioner should be able to
understand that it needs to describe the second object next, and create a caption
for the next object. For example, this is how a single pixel is described:

pixel, in position (1, 22), of color blue.

For the captioner to correctly describe the next object, we need it to understand
an ordering in which it describes the objects. When we iterate over the objects
in a grid, we do so in a left-to-right, top-to-bottom order. By using this ordering
for our dataset and masking out previously described objects, we expect the
captioner to understand this ordering, and correctly know which object it has to
describe next. Once all the objects in a grid are described, we want the captioner
to create a caption for the background next:

15x21 grid, black background.

The images are formatted to contain all task grids. We arrange the grids in a
3×3 format. This way, we can show 4 pairs of example input and output pairs,
as well as a test input grid. In Figure 5.3a, we show how the grid arrangement
is done.
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(a) (b)

Figure 5.3: (a) The input and output grids of a grid are arranged in a 3×3 pattern.
The test input grid is placed at the bottom right. (b) Previously described objects
or grids are masked out by brightening their color.

Figure 5.3b shows an example from the dataset, with previously described grids
and objects masked out. In Appendix B.2 in the appendix, we show a full example
of how we iterate over the objects and describe them one-by-one. We found that
keeping the grid that is currently being described at the top left (in the position
of input 1 and input 2), makes it easier for the captioner to get positions and sizes
correct. Thus, when creating image-caption pairs, we swap the grids to always
keep the currently described grid in those positions.

We specified a number of different hyperparameters that can be used to customize
the dataset. These include the grid height, grid width, number of objects within
each grid, object types, allowing overlapping objects, number of example grid
pairs, and background color.

5.3 Reinforcement Learning

By fine-tuning BLIP on our custom synthetic data, we now have a captioner that
is capable of describing ARC grids with a high degree of accuracy, though not
entirely perfect. All the training data it has seen is synthetic and may vary from
how real ARC tasks look like.

ARC provides us with 400 training and validation tasks each. Unlike our syn-
thetic datasets, the dataset of ARC task does not have any matching textual
descriptions of the grids. Since it lacks any captions or object annotations, we
cannot do any form of supervised training, like we did for our custom dataset. For
our captioner to profit from this dataset, we look into Reinforcement Learning.
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We use our fine-tuned captioner to create captions for ARC tasks. We specify a
reward function that returns a reward for each action the captioner takes: when
the captioner produces a full object or grid description, we use the decoder to get
the pixels of the described object. Together with the position of the predicted
object, we compare the predicted pixels with the true pixels. The reward function
computes a reward value based on the number of predicted pixels and true pixels.

Using PPO, we continue training the model on this reward value, hoping that it
can improve the quality of the generated captions.

Our Reinforcement Learning setup consists of 4 main components: the environ-
ment, an actor, a critic, and the reward function.

5.3.1 Environment

The environment is the context with which the actor interacts. It represents the
current state and consists of the previously generated tokens, the image repre-
sentation of the task, the mask of previously described parts of the image, and a
processor.

The processor is used to turn the masked images and previously generated tokens
into the actor’s expected input format, tensors. We call the input for the actor
an observation, and the set of all valid observations the observation space.
Similarly, the action space is the set of all valid actions the actor can take
during a step in the environment.

5.3.2 Actor Critic Architecture

The Actor-Critic Architecture implements our actor and critic. Our Actor is a
fine-tuned BLIP checkpoint. As an input, it takes an observation consisting of
3 tensors representing the current task image and previously generated tokens:
pixel values, input ids, and attention mask.

Based on this observation, it decides on the next action to take, meaning which
token it should produce next.

The Critic receives the same observation and produces an estimate of the reward
the actor will receive. As described in the preliminaries, this is an estimate of
the advantage function. PPO uses this estimate to limit the policy updates and
prevent large changes.

We adapted the architecture of BLIP to function as our critic. We use the same
vision model as for our critic, but pass its output to BLIP’s text encoder. We
take the output from the text encoders last hidden state and pass it to two dense
layers, reducing the size from 768 to 264, to 1.
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Since we share the vision model between actor and critic, we can reduce compu-
tation by only computing its output once per observation, and then passing it to
the remaining layers of the actor and critic respectively.

5.3.3 Reward Function

The reward function returns a reward value for each action our actor takes.
It computes this value based on comparing the true pixels with the predicted
pixels described by the caption produces by the actor. When the actor finishes
describing an object, we use the decoder to turn the text description into the
corresponding pixel values of that object. Then we count the number of pixels
described in total, as well as the number of pixels matching the true image. Based
on those two values, we designed the following reward function:

reward(c, w) =
cexp1

c+ wexp2
(5.1)

Where c corresponds to the number of correctly predicted pixels, w to the number
of wrongly predicted pixels, and exp1 and exp2 are two parameters to change the
functions’ behavior.

This reward function is designed based on 2 considerations.

• Describing a set of pixels as a single large object instead of multiple smaller
ones should yield a larger reward.
Assuming we have a perfect captioner that does not predict wrong pixels,
we have

reward(c, w) = reward(c, 0) =
cexp1

c+ 0exp2
= cexp1−1

This reward should be larger than the sum of rewards from predicting the
same object as two smaller ones:

c
exp1−1
1 + c

exp1−1
2 < cexp1−1

Assuming the same amount of pixels (c = c1+c2). This holds for exp1 > 1.

• Adding additional pixels to the object that do not belong to it should not
increase the reward. Since our function is designed to give a larger reward
to larger objects, it might be possible to add additional pixels to an object
to increase the maximal reward the prediction can receive.
We added a second exponent, exp2, to control the negative impact wrong
predictions have on the reward given.

To prevent the reward values from becoming too large, multiplying the denom-
inator with the nominator’s exponent exp1 can scale it appropriately. We also
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(a) (b)

Figure 5.4: Plots based on the reward function: reward(c, w) = cexp1
c+wexp2 . (a)

shows the reward given for fully correct descriptions of different sizes. (b) shows
the decrease in reward when adding wrong pixels to a description of an object of
10 (correct) pixels.

tested adding a small negative reward at every step to incentivize fewer actions,
meaning shorter descriptions.

Figure 5.4a shows the reward given for fully correct objects descriptions of dif-
ferent sizes. The different lines show the effect of different exponent values.
Assuming exp1 ≥ 2, we see that with increasing exponent, the reward given for
larger objects increases much more than for smaller objects. By giving a larger
reward to larger objects, we want to prevent our model from describing objects
as multiple smaller ones.

In Figure 5.4b, we see the decrease in reward when adding wrong pixels to an
object of size 10. The different lines show how increasing exp2 causes the reward
to decrease faster.

5.3.4 PPO Training

For reinforcement learning, we implemented our environment using Gymnasium
[Towers et al., 2023]. The environment exposes multiple functions, most impor-
tantly, the step() function can be used to take a single step in the environment.
A step consists of passing the current observation to the actor, receiving the next
action from the actor, computing the reward the action receives and updating
the state of the environment.

The actor, critic, and training is implemented using Stable-Baselines3 [Raffin
et al., 2021].

The actor receives the current observation and decides on the next action. Since
an action in our environment is a token, the actor outputs a probability distri-
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bution across all possible tokens. From this distribution, the next token can be
chosen deterministically, by choosing the token with the highest probability, or
randomly, by sampling the token from this distribution. The randomness of the
sampling can be control by a temperature. If the temperature is set to 0, the
sampling is equivalent to deterministically selecting the token with the highest
corresponding probability. For a very large temperature value, sampling becomes
more random, meaning more similar to selection of the next token uniformly at
random.

The critic receives the same observation as the actor and outputs an estimate of
the reward the actor will receive.

The actor and critic and implemented in a partially shared architecture, as de-
scribed in Section 5.3.2.

5.4 Experiments

5.4.1 Fine-tuning Experiments

As a first step, we generated synthetic datasets and fine-tuned BLIP on them.
Figure 5.5 shows the accuracy of describing an object or the grid background
completely correct. This means that the description for an object contains the
correct color, position, object type and shape. Describing the background only
requires the background color and the size. The y-axis corresponds to the number
of fine-tuning epochs. These accuracies are measured on an evaluation dataset
distinct from the training data.

Figure 5.6b shows the accuracy for describing the color, shape, type, and position
of an object each individually. Similarly, Figure 5.6a shows the accuracy for
describing the background color and the accuracy for describing the size of the
grid.

The model quickly learns to describe the grid background, reaching up to 98%
accuracy. While the background color seems fairly easy to recognize, learning to
predict the correct shape takes somewhat longer.

For the objects, the model quickly learns to recognize color and type. The model
learns to distinguish 8 different object types: pixel, line, diagonal, rectangle,
square, cross, diagonal cross and random object. Similarly, ARC tasks also only
contain 10 different colors.

Position and shape of an object seems to be harder to learn for our model. Since
our grids can have a size up to 30× 30, many more values are possible. However,
the model is still able to reach accuracies above 85%.

In Figure 5.7, we show the accuracy for each object type individually. For each
object, we consider the accuracy of describing it fully correct, meaning correct
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Figure 5.5: Accuracy of describing an object, or the grid background, completely
correct.

color, position, shape, and type.

We observe that distinct shapes, especially cross and diagonal cross, seem to be
easier to learn. Random shapes seem to pose the biggest problem. They might be
harder to identify and correctly describe, since they might only differ in a single
pixel from any other object type. Similarly, the position or shape of a random
object can depend on a single pixel. Unlike other object where this is the case,
lines or diagonals for example, the position of an additional pixel is not fixed.

5.4.2 Reinforcement Learning

After fine-tuning the captioner, we continued training the same fine-tuned BLIP
model using PPO.

In Appendix B.3 in the appendix, we list the parameters we used for PPO train-
ing. We also show some additional plots of the reward received during PPO
training.

5.4.3 Inference

Using the fine-tuned BLIP captioner and the RL-trained BLIP captioner, we
again run the full architecture on the ARC training tasks. We used Llama-2 13B
as the language model.

In Figure 5.8, we show the results for the fine-tuned BLIP captioner, without
PPO training. Our first observation is the small number of solved tasks. We
believe that the major cause for this are inaccuracies in the object descriptions.
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(a)

(b)

Figure 5.6: (a) Accuracies when describing grid backgrounds. (b) Accuracies
when describing objects.
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Figure 5.7: Accuracy of describing objects.

Even though the captioner gets most object right in our fine-tuning validation
set, it is not fully clear how well this dataset visually matches real ARC grids.

Furthermore, mistakes in object descriptions, for instance a wrong position or
shape, can have a negative down-stream effect on the description of the remaining
grid. If too many pixels are described for an object, we might mask pixels from
another object. This can later cause errors in the description of that object.

If too few pixels of an object are described, some pixels are left and not masked.
The captioner might later try to describe those pixels, leading to an unneces-
sary long prompt and inconsistent object descriptions. This might also partially
explain the large number of skipped tasks.

Tasks are skipped if the prompt is too long for the language model. The pre-
viously described effect of describing too many objects can be a cause for that.
If the captioner produces a wrong caption that leaves some or all pixels of the
object unmasked, it will later produce another caption for that object.

On the positive side, we observe a large reduction in failures, from 60 with the
hard-coded captioner, to now 21. We find that the hard-coded captioner more
frequently describes random objects, on average 5.98 per task prompt. The fine-
tuned captioner on the other hand only describes 3.30 random objects on average
per task prompt. Since many failures occur due to the language model predicting
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Figure 5.8: Outcome of solving the training tasks using the Llama-2 13B language
model with a fine-tuned version of BLIP as the captioner.

wrong random objects in the output, this might be a reason for the decrease in
failures.

In Figure 5.9, we show the results for the PPO-trained captioner. We used to
fine-tuned BLIP captioner and continued training it using PPO.

From the result, we see that the number of solved tasks did not increase. The
biggest change is in the lower number of skipped tasks.

As described previously, errors in object descriptions cause too many or too few
pixels masked in the task image. This leads to downstream errors when describing
the next objects. During fine-tuning, the BLIP captioner is not exposed to this
situation, since previously described objects in our dataset are perfectly masked.

During reinforcement learning, the captioner creates its own training data by
interacting with the environment. When the captioner makes a mistake in the
description of the shape or position of an object, too many or too few pixels in
the mask will be updated. When describing the next objects, the input image
is masked accordingly and contains this mistake, exposing the captioner to this
issue during training. We speculate that the reinforcement learning taught the
captioner to better deal with this challenge.

Unfortunately, since we did not observe a clear improvement in the captioner, it
is questionable how much it learned through PPO training.
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Figure 5.9: Outcome of solving the training tasks using the Llama-2 13B language
model with a reinforcement-learning trained version of BLIP as the captioner.



Chapter 6

Conclusion

We conclude this thesis by providing an overview of our work and our most
important insights.

6.1 Overview

Our work is based on a previous approach to solving ARC tasks by using language
models. This approach turned ARC tasks from images into text by implementing
a hard-coded captioner built on hand-craft visual priors.

Using a language model allowed to introduce a large amount of prior knowl-
edge that might be useful to solving ARC tasks. However, language models are
purely trained on textual data and might struggle with more visual concepts, like
occlusion.

Our objective was to enhance two building blocks of this architecture, the cap-
tioner and the language model.

We implemented the language model to be easily replaceable. Numerous language
models can be specified as arguments and used for our architecture. We adapted
the post-precessing of their output to be much more flexible, and correctly parsing
the output of many models. After finding Llama-2 13B to produce good results,
we fine-tuned it on the prompts of the training tasks, created by the hard-coded
captioner. We found fine-tuning to be most useful in improving the result when
only allowing a few guesses.

For the captioner, we aimed to build a learned captioner based on a pre-trained
image captioning model. Image captioning model are trained on a large amount
of visual data and incorporate a large amount of visual understanding. Ideally,
a captioner based on a pre-trained image captioning model can better deal with
challenges such as overlapping shapes, handling noise or distinguishing touch
objects.

BLIP seemed to be best suited for our application. However, image captioning
models like BLI are primarily trained on real-world visual data. We found that

37
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without any additional training, it is not capable of producing useful description
of ARC tasks.

To train BLIP for describing ARC tasks, we first fine-tuned it on a synthetic
dataset of randomly generated images that resemble ARC tasks. Since we are
limited by the length of descriptions BLIP can produce, we decided to describe the
objects in an iterative approach. Our fine-tuned BLIP captioner should describe
the objects in a grid one-by-one, before describing the size and color of the grid
itself. During each of those steps, the captioner receives an image of the current
view of the task as input. In that image, we masked out all pixels of objects and
grids it previously described. Based on that masking, the captioner infers which
object to describe next, or if all objects in a grid are masked out and it describes
the background.

For fine-tuning, we implemented a process to randomly generate dataset of image
and caption pairs. The images show tasks where some objects and grid may be
masked out. The caption is a textual description of the next object the captioner
should describe when receiving the corresponding image as input. We found fine-
tuning BLIP on that dataset is successful in training it to describe objects and
grids with a high accuracy.

Next, we wanted to make use of the training tasks from ARC. Since we do not
have any object annotations or captions for these tasks, we cannot directly fine-
tune our captioner on them. However, using the captioner and the decoder, we
can create descriptions of those tasks, and turn the textual descriptions into pixel
values by using the decoder. Comparing the predicted pixel values and the true
pixel values can be used for reinforcement learning. We define a reward function
based on the number of correct and wrong pixel predictions. Using proximal
policy optimization (PPO), we train our model to maximize this reward.

Simultaneously to the training, we implemented the BLIP-based captioner into
the architecture. This captioner is initialized by loading any fine-tuned or PPO-
trained checkpoint of BLIP. When generating a prompt, it iterates over the task
and describes the object (and grid backgrounds) one-by-one.

Finally, we run the full architecture to solve ARC tasks with the fine-tuned BLIP
captioner and the PPO-trained BLIP captioner.

In conclusion, our many contributions are:

• We adapted the architecture to allow the quick and easy use of numerous
language models. We also implemented fine-tuning on ARC captions for
those language models. We showed that different language models vary in
their ability to solve ARC tasks, and we found Llama-2 to perform partic-
ularly well.

• We built a process to generate large synthetic datasets of random image
and caption pairs resembling ARC tasks.
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• We implemented fine-tuning and reinforcement learning of BLIP and trained
a BLIP-based captioner using those training methods.

6.2 Future Work

Lastly, we share some thoughts of future improvement for this architecture or
more generally for the use of language and image captioning models for solving
ARC-tasks.

• Improving on the dataset for fine-tuning the captioner. The images of the
fine-tuning dataset consists of randomly generated objects and grids. The
objects are randomly colored, sized and placed. Since fine-tuning had the
largest effect on BLIP’s ability to describe ARC tasks, building a dataset
that more closely resembles real ARC tasks could be beneficial.

• Learning object types. The idea of using a language model is to move away
from the hand-crafted rules of DSL-approaches. Similarly, using an image
captioning model is motivated by replacing the hand-crafted rules of the
hard-coded captioner. However, when generating the fine-tuning dataset,
we do so based on hand-crafted objects types (pixel, line, diagonal, square,
rectangle, cross and random object). Learning a set of “base” object types
from the ARC tasks could allow the captioner to better segment the task
image into objects.

• Building a learned decoder. While we believe that this might not increase
the number of solved tasks by a lot, it would still add a lot of flexibility. The
vocabulary used by the captioner and language model is currently restricted
by what the decoder can understand.

• Further reinforcement learning (RL). In this work, we implemented a RL-
approach based on reconstructing the task image from its textual descrip-
tion. Other RL approaches, for example training the full architecture by
rewarding correct solutions, might be possible as well.



Bibliography

Sam Acquaviva, Yewen Pu, Marta Kryven, Theodoros Sechopoulos, Catherine
Wong, Gabrielle Ecanow, Maxwell Nye, Michael Tessler, and Josh Tenenbaum.
Communicating natural programs to humans and machines. Advances in Neu-
ral Information Processing Systems, 35:3731–3743, 2022.

Giacomo Camposampiero, Loïc Houmard, Benjamin Estermann, Joël Mathys,
and Roger Wattenhofer. Abstract visual reasoning enabled by language. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2642–2646, 2023.

François Chollet. On the measure of intelligence. arXiv preprint
arXiv:1911.01547, 2019.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora:
Efficient finetuning of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiao-
hua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Raphael Fischer, Matthias Jakobs, Sascha Mücke, and Katharina Morik. Solving
abstract reasoning tasks with grammatical evolution. In LWDA, pages 6–10,
2020.

Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama, May
2023. URL https://github.com/openlm-research/open_llama.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin
De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly.
Parameter-efficient transfer learning for nlp. In International Conference on
Machine Learning, pages 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large lan-
guage models. arXiv preprint arXiv:2106.09685, 2021.

40

https://github.com/openlm-research/open_llama


BIBLIOGRAPHY 41

Aysja Johnson, Wai Keen Vong, Brenden M Lake, and Todd M Gureckis. Fast
and flexible: Human program induction in abstract reasoning tasks. arXiv
preprint arXiv:2103.05823, 2021.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping
language-image pre-training for unified vision-language understanding and gen-
eration. In International Conference on Machine Learning, pages 12888–12900.
PMLR, 2022.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak
Paul, and Benjamin Bossan. Peft: State-of-the-art parameter-efficient fine-
tuning methods. https://github.com/huggingface/peft, 2022.

Pankaj Mathur. wizardlm_alpaca_dolly_orca_open_llama_3b: An
explain tuned openllama-3b model on custom wizardlm, alpaca,
dolly datasets. https://github.com/pankajarm/, https://https:
//huggingface.co/pankajmathur/, 2023.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina
Kim, Christopher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. Webgpt: Browser-assisted question-answering with human feedback.
arXiv preprint arXiv:2112.09332, 2021.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernes-
tus, and Noah Dormann. Stable-baselines3: Reliable reinforcement learning
implementations. Journal of Machine Learning Research, 22(268):1–8, 2021.
URL http://jmlr.org/papers/v22/20-1364.html.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International conference on ma-
chine learning, pages 1889–1897. PMLR, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347,
2017.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea
Voss, Alec Radford, Dario Amodei, and Paul F Christiano. Learning to summa-
rize with human feedback. Advances in Neural Information Processing Systems,
33:3008–3021, 2020.

John Chong Min Tan and Mehul Motani. Large language model (llm) as a system
of multiple expert agents: An approach to solve the abstraction and reasoning
corpus (arc) challenge. arXiv preprint arXiv:2310.05146, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti

https://github.com/huggingface/peft
https://github.com/pankajarm/
https://https://huggingface.co/pankajmathur/
https://https://huggingface.co/pankajmathur/
http://jmlr.org/papers/v22/20-1364.html


BIBLIOGRAPHY 42

Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de
Cola, Tristan Deleu, Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus
Krimmel, Rodrigo Perez-Vicente, Andrea Pierré, Sander Schulhoff, Jun Jet
Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium, March 2023.
URL https://zenodo.org/record/8127025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing systems, 30, 2017.

Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li, Sen Song, and Yang Liu.
Openchat: Advancing open-source language models with mixed-quality data.
arXiv preprint arXiv:2309.11235, 2023.

BigScience Workshop, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie
Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luc-
cioni, François Yvon, et al. Bloom: A 176b-parameter open-access multilingual
language model. arXiv preprint arXiv:2211.05100, 2022.

Yudong Xu, Wenhao Li, Pashootan Vaezipoor, Scott Sanner, and Elias B Khalil.
Llms and the abstraction and reasoning corpus: Successes, failures, and the
importance of object-based representations. arXiv preprint arXiv:2305.18354,
2023.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-
efficient fine-tuning for transformer-based masked language-models. arXiv
preprint arXiv:2106.10199, 2021.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen,
Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin,
et al. Opt: Open pre-trained transformer language models. arXiv preprint
arXiv:2205.01068, 2022.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. Judging llm-as-a-judge with mt-bench
and chatbot arena, 2023.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford,
Dario Amodei, Paul Christiano, and Geoffrey Irving. Fine-tuning language
models from human preferences. arXiv preprint arXiv:1909.08593, 2019.

https://zenodo.org/record/8127025


Appendix A

Language Model

For each language model we tested, Table A.1 shows the number of solved tasks,
the number of tasks with a wrong answer predicted, the number of tasks where our
architecture failed to produce any answer, and the number of skipped tasks. For
each task, the language model made 6 guesses. If at least one guess fully matches
the correct answer, a task is considered solved. If our architecture produced
at least one answer, but not the correct answer, a task is considered wrong.
If the captioner produces a prompt that is too long for the language model, a
task may be skipped. If our architecture failed during every guess, the task is
considered failed. We used the hard-coded captioner with multichromatic objects
and diagonal connections (SMuD) from [Camposampiero et al., 2023].

A-1



Language Model A-2

Language Model Size Solved Tasks Wrong Failed Skipped
Bloom 560M 25 303 60 12

1.1B 33 295 60 12
1.7B 32 306 50 12
7B 41 311 38 10

Llama-2 7B 43 287 54 16
13B 50 274 60 16
70B 56 257 53 34

Open Llama 3B 45 299 40 16
7B 44 300 40 16
13B 41 296 47 16

Openchat 13B 45 263 76 16
OPT 125M 0 88 286 26

350M 0 62 312 26
2.7B 21 241 112 26
6.7B 24 275 75 26
13B 26 281 67 26

Orca-mini 3B 33 291 60 16
7B 47 274 63 16
13B 50 341 2 7

Vicuna 7B 42 281 61 16
13B 47 297 40 16
33B 47 284 53 16

Table A.1: For each language model we tested, this table shows the number
of solved tasks, the number of tasks where our architecture predicted a wrong
result, the number of tasks where our architecture failed, and the number of
skipped tasks.
The model was allowed 6 guesses, and we used the hard-coded SMuD captioner.



Language Model A-3

A.1 Parameter Size

In the following table, we show the training tasks solved for different sizes of
the Llama-2 language model. The 3 last columns show which tasks were solved
by the Llama-2 7B, 13B and 70B models respectively. If a column contains the
✓symbol, this means that the model solved the corresponding task. The model
was allowed 6 guesses, and we used the hard-coded SMuD captioner.

Name 7B 13B 70B

27a28665 ✓

0a938d79 ✓

c0f76784 ✓ ✓ ✓

8efcae92 ✓ ✓

1190e5a7 ✓

68b16354 ✓ ✓ ✓

a79310a0 ✓ ✓ ✓



Language Model A-4

08ed6ac7 ✓ ✓ ✓

c59eb873 ✓ ✓ ✓

794b24be ✓ ✓ ✓

445eab21 ✓ ✓ ✓

aedd82e4 ✓

11852cab ✓ ✓

ff28f65a ✓

25ff71a9 ✓ ✓ ✓

b9b7f026 ✓

d9fac9be ✓ ✓ ✓



Language Model A-5

e9afcf9a ✓ ✓ ✓

5117e062 ✓

be94b721 ✓ ✓ ✓

39a8645d ✓ ✓ ✓

1bfc4729 ✓ ✓ ✓

0b148d64 ✓ ✓ ✓

6c434453 ✓



Language Model A-6

05269061 ✓ ✓

ed36ccf7 ✓ ✓ ✓

67a3c6ac ✓ ✓ ✓

f76d97a5 ✓ ✓ ✓

b94a9452 ✓ ✓ ✓

b230c067 ✓ ✓ ✓

6e02f1e3 ✓ ✓ ✓

67385a82 ✓ ✓ ✓



Language Model A-7

6e82a1ae ✓

dc433765 ✓ ✓ ✓

aabf363d ✓ ✓ ✓

7468f01a ✓ ✓ ✓

d2abd087 ✓

d631b094 ✓

e76a88a6 ✓ ✓ ✓

1cf80156 ✓ ✓ ✓

239be575 ✓ ✓ ✓



Language Model A-8

b0c4d837 ✓ ✓

74dd1130 ✓ ✓ ✓

a9f96cdd ✓

c8f0f002 ✓ ✓

ea32f347 ✓ ✓ ✓

9172f3a0 ✓ ✓ ✓

6773b310 ✓

82819916 ✓ ✓

1fad071e ✓



Language Model A-9

3c9b0459 ✓ ✓ ✓

ac0a08a4 ✓ ✓

85c4e7cd ✓ ✓

5582e5ca ✓ ✓

b1948b0a ✓ ✓ ✓

810b9b61 ✓

6150a2bd ✓ ✓

88a62173 ✓ ✓ ✓

d4469b4b ✓ ✓ ✓



Language Model A-10

29c11459 ✓

44f52bb0 ✓ ✓ ✓

de1cd16c ✓ ✓ ✓

f8ff0b80 ✓ ✓ ✓

a61f2674 ✓ ✓
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A.2 Fine-tuning

Table A.3 shows the parameters used for fine-tuning the language model.

Parameter Value
LoRA R 16
LoRA Alpha 32
LoRA Dropout 0.05
LoRA Bias None
Steps 400
Learning Rate 0.0002

Table A.3: Fine-tuning parameters used for fine-tuning Llama-2 13B.

For the first fine-tuning run, we trained on the captions produced from the hard-
coded captioner and did not do any reordering. We used all 3 orders: size,
left_to_right and random. In total, we trained on 1’200 examples.

For the second fine-tuning run, we augmented the dataset by reordering the
objects in the grid description.

In the following table are the evaluation tasks solved from our fine-tuned language
model. Base refers to the Llama-2 13B model without any fine-tuning. FT 1 and
FT2 refer to the first and second fine-tuned models. If a column contains the
✓symbol, this means that the model solved the corresponding task.

Name Base FT 1 FT 2

2c0b0aff ✓ ✓ ✓

3979b1a8 ✓ ✓ ✓

60c09cac ✓ ✓ ✓
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85b81ff1 ✓ ✓ ✓

e7b06bea ✓

d56f2372 ✓ ✓ ✓

84f2aca1 ✓ ✓ ✓

00576224 ✓ ✓ ✓

45737921 ✓ ✓ ✓

642d658d ✓ ✓

d4b1c2b1 ✓

e872b94a ✓ ✓ ✓



Language Model A-13

66e6c45b ✓ ✓ ✓

009d5c81 ✓ ✓ ✓

00dbd492 ✓ ✓ ✓

8597cfd7 ✓ ✓ ✓

3b4c2228 ✓

42a15761 ✓ ✓ ✓

ed74f2f2 ✓ ✓ ✓

9110e3c5 ✓ ✓ ✓

ecaa0ec1 ✓

f3e62deb ✓ ✓

ae58858e ✓ ✓



Language Model A-14

b1fc8b8e ✓ ✓

94414823 ✓ ✓ ✓

64a7c07e ✓ ✓ ✓

0becf7df ✓ ✓

ca8de6ea ✓

0a2355a6 ✓

9a4bb226 ✓ ✓

cd3c21df ✓ ✓ ✓

3194b014 ✓ ✓



Language Model A-15

be03b35f ✓ ✓ ✓

0b17323b ✓ ✓
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Captioner

B.1 Fine-tuning

Parameter Value
Epochs 10
Learning Rate 6e-06
Batch Size 16
Frozen Weights None
Base model Salesforce/blip-image-captioning-base
Number of Training Pairs 272’689
Number of Validation Pairs 30’489

Table B.1: Training parameters used for fine-tuning BLIP.

The following plots show the accuracies of describing the color, position, shape,
and type of objects. Each plot shows the result of one object type. The x-axis
shows the number of epochs the captioner has been trained for.

B-1
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Figure B.1: Accuracies of describing objects of type "cross".

Figure B.2: Accuracies of describing objects of type "diagonal cross".
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Figure B.3: Accuracies of describing objects of type "diagonal".

Figure B.4: Accuracies of describing objects of type "line".
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Figure B.5: Accuracies of describing objects of type "pixel".

Figure B.6: Accuracies of describing objects of type "rectangle".
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Figure B.7: Accuracies of describing objects of type "square".

Figure B.8: Accuracies of describing objects of type "random object".
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B.2 Dataset Generation

The following table shows how we iterate over the objects of a synthetic task.
Given the image on the left, we train the captioner to produce the caption shown
on the right.

Image Caption

rectangle, with upper left cor-
ner in position (18,9), of size
8x11, monochromatic of color
black.

rectangle, with upper left cor-
ner in position (15,14), of size
3x8, monochromatic of color
yellow.



Captioner B-7

26x27 grid, green background.

cross, with upper left corner
in position (8,21), of size 6x6,
monochromatic of color or-
ange.

square, with upper left corner
in position (1,25), of size 3x3,
monochromatic of color black.



Captioner B-8

25x30 grid, grey background.

rectangle, with upper left cor-
ner in position (27,13), of size
2x3, monochromatic of color
blue.

increasing diagonal, with up-
per left corner in position
(6,22), of length 7, monochro-
matic of color black.



Captioner B-9

29x29 grid, yellow back-
ground.

horizontal line, with upper left
corner in position (23,0), of
length 13, monochromatic of
color purple.

vertical line, with upper left
corner in position (18,20), of
length 10, monochromatic of
color purple.
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B.3 Reinforcement Learning

Parameter Value
Steps per Rollout Collection 100’000
Total Timesteps 6’000’000
Learning Rate 5e-09
ent_coef 0.01
vf_coef 0.1
target_kl None
reward function c2.125/(c+ w1.25)
negative reward per step −0.1

Table B.3: Parameters used for PPO-training of the fine-tuned BLIP checkpoint.
In the reward function c and w stand for the number of correct pixel predictions
and the number of wrong pixel predictions.

Figure B.9: Reward given during each episode. X-axis show the episode, y-axis
the reward value.



Captioner B-11

Figure B.10: Reward per object or grid description during PPO training. X-axis
shows the number of steps, y-axis the reward value.
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