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Abstract

This study delves into the feasibility of network-level attacks against Ethereum’s
Proof-of-Stake (PoS) consensus mechanism, specifically focusing on the Proposer-
Builder-Separation (PBS) scheme. We simulate this environment on a custom
development network and run two attack models. We find that in the new network
landscape that PBS introduces, if a network attacker can successfully execute an
attack that includes dropping or delaying packets sent between the relays and
a validator, they are able to force the validator to build its own block, censor
transactions, influence the profitability of certain blocks, and thus influence the
outcome of the blockchain. We find that the attacker succeeds at a higher fre-
quency with increasing drop rates and that adding a 500ms delay of outgoing
packets from the relay suffices to get a 100% success rate.
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Chapter 1

Motivation

After Ethereum’s merge on the 15th of September 2022, although still in a state
of research [1], the usage of the PBS scheme by validators participating in the
Ethereum consensus protocol had risen to 80% in merely 3 months and has since
kept this level consistently [2]. Prior collected data shows that there are clear
centralization issues associated with the PBS scheme [2], raising concerns over
potential vulnerabilities arising from them. Additionally, being one of the leading
blockchain ecosystems today with a market cap of 265B$ at the time of writing
[3], it is crucial to mitigate any potential risks associated with the foundational
structures of ecosystems of such size. This research thus aims to contribute to
the ongoing research of the Ethereum PoS PBS scheme in hopes of strengthening
its network layer security.
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Chapter 2

Background

2.1 Ethereum fundamentals

We first introduce the basic concepts surrounding Ethereum, PBS, and their
network landscape, focusing on technical details revalent to the understanding of
the different interactions between network participants, and ultimately the later
discussed attack scenarios.

2.1.1 Blockchains and peer-to-peer networks

Blockchains

The Ethereum blockchain is a distributed ledger containing a chain of blocks.
Each block holds transaction data and a cryptographic hash of the previous
block.

Peer-to-Peer networks

In a peer-to-peer network, each participant is called a node, and communication
between nodes does not go through central servers but occurs directly between
their peers. This landscape ensures that the system remains operational even
if individual nodes experience issues or disruptions. On a peer-to-peer network,
the sharing of information occurs through a method called broadcasting, where
a node holding information it wishes to share first shares this with its direct
peers, who share this information in the same way reaching nodes all across the
network. On Ethereum, the Consensus and Execution layers are run by two sep-
arate peer-to-peer networks, where consensus information and transaction data
respectively are shared across the network in this manner (more in 2.1.2).

2



2. Background 3

Figure 2.1: Server-Client net-
work landscape

Figure 2.2: Peer-to-Peer net-
work landscape

2.1.2 Proof of Stake: Execution and Consensus

On the 15th of September 2022, Ethereum completed its "merge," transitioning
from PoW to PoS. The merge involved substantial changes to the network’s un-
derlying consensus mechanism, moving from a computationally intensive, energy-
intensive PoW system to a more efficient and sustainable PoS system.

Execution Layer (EL)

The previously used PoW, which Ethereum had relied upon since its inception,
was maintained by a peer-to-peer network of miners. Miners were responsible for
accepting, verifying, and finally broadcasting transactions into the network while
maintaining the states of the Ethereum Virtual Machine (EVM). Additionally,
they competed against each other by solving computationally intensive mathe-
matical problems to earn the right to propose the latest block in the chain. The
winner of this competition would then group the transactions it has recorded
through the broadcastings into a block, cryptographically signing the content
with its private key, the results of which were broadcasted into the network yet
again, earning itself a reward. Each miner would then record and store this latest
block and the loop would continue.

This fundamental architecture still exists on post-merge Ethereum as the
execution layer, consensus does however not take place on this layer anymore.
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Consensus Layer (CL)

In PoS, the role of block proposals has been assigned to entities called validators.
Validators are abstracted by wallets and are financially involved in the consen-
sus protocol: to participate as a validator, one must deposit 32ETH (roughly
67’000$ at the time of writing) to a dedicated contract address, which would be
locked up as collateral. This is a process known as "staking". They are then
tasked with 2 primary roles (the complete implementation can be found in [4]):

• When selected, propose the next block.

• When selected, verify and attest to block proposals.

If a validator fails to complete the task they have been assigned, they lose a por-
tion of their staked ETH. This incentivizes them to act truthfully and according
to protocol. As to how these proposals and attestations are managed, this is
where the Consensus Layer peer-to-peer network comes into play.
The consensus layer is yet another peer-to-peer network sitting above the execu-
tion layer. Nodes of this network are named "beacon nodes" and are typically
(but not necessarily) managed by validators. Beacon nodes maintain the "beacon
chain" where information about previous attestations and proposals are stored,
as well as future proposal duties. When a validator commits to a block proposal
or an attestation, it broadcasts this information to the consensus layer network
through a beacon node. The selection of set validator duties happens through an
algorithm called RANDAO, which selects these duties in direct relation to the
amount of ETH validators have currently staked.

Definition 2.1 (Slot, Epoch). A slot represents a fixed time interval of 12
seconds. For each epoch of 32 slots, validators are randomly selected by the
RANDAO algorithm in advance to propose a new block to the chain. This block
contains the latest batch of verified transactions that have been submitted to the
execution network.

In summary, the consensus layer and execution layer are separate networks in
Ethereum, but they are closely linked. These two node software are run in pairs
by validators so that they can group transactions from the execution layer into
a block, which they sign with their private key and then broadcast through the
consensus layer.

2.1.3 Maximal extractable value (MEV)

MEV is an important concept when it comes to transaction grouping. Transac-
tions sent into the execution network are not included on a FIFO (first in first
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Figure 2.3: Timeline of a block proposal from a validator on PoS Ethereum.
When the validator’s proposal time arrives, the beacon node commands the ex-
ecution node to group its transactions and build a block. This is passed to the
validator client which signs this with its private key, committing its proposal.
This is then broadcasted to the beacon chain, ready to be verified by its peers
and attested to.

out) basis, but rather block builders have the freedom to choose exactly which
transactions they wish to include in the block that they are building. This is often
decided by the profitability of the transaction (how much priority fee the builder
expects to receive from the transaction), but also from private transactions it
wishes to include in the block at that time. Selecting the group of transactions
from the mempool (local storage of pending transactions recorded through the
peer-to-peer network) to form the most profitable block is known to be an NP-
hard problem [5], thus is a computationally and algorithmically intensive process,
a capability which not all miners possess. The profitability of a block is denoted
as the block’s value. Today, as we will see in the next section 2.1.4, a mar-
ket of block builders has emerged dedicating themselves to optimizing MEV and
offering their built blocks to proposers on duty.

2.1.4 Proposer-Builder separation

PBS is a design approach to decouple the tasks of block proposing and block
building and the focus of this work. Where traditionally these tasks are performed
by the same entity, such as a PoW miner or a PoS 3-client validator (see fig:
2.3), in this scheme, the validator is given the choice to either produce their
block through their own builder execution client or take a block offered to them
through a market of dedicated block builders. Through the natural dynamics of
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MEV (section 2.1.3) and block profitability, validators are financially incentivized
to build a block of high value and thus opt into the PBS scheme. Data collected
since the merge and the launch of PBS shows that a validator on average earns
more in block rewards using PBS as opposed to building their own block[2]. In
this section, we lay out the key interactions between entities participating in this
scheme.

Figure 2.4: Network landscape of the PBS scheme. Block builders submit their
blocks to relays, which are accessed by and forwarded to validators on duty.

An important component of the PBS scheme is the relay intermediaries. Re-
lays are double-trusted entities that have the role of relaying blocks from the
builder market to the validators on duty. They do so by exposing endpoints to
both sides which can be accessed publicly.

Relay - Builder interactions

When a builder wishes to submit their block to a relay, it does so alongside
a "bid", which is a transactional value in direct correlation to their produced
block value, which will be transferred to the validator which decides to choose
this block. This is done by builders appending a transfer transaction at the end
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of the block. Relays take this information and are trusted to forward, to the
proposer on duty, the block with the highest bid in its array of blocks it has
received submitted.
Figure 2.5 shows more details about the standardized builder endpoints

Figure 2.5: Relay: Builder API endpoints

Relay - Proposer interactions

When a validator wishes to opt into the PBS protocol, it first has to register itself
to the relays it wishes to get blocks through. Once registered, the proposer may
access the relay when it is selected for block proposal. This is done in a 3-step
process:

• The relay verifies that it is the validator requesting the block is currently
on proposal duty and exposes the highest bid value of the blocks it has
been submitted.

• If the validator is content with the bid, It commits to the block by blindly
signing the header without seeing the contents of the block. This is done to
protect the value of the builders and no transaction reordering can happen
from the validator’s side.

• Once the commitment reaches the relay, the relay verifies this signature
and broadcasts the block into the consensus layer, finalizing the slot. Only
after this step does the proposer get to know the contents of the block.
This process is typically managed by software such as mev-boost from the
Flashbots research organization, open-sourced for the proposer community.

A visual representation of this process can be seen in figure 2.7. During this
process, the validator trusts that the block it receives is valid, that the bid value
it was promised is transferred to their address, and that the broadcasting occurs
without issue. This makes relays’ honesty and availability a critical factor to the
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function of the PBS scheme. The validator is however not forced to sign the
block it receives.

Figure 2.6: Relay: Proposer API endpoints

2.2 Network Layer Attacks

2.2.1 Attack models

Numerous attack models pose threats to networks which we lay out in this chap-
ter. Oftentimes, it is a combination of many of these primitives that form an
attack to fulfill a malicious purpose to a network. As we explore potential vul-
nerabilities of the PBS scheme we acknowledge the danger each of these primitives
hold and the intricate ways they may interplay to compromise the security and
reliability of the scheme.

DDoS Attacks

Distributed Denial of Service (DDoS) attacks [6] can flood a network with a
massive volume of requests, overwhelming the network’s capacity to handle le-
gitimate requests. In the context of PBS, relays that have public API endpoints
exposed would for example be a target of DDoS attacks. Relay service providers
are aware of this attack vector and enforce relays with measures such as priority
queues [7].

Eclipse Attacks

In an eclipse attack[8], a malicious actor isolates a victim node from the rest of
the network by surrounding it with adversarial nodes, effectively gaining control
of the information it receives and sends.
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Sybil Attacks

Sybil attacks[9] involve a malicious actor creating multiple fake identities (Sybil
nodes) to gain a disproportionately large influence or control over the network.

Routing Attacks

Routing attacks[10] involve manipulating the routing tables to divert network
traffic through malicious ASs and routers. One can for example introduce sub-
stantial delays to packets sent across networks by manipulating routing paths in
this manner.
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Figure 2.7: Block proposal flow through mev-boost: registerValidator, getHeader,
submitBlindedBlock



Chapter 3

Simulation

In this chapter, we theorize potential ways one can attack the network landscape
that the PBS scheme has introduced. We back these by simulating the attacks
on a small custom development network using standardized and open-sourced
software, widely in use on Ethereum mainnet at the time of writing [11]. These
include Flashbots research organization’s mev-boost [12], mev-booost-relay[13]
and boost-builder [14], Prysmaticlabs’ Prysm consensus and validator clients
[15] and Ethereum’s Go-Ethereum execution client [16]. The simulations were
conducted using default network configurations (timeout values) and submission
offsets.

3.1 Setup and Environment

Docker

For the simulation, custom Ethereum development networks were set up using
Docker [17]. Docker is a development tool that allows the encapsulation of ap-
plications and their dependencies in so-called containers, which can be placed in
isolated IP networks and given addresses of choice. This way, an environment
close to reality can be created, where standalone apps and services run indepen-
dently communicating with each other over their intended protocols.

Traffic control

The network attacks have been realized by using Linux traffic control (tc) [18].
TC is a command-line tool that allows users to configure and manipulate the
traffic control settings for network interfaces. It is used for controlling the traffic
flow, shaping, prioritizing, and controlling bandwidth on a Linux system. Op-
erationally, when using tc, one defines traffic classes, assigns filters to classify
packets into these classes, and then applies disciplines to control the transmis-
sion behavior of the queues associated with each class.

11
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In our development networks, we simulate the following entities: a proposer,
relay services, and builders. The proposer will be referred to as the "victim".
Each entity has access to a pair of Consensus and Execution nodes, which fulfill
their roles as CL and EL peer-to-peer network participants, forming the Ethereum
network (more in section 2.1.2). Additionally, the victim has access to a mev-
boost service. Each entity and its interactions are described below.

Proposer/Validator

The proposer consists of a validator client, a consensus client, an execution client,
and a mev-boost instance. The validator client is responsible for managing the
proposer’s private keys for block commitment signings. In our case, it manages
64 different proposer keys which represent the genesis proposers wallets. This
number was chosen to have the effect of diversification to proposer addresses
selected by the randao selection (more in section 2.1.2) as opposed to having
a single proposer array ignoring one of the purposes of the beacon network.
The validator client is connected to its consensus client via RPC, which is itself
connected to its execution client and the mev-boost instance. Each block that
is proposed and broadcasted through the consensus node is first passed through
the validator client to be signed by the current proposer wallet private key. This
is the only validator client instance present in the simulated devnet. The rest
of the nodes’ functions and roles are laid out in sections 2.1.2 and 2.1.4. The
mev-boost instance is responsible for interactions with the relays and manages
queries and responses.

Relay

The relay server consists of several database containers, a housekeeper service,
an API service, as well as its consensus and execution clients. The housekeeper
service is responsible for periodically updating the database with the active pro-
posers, future proposer duties, and validator registrations, by accessing its local
consensus client. Additionally, it updates the statuses of its connected builders.
The API service exposes the relay API endpoints and handles its calls (more in
section 2.1.4). When a builder submits a block to the API service, the block gets
passed to the execution client for simulation and validation first, then verifies
that all fees are transferred correctly to the validator address before passing the
header to the mev-boost service.

Builder

Builders are a set of consensus and execution clients that build and send blocks to
relays on every occasion. On a new slot, the consensus client calls the execution
client for block building, which directly sends this data to the relay.
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The goal of the following simulations is to attack the specific connections
between relays and the mev-boost instance, potentially restricting the victim’s
access to builder-built blocks and influencing the outcome of the blockchain.

3.2 Scenario 1: One Relay and one Builder

Figure 3.1: Simulated Devnet consisting of 1 proposer, 1 relay service, and 1
builder. The connection with the red cross will be restricted.

Figure 3.1 depicts the simulated network. We define the following attacks
and theorize their outcomes:

• Scenario 1, Attack 1: Drop a percentage of OUTGOING packets from
the relay to the mev-boost service. We theorize that the victim proposer
falls back to its own block building, in ratio to the amount of packets
dropped.

• Scenario 1, Attack 2: Delay OUTGOING packets from the relay to the
mev-boost instance. We theorize that there will exist a cutoff point where
the delay causes the victim proposer to fall back to its own block building.

We investigate the effect of these attacks starting with the network in a default
condition and linearly increasing the degree of traffic control.

Siulation procedures

First, we simplify the network conditions in the following ways:

• We keep the general transaction pool empty: this is the default
condition we simulate the network in. Each consecutive block is empty
until we populate the transaction pool.
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• We populate transactions only through the builder execution client:
If we record a transaction included in a block, we know that this came from
the builder, through the relay server and the mev-boost service.

Then, we:

• Continuously send transactions into the network through the builder:
we use a script to listen to new server-sent events (SSE) sent by the builder’s
consensus client interface (specifically, the ’block’ event. More details in
[19]) and then on each new slot, populate a simple transaction sending an
amount of Ether from a wallet we own to a random address. This wallet
needs to be given Ether on the network setup in the genesis configuration
files of the blockchain.

• Apply traffic control to the mev-boost-relay API service con-
tainer: we define a filter to the root queueing discipline of the container’s
network interface, filtering IP packets with the destination IP address of
the mev-boost container.

We simulate 100 blocks for each level of traffic control and record the transac-
tions included in these 100 blocks through the victim’s consensus client interface.

Definition 3.1 (Attack success rate). We define the attack’s success rate as the
ratio between successes and failures, where an attack is considered successful if
and only if the block is empty of transactions.

3.3 Scenario 2: Network of two Relays and two Builders

Figure 3.2 depicts the simulated network.

Simulation procedures

In addition to the network conditions set in Network 1 (see conditions 3.2), we
change how transactions are populated:

• We populate transactions of higher value to the builder1: By popu-
lating transactions with higher priority fees (fees directly sent to the builder
address) at the builder1, the bid of this builder’s submitted block increases,
causing the mev-boost to chose these blocks over the ones submitted by
builder2.
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Figure 3.2: Simulated Devnet consisting of 1 proposer, 2 relay services, and 2
builders. The connection with the red cross will be restricted.

• We set different transaction destinations for builder1 and builder2:
So that we can evaluate which of the two builder’s blocks gets proposed by
the victim, we set the destination of the transfer transaction to be two
different wallets, as opposed to a random address. We set transactions
populated at builder1 to have the destination address 0x11100.....000 and
for builder2 the destination address 0x22200....000.

We define the following attack and theorize its outcome:

• Scenario 2, Attack 1: Drop a percentage of OUTGOING packets from
relay1 to the mev-boost service.We theorize that the victim proposer does
not receive the block submitted by relay1 and chooses the less profitable
block submitted by relay2.

We again simulate 100 blocks for each level of traffic control and record the
transactions included in these 100 blocks through the Victim’s consensus client
interface.

Definition 3.2 (Attack success rate). We define the attack success rate as the
ratio between successes and failures, where an attack is considered successful if
and only if all the transactions recorded in the block have destination address
0x22200...000
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3.4 Practical issues

During the setup of the development network, there were several practical issues
that delayed or even hindered the procedure. The main cause was the lack of
documentation on the subject of custom Ethereum devnets setup, with the most
referenced tutorial having been clearly outdated and even misleading. We include
therefore a number of tips that we have found useful on the setup of our custom
Ethereum POS devnet in the appendix below for anyone looking to run their
tests in the future.



Chapter 4

Results

4.1 Scenario 1: Network of one Relay and one Builder

4.1.1 Scenario 1, Attack 1

Figure 4.1: Attack success rate of Scenario 1, Attack 1. Blue: Number of empty
blocks.

Figure 4.1 showcases the results of this simulation. We recognize first of all
that there is some noise involved in the simulation. On a default environment
with no traffic control in place, 3 of the 100 blocks were recorded empty. Verify-
ing our logs, we were able to track down the issue to instances of "validator not
found" on the builder’s execution client. This is a failure on the routined query
of validator duties, where it does not find a validator duty mapped to this block,
and fails to build the block where the address of the validator on duty is needed.

17
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Since an epoch consists of 32 slots, this matches the frequency of this error. We
treat this discrepancy as noise and consider this through the rest of the analysis.

We see an exponential increase in attack success rate starting as early as
the 10% drop in all outgoing packets, reaching a 100% success rate at 100%
packets drop. TCP packets that do not reach their destination are generally
re-transmitted until their timeouts reach. We assume that an attack succeeds
if an individual packet does not reach its destination on time, even after being
re-transmitted multiple times. Assuming a packet is transmitted in total x times
and a packet drop rate of y, the probability of an individual packet not reaching
its destination is

yx

Assuming n unique packets are transmitted, the probability of at least one unique
packet not reaching its destination, meaning the attack is successful, is

1− (1− yx)n

The attack success rate increasing exponentially with respect to the packet drop
rate in practice falls in line with our analysis.

4.1.2 Scenario 1, Attack 2

Figure 4.2: Attack success rate of Scenario 1, Attack 2. Blue: number of empty
blocks
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Figure 4.2 showcases the results of this simulation. We recognize that the
same noise is present as in scenario 1 (see figure 4.1) and take this into account
throughout the analysis. We observe a clear cut-off point of 500ms, below which
the traffic control does not affect the blocks and above which the success rate
reaches 100% instantly. This aligns with the TCP timeout offsets defined in the
relay configurations, thus giving us a clear conclusion that the attack is effective
on a delay above this timeout value.

4.2 Scenario 2: Network of two Relays and two Builders

4.2.1 Scenario 2, Attack 1

Figure 4.3: Attack success rate of Scenario 2, Attack 1. Orange: Empty blocks
(noise). Yellow: Blocks from relay1. Blue: blocks from relay2.

Figure 4.3 showcases the results of this simulation. We recognize again that
the same noise is present as in scenario 1 (figure 4.1) and take this into account
throughout the analysis. We observe that the results are very similar to Scenario
1 Attack 1 (figure 4.1), we see an exponential increase in the amount of blocks
included from relay2 as opposed to relay1 with respect to increasing drop rates.
The difference in this scenario is that there exists a second relay submitting
less profitable blocks than the first relay, to the mev-boost service, which is
programmed to choose the most profitable block. We confirm in this simulation
that this job is fulfilled in that the proposed blocks are not completely empty
when the attack drops the packets sent from the first relay, but instead contain
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the blocks submitted by the second relay.



Chapter 5

Conclusion/Outlook

Based on the results of our attack simulations in chapter 4, we can conclude that
it is indeed very possible to influence the outcome of the blockchain by controlling
the traffic of the connection between relays and validators. Since these relays are
publicly accessible servers and since there are currently only a select few trusted
relays [2], the risk of such attacks is very much present on a centralized network
landscape. Each entity involved in the PBS scheme can potentially be a malicious
actor:

• Malicious builder: A builder that records a high-value transaction in their
transaction pool, can try to restrict relay access to other builders in order
to increase the chance of their block being selected and them receiving the
transaction rewards.

• Malicious relay: A relay can see the contents of builder-submitted blocks
and which block to relay. The more trusted it is, the more power it holds
over the submitted blocks, as it can relay a different block to a validator
than the actual highest-bidded one.

• Malicious proposer: A proposer may block another proposer’s access to a
specific relay. Say a proposer knows that it is on future duty within this
epoch and that it records blocks of high value getting proposed due to high
on-chain transaction volume, it can try to restrict relay access to validators
on current proposal duty and get access to these high value blocks itself,
earning it higher proposal rewards.

21
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Appendix A

Tips on setting up an PoS-PBS
Ethereum Devnet using Docker

The implementation of this work has stemmed from the tutorial from the prysm
documentation, which is now very much outdated. In this appendix, we lay out
some tips that were useful to adapting to the outdated tutorial, in hopes of ever
becoming useful for future simulations of devnets. The complete implentation
can be found on the disco-students repo

A.1 Genesis nodes

The setup of the initial nodes of the network requires the generation of genesis
configuration files. These can be done directly via the prysm consensus client and
the geth execution client. During this, one must take into account that if one
includes a list of validator clients in this manner, one must take note of the hash
of these validators combined to make up the "genesis_validators_root" which is
not immediately used but is an important configuration variable that is required
by the relay API, as well as the Flashbots/builder.

A.2 Peer-to-Peer communication software version

It is not documented that p2p communication software used between versions
of geth are different between geth versions. Specifically, at the time of writing,
geth’s latest Docker image on the docker hub (ethereum/client-go:latest) does not
match the p2p software used on Flashbots’ builders (flashbots/builder:latest). If
an error log of instance "Remote needs update" or "Origin needs update" is
present, these refer to the p2p software in use and signify that the nodes trying
to connect to each other are not matching the software version. In this case, one
must look in the log history for this software version and adapt the node version.

A-1

https://docs.prylabs.network/docs/advanced/proof-of-stake-devnet
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Tips on setting up an PoS-PBS Ethereum Devnet using Docker A-2

Our implementation circumvents this issue by using either one or the other for
the entire node-set on the network.

A.3 Chain Checkpoints and node syncing

When a prysm-geth pair connects to an existing network (or the genesis node
pair), one must wait until the finalization of the beacon chain headers for the
prysm to become able to query the checkpoint-sync-url. One can check the
status of the finalization by querying ".../eth/v1/beacon/headers/finalized" on
the consensus node’s grpc-gateway-port. Additionally, for a prysm-geth pair to
sync to an existing network and participate as a network member, BOTH nodes
must be in sync with the network, otherwise, certain endpoints or RPC calls will
not function properly.

A.4 URIs

One must not forget to specify the protocol (i.e. "http://") when defining an
endpoint in configuration files. Flashbots/builder’s "–builder.beacon_endpoints"
for example will not function if this prefix is forgotten. This is not specified in
the documentation.

A.5 Relay Execution Client configuration

If Flashbots/builder is used as the blocksim execution client for a relay, one
MUST set "–builder.dry-run=true" and "–builder.local_relay" AND additionally
set the "–builder.remote_relay_endpoint" value for it to function as intended.
The dry-run setting can be interpreted as the simulated block is not intended for
immediate broadcast (as it is passed to the validator as for signing). This as well
is not documented properly.

A.6 Relay API, housekeeper, and website services con-
tainerization

The relay’s API, housekeeper, and website services are documented to be run
through the terminal of a set server, however, these can be docker-containerized.
In the case where this is done, one must not forget to set the environmental
variables defined in the code (but not in the documentation) [20], [21], [22] to
run these services. Otherwise, the services will not function as intended.
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A.7 Traffic control environment

To enable the use of linux-tc, the container that is intended to run the traffic
control requires the NET_ADMIN flag in docker compose. This flag enables
administrative control over the docker network this container finds itself in.
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