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Abstract

This thesis explores and experiments with various mixtures of activation func-
tions inside a multilayer perceptron. It establishes a baseline for simple synthetic
datasets and real-world datasets (MNIST, CIFAR10, ...). The performance of
several different arrangements of activation functions such as random initializa-
tion, split layers or sequential usage, is investigated. This reveals the potential of
combining activation functions. Ultimately, it compares them to the novel Multi-
Lane architectures that have two, three or four lanes of neurons with different
activation functions. The Multi-Lane models demonstrate improved robustness
towards the synthetic dataset selection. Moreover, on the real-world datasets,
they are consistently comparable or superior to the traditional ReLU model. Fi-
nally, an entropy Lane-Loss for the Multi-Lane model is implemented and tested
with two different criteria. This enables the model to implicitly pick the most
promising activation function lane of the Multi-Lane network.
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Chapter 1

Introduction

Feed-forward neural networks are one of the fundamental building blocks for the
success of deep learning. The ability of a network to learn tasks beyond the
complexity of linear regression is given thanks to the activation function. It is
the component that expands the learnable space to non-linearity. There are an
infinite number of possible activation functions. Finding the most powerful one,
or a combination thereof, is an ongoing area of research. Activation functions
such as the sigmoid, tanh, or the widely employed Rectifier Linear Unit (ReLU),
each have their advantages and disadvantages. Therefore, some functions are
better suited for certain datasets than others. This challenge often results in a
trial-and-error desperation. But research has shown that combinations or modi-
fications of activation functions may be superior to pure, single activation models
(Agostinelli et al. [2014]).
The Universal Approximation Theorem states, that even with a single hidden
layer feed-forward neural networks can effectively approximate any continuous
function, given a large enough number of neurons (Cybenko [1989]). However,
instead of solely approximating the input-output relationship, the model ideally
also generalizes to a wider range of input data. Problem specific activation func-
tions might help minimizing the out-of-distribution error.
In this thesis, we explore various activation ensembles and compare them to the
traditional, single activation function approach. We choose to evaluate them on
multilayer perceptrons. Typically, research focuses on the performance of mod-
els on real-world datasets such as MNIST, CIFAR10. To fully comprehend how
different activation functions behave, we additionally test models on more ele-
mentary, synthetic datasets, such as addition and multiplication. Furthermore,
we examine the performance of the models on domains outside the training set.
This provides insight into the model’s ability to learn the underlying mathe-
matical function, rather than simply learning the relationship within the given
training bounds.
As a contribution, we introduce a novel architecture called the Multi-Lane net-
work. Instead of using a single fully connected network, we create multiple lanes
that operate as individual feed-forward networks. The outputs of these lanes are
then combined in the final hidden layer. Each lane utilizes a separate activa-
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1. Introduction 2

tion function. This allows the model to prioritize the most important activation
function for a given task more easily. The Multi-Lane model takes advantage of
undisturbed sections of neurons with the same activation function.
The architecture of our Multi-Lane models allows the conduction of further exper-
iments. To further reduce the loss of the out-of-distribution range, we introduce
an entropy loss to our Multi-Lane model. This theoretically allows the network
to implicitly determine which lane is more suitable for the given dataset. The
unused lanes could be eliminated, in the hope of leaving the network with the
most suitable activation function.



Chapter 2

Background

2.1 Multilayer Perceptron (MLP)

The classic multilayer perceptron (MLP) is a simple yet powerful neural network
that is widely used in machine learning and artificial intelligence. Also known as a
feedforward artificial neural network, the MLP is used for various tasks including
image recognition (Touvron et al. [2022]), weather forecasting (Narvekar and
Fargose [2015]), and medical diagnosis (Yan et al. [2006]). To illustrate the
functionality of the network, we look at an example. Suppose one wants the
network to learn to add two numbers x1 and x2. Each input feature corresponds
to a neuron/perceptron in the input layer, in our case x1 and x2. The input
data is then passed through weighted connections to hidden layer neurons. Each
neuron performs a weighted summation with all inputs from the previous layer.
The first hidden layer passes the values to the next hidden layer, and so forth.
The output layer processes the final hidden layer activations, resulting in the
model prediction (see Figure 2.1). In our example, we want to predict the sum
of x1 and x2.
A single perceptron is shown at the bottom of Figure 2.1. It takes the weight of
the incoming connections and multiplies them by the outputs/activations of the
previous layer. The sum of these products, along with an additional bias b, results
in the value z of the neuron. This value z is then fed into an activation function
to create the activation of the neuron (see also Chapter 2.3). The activation
functions play a key role in enabling the network to learn non-linear behavior.
Each input x of the input layer is connected to each neuron in the first hidden
layer, which is connected to each neuron from the second layer and so on. Each
connection has a weight w, which is initialized randomly when the model is
created. The value z of the j-th neuron in the l-th hidden layer is calculated as
follows:

z
(l)
j =

n∑
i=1

w
(l)
ij · h(z(l−1)

i ) + bj , (2.1)

3
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Figure 2.1: This multilayer perceptron (MLP) consists of two layers, each with
four neurons (blue). The output prediction (red) is learned by the network from
the input features (green). A close-up of a neuron is shown at the bottom with
activation function h(z). In this case it is a1 = x1 and a2 = x2. The network
adapts the weights, w, in a way that the output is as close to the true value as
possible (see also Section 2.2).

where n is the number of previous neurons, b is an additional bias scalar and h
is the activation function. More common is the representation in matrix form:

Z(l) = W (l) ·A(l−1) + b(l), (2.2)

where W is the weight matrix, A represents the activations of the previous layer
and b in the bias vector of the l-th layer.

2.2 Training and Evaluation of the Network

To ensure effective learning, a large enough dataset of samples is necessary. The
dataset is typically divided into three different parts: a training set, a validation
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set, and a testing set. The training set is the largest and is used to train the
model, while validation and testing sets are smaller. The dataset is usually split
in a 70%-15%-15% ratio for training, validation, and testing, respectively. In
this project, we use the term “validating” to refer to the evaluation of the model
during training, and “testing” to refer to evaluation of the model after training.
To prioritize essential aspects, we will provide only a concise overview of back-
propagation. Backpropagation is the fundamental training algorithm used in
neural networks. We have our model as described in Section 2.1. We initialize
the weights in an MLP randomly before the start of training. When inputting
features from the training dataset, the output will also be random. However,
with samples from the training set, we know what the output should be. For
each input sample, we compare its output with the true label and use a loss func-
tion to quantify the network’s error. We calculate the gradient of the loss with
respect to the weights and biases. Since we want to minimize the loss function,
we take a step in the opposite direction of the gradient. The step size is also
called the learning rate. This step happens after a predefined number of samples,
also called the batch size.
For the purpose of understanding the following chapters we will look at two
different loss functions.

2.2.1 MSELoss

The mean squared error, also known as the L2 loss, measures the squares of the
errors. Our errors are the differences between the model predictions and our true
labels. Therefore, the loss for a batch with n samples, prediction Ŷ and given
label Y is:

MSELoss =
1

n

n∑
i=1

(Yi − Ŷi)
2. (2.3)

2.2.2 Cross-Entropy Loss

The cross entropy loss function is a commonly used loss function for classification
tasks. In such tasks, the model has one output for each possible class. Using
a softmax function, the outputs are transformed into a probability distribution,
which sums up to one. Each output now represents the probability that the input
belongs to its respective class. The cross entropy loss function for k classes is
calculated as follows:

CELoss = −
k∑

i=1

Yi · log(Pi), (2.4)

where Yi is the true label of class i and Pi is the predicted probability of the
input belonging to class i.
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2.3 The Role of the Activation Function

The activation function is used to introduce non-linearity into the network. Sup-
pose we use a linear activation function, such as the identity function. Equation
2.2 would change to:

Z(l) = W (l) · Z(l−1) + b(l). (2.5)

Looking at the input-output relation reveals:

Y = W (l) ·W (l−1) · ... ·W (1)X +W (l) · ... ·W (2) · b(l−1) + ...+ b(l), (2.6)

where X is the input vector. This results in a purely linear relationship be-
tween inputs and outputs, essentially becoming a linear regression model. But
even relatively simple problems like learning multiplication need non-linearity
(see Chapter 5).
There is only one important property that the activation functions should have.
In the backpropagation process, the gradient must “flow” through the network
back to the weights and biases. As stated in Gulcehre et al. [2016]’s work: “An
activation function is a function h: R → R that is differentiable almost every-
where.”
The choice of an activation function is crucial for the performance of a network.
It greatly influences the training process, affecting convergence, speed of conver-
gence (Gulcehre et al. [2016]), generalization and the ability to efficiently extract
patterns from input features (see Chapter 5). There are many possible activation
functions, but we will focus on some of the most commonly used ones, which we
will also use in the following experiments.

2.3.1 Identity

The simplest activation function is the identity function:

hidentity(z) = z. (2.7)

The identity function is mainly used for linear regression because it is unable
to approximate non-linear functions. It does not transform the input, it sim-
ply returns it as is (see Figure 2.2). The identity function is continuous and
differentiable with a gradient equal to 1 everywhere, which simplifies the back-
propagation and makes computation extremely effective (essentially there is no
computation needed).

2.3.2 Sigmoid

The sigmoid function is defined as follows:

hsigmoid(z) =
1

1 + e−z
. (2.8)
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Figure 2.2: Six distinct activation functions were employed in the experiments.
x-axis illustrates the neuron values, denoted as z. The y-axis represents the
transformed activations.

The sigmoid function is a type of logistic function. Its output ranges from 0 to 1
and it is differentiable and continuous throughout its domain, therefore resulting
in smooth gradients. The main advantage of the sigmoid function is its usability
in binary classification, as it outputs the probability that the input belongs to
class 0/1. However, it also has some disadvantages. When the input to the
sigmoid function becomes either very large or very small, the gradients of the
sigmoid converge to zero. This phenomenon is also called saturation and makes
convergence very slow (Gulcehre et al. [2016]).

2.3.3 Tanh

The hyperbolic tangent function, often abbreviated as tanh, is defined as follows:

htanh(z) =
e2z − 1

e2z + 1
. (2.9)

The tanh function is similar to the sigmoid function. It is also continuous and
differentiable everywhere, although the gradient of the tanh function is greater
around zero. It also suffers from saturation for very large or very small inputs
(see Dubey et al. [2022]). Unlike to the sigmoid function, the values for the tanh
function range from -1 to 1.
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2.3.4 ReLU

The Rectifier Linear Unit (ReLU) is the most commonly used activation function
in neural networks. Unlike the previous activation functions, ReLU is continuous,
but not differentiable everywhere:

hrelu(z) = max(z, 0). (2.10)

In practice, the gradient of ReLU at zero is set to 0. ReLU solves some of the
problems of tanh and sigmoid. First, it reduces the saturation problem, since the
gradient for all positive inputs is 1. This enables consistent and strong signals for
backpropagation. The function is very simple, which makes it computationally
efficient (see Dubey et al. [2022]). Additionally, ReLU is generally sparse as it
is zero for all negative values (also called dying ReLU). This can be beneficial
with regards to regularization (see Ide and Kurita [2017]) and network pruning
(see Lee et al. [2018]). However, under certain circumstances this may lead to
convergence problems (see Szandała [2021]).

2.3.5 Sinusoidal

Sinusoidal functions are not as commonly used as the previously mentioned ac-
tivation functions, but they are still viable. Sinusoidal activation functions in-
troduce periodic patterns into the network. This periodicity can be beneficial
for some parts and problems (see Chapter 5), but it can also hinder the training
process (Parascandolo et al. [2016]). We will use the sine activation function in
the following experiments:

hsin(z) = sin(z). (2.11)

Around zero the sine function behaves similarly to the tanh function. It is also
shown that the function trains comparable to the tanh function and that the
networks often rely only sparsely on the periodicity of the activation function
(see Parascandolo et al. [2016]).

2.3.6 Log-Exp

The Log-Exp function is not a classic activation function. We use the Log-Exp
function as a combination of a logarithmic activation function, followed by a layer
of exponential activation function. This results in the following input-output
relationship in a two-layer network:

Y = W (2) · exp (W (1) · (ln (W (0) ·X + b(0)) + b(1))) + b(2) (2.12)

The exponential function cancels out the logarithm, leaving behind the product
of the input vector. Lets consider the network as in Figure 2.3. The input-output
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Figure 2.3: Log-Exp Example Network. The Log-Exp model uses a logarithmic
activation function in the first layer and a exponential activation function in the
second layer.

relation is as follows:

y = w3 · exp (z2) + b3

= w3 · exp (w2 · a1 + b2) + b3

= w3 · exp (w2 · ln (w11 · x1 + w12 · x2 + b1) + b2) + b3

= w3 · (w11x1 + w12x2 + b1)
w2 · exp (b2) + b3,

(2.13)

where w are weights, b are biases, z are the values of the neurons and a are activa-
tions. With this property, Log-Exp may work very well on the Multiplication
dataset.

2.3.7 Softmax

The softmax function is typically used in the output layer of multi-class classifi-
cation. It transforms the raw model outputs into a probability distribution. For
an input vector z = (z1, z2, ..., zk) with k classes, the softmax function is defined
as follows:

softmax(z)i =
ezi∑k
j=1 e

zj
, (2.14)

with zi being the i-th element of the input vector. The softmax function en-
sures that the elements of the output vector are non-negative and sum up to 1,
effectively representing probabilities.



Chapter 3

Related Work

The work on new combinations of activation functions within a single neural
network has received much attention in recent years and decades. The widely
popular used Rectifier Linear Unit (ReLU) was introduced as an activation func-
tion (Glorot et al. [2011], Nair and Hinton [2010]) around 2010/2011, which led
to a renewed search for new and better activation functions. With its simple
forward and backward computation and its non-saturating nature(Dubey et al.
[2022]), ReLU has the ability to effectively help the network learn (Krizhevsky
et al. [2012]). Another independent idea was ensemble learning in the work of Sagi
and Rokach [2018]. It uses the concept of “wisdom of the crowd”, which combines
and considers the results of many (different) models to make the final predic-
tion. Instead of using multiple models, we use multiple activation functions. We
focus on mixing activation functions to take advantage of the strengths of each
activation function. However, there is a lot of work focusing on other ideas and
approaches.
Qian et al. [2018] create adaptive activation functions. They improve the per-
formance of ReLU by solving the vanishing gradient problem. Introducing a
trainable parameter into the ReLU function prevents the left side of the func-
tion from being zero. This activation function is also called parametric ReLU
(PReLU). They also successfully propose two additional parameters, s and a, for
the tanh function. They help to regulate the slope and amplitude of the function
to prevent saturation.
Similar work has been done by Trottier et al. [2017]. They modify the Expo-
nential Linear Unit (ELU) function with additional parameters. Two additional
parameters, a and b, allow the network to use different activation functions in
different parts of the network.
Nandi et al. [2020] propose an alternative ensemble of activation functions. They
combine the model ensemble approach with our activation ensemble approach.
The activation ensemble is proposed to improve classification accuracy. Several
networks are trained, each with a different activation function. The predictions
of the models result in the final prediction using majority voting. This reduces
the importance of a single activation function and instead relies on a diverse set
of functions.

10
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Similar to the previously mentioned PReLU, the SReLU was introduced in the
work of Jin et al. [2016]. The SReLU is defined as a combination of three linear
functions:

h(xi) =


tri + ari (xi − tri ), if xi ≥ tri
xi, if tri < xi < tli
tli + ali(xi − tli), if xi ≤ tli,

(3.1)

where {tri , ari , tli, ali} are four different learnable parameters, ensuring individual
activation functions for each neuron. SReLU can be easily be integrated into
existing networks and demonstrates the ability to learn both convex and non-
convex functions.
A key statement, very relevant to our work, is made in the work of Agostinelli
et al. [2014]. They create an Adaptive Piecewise Linear (APL) unit, which is the
sum of hinge-shaped functions:

hi(x) = max(0, x) +
S∑

s=1

asi max(0,−x+ bsi ), (3.2)

where x is the input to the activation function, S is a hyperparameter that de-
termines the number of hinges in the function. a and b determine the slope of
the piecewise unit and the location of the hinge, respectively. They show that
their activation function leads to a significant improvement. The network learned
several different functions, suggesting that one universal activation function may
not work optimally.
A particular motivation for this work was provided by Harmon and Klabjan
[2017]. In their paper Activation Ensembles for Deep Neural Networks they in-
troduce a new concept called activation ensembles. It focuses on the idea of
combining different, already known activation functions within a single neural
network. By introducing a new variable, α, for each activation layer, it allows
the network to have multiple activation functions at each neuron. The network
implicitly “chooses” the stronger activation functions by learning the specific α.
Depending on the dataset used, the network will favour different activation func-
tions in different parts of the model. Again, choosing different activation func-
tions in a network improves its performance.



Chapter 4

Model Architectures

In this chapter we introduce the most important models that we will be focusing
on in our experiments. The models can be sorted into two different types. The
first type, the fully connected networks, only changes the activation function
arrangement of the classic MLP. The second type is the newly introduced Multi-
Lane network, that modifies the traditional MLP architecture.

4.1 Fully Connected Networks

These models are basic multilayer perceptrons as described in Section 2.1. How-
ever, we arrange different activation functions in specific ways. We create base-
line, sequential, ensemble and random models. The number of parameters within
a network is calculated as described in Appendix A.

4.1.1 Baseline Model (B)

In order to fairly compare our different model types, we will build baseline models.
The baseline models (B) are MLPs with only one activation function. Every
neuron uses the same activation function. The baseline serves as a reference
point. It provides a simple benchmark for evaluating other models and will help
us determine if our other models show improvement.

4.1.2 Sequential Model (S)

The sequential model uses specific activation functions in different layers of the
model. Our model utilizes one activation function in the first half of the layers
and a different one in the second half of the layers. Since we will be looking at
two-layer models, we will only use two different functions for the two layers. The
model is illustrated in Figure 4.1.

12
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Figure 4.1: This is an illustration of a Sequential (S) model. The model utilizes
one activation function in the first layer (blue) and different activation function
in the second layer (purple).
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Figure 4.2: This is an illustration of an Ensemble (E) model. The model uses
one activation function in the top half of the layer (blue) and different activation
function in the bottom half of the layer (purple).

4.1.3 Ensemble Model (E)

Our ensemble model also uses two distinct activation functions. Rather than
using two different functions for different layers, the ensemble model employs
two different functions within each layer. We therefore split each layer in two
(see Figure 4.2). The first half of the layer uses one activation function, while
the second half of the layer uses a different activation function.

4.1.4 Random Model (R)

In the Random model, we use various activation function. This model does not
use any fixed activation function. It rather chooses an activation function ran-
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Figure 4.3: This is an illustration of an example Random model. The model
initializes each neuron with a random activation function from a given set S. In
this example, the set includes ReLU, Tanh and Sigmoid.

domly for each neuron in the network. This happens at initialization of the
network. The function is chosen randomly from a given set S of activation func-
tions. The model can have as many activation functions as the set has. An
example network is illustrated in Figure 4.3. For larger models and a set S of
size two, the random model basically functions as an ensemble model. The ex-
pected number of neurons in a layer is 50%. Since the weights of our models are
initialized randomly, it does not matter which locations the neurons are in.

4.2 Multi-Lane Networks

4.2.1 The Multi-Lane Network (D, T, Q)

The Multi-Lane network is a novel architecture based on the MLP. It consists
of multiple smaller fully connected networks. Each of these sub-networks uses
a different activation function. A Multi-Lane network with two lanes (Double-
Lane) is depicted in Figure 4.4. We use Multi-Lane models with two (D), three
(T) and four (Q) different lanes. We hope that the Multi-Lane structure of the
network will make it easier for the model to prioritize activation functions. The
Multi-Lane might especially contribute to a network’s robustness. This could
enhance adaptability to various datasets, particularly simpler ones. On real-
world datasets like MNIST or CIFAR10, the Multi-Lane model may be able to
extract different features on different lanes, depending on the activation functions.
This could prevent one activation function from dominating over the others and
lets us assign contributions to the distinctive lanes (see Section 4.3).
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Figure 4.4: This is an illustration of a Multi-Lane model with two lanes. The
top lane uses an activation function, the bottom lane uses a different activation
function.
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Figure 4.5: The modified Multi-Lane model combines the approaches of the En-
semble and the Multi-Lane networks. It has two lanes, on top and on the bottom,
and a section that combines the two activation functions.

4.2.2 The Modified Multi-Lane Network

The modified Multi-Lane model is a combination of the Double-Lane model and
the Ensemble (E) model. It features two independent lanes on the top and bottom
(see Figure 4.5). Each lane includes 25% of the neurons in each layer. The middle
section combines the two activation functions and consists of the remaining 50%
of the neurons in each layer.

4.2.3 The Double Quad-Lane Network (DQL)

The Double Quad-Lane model utilizes two distinct Multi-Lane modules consec-
utively. The model is depicted in Figure 4.6. The shown model uses two Quad-
Lane modules. We will use this model only on specific datasets in the Lane-Loss
Section 4.3. The datasets consist of two nested mathematical operations. With
Lane-Loss implemented as described in Section 4.3, the model can theoretically
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Figure 4.6: This is an illustration of the Double Quad-Lane model. The model
is built with two consecutively used Quad-Lane modules. In this example, the
lane is only made up of a single neuron. Usually the lane contains more than one
neuron.

learn the underlying function better by sequentially using different lanes.

4.3 Lane-Loss

We want to further improve our Double Quad-Lane model by trying to let the
network itself choose which lanes to take. For example, say we are using a Quad-
Lane model on the Sine dataset. The model should choose the sine lane because
it works best for this data set. We do this by introducing an entropy loss in
addition to the MSE loss. Entropy represents the disorder of a system. It is
defined as follows:

H(X) = −
∑
xϵX

p(x) · log2 p(x), (4.1)

where X is the set of values in our system and p(x) are the values to adjust. The
p(x) values in our system should represent the percentage usage of the lanes. If,
for example, only one lane x1 is used, then p(x1) is 1. If the network does not
use lane x1, then the p(x1) value is 0. Therefore, minimizing the entropy loss
converges to the network also only using one lane. For our x values, we need an
additional criterion that represents the importance of the lanes. We tried two
different criteria.
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Figure 4.7: The Double Quad-Lane model for our Lane-Loss experiment. The
red colored weights in the middle are used to calculate the Lane-Loss for the first
Multi-Lane module, while the output weights are used for the Lane-Loss of the
second Multi-Lane module.

4.3.1 Criterion: Weight Squares

Our first criterion is based on the square values of the weights as an indicator of
lane relevance. We work with the following assumption: The higher the average
squared weights of a lane, the more important the lane is. First, we compute the
squares of the output weights of the Multi-Lane modules (colored red in Figure
4.7). We do this for both the first Multi-Lane module and the second Multi-Lane
module. The averaged weights per lane are then scaled with a softmax function
to create our p(x). Finally, our lane entropy loss is defined as:

Hlane(X) = −
n∑
i

p(xi) · log2 p(xi), (4.2)

with
p(xi) =

exi∑k
j=1 e

xj
, (4.3)

for k lanes and xi =
1
m

∑m
j=1wj

2 being the mean square of all the m weights of
lane i. Adding up the weighted lane loss to the MSE loss results in the final loss
of:

Ltot = LMSE + αH(X). (4.4)

In this case H(X) is the sum of H1(X) and H2(X), which represent the Lane-Loss
for the first and the second Multi-Lane module, respectively. We examine two
different strategies for α. We choose different constant alphas at the beginning
of training and we used a scheduler that increases alpha every epoch by a factor
of 1.1, starting with an alpha of 0.00005. We will only on the scheduled version
of α.
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4.3.2 Criterion: Contribution

Instead of looking only at the weights of the layer, we now decide to include
the activation values. With this approach, the criterion not only depends on the
weights of the layer, but also on the previous layers. We therefore calculate the
contribution by multiplying the weight matrix by the previous layer activations.
We then square the contributions and average them over all the contributions of
the specific activation function. Using the softmax function again, we transform
our values to get the “percentage” p(x) contribution to the output for each acti-
vation function. Again, we do this for both the first and the second Multi-Lane
module.
Again, we get a final loss of:

Ltot = LMSE + αH(X). (4.5)

In this case H(X) is the sum of H1(X) and H2(X), which represent the Lane-Loss
for the first and the second Multi-Lane module, respectively. We examine two
different strategies for α. We choose different constant alphas at the beginning
of training and we used a scheduler that increases alpha every epoch by a factor
of 1.1, starting with an alpha of 0.00005. We will focus on the scheduled version
of α.



Chapter 5

Experiments and Results

Activation functions add complexity to the models by introducing non-linear
properties. There are many different activation functions available, each with
its own strengths and weaknesses (see Section 2.3). It is easiest to just use one
activation functions in the neural network. We explore the idea of combining
different activation functions, in the hopes that the network takes advantage of
the individual strengths of each function. The goal of the following chapter is to
improve our comprehension of how activation functions interact with each other
within a single network. We begin by explaining our setup, hyperparameters,
and datasets. Next, we will create the baseline models for each dataset. We
compare these with our new model architectures and activation combinations. We
continuously compare the model types on synthetic (more basic) and real-world
(MNIST, CIFAR10, ...) datasets. For the synthetic datasets, we are additionally
interested in the model’s performance outside of its training ranges.

5.1 Setup

5.1.1 Datasets

To learn as much as possible about different network structures and activation
function combinations, we test our implementations on both real-world and syn-
thetic datasets. For the real-world datasets, we chose MNIST, FashionMNIST,
ISOLET and CIFAR10. MNIST is a large collection of handwritten digits. Fash-
ionMNIST contains images of ten different types of clothing. Both are low reso-
lution images with 28x28 pixels and 10 different output classes. CIFAR10 is also
an image dataset. It contains 10 different objects and animals such as airplanes,
cats and ships. These are color images with a resolution of 32x32 pixels. ISO-
LET is a dataset with 617 different features of 26 spoken letters (Fanty and Cole
[1990]).
Since it is harder to fully understand what is happening on the larger datasets,

we decide to create some simpler datasets ourselves. These “synthetic” data have
exactly two inputs x1 and x2 and one output. The formula for the Addition

19
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Dataset Formula

Addition x1 + x2
Multiplication x1 · x2

Sine sin(x1 + x2)
Max max(x1, x2)

Table 5.1: A dataset table for the following experiments. It shows the formula
with which the dataset is generated from. The ranges for x1 and x2 are found in
Table 5.2.

dataset, Multiplication dataset, Sine dataset, and Max dataset are listed in
Table 5.1. The ranges of x1 and x2 are according to the Table 5.2. We split
the datasets into three different parts, training, validation and test set. For the
synthetic dataset, we create additional samples with an extended range. This
helps us test the model on out-of-distribution (OOD) samples and shows us how
well the model adapts to ranges outside the training range.

Dataset Train/Val/Test/OOD Samples TVT Range OOD Range

Addition 7000/1500/1500/10000 [0, 100] [0, 10000]
Multiplication 7000/1500/1500/10000 [0, 20] [0, 40]

Sine 7000/1500/1500/10000 [0, 4π] [0, 8π]
Max 7000/1500/1500/10000 [0, 20] [0, 40]

MNIST 48000/12000/10000 - -
FashionMNIST 48000/12000/10000 - -

ISOLET 5457/1170/1170 - -
CIFAR10 40000/10000/10000 - -

Table 5.2: A dataset table for the following experiments. The datasets are as
described in Section 5.1.1. The second column shows how many samples the
training, validation, test and OOD set have. OOD stands for out-of-distribution
and refers to samples from outside the training range. TVT range is the range
used for training, validating and testing. OOD Range is the range of the OOD
data samples.

5.1.2 Hyperparameters

Synthetic Datasets. In order to fairly compare different activation functions
and models, we fix some of the parameters and hyperparameters. We train each
model for a maximum of 200 epochs. If the validation loss does not improve
for 20 epochs, we stop the training process early. For testing, we use the model
with the lowest validation loss. We train each model type exactly 10 times and
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take the average of the loss and the accuracy as relevant. We use a batch size
of 16 and a learning rate specific to each dataset (see Appendix A.2). When we
talk about loss, we use an MSELoss. For the sake of simplicity, and particularly,
interpretability, we do not make use of batch normalization and dropout, and
only use linear layers and activation functions.

Real-World Datasets. The hyperparameters for the real-world datasets are
similar to those used for the synthetic datasets. Each model is trained for a max-
imum of 150 epochs and is stopped early if the validation loss does not improve
for 20 epochs. All model results are the average of 10 runs. We use a batch size of
16 for CIFAR10 and ISOLET, and 64 for MNIST and FashionMNIST. We fix the
individual learning rate for each dataset (see Appendix A.2). For the real-world
datasets, we use batch normalization. To generate the output probabilities we
use a softmax function following the output layer. The cross entropy loss is best
suited for the classification tasks.

5.2 Model Performances

Here we show how the models and architectures work. All models and architec-
tures are defined in Chapter 4. Unless otherwise stated, we use two-layer models
with different numbers of neurons per layer. In the experiments below and in the
figures, we will use the abbreviations given in brackets in Chapter 4. Because
the ratio of neurons to weights is different for some models, we will often plot
performance relative to the number of parameters in the network. For the real-
world datasets, we evaluate performance in terms of test loss (not test accuracy).
Some experiments will also show that certain activation functions perform better
with a larger number of parameters, while others learn better (relatively speak-
ing) with fewer parameters. For information on how we calculate the number of
parameters, see the Appendix A.1. We will not present the performance of all
our models, but rather show the most interesting ones. We refer to the appendix
for additional figures and results.

5.2.1 Synthetic Datasets

Baseline (B). We want to compare our models with standard single activa-
tion function models. Therefore, we have train models with sigmoid, tanh, ReLU,
sine, log-exp, and identity activation functions for all datasets. These will serve
as our baseline against which we will compare our other models.
The test loss for the synthetic datasets are is shown in Figure 5.1.
As anticipated, the identity network performs well only on the linear Addition

dataset and fails to learn any other non-linear dataset. On the Sine dataset, the
sine activation function is far superior to the other functions. Sigmoid and tanh
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Figure 5.1: Comparison of model performance on the test set relative to the num-
ber of parameters for four different datasets (Sine, Addition, Multiplication,
Max) as defined in Section 5.1.1. The graphs show the trend of the MSE loss
as the model complexity increases. Notably, sine, identity, and ReLU activa-
tion functions are best for Sine, Addition, and Max dataset respectively. On
the Multiplication dataset more simple models perform better with Log-Exp
activation, more complex networks favor Sigmoid Activation function.
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are both competing for second place. One could argue that since the sigmoid/tanh
function has have very sine-like properties around the origin (Parascandolo et al.
[2016]), it also performs better than, for example, the ReLU activation function.
On the Addition dataset, both identity and the piecewise linear ReLU clearly
outperform the others. Again, sigmoid and tanh achieve similar results. The sine
function performs worst on the Addition dataset.
There is no clear winner on the Multiplication dataset. For fewer parameter
networks, it is the Log-Exp function that has a test loss almost two orders of mag-
nitude lower than the other functions. This changes significantly as the number
of parameter increases. Sigmoid, tanh, and ReLU all outperform Log-Exp, with
sigmoid being the best one out of them.
ReLU performs best for the Max dataset. Sigmoid and tanh perform similarly,
with sigmoid being slightly better.
We now analyze the out-of-distribution datasets as described in Subsection 5.1.1
(see Fig. 5.2).
Many models do not generalize well or at all to out-of-distribution (OOD) data.

It is important to be cautious when analyzing OOD loss. Just because the iden-
tity function achieves a lower OOD loss than ReLU on the Sine dataset, it does
not mean that the identity function generalizes better. Rather, it means that
ReLU fails to predict the output range of the sine function.
On the Sine dataset, only the sine function itself with fewer parameters adapts
somewhat to an increased range. All other functions do not generalize at all. On
the Addition dataset, identity generalizes incredibly well with a maximum loss
of about 10−2. The networks with fewer parameters even have a loss as small as
10−6. ReLU performs better than the other models with an average loss of 102

to 103, even including instances with OOD loss of 10−2 and lower.
For the Multiplication dataset, it is really only the Log-Exp models that are
able to generalize somewhat with an MSE loss of less than 100 (remember, with
an OOD input range of 0-40 instead of 0-20).
The underlying function of the Max dataset is best learned by the ReLU function.
What is interesting is the performance of Log-Exp relative to the performance of
the other functions, with a loss of about 1 to 0.1.

Now we want to further analyze the learning capabilities of the MLP. On our
synthetic datasets, we only work with functions that have an input dimension of
two. This means that we can visualize the loss on a 2D heatmap. More plots can
be found in the appendix B.1. We plot the loss space of four activation functions.
The loss is given as a color that represents the loss according to the color bar.
Thus, the perfect function would show a plot that is only dark purple. The red
rectangle shows the area the network has trained on.
The loss space of the Sine dataset is shown in Figure 5.3. We can clearly see
that the sine activation function minimizes the loss best within the training range.
Outside of this range, the loss is similar to the sigmoid function. The loss increases
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Figure 5.2: Comparison of model performance on the OOD set relative
to the number of parameters for four different datasets (Sine, Addition,
Multiplication, Max) as defined in Section 5.1.1. The graphs show the trend of
the MSE loss on the out-of-distribution set as the model complexity increases.
Notably, sine, identity, Log-Exp and ReLU activation functions generalize best
for Sine, Addition, Multiplication and Max dataset respectively. Sigmoid and
tanh do not generalize well on any dataset.
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Figure 5.3: MSE loss landscape for four different activation functions on the Sine
dataset. The network consists of two layers with 128 neurons each. The two axes
of each plot represent the two inputs to the network. The loss of the network is
color-coded according to the color bar. The red rectangle indicates the area the
model was trained on. Notably, the sine activation shows superior performance.
The sigmoid and ReLU activation functions also do well. However none of the
functions seem to maintain low loss values outside of the training region.
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Figure 5.4: MSE loss landscape for four different activation functions on the
Addition dataset. The network consists of two layers with 8 neurons each. The
two axis of each plot represent the two inputs to the network. The loss of the
network is color-coded according to the color bar. The red rectangle indicates
the area the model was trained on. The Identity activation shows superior per-
formance. Both sigmoid and sine show a diagonal ribbon where the loss is mini-
mized. The ReLU model achieves low loss inside the trained region and displays
an ongoing low loss area to the right of it.

by 3 to 5 orders of magnitude. ReLU approximates sine only for the training range
and shows poor performance outside the training range, especially for negative
inputs. Sigmoid is also able to learn the training domain well, as we can see in
figure 5.1. Identity performs poorly, as expected, due to its lack of ability to
model non-linear relationships. It becomes interesting when we reduce the size
of the network and zoom out a bit in figure B.2.
The minimized error of the sinusoidal activation network is no longer limited to
the learning regions, but has extended outward. There is a long strip where the
loss remains consistently low. We also see this in Figure 5.2, where the OOD
loss of the sine function stays lower for smaller networks. The performance of
the sigmoid and ReLU gets worse with fewer parameters. We now look at the
Addition dataset in figure 5.4. The identity network has no problem adapting to
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a wider range of inputs. Its loss stays low over a much wider range than visible.
We see this also in figure 5.2, as the OOD loss is about 10−6 for the input range
0 to 10000. ReLU adapts really well only to the right of the learning range, but
fails in other regions.
As the network grows larger, the ReLU network fans out and covers the entire
upper right part of the plane (see figure B.1 in the Appendix B.1).

Sequential (S). Looking at some of the sequential models in Figure 5.5, there
are not many big surprises. For the Sine dataset, we look at the two layered
sequential models ReLU-Sine (S), Sine-Identity (S), and Identity-Sine (S). Sine-
Identity (S) and Identity-Sine (S) perform very similarly. Compared to the pure
Sine (B) network, the sequential use of Sine and Identity improves the results not
only on the test set, but also on the OOD set in Figure B.7 in the Appendix B.2.
The loss compared to the test dataset only gets worse by one to two orders of
magnitude, with a model that preserves a loss of less than 10−11 on OOD data.
The difference is particularly noticeable on smaller networks and can be as large
as 7 orders of magnitude. This makes sense when considering that in a perfectly
constructed network only one neuron with the sine activation function would be
needed. Adding more layers and neurons might just add unnecessary noise and
complexity to the network. As for the Addition dataset, it is interesting to note
that Identity-ReLU (S) performs significantly better than ReLU-Identity (S).
Since we were only working with two-layer models, we did not create any new
sequential models with the Log-Exp function. Therefore, none of the new models
were able to generalize well to the Multiplication dataset.

Ensembling (E). In the top left of figure B.8 we see the plot of the Sine
dataset. The ensemble models are unable to correctly select the right neurons.
The Identity-Sine (E) ensemble model does not come close to the sequential model
from the last subsection. The ensemble model would have the ability to produce
the same low score if it chose to use the Identity neurons from the first layer and
the sine neurons from the second layer. However, none of the ensemble models
do this. In the Addition dataset, it seems to be able to select the right models
sometimes, since some of the Identity-Sine (E) ensemble models achieve a similar
low score as Identity (B) itself.
As for the Max dataset, there are some models that achieve similar results to
ReLU. It seems that ReLU-Tanh (E), ReLU-Sine (E), and especially ReLU-
Sigmoid (E) are able to learn the Max dataset almost as well as the ReLU (B)
network.

In contrast to the sequential models, the ensemble models generally adapt
better to out-of-distribution data (Fig. B.9) in Appendix B.2. For example,
on the Addition dataset, we see that the Identity-Sine (E) model has a lower
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Figure 5.5: Comparison of model performance on the test set relative to the num-
ber of parameters for four different datasets (Sine, Addition, Multiplication,
Max) as described in Section 5.1.1. (S) indicates that it is a sequential model
with the first layer having a different activation function to the second layer. (B)
marks a pure, single activation function model. The graphs show the trend of
the MSE loss on the test set as the model complexity increases. Notably, on the
Sine dataset, the Identity-Sine (S) and Sine-Identity (S) model outperform the
Sine (B) model. The Identity-ReLU (S) model has some models with equally low
score than Identity (B) network on the Addition dataset.
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OOD error than the ReLU (B) model. Thus, it is less dependent on the sine
activation neurons because it does not need to use them. This is best illustrated
using the Max dataset. There are several combinations that generalize well, such
as ReLU-Tanh (E), ReLU-Sigmoid (E), or even ReLU-Sine (E). It appears that
the network minimizes the influence of the secondary activation function (in this
case, tanh, sigmoid, and sine, respectively).

Random Initialization (R). Again, for numerical stability reasons we omit
Log-Exp activation functions. Some of the random models do not perform much
worse than the single activation function models (Fig. 5.6). On the Sine dataset,
we see that the average ReLU-Identity-Sine (R) and ReLU-Identity-Sine-Tanh-
Sigmoid (R) models come close to achieving the same score as Sine (B). In some
cases, they are more accurate than the sine model by more than an order of
magnitude.
On the Addition dataset, the Random models perform similarly to the single
activation ReLU (B) network, with some outliers in lower loss regions. The Max
function is learned as well by the ReLU (B) network as by some of the mod-
els containing the ReLU function. What should be the main takeaway for this
section is that not only do these models learn the function nearly as well, but
they also generalize well to out-of-distribution data (Fig. B.10). The baseline
performs best, and is expected to perform best.
However, the network is not able to select the identity neurons for the Addition
dataset, and does so infrequently. On the Max dataset, the smaller random net-
works perform even better than ReLU (B).
Since we did not include Log-Exp activation functions, we do not see good adap-
tation to OOD data on the Multiplication dataset.

Doublelane (D). The Double-Lane model is the Multi-Lane model with two
lanes. The plots for the Double-Lane models are shown in Figure 5.7. We
see that LogExp-Sine (D), for example, performs well on both the Sine and
Multiplication datasets. Additionally, it adapts similarly well to out-of-distribution
data as the Log-Exp (B) model. On the Sine dataset, we see that the Double-
Lane models with the sine activation function are within an order of magnitude of
the pure sine model. Only a few instances of the models fit the out-of-distribution
range (see Figure B.11). Similar things happen on the Addition dataset. Al-
though the Identity-Sine (D) model does not come close to the Identity (B) model
on the test set, it still adapts quite well to the OOD samples (see Figure B.11).
This is not the case for all ReLU-Identity (D) models. Some of the models have
a score as low as Identity (B), but the average performance of ReLU-Identity (D)
is closer to ReLU (B) than to Identity.
On the Multiplication dataset it is the LogExp activation combined with sine
and ReLU that performs just as well as the LogExp function. Larger networks
achieve an even lower test loss. Again, both models, LogExp-ReLU (D) and
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Figure 5.6: Comparison of model performance on the test set relative to the num-
ber of parameters for four different datasets (Sine, Addition, Multiplication,
Max) as described in Section 5.1.1. (R) indicates that it is a random model, mean-
ing that for every neuron in the network a random activation function is chosen
from the given set. (B) marks a pure, single activation function model. The
graphs show the trend of the MSE loss on the test set as the model complexity
increases. Similar to the ensembling models, only certain instances of random
models (R) are performing as strongly as the pure models (B). However on the
Max dataset, various random models (R) score equally as low as the ReLU (B)
network.
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Figure 5.7: Comparison of model performance on the test set relative to the num-
ber of parameters for four different datasets (Sine, Addition, Multiplication,
Max) as described in Section 5.1.1. (D) indicates that it is a Doublelane model,
consisting of two different lanes of neurons (see Figure 4.4). (B) marks a pure,
single activation function model. The graphs show the trend of the MSE loss on
the test set as the model complexity increases. Notably, on the Multiplication
dataset, LogExp-Sine (D) outperforms Log-Exp (B) consistently. Among larger
models, LogExp-ReLU (D), ReLU-Sine (D) and ReLU-Identity demonstrate the
ability to compete with the results ReLU (B) achieved.
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Figure 5.8: Comparison of the two lanes within the Double-Lane model that is
trained on the Sine dataset. The x-axis represents the first input while the y-axis
represents the second input. The values are color-coded according to the color
bar and show the contribution of the lanes to the final output. The first plot
shows the contribution of the ReLU lane of the network. The subsequent plot
displays the contribution of the sine lane. The third plot shows the output labels
for the input 1 and 2. Notably, the sine lane carries the structure of the output,
whereas the ReLU lane contributes, at most, a constant summand.

LogExp-Sine (B) adapt similarly well to unseen out-of-distribution ranges as the
LogExp (B) function itself. The Max function is learned equally satisfactorily by
the Double-Lane models. The test score is just as good, and for some dimensions
of the network the doublelane performs even better than ReLU (B).
We notice that many Double-Lane models such as LogExp-ReLU (D), LogExp-
Sine (D) or ReLU-Sine (D) do not necessarily worsen the performance of the
model. The model is able to adjust the weights and biases accordingly so that
not only the test performance, but sometimes also the OOD performance is main-
tained.
To find out more about the nature of the Double-/Multi-Lane models, we want
to visualize the output of each of the lanes. We calculate the contribution of the
two lanes to the output by manually multiplying the activations with the weights
of the output layer. The following figures show us which lane contributes how
much to the output and compare it with the ground truth of the dataset. Other
datasets and combinations can be found in the Appendix B.3. In Figure 5.8 we
see the contribution of the ReLU and the sine lane on the Sine dataset. The sine
lane carries almost the entire structure, while the ReLU lane contributes at most
a constant. However, this changes when we combine the ReLU function with the
Identity function in Figure B.24.
The network “realizes” that the output can only be learned via the ReLU path,
and therefore chooses to build the structure in the ReLU part of the network.
Furthermore, when the ReLU and sine activation functions are combined on the
Max dataset in Figure 5.9, the network structure is mainly achieved through the
ReLU lane. This shows how well the MLP determines which lane is more valu-
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Figure 5.9: Comparison of the two lanes within the Doublelane model that is
trained on the Max dataset. The x-axis represents the first input while the y-axis
represents the second input. The values are color-coded according to the color bar
and show the contribution of the lanes to the final output. The first plot shows
the contribution of the ReLU lane of the network. The subsequent plot displays
the contribution of the sine lane. The third plot shows the output labels for the
input 1 and 2. Notably, the ReLU lane is solely responsible for the structure of
the output. The sine lane contributes, at most, a constant summand.

able for the ability to learn the output labels. More heatmaps can be found in
the Appendix A.
To confirm our observations, we additionally examine the gradients of the loss

function with respect to activations. We would expect the gradients to be greater
for the lane that is more important. We calculate the derivative of the loss func-
tions with respect to the activations:

∂LMSE

∂a
(L)
i

, (5.1)

where LMSE is our loss function and ai is the i-th activation of the last layer L.
We find the mean gradient magnitude by averaging the absolute values of all the
gradients of the lane. Therefore, the average gradient magnitude of all neurons
in a lane of a Double-Lane model is:

g =
1
n
2

n
2∑

i=1

|∂LMSE

∂a
(L)
i

|, (5.2)

with n being the number of neurons in the last layer L.
In Figure 5.10 we compare the average gradient of the ReLU lane and the Identity
lane on the Sine dataset. As expected, the average magnitude of the gradient is
greater on the ReLU lane for all network sizes. This indicates that the ReLU lane
is more important to the network. Using the same model for the Max dataset (see
Figure 5.11), the ReLU has larger activation gradients. This correlates with our
visualized loss landscapes in the previous section. Unfortunately, this is not true
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Figure 5.10: Comparison of the gradient magnitude for two different lanes within
a Double-Lane model. The compared plots were trained on the Sine dataset, with
each one of the models having a different size. The x-axis represents the activation
functions of the two lanes. The y-axis indicates the average gradient magnitude
of the activations in a lane. Notably, the gradient of the ReLU activations with
respect to the loss is greater than the gradients of the identity activations on all
the models.
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Figure 5.11: Comparison of the gradient magnitude for two different lanes within
a Double-Lane model. The compared plots were trained on the Max dataset, with
each one of the models having a different size. The x-axis represents the activation
functions of the two lanes. The y-axis indicates the average gradient magnitude
of the activations in a lane. Notably, the gradient of the ReLU activations with
respect to the loss is consistently greater than the gradients of the sine activations
on all the models.
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for all datasets and activation combinations. For example, on the Max dataset,
we see in Figure B.32 in the Appendix B.4 that although the ReLU lane is the
more important lane for structure, the gradient of the Identity lane is larger.
The gradient of the loss function with respect to the activations suggests some
correlation with the relevance of the neurons. However, this is not true for all
models and Multi-Lane combinations.

Triple-Lane (T). We first look at the LogExp-Identity-Sine (T) Triple-Lane
model in Figure 5.12. It performs similarly to Sine (B) on the test data. On the
Multiplication dataset, the model achieves excellent results, especially on the
test data, but only a mediocre score for the generalization domain. The LogExp-
ReLU-Sine (T) model performs similarly to the LogExp-Identity-Sine (T) model
on the Sine and Multiplication dataset. It shows acceptable results on the
Max dataset. It performs similarly to the ReLU model on the test set. For out-
of-distribution ranges the Triple-Lane model manages to score better on smaller
networks, while scoring worse on networks with more parameters (see Figure B.12
in the Appendix B.2).
The third Triple-Lane model, ReLU-Identity-Sine (T), displays almost the same
results on Sine, Max and Addition datasets as Sine (B), ReLU (B) and ReLU
(B) respectively.

Quad-Lane (Q). For the Quad-Lane models, we will focus on the LogExp-
Identity-Sine-ReLU (Q) model, as it would theoretically have the composition
of activation functions to learn all data sets as perfectly as the baseline mod-
els. The sine function is well learned (see Figure B.13). The test loss on the
Multiplication and Max datasets is no worse than Log-Exp (B) and ReLU (B),
respectively. Larger networks perform well within training bounds. However,
they do not fit out-of-distribution as well as Log-Exp (B). On the Max dataset,
the model achieves solid scores when tested with on-distribution-data and smaller
networks also generalize well to OOD ranges. Other Quad-Lane models achieve
similar scores. For more information see Appendix B.2.

Modified Multi-Lane (MM). The performance of the Modified Multi-Lane
is shown in Figure 5.13. Identity-Sine (MM) outperforms all other models in this
comparison. Similar to the sequential Identity-Sine (S) model, the use of more
than one sine layer may only add unnecessary noise and complexity to the model.
Identity-Sine (MM) also performs well on the Addition dataset. It is the only
model we have seen that comes close to the performance of Identity (B). The
ReLU modified Multi-Lane models, such as ReLU-Sigmoid (MM) or ReLU-Tanh
(MM), seem to have no problem learning the dataset as well as ReLU (B). As
noted above, the Identity-Sine (MM) models perform well on out-of-distribution
data (see B.15 in Appendix B.2). ReLU-Sine (MM) has some instances that have
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Figure 5.12: Comparison of model performance on the test set relative
to the number of parameters for four different datasets (Sine, Addition,
Multiplication, Max) as described in Section 5.1.1. (T) indicates that it is
a Triplelane model, consisting of three different lanes of neurons. (B) marks a
pure, single activation function model. The graphs show the trend of the MSE
loss on the test set as the model complexity increases. LogExp-Identity-Sine (T)
and LogExp-ReLU-Sine (T) perform superior to the Log-Exp (B) models on the
Multiplication Dataset. Additionally LogExp-ReLU-Sine (T) performs also
decent on the Max dataset.
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Figure 5.13: Comparison of model performance on the test set relative
to the number of parameters for four different datasets (Sine, Addition,
Multiplication, Max) as described in Section 5.1.1. (MM) indicates that it
is a modified Multi-Lane model. It has a structure as described in Figure 4.5.
(B) marks a pure, single activation function model. The graphs show the trend
of the MSE loss on the test set as the model complexity increases. Notably, the
Identity-Sine (MM) model performs superior to the other models on the Sine
dataset. This model also performs better than any other model, except for the
Identity (B) model, on the Addition dataset.
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the same generalization loss as the Sine (B) model. On the Addition dataset,
both Identity-Sine (MM) and Identity-Tanh (MM) perform significantly better
than ReLU (B). Identity-Sine (MM) is almost as good as Identity (B) for some
network sizes. ReLU-Sine (MM) and ReLU-Identity (MM) achieve similar OOD
loss on the Max dataset, with better performance on larger models.

5.2.2 Real-World Datasets

To keep the focus on our synthetic datasets, we move the figures to the appendix.
For a quick overview there is a paragraph at the end of this section. It concisely
summarizes the best performing models. The figure of these models follows this
summary. For plots of all the other analysis we refer to the Appendix A.

Baseline (B). For all real-world datasets we see similar, somewhat expected
behavior in Figure B.16. ReLU performs best on all datasets. It is only really
challenged by the sine activation function on the ISOLET and FashionMNIST
datasets. On the MNIST and ISOLET datasets, tanh and sigmoid achieve similar
results, unlike on the other datasets. FashionMNIST and CIFAR10 are learned
better by tanh than by sigmoid. As a reference, the difference between the loss
of ReLU and the loss of tanh on the FashionMNIST dataset results in about a
1% difference in accuracy between them.

Sequential (S) and Ensembling (E). All of the models mentioned and plot-
ted now contain a ReLU layer. Other models that do not contain ReLU either
did not show any improvement over single activation models or did not show any
improvement worth mentioning.
The MNIST dataset still learns best with the ReLU activation function (see Fig-
ure B.17). However, we see that sequential ReLU-Tanh (S), ReLU-Sigmoid (S),
and Tanh-ReLU (S) all perform similarly or only slightly worse.
FashionMNIST matches this behavior, with ReLU-Tanh (S) and ReLU-Sigmoid
(S) close to ReLU (B), but still inferior.
On the ISOLET dataset we actually see a really interesting property. Not only
is ReLU-Sigmoid (S) able to catch up to ReLU (B), but it actually outperforms
ReLU (B) by quite a bit. This is fascinating when comparing the ReLU-Sigmoid
(S) model to the normal Sigmoid (B) and ReLU (B) models. Sigmoid, for exam-
ple, performs much worse when used alone. In terms of accuracy, the difference
is 0.44%.
Unfortunately, on the CIFAR10 dataset, ReLU-Sigmoid (S) does not perform
nearly as well. In this case, it is ReLU-Tanh (S) that performs as well as the
single ReLU (B) network, although the single Tanh (B) model performs poorly.
Ensembling two activation functions into one model on the MNIST dataset gives
similar results to the sequential models (see Figure B.18). ReLU-Tanh (E) and
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ReLU-Sigmoid (E) achieve almost the same loss as ReLU (B). On the FashionM-
NIST, ISOLET, and CIFAR10 datasets, we have a new, unexpected competitor.
ReLU-Sine (E) performs incredibly well on all of them. Its performance is roughly
equal to that of the single activation ReLU (B) network. This suggests that ei-
ther the network is “intentionally” missing the sine neurons, or the sine part of
the network is actually helping to extract features from the input space.

Random (R). Many of the random models perform similarly to the ReLU
models (see Figure B.19). For example, on the ISOLET dataset, ReLU-Tanh-
Sigmoid (R) outperforms ReLU (B) for some network sizes. On the FashionM-
NIST dataset, the ReLU-Tanh-Sine (R) model achieves a lower average loss than
ReLU (B).

Double-Lane (D). On the real-world datasets we see, in Figure B.20, a similar
behavior on all of them. The ReLU-Sigmoid (D) and ReLU-Tanh (D) Double-
Lane models do not perform quite as well, except for the ISOLET dataset, for
which the combination seems to improve larger networks. Interestingly, the
ReLU-Sine (D) combination is actually preferred on FashionMNIST and the ISO-
LET dataset. Other combinations, such as Sigmoid-Tanh (D), did not perform
noteworthy. The Appendix B.2 contains more results.

Triple-Lane (T). The Triple-Lane models perform well on the real-world datasets
(see Figure B.21). On the MNIST dataset, both ReLU-Tanh-Sigmoid (T) and
ReLU-Tanh-Sine (T) perform similarly to ReLU (B). ReLU-Tanh-Sine (T) out-
performs ReLU (B) on both FashionMNIST and ISOLET, especially for larger
models. On the ISOLET dataset, ReLU-Tanh-Sigmoid (T) also achieves lower
loss than ReLU (B). ReLU is preferred on all datasets for smaller number of
parameters.

Quad-Lane (Q). The performance of the Quad-Lane model is shown in Figure
B.22. The Quad-Lane model outperforms the ReLU (B) model in three out of four
cases. On the MNIST dataset, the Multi-Lane achieves only a slightly better loss.
The same is true for the FashionMNIST dataset. On the ISOLET dataset, the
Quad-Lane performs significantly better than ReLU (B). On CIFAR10, for the
model sizes where both models were tested, the ReLU model still outperforms the
ReLU-Tanh-Sigmoid-Sine (Q) model. ReLU (B) is consistently best for smaller
networks.

Modified Multi-Lane (MM). On real-world datasets, the smaller modified
Multi-Lane models generally perform poorly compared to ReLU (B) (see Figure
B.23). However, as the networks become larger, the performance approaches that
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of ReLU (B). The loss is smaller for ReLU-Sine (MM) on the ISOLET dataset.

Overview. In addition to the synthetic dataset, it is interesting to see how the
activation ensemble models perform on real-world datasets. Instead of presenting
all models individually, we limit the plots to the best performances. We plot the
three best performing models for each dataset in Figure 5.14. We also provide
the performance of ReLU (B) and Tanh (B) for all datasets as a reference.
Interestingly, neither the Random (R), nor the Ensemble (E) models are able
to keep up with the best networks. There is one Sequential (S) model, the
ReLU-Sigmoid (S), that is able to heavily outperform all other models on the
ISOLET dataset. All other models are of the Multi-Lane structure. For example
the ReLU-Tanh-Sine (T) Triple-Lane model is ranked along the top performing
datasets in three (MNIST, FashionMNIST and ISOLET) out of the four datasets.
For a more detailed analysis, we refer to the Appendix B.2.2.

5.3 Lane-Loss

5.3.1 Model Architecture

Instead of using a normal Multi-Lane model, we will use the Double Quad-Lane
model (see Figure 4.6). Because we are using datasets with nested mathematical
functions of level two (see Subsection 5.3.2), this should theoretically allow the
network to better learn the underlying function.

5.3.2 Datasets

We test our entropy loss on other synthetic datasets. The datasets we create are
made out of two nested mathematical operations. The datasets are defined as in
Table 5.3, with the given splits and ranges. Additionally, Poly-v1 is defined as

y(x1, x2) = 3x21 − 2x1x2 + 4x22 (5.3)

and Poly-v2 is defined as

y(x1, x2) = x21 +
x1x2
3

. (5.4)

5.3.3 Criterion: Weight Squares

We describe the experiments for the Lane-Loss model as in Chapter 4.3. We in-
spect the lanes the model chooses, disregarding the achieved best score. To keep
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Figure 5.14: Comparison of the model performance on the test set relative to
the number of parameters for four different datasets (MNIST, FashionMNIST,
ISOLET, CIFAR10), as defined in Section 5.1.1. The graphs show the trend of the
cross entropy loss on the test set as the model complexity increases. (S) indicates
that it is a sequential model with the first layer having a different activation
function to the second layer. (B) marks a pure, single activation function model.
(T), (Q) and (MM) stand for Triple-, Quad-, and Modified-Multi-Lane models,
respectively (as defined in 4). The graphs show the trend of the cross entropy loss
on the test set as the model complexity increases. Notably, most well performing
models rely at least partially on ReLU activation function. The ReLU-Sigmoid
(S) network does achieve lower losses than ReLU (B) on the ISOLET dataset.
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Dataset Train/Val/Test/OOD Samples TVT Range OOD Range

sinx1 + cosx2 7000/1500/1500/10000 [0, 4π] [0, 8π]
sinx1 · sinx2 7000/1500/1500/10000 [0, 4π] [0, 8π]

Poly-v1 7000/1500/1500/10000 [0, 20] [0, 40]
Poly-v2 7000/1500/1500/10000 [0, 10] [0, 20]

max(sinx1, sinx2) 7000/1500/1500/10000 [0, 4π] [0, 8π]

Table 5.3: Datasets used for the Lane-Loss experiments. The datasets are defined
as in column Dataset. Additionally textttPoly-v1 and textttPoly-v2 are defined
as in Equation 5.3 and 5.4. The second column shows the number of samples for
training, validating, testing and out-of-distribution (OOD). TVT Range shows
the range of the training, validation and testing samples, whereas OOD range
stands for the range of the out-of-distribution data.

the chapter concise, we only present models with 32 neurons per layer. Figure
5.15 shows the selected lanes for both the first Multi-Lane module and the sec-
ond Multi-Lane module. The model is trained on the dataset sin(x1) + cos(x2)
and uses 32 neurons per layer, resulting in eight neurons per lane per layer. It
shows that both ReLU and sine tracks dominate over identity and sigmoid. One
could argue that the model should choose a sine function for the first module and
an identity function in the second module for better performance. It seems to
choose the ReLU function instead of Identity. For the sin(x1) · sin(x2) dataset,
we swap the Identity lanes with LogExp lanes to give the model a chance at a
good multiplication activation function. The model’s choices are shown in Figure
5.16. The model does not choose the LogExp lane and instead combines the sine
and ReLU lanes. In particular, for larger models, the networks end up heavily
selecting the sigmoid lane, followed by a ReLU lane. But again, LogExp remains
unused. Next, we look at the max(sin(x1), sin(x2)) dataset. This should opti-
mally choose the sine lane, followed by a ReLU lane. As we see in Figure B.33
in Appendix B.5, that the model roughly does so. It favours the sine lane in
the first part of the network and then picks either ReLU or Sigmoid. Divergent
behaviour is visible for the textttPoly-v1 dataset. Again, we would like to see the
model choosing LogExp, to optimally rebuild the underlying function. However
the model clearly functions differently. Figure 5.17 shows, that the model not
only fails to choose LogExp, but it also almost exclusively picks the sine lane.
The network also fails to perform as expected on the last dataset, textttPoly-v2.
This time, the model is indecisive on the first Multi-Lane module. 5 out of 10
models chose the sine lane, the other 5 chose the ReLU lane. However, all models
chose the ReLU lane as the second lane.
For some models and datasets, this approach may work just fine. The model
often heavily favours the ReLU and the sine lane.This approach does not seem
to work optimally.
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Figure 5.15: Shows the lanes chosen from the model with Lane-Loss. There
were ten runs evaluated. The x-axis shows the lane that was chosen. The y-axis
indicates how often the lanes were selected. This model type was trained on the
sin(x1) + cos(x2) dataset. The model has 32 neurons per layer. Notably, the
first Multi-Lane module selects both the sine and the ReLU lane. The second
Multi-Lane module primarily chooses the ReLU lane.
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Figure 5.16: Shows the lanes chosen from the model with Lane-Loss. There were
ten runs evaluated. The x-axis shows the lanes that were chosen. The y-axis
indicates how often the lanes were selected. This model type was trained on the
sin(x1) · sin(x2) dataset. The model has 32 neurons per layer. Notably, the
first Multi-Lane module selects both the sine and the ReLU lane. The second
Multi-Lane module primarily chooses the ReLU lane.
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Figure 5.17: Shows the lanes chosen from the model with Lane-Loss. There were
ten runs evaluated. The x-axis shows the lanes that were chosen. The y-axis
indicates how often the lanes were selected. This model type was trained on
the textttPoly-v1 dataset (see Table 5.3). The model has 32 neurons per layer.
Notably, the first Multi-Lane module selects primarily the sine lane. The second
Multi-Lane module primarily chooses the sine as well.

The test/OOD score is still calculated from the models with the least valida-
tion losses. However, there are some things to consider. Because we are using
the models with the best validation loss, the model most often still uses all of
the lanes at least a bit. Furthermore, since we let the model converge to lowest
lane-loss as well, we let the training process continue for all of the 200 epochs
(remember that we used early stopping for most other models). This generally
also allows the model to get lucky more often.
We compare this model with single, pure activation function models with 4 lay-
ers.
On sin(x1) + cos(x2) and on sin(x1) · sin(x2), the sine models perform best for
smaller parameter count. However, the double Quad-Lane models consistently
perform well on all datasets. On three of the four datasets in Figure 5.18, the
DQL models achieve the lowest score. On the OOD range, the DQL models
show some instances with low loss. However, the average of the models does not
indicate a (better) generalization (see Appendix B.5).
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5.3.4 Criterion: Contribution

We now experiment with the contribution criterion. It is explained in Section
4.3. We first look at the selected lanes in Figure 5.19. It shows the chosen lanes
of the first and the second Multi-Lane module on the textttPoly-v1 dataset. In
contrast to the lane-loss with weights criterion, this model now does choose the
Log-Exp lane. The first module exclusively selects the LogExp lane, while the
second module chooses it 7 out of 10 times. On the max(sin(x1), sin(x2)) dataset
(see Figure B.33), the networks choose the sigmoid lane nine out of ten times for
the output lane. Whether or not this is related to the sigmoids similarity to sine
around its origin is not further explored. However, the model select the sine lane
in the first module 7 out of 10 times, which is what we would expect. For the
third dataset we look at the sin(x) · sin(y) dataset in Figure 5.20. For this
dataset, the double Quad-Lane model exclusively chooses Log-Exp and ReLU
lanes. One would expect the sine lane to be selected more often, because it is the
only activation function with periodicity.
The performance of the model with the best validation loss is shown in Figure
5.21. The DQL models with lane-loss perform consistently better or at least equal
to the baseline models. The variance of the models is somewhat higher, but not
excessively. The performance of the double Quad-Lane models is particularly
good with higher parameter count.
As can be seen in the next section, the good performance does not necessarily
have something to do with the Lane-Loss approach. The model certainly performs
superior because of the different activation functions used in the network. More
figures are found in the Appendix B.5.
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Figure 5.18: Comparison of model performance on the test set relative to the
number of parameters for four different datasets as described in Section 5.3.2.
(DQL) indicates that it is a Double Quad-Lane model with Lane-Loss and the
weight criterion. It has a structure as described in Figure 4.6. (B) marks a pure,
single activation function model. The graphs show the trend of the MSE loss on
the test set as the model complexity increases. Notably, on the upper datasets,
the Sine (B) models achieve the lowest scores for smaller number of parameters.
However, the more parameters the DQL networks have, the better it performs.
It performs best on three of the four datasets.
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Figure 5.19: Shows the lanes chosen from the model with Lane-Loss and the
contribution criterion. There were ten runs evaluated. The x-axis shows the
lanes that were chosen. The y-axis indicates how often the lanes were selected.
This model type was trained on the textttPoly-v1 dataset (see Table 5.3). The
model has 32 neurons per layer.

Figure 5.20: Shows the lanes chosen from the model with Lane-Loss and the
contribution criterion. There were ten runs evaluated. The x-axis shows the
lanes that were chosen. The y-axis indicates how often the lanes were selected.
This model type was trained on the textttPoly-v1 dataset (see Table 5.3). The
model has 32 neurons per layer.
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5.3.5 Eliminating Lanes

The Lane-Loss with the contribution criterion minimizes the impact of three of
the four lanes. Assuming the impact of one of these lanes is actually close to
zero, one could think that it only contributes as a remnant. This would mean,
that eliminating these “unused” lanes would improve performance. We therefore
delete these lanes and evaluate the test loss. Unfortunately this did not work as
intended. The average contribution magnitude of the neurons of different lanes
are shown in Figure 5.22. The model of the figure has learned sin(x) · sin(y) and
is evaluated with an input sample (9.0, 3.0). This initially indicates good learning
from the implemented entropy loss. However, when considering the contribution
of the whole lane and not the neurons, we get Figure 5.23. Even though the
values from the sine lane have higher magnitude, they get canceled out by each
other. Identity lane does not show large positive or negative values. However,
the values are all negative, resulting in a large contribution towards the output.
For future experiments it might be better to minimize the whole contribution of
the lanes, instead of the contribution of individual neurons of a lane.
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Figure 5.21: Comparison of model performance on the test set relative to the
number of parameters for four different datasets as described in Section 5.3.2.
(DQL) indicates that it is a Double Quad-Lane model with Lane-Loss and the
contribution criterion. It has a structure as described in Figure 4.6. (B) marks
a pure, single activation function model. The graphs show the trend of the MSE
loss on the test set as the model complexity increases. Notably, on the upper
datasets, the Sine (B) models achieve the lowest scores for smaller number of
parameters. However, the more parameters the DQL networks have, the better
it performs. It performs best on three of the four datasets.



5. Experiments and Results 50

Identity Sine ReLU Sigmoid
Lane

0

5

10

15

20

25

30

35

Av
g 

Co
nt

rib
ut

io
n

Figure 5.22: This shows the average contribution magnitude of the neurons in
the specific lane. The x-axis shows the lane. The y-axis represents the average
contribution (magnitude) of a neuron in the specific lane. This indicates good
minimizing of the lane-loss.
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Figure 5.23: This shows the contribution to the output from different lanes.
The x-axis shows the lane. The y-axis represents the contribution of the lanes.
Notably, the contribution of the lanes does not at all match the contribution of
neurons.
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5.4 Takeaways

In this section, we condense the findings from the experiments chapter for each
type of model.

Baseline (B). The baseline models perform somewhat as expected. The best
activation function for Sine, Addition, Multiplication, and Max dataset is sine,
identity, Log-Exp, and ReLU, respectively. This applies to both the training loss
and the out-of-distribution loss.

Sequential (S). Sequential models perform rather poorly on the synthetic
datasets. There are certain occasions with our synthetic data where a simpli-
fication with the identity function improves the performance. However, this is
not the intended purpose. The sequential model can have a positive effect on the
real-world datasets, as seen in Figure 5.14.

Ensemble (E)/Random (R). Ensemble as well as Random models have a
similar effect on performance. They reach similar performance as a combination
of activation functions, than their single activation function model equivalent. So
instead of testing different activation function for each dataset, the combination
of these functions will achieve acceptable results on all of the synthetic datasets.
Unfortunately, the models do not adapt well to out-of-distribution ranges of some
datasets.

Multi-Lane ((D), (T), (Q)). Our Multi-Lane models exhibit comparable
performance to the Random (R) models. Specifically, the Multi-Lane model
excels on our simpler, computation-based datasets, effectively balancing perfor-
mance across different datasets. Instead of experiencing inconsistent performance
- poor on some datasets and good on others - the Multi-Lane model mitigates
these variabilities. Some models achieve satisfactory results across all of the test
sets from diverse datasets. There are some instances of the model that generalize
well on some datasets. However, in general, the generalization error does not
improve substantially.
Some Multi-Lane model show consistent accuracy improvements over ReLU (B)
and other activation ensemble models on the real-world datasets.
Furthermore, the Multi-Lane model has one advantage compared to normal en-
semble models. Because of its structure, it is easy to eliminate lanes from the
given network (Lane-Loss), to either compress the network to a smaller size or
to further increase performance.
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Lane-Loss. The implemented Lane-Loss regularizes the contribution of differ-
ent lanes. An entropy loss helps the model select a specific lane with a distinct
activation function. Although the model chooses the right lane in some cases,
the elimination of the other lanes is not yet possible. The contribution of these
lanes to the output is still too big.



Chapter 6

Conclusion and Future Work

Recent research suggests that relying solely on one single activation function in
a network may not be optimal. This thesis combines various activation functions
in feed-forward neural networks and explores their effects. We conducted tests on
different models using synthetic datasets involving operations such as addition
and multiplication, as well as real-world datasets such as MNIST and CIFAR10.
The findings indicate that using a combination of activation functions can have a
positive impact on performance, especially on the synthetic datasets. They can
overcome the limitations of a single activation function network, which may per-
form well on some datasets but poorly on others. The ensemble models reduce the
variance in overall performance and even achieve lower loss on certain datasets.
The model maintains a high level of performance and demonstrates robustness
across all of our synthetic datasets. However, while there are instances of models
with improved generalization, altogether the improvement is not significant in
our testing.
On real-world datasets, specific combinations outperform the classical ReLU net-
work, whereas systems lacking ReLU achieve lower accuracy. We then introduce
the novel Multi-Lane network architecture. It demonstrates similar performance
compared to conventional activation mixture models on all synthetic datasets.
Once again, the models struggle to adapt to out-of-distribution ranges.
Analyzing the contribution of the different lanes of the Multi-Lane network re-
veals, that the network successfully learns the underlying function primarily
through the lane with the more suitable activation function.
The Multi-Lane consistently demonstrates good results on real-world datasets.
The Quad-Lane model (Multi-Lane with four lanes) exhibits a lower test loss
than the ReLU models on three out of four real-world datasets (with the same
number of parameters).
Moreover, we introduce the concept of Lane-Loss to our Multi-Lane network. Our
Lane-Loss approach aims to enable the model to minimize the influence of lanes,
or rather to select the optimal one. We tested the modified model on synthetic,
math-formula datasets. The model with Lane-Loss consistently achieves low loss
values across all of the tested datasets. This was implemented by introducing
an entropy loss with two different criteria. However, the Lane-Loss approach did

53



6. Conclusion and Future Work 54

not lead to further performance improvement.
While the thesis provides insights into the impact of activation combinations, it
is important to consider certain limitations. The choice of the Adam optimizer,
learning rate, and loss function have an influence on performance. The differ-
ent model architectures, especially with varying ratio of parameters to neurons,
might have a considerable impact. The synthetic dataset ranges were not further
investigated, therefore a model’s behavior is not necessarily transferable to other
or larger training ranges. Despite these limitations, this study contributes valu-
able information to the understanding of activation functions in neural networks.
Our study establishes the foundation for future experiments. These experiments
could extend our findings to other promising network architectures, such as con-
volutional neural networks, transformers, and recurrent neural networks. An
improved criterion for the Lane-Loss might enhance the network’s robustness
and scope of application. Additionally, further investigation of the Lane-Loss
could increase performance and lead to effective elimination of lanes. This could
enable the model to be compressed, providing an opportunity to save memory
space.
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Appendix A

Models and Setup

A.1 Calculate the Number of Parameters

A.1.1 Fully Connected Network

The number of parameters inside a fully connected network is calculated as fol-
lows. The parameters are made up of weights and biases. Additionally, for batch
normalization (real-world datasets) there are two parameters per neuron. May l
be the number of layers and n is the number of neurons per layer. i is the number
of input features and m the number of outputs.
Weights between input to first hidden layer: i · n
Weights between hidden layers: (l − 1) · n2

Weights between last hidden layer and output: m · n
Biases: l · n+m
Additionally with batch normalization (two parameters per neuron in the hidden
layers): 2 · l · n
This results in:
(l − 1) · n2 + (i+m+ l) · n+m,
for synthetic datasets and
(l − 1) · n2 + (i+m+ 3 · l) · n+m,
for real-world datasets.

A.1.2 Multi-Lane Network

The number of parameters inside a Multi-Lane network is calculated as follows.
The parameters are made up of weights and biases. Additionally, for batch
normalization (real-world datasets) there are two parameters per neuron. May l
be the number of layers and n is the number of neurons per layer. i is the number
of input features and m the number of outputs. r is the number of lanes used in
the network.
Weights between input to first hidden layer: i · n
Weights between hidden layers: r · (l − 1) · (nr )

2

A-1



Models and Setup A-2

Weights between last hidden layer and output: m · n
Biases: l · n+m
Additionally with batch normalization (two parameters per neuron in the hidden
layers): 2 · l · n
This results in:
l−1
r · n2 + (i+m+ l) · n+m,

parameters for the synthetic datasets and
l−1
r · n2 + (i+m+ 3 · l) · n+m,

parameters for the real-world datasets.

A.2 Learning Rates

For the synthetic datasets, we most often used two different learning rates. This
is because there were big differences between activation functions and sizes of the
network. Larger networks for example generally prefer smaller learning rate. The
real-world datasets use a learning rate as specified in Table. We made some test
runs to see how many epochs the models run for and decided then appropriately.

Dataset Learning Rates

Addition 0.0005
Multiplication 0.005, 0.0005

Sine 0.01, 0.001
Max 0.005, 0.0005

MNIST 0.0001
FashionMNIST 0.0001

ISOLET 0.0001
CIFAR10 0.00001

sin(x1) + cos(x2) 0.001
sin(x1) · sin(x2) 0.001

max(sin(x1), sin(x2)) 0.01, 0.0001
Poly-v1 0.01, 0.0001
Poly-v2 0.0005, 0.00001

Table A.1: Learning rates used for training the different datasets. The learning
rate is fixed during the training. If the learning rates are defined, the training
were completed with both. The better score was then used for comparison.
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Further Results

B.1 2D Loss Heatmaps

In the following part we added different 2D loss heatmaps. The heatmaps are
made from different datasets and different model sizes. The information is ap-
pended in the figure captions. For more information we refer to Chapter 5.

B-1
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Figure B.1: MSE loss landscape for four different activation functions on the
Addition dataset. The network consists of two layers with 128 neurons each.
The two axis of each plot represent the two inputs to the network. The loss
of the network is color-coded according to the color bar. The red rectangle
indicates the area the model was trained on. The Identity activation shows
superior performance. Both sigmoid and sine show a diagonal ribbon where the
loss is minimized. In comparison to the low-complexity model in Figure 5.4, the
sigmoid and sine versions perform better on the test range. The ReLU model
also fans up, covering now the upper right quarter of the plane instead of only
the right side at the expense of increased loss in the training region.
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Figure B.2: MSE loss landscape for four different activation functions on the Sine
dataset. The two axis of each plot represent the two inputs to the network. The
loss of the network is color-coded according to the color bar. The red rectangle
indicates the area the model was trained on. In comparison to the prior plot, the
used network contains only two layers with 8 neurons each. The sine activation
shows superior performance. Interestingly the Sine model shows a large stripe
with low loss values. All other models show poor performance outside of the
training area.
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Figure B.3: MSE loss landscape for four different activation functions on the Max
dataset. The network consists of two layers with 8 neurons each. The two axis
of each plot represent the two inputs to the network. The loss of the network is
color-coded according to the color bar. The red rectangle indicates the area the
model was trained on.
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Figure B.4: MSE loss landscape for four different activation functions on the Max
dataset. The network consists of two layers with 128 neurons each. The two axis
of each plot represent the two inputs to the network. The loss of the network is
color-coded according to the color bar. The red rectangle indicates the area the
model was trained on.
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Figure B.5: MSE loss landscape for four different activation functions on the
Multiplication dataset. The network consists of two layers with 8 neurons
each. The two axis of each plot represent the two inputs to the network. The
loss of the network is color-coded according to the color bar. The red rectangle
indicates the area the model was trained on.
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Figure B.6: MSE loss landscape for four different activation functions on the
Multiplication dataset. The network consists of two layers with 128 neurons
each. The two axis of each plot represent the two inputs to the network. The
loss of the network is color-coded according to the color bar. The red rectangle
indicates the area the model was trained on.
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B.2 Model Performances

B.2.1 Synthetic Datasets

This sections shows the results of models trained on the synthetic datasets. For
more information about the datasets see Section 5.2. For more information about
the model architectures and their abbreviation see Section 4. The figures show
the performance of the model with regards to the number of parameters. The x-
axis represents the test loss of the model, while the y-axis represents the number
of parameters. For more information about the performance of the models see
Chapter 5.



Further Results B-7

102 103 104 105

Number of Parameters

10 11

10 9

10 7

10 5

10 3

10 1

101

OO
D 

Lo
ss

 (M
SE

)

Sine Dataset

102 103 104 105

Number of Parameters

10 5

10 3

10 1

101

103

OO
D 

Lo
ss

 (M
SE

)

Addition Dataset

102 103 104 105

Number of Parameters

101

102

103

104

105

OO
D 

Lo
ss

 (M
SE

)

Multiplication Dataset

102 103 104 105

Number of Parameters

10 4

10 2

100

102

104

OO
D 

Lo
ss

 (M
SE

)

Max Dataset

ReLU(B)
ReLU-Sine(S)
Sine(B)

Sine-Identity(S)
Identity(B)

Identity-ReLU(S)
ReLU-Identity(S)

Log-Exp(B)
Sigmoid(B)

Tanh-Sigmoid(S)
ReLU-Tanh(S)

Figure B.7: Comparison of model performance on the OOD set relative
to the number of parameters for four different datasets (Sine, Addition,
Multiplication, Max) as described in Section 5.1.1. (S) indicates that it is a
sequential model with the first layer having a different activation function to the
second layer. (B) marks a pure, single activation function model. The graphs
show the trend of the MSE loss on the out-of-distribution set as the model com-
plexity increases. Notably, on the Sine dataset, the Identity-Sine (S) and Sine-
Identity (S) model adapt really well to the new data. The Identity-ReLU (S)
model in some occasions scores equally as low as than Identity (B) network on
the Addition dataset. Furthermore, the Log-Exp (B) is still the sole model gen-
eralizing on the Multiplication dataset.
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Figure B.8: Comparison of model performance on the test set relative to the num-
ber of parameters for four different datasets (Sine, Addition, Multiplication,
Max) as described in Section 5.1.1. (E) indicates that it is a ensembling model
with the two layers being divided into two halves, each using a different activa-
tion function. (S) is a sequential model with the first layer having a different
activation function to the second layer. (B) marks a pure, single activation func-
tion model. The graphs show the trend of the MSE loss on the test set as the
model complexity increases. Interestingly, neither the Sine-Identity (E) nor the
Sine-Sigmoid (E) models come close to the Identity-Sine (S) model performance
wise. Nevertheless various ensembling models perform similarly well to the ReLU
(B) model on the Max dataset.
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Figure B.9: Comparison of model performance on the OOD set relative
to the number of parameters for four different datasets (Sine, Addition,
Multiplication, Max) as described in Section 5.1.1. (E) indicates that it is
a ensembling model with the two layers being divided into two halves, each using
a different activation function. (S) is a sequential model with the first layer hav-
ing a different activation function to the second layer. (B) marks a pure, single
activation function model. The graphs show the trend of the MSE loss on the
out-of-distribution set as the model complexity increases. Notably, on the Sine
dataset, none of the ensembling models partially containing the sine activation
function are able to compete with the Identity-Sine (S) model. There are however
individual ensembling models outperforming the Sine (B) models. Similar things
happen on the Addition dataset. Only certain instances of the Identity-Sine(E)
model, are able to exhibit similar performance to Identity (B).
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Figure B.10: Comparison of model performance on the OOD set relative
to the number of parameters for four different datasets (Sine, Addition,
Multiplication, Max) as described in Section 5.1.1. (R) indicates that it is a
random model, meaning that for every neuron in the network a random activation
function is chosen from the given set. (B) marks a pure, single activation function
model. The graphs show the trend of the MSE loss on the out-of-distribution
set as the model complexity increases. Notably, ReLU-Identity-Tanh (R) and
ReLU-Identity-Sine (R) adapt equally strongly to the OOD range than ReLU
(B), particularly lower-parameter models. On other Sine dataset it is the ReLU-
Identity-Sine (R) and ReLU-Identity-Sine-Tanh-Sigmoid (R) models that are able
to outperform the Sine (B) models in some cases.
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Figure B.11: Comparison of model performance on the OOD set relative
to the number of parameters for four different datasets (Sine, Addition,
Multiplication, Max) as described in Section 5.1.1. (D) indicates that it is
a Doublelane model, consisting of two different lanes of neurons (see Figure
4.4). (B) marks a pure, single activation function model. The graphs show
the trend of the MSE loss on the out-of-distribution set as the model complexity
increases. Notably, for lower-parameter networks, LogExp-Sine (D) as well as
LogExp-ReLU (D) on average adapt better to OOD data than LogExp (B) itself
on the Multiplication dataset. LogExp-ReLU (D) not only achieves low loss
values there, but also on the Max dataset.
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Figure B.12: Comparison of model performance on the OOD set relative
to the number of parameters for four different datasets (Sine, Addition,
Multiplication, Max) as described in Section 5.1.1. (T) indicates that it is
a Triplelane model, consisting of three different lanes of neurons. (B) marks a
pure, single activation function model. The graphs show the trend of the MSE
loss on the out-of-distribution set as the model complexity increases. Unfor-
tunately, the LogExp-Identity-Sine (T) model is not able to carry the low loss
values from test to OOD data. However, we see that ReLU-Identity-Sine (T)
shows good adaptation abilities for low-parameter networks.
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Figure B.13: Comparison of model performance on the test set relative
to the number of parameters for four different datasets (Sine, Addition,
Multiplication, Max) as described in Section 5.1.1. (Q) indicates that it is
a Quadlane model, consisting of four different lanes of neurons. (B) marks a
pure, single activation function model. The graphs show the trend of the MSE
loss on the test set as the model complexity increases. Notably, LogExp-Identity-
Sine-ReLU (Q) performs well on Multiplication and Max dataset. On the Sine
dataset the model is not able to consistently perform close to Sine (B).
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Figure B.14: Comparison of model performance on the OOD set relative
to the number of parameters for four different datasets (Sine, Addition,
Multiplication, Max) as described in Section 5.1.1. (Q) indicates that it is a
Quadlane model, consisting of four different lanes of neurons. (B) marks a pure,
single activation function model. The graphs show the trend of the MSE loss on
the out-of-distribution set as the model complexity increases. LogExp-Identity-
Sine-ReLU (Q) achieves similarly low loss values for both Multiplication and
Max dataset. Some instances of Sigmoid-Identity-Sine-Tanh (Q) adapt very well
to OOD ranges on both Sine and Addition dataset.
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Figure B.15: Comparison of model performance on the OOD set relative
to the number of parameters for four different datasets (Sine, Addition,
Multiplication, Max) as described in Section 5.1.1. (MM) indicates that it
is a modified Multi-Lane model. It has a structure as described in Figure 4.5.
The graphs show the trend of the MSE loss on the out-of-distribution set as the
model complexity increases. Notably, Identity-Sine (MM) also performs well on
OOD data. This applies for both the Sine and the Addition dataset.
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B.2.2 Real-World Datasets

This section shows further performances of models trained on the real-world
datasets. For more information we refer to Chapter 5.
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Figure B.16: Comparison of the model performance on the test set relative to
the number of parameters for four different datasets (MNIST, FashionMNIST,
ISOLET, CIFAR10), as defined in Section 5.1.1. The graphs show the trend of
the cross entropy loss on the test set as the model complexity increases. Notably,
ReLU consistently outperforms the other activation functions on all the datasets.
Tanh generally performs better than Sigmoid. Somewhat surprisingly the sine
model is able to compete with ReLU on the ISOLET dataset. Log-Exp (B) did
not perform good enough to include it.
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Figure B.17: Comparison of the model performance on the test set relative to
the number of parameters for four different datasets (MNIST, FashionMNIST,
ISOLET, CIFAR10), as defined in Section 5.1.1. (S) indicates that it is a sequen-
tial model with the first layer having a different activation function to the second
layer. (B) marks a pure, single activation function model. The graphs show the
trend of the cross entropy loss on the test set as the model complexity increases.
Notably, most well performing models rely at least partially on ReLU activation
function. The ReLU-Sigmoid (S) network does achieve lower losses than ReLU
(B) on the ISOLET dataset.
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Figure B.18: Comparison of the model performance on the test set relative to
the number of parameters for four different datasets (MNIST, FashionMNIST,
ISOLET, CIFAR10), as defined in Section 5.1.1. (E) indicates that it is a en-
sembling model with the two layers being divided into two halves, each using a
different activation function. (B) marks a pure, single activation function model.
The graphs show the trend of the cross entropy loss on the test set as the model
complexity increases. Notably, the ReLU-Sine (E) model consistently challenges
the ReLU (B) model on all datasets.
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Figure B.19: Comparison of the model performance on the test set relative to
the number of parameters for four different datasets (MNIST, FashionMNIST,
ISOLET, CIFAR10), as defined in Section 5.1.1. (R) indicates that it is a ran-
dom model, meaning that for every neuron in the network a random activation
functions is chosen from the given set. (B) marks a pure, single activation func-
tion model. The graphs show the trend of the cross entropy loss on the test set
as the model complexity increases. Notably, the ReLU-Tanh-Sigmoid (R) model
performs superior to ReLU (B) for some sizes of networks.
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Figure B.20: Comparison of the model performance on the test set relative to
the number of parameters for four different datasets (MNIST, FashionMNIST,
ISOLET, CIFAR10), as defined in Section 5.1.1. (D) indicates that it is a Double-
Lane model containing two different lanes of activation functions as in Figure 4.4.
(B) marks a pure, single activation function model. Notably, the ReLU-Sine (D)
model achieves superior performance compared to ReLU (B) for some cases on
the ISOLET as well as the FashionMNIST dataset.
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Figure B.21: Comparison of the model performance on the test set relative to the
number of parameters for four different datasets (MNIST, FashionMNIST, ISO-
LET, CIFAR10), as defined in Section 5.1.1. (T) indicates that it is a Triplelane
model containing three different lanes of activation functions. (B) marks a pure,
single activation function model. Surprisingly, ReLU-Tanh-Sine (T) ourperform
ReLU (B) on three of the four datasets. ReLU-Tanh-Sigmoid (T) also shows
superior performance to ReLU (B)
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Figure B.22: Comparison of the model performance on the test set relative to the
number of parameters for four different datasets (MNIST, FashionMNIST, ISO-
LET, CIFAR10), as defined in Section 5.1.1. (Q) indicates that it is a Quadlane
model containing four different lanes of activation functions. (B) marks a pure,
single activation function model. Notably, the best performance on three of the
four datasets was achieved by the quadlane model.
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Figure B.23: Comparison of the model performance on the test set relative to
the number of parameters for four different datasets (MNIST, FashionMNIST,
ISOLET, CIFAR10), as defined in Section 5.1.1. (MM) indicates that it is a
modified Multi-Lane model.It has a structure as described in Figure 4.5. (B)
marks a pure, single activation function model. Notably, larger ReLU-Tanh (MM)
models perform at least as good as ReLU (B) models on all datasets.
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Figure B.24: Comparison of the two lanes within the Doublelane model that is
trained on the Sine dataset. The x-axis represents the first input while the y-axis
represents the second input. The values are color-coded according to the color
bar and show the contribution of the lanes to the final output. The first plot
shows the contribution of the ReLU lane of the network. The subsequent plot
displays the contribution of the Identity lane. The third plot shows the output
labels for the input 1 and 2. Notably, the ReLU lane retains most of the structure
of the output, whereas the Identity lane contributes with a linear transition.

B.3 Lane Contribution

This section includes figures of the lane contribution. It shows, how much each
lane of a Double-Lane models contributes to the output. The right plot shows
the labels for the input data x1 and x2.



Further Results B-26

0 5 10 15 20
x1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

x 2

ReLU-Lane

0 5 10 15 20
x1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

x 2

Sine-Lane

0 5 10 15 20
x1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

x 2

Ground Truth

5

0

5

10

15

20

Ou
tp

ut
 V

al
ue

Sine Dataset Multilane (2 Lanes, 2 Layers, 128 Neurons per Layer)

Figure B.25: Comparison of the two lanes within the Doublelane model that is
trained on the Sine dataset. The x-axis represents the first input while the y-axis
represents the second input. The values are color-coded according to the color
bar and show the contribution of the lanes to the final output. The first plot
shows the contribution of the ReLU lane of the network. The subsequent plot
displays the contribution of the sine lane. The third plot shows the output labels
for the input 1 and 2.
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Figure B.26: Comparison of the two lanes within the Doublelane model that is
trained on the Max dataset. The x-axis represents the first input while the y-axis
represents the second input. The values are color-coded according to the color
bar and show the contribution of the lanes to the final output. The first plot
shows the contribution of the LogExp lane of the network. The subsequent plot
displays the contribution of the Identity lane. The third plot shows the output
labels for the input 1 and 2.
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Figure B.27: Comparison of the two lanes within the Doublelane model that is
trained on the Max dataset. The x-axis represents the first input while the y-axis
represents the second input. The values are color-coded according to the color
bar and show the contribution of the lanes to the final output. The first plot
shows the contribution of the LogExp lane of the network. The subsequent plot
displays the contribution of the ReLU lane. The third plot shows the output
labels for the input 1 and 2.
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Figure B.28: Comparison of the two lanes within the Doublelane model that is
trained on the Sine dataset. The x-axis represents the first input while the y-axis
represents the second input. The values are color-coded according to the color
bar and show the contribution of the lanes to the final output. The first plot
shows the contribution of the LogExp lane of the network. The subsequent plot
displays the contribution of the Identity lane. The third plot shows the output
labels for the input 1 and 2.
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Figure B.29: Comparison of the two lanes within the Doublelane model that is
trained on the Sine dataset. The x-axis represents the first input while the y-axis
represents the second input. The values are color-coded according to the color
bar and show the contribution of the lanes to the final output. The first plot
shows the contribution of the ReLU lane of the network. The subsequent plot
displays the contribution of the Sigmoid lane. The third plot shows the output
labels for the input 1 and 2.
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Figure B.30: Comparison of the two lanes within the Doublelane model that
is trained on the Multiplication dataset. The x-axis represents the first input
while the y-axis represents the second input. The values are color-coded according
to the color bar and show the contribution of the lanes to the final output. The
first plot shows the contribution of the Tanh lane of the network. The subsequent
plot displays the contribution of the Sigmoid lane. The third plot shows the
output labels for the input 1 and 2.
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Figure B.31: Comparison of the two lanes within the Doublelane model that
is trained on the Multiplication dataset. The x-axis represents the first input
while the y-axis represents the second input. The values are color-coded according
to the color bar and show the contribution of the lanes to the final output.
The first plot shows the contribution of the LogExp lane of the network. The
subsequent plot displays the contribution of the Identity lane. The third plot
shows the output labels for the input 1 and 2.
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Figure B.32: Comparison of the gradient magnitude for two different lanes within
a Double-Lane model. The compared plots were trained on the Max dataset, with
each one of the models having a different size. The x-axis represents the activation
functions of the two lanes. The y-axis indicates the average gradient magnitude
of the activations in a lane. Notably, the gradient of the ReLU activations with
respect to the loss is smaller than the gradients of identity activations. This does
not match the expectation.

B.4 Activation Gradients

This section shows the activation gradients for different Double-Lane models.
The expectation is, that the gradient magnitude is higher, when the lane is more
important.
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Figure B.33: Shows the lanes chosen from the model with Lane-Loss and the
contribution criterion. There were ten runs evaluated. The x-axis shows the
lanes that were chosen. The y-axis indicates how often the lanes were selected.
This model type was trained on the max(sin(x1), sin(x2)) dataset (see Table
5.3). The model has 32 neurons per layer.

B.5 Lane-Loss

This section provides additional information for our Lane-Loss experiments de-
scribed in Section 4.3.
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Figure B.34: Shows the lanes chosen from the model with Lane-Loss and the
contribution criterion. There were ten runs evaluated. The x-axis shows the
lanes that were chosen. The y-axis indicates how often the lanes were selected.
This model type was trained on the textttPoly-v2 dataset (see Table 5.3). The
model has 32 neurons per layer.

Figure B.35: Shows the lanes chosen from the model with Lane-Loss and the
contribution criterion. There were ten runs evaluated. The x-axis shows the
lanes that were chosen. The y-axis indicates how often the lanes were selected.
This model type was trained on the textttPoly-v1 dataset (see Table 5.3). The
model has 32 neurons per layer.
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Figure B.36: Comparison of model performance on the OOD set relative to the
number of parameters for four different datasets as described in Section 5.3.2.
(DQL) indicates that it is a Double Quad-Lane model with Lane-Loss and the
weight criterion. It has a structure as described in Figure 4.6. (B) marks a pure,
single activation function model. The graphs show the trend of the MSE loss on
the test set as the model complexity increases.
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Figure B.37: Comparison of model performance on the test set relative to the
number of parameters for four different datasets as described in Section 5.3.2.
(DQL) indicates that it is a Double Quad-Lane model with Lane-Loss and the
weight criterion. It has a structure as described in Figure 4.6. (B) marks a pure,
single activation function model. The graphs show the trend of the MSE loss on
the test set as the model complexity increases.



Further Results B-35

102 103 104 105 106

Number of Parameters

10 4

10 2

100

102

104

OO
D 

Lo
ss

 (M
SE

)

sin(x1) + cos(x2) Dataset

102 103 104 105 106

Number of Parameters

10 4

10 3

10 2

10 1

100

101

102

OO
D 

Lo
ss

 (M
SE

)

sin(x1) sin(x2) Dataset

102 103 104 105 106

Number of Parameters

104

105

106

107

108

109

1010

1011

OO
D 

Lo
ss

 (M
SE

)

Poly-v1 Dataset

102 103 104 105 106

Number of Parameters

104

106

108

1010

OO
D 

Lo
ss

 (M
SE

)

Poly-v2 Dataset

Identity-Sine-ReLU-Sigmoid(DQL)
LogExp-Sine-ReLU-Sigmoid(DQL)

ReLU(B)
Sigmoid(B)

Sine(B)
Tanh(B)

Log-Exp(B)

Figure B.38: Comparison of model performance on the OOD set relative to the
number of parameters for four different datasets as described in Section 5.3.2.
(DQL) indicates that it is a Double Quad-Lane model with Lane-Loss and the
weight criterion. It has a structure as described in Figure 4.6. (B) marks a pure,
single activation function model. The graphs show the trend of the MSE loss on
the test set as the model complexity increases.
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Figure B.39: Comparison of model performance on the OOD set relative to the
number of parameters for four different datasets as described in Section 5.3.2.
(DQL) indicates that it is a Double Quad-Lane model with Lane-Loss and the
contribution criterion. It has a structure as described in Figure 4.6. (B) marks
a pure, single activation function model. The graphs show the trend of the MSE
loss on the test set as the model complexity increases.
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Figure B.40: Comparison of model performance on the test set relative to the
number of parameters for four different datasets as described in Section 5.3.2.
(DQL) indicates that it is a Double Quad-Lane model with Lane-Loss and the
contribution criterion. It has a structure as described in Figure 4.6. (B) marks
a pure, single activation function model. The graphs show the trend of the MSE
loss on the test set as the model complexity increases.
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Figure B.41: Comparison of model performance on the OOD set relative to the
number of parameters for four different datasets as described in Section 5.3.2.
(DQL) indicates that it is a Double Quad-Lane model with Lane-Loss and the
contribution criterion. It has a structure as described in Figure 4.6. (B) marks
a pure, single activation function model. The graphs show the trend of the MSE
loss on the test set as the model complexity increases.



Appendix C

Overall Results

The following tables show the overall results of the top one hundred models tested
on the dataset. They are sorted by ’Test Loss’ in ascending order. We also include
the number of parameters for each model. For the real-world datasets we add
the test accuracy as a reference point.

C.1 CIFAR10 Dataset

Model Type CE Loss Acc Parameters

ReLU-Tanh(S) 1.962488 50.110176 3110410
ReLU(B) 1.963393 50.349559 4210698
ReLU-Tanh-Sigmoid(T) 1.963702 49.600361 5379010
ReLU(B) 1.964530 50.221354 3110410
ReLU-Tanh(MM) 1.964591 49.927885 3082960
ReLU-Tanh(E) 1.964717 49.687500 4210698
ReLU-Sigmoid(D) 1.965195 50.025040 8176010
ReLU-Tanh(S) 1.965273 49.688502 4210698
ReLU-Sine(E) 1.966419 49.910857 3110410
ReLU-Tanh-Sigmoid-Sine(Q) 1.966864 49.203726 5577610
ReLU-Sine(E) 1.967903 49.419071 4210698
ReLU-Tanh(MM) 1.968077 49.720553 2563490
ReLU-Sine(D) 1.968551 49.733574 2790410
ReLU-Tanh-Sine(R) 1.968563 49.294872 3110410
ReLU-Tanh(S) 1.968630 49.602364 1843210
ReLU(B) 1.968685 49.860777 1843210
ReLU-Tanh(E) 1.970221 49.331931 3110410
ReLU-Tanh-Sigmoid-Sine(R) 1.970544 49.028446 4210698
ReLU-Sine-Sigmoid(R) 1.970716 49.496194 4210698
ReLU-Tanh-Sigmoid(T) 1.970783 48.920272 3047410
ReLU-Sine(D) 1.970809 49.565304 3588010
ReLU-Sigmoid-Sine(T) 1.971694 49.074519 3047410

C-1
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ReLU-Tanh-Sine(T) 1.971694 49.074519 3047410
ReLU-Tanh(D) 1.971991 49.011418 8176010
ReLU-Tanh-Sigmoid(R) 1.972234 49.116587 4210698
ReLU-Tanh-Sigmoid-Sine(Q) 1.972327 48.626803 2979910
ReLU-Sine-Sigmoid(R) 1.972375 49.164663 3110410
ReLU-Sine-Sigmoid(R) 1.972635 49.364984 1843210
ReLU-Sigmoid(D) 1.972747 49.679487 2790410
ReLU-Tanh-Sine(T) 1.972805 48.789062 1971610
ReLU-Sigmoid-Sine(T) 1.972805 48.789062 1971610
ReLU-Sine(E) 1.973419 49.299880 1843210
ReLU-Sigmoid(E) 1.973544 49.167668 4210698
ReLU-Tanh-Sine(R) 1.973885 49.013421 4210698
ReLU-Sigmoid(D) 1.974510 49.221755 3588010
ReLU-Sigmoid(E) 1.975245 49.295873 3110410
ReLU-Tanh-Sigmoid-Sine(Q) 1.975749 48.406450 2489770
ReLU-Tanh-Sigmoid(R) 1.975858 48.886218 1843210
ReLU-Sine(D) 1.976077 49.130609 2069740
ReLU-Tanh-Sigmoid(R) 1.976256 48.792067 3110410
ReLU-Tanh-Sigmoid-Sine(R) 1.976319 49.002404 1843210
ReLU-Tanh(MM) 1.976579 48.911258 1295210
ReLU-Tanh-Sigmoid(T) 1.977429 48.226162 1971610
ReLU-Sigmoid(E) 1.977435 49.034455 1843210
ReLU-Tanh(E) 1.977459 49.061498 1843210
ReLU-Sigmoid(D) 1.977481 49.193710 2069740
ReLU-Tanh-Sigmoid-Sine(R) 1.977531 48.610777 3110410
ReLU-Tanh-Sine(T) 1.978131 48.231170 1254250
ReLU-Sigmoid-Sine(T) 1.978131 48.231170 1254250
ReLU-Tanh(D) 1.978151 48.851162 2790410
ReLU-Sine(D) 1.979025 48.837139 1385170
ReLU-Tanh-Sine(R) 1.979524 48.531651 1843210
ReLU-Tanh-Sigmoid(T) 1.979817 48.113982 1254250
ReLU-Tanh(D) 1.980065 48.599760 2069740
ReLU-Tanh(D) 1.981326 48.488582 3588010
ReLU-Sigmoid(D) 1.982442 48.396434 1385170
ReLU-Tanh-Sigmoid-Sine(Q) 1.984303 47.576122 1274410
ReLU-Sigmoid(MM) 1.984546 47.967748 1295210
ReLU-Tanh(D) 1.986138 48.325321 1385170
ReLU(B) 1.987694 47.887620 411658
ReLU-Tanh(S) 1.987987 47.759415 411658
ReLU-Sine(E) 1.994618 46.893029 411658
ReLU-Tanh(E) 1.996457 46.766827 411658
ReLU-Tanh-Sine(T) 1.997253 46.344151 470410
ReLU-Sigmoid-Sine(T) 1.997542 46.498397 470410
ReLU-Tanh-Sigmoid(T) 1.998358 46.415264 470410
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ReLU-Tanh-Sine(R) 1.998475 46.723758 411658
ReLU-Sine(D) 2.000466 46.683694 429226
ReLU-Tanh-Sigmoid(R) 2.002828 46.101763 411658
ReLU-Sine-Sigmoid(R) 2.003175 46.166867 411658
ReLU-Tanh(D) 2.003346 46.244992 429226
Sigmoid-ReLU(S) 2.003527 46.353165 4210698
Sigmoid-ReLU(S) 2.003580 46.361178 3110410
Tanh-ReLU(S) 2.004033 46.279046 4210698
ReLU-Sigmoid(S) 2.004500 46.679688 4210698
Sigmoid-Sine(E) 2.005669 45.709135 4210698
ReLU-Tanh(MM) 2.005671 45.573918 375970
Tanh-ReLU(S) 2.005824 46.200921 3110410
ReLU-Tanh-Sigmoid-Sine(R) 2.006145 45.889423 411658
ReLU-Sigmoid(S) 2.006177 46.721755 3110410
ReLU-Tanh(S) 2.006788 45.535857 201738
Sigmoid-Sine(D) 2.007227 45.518830 8176010
ReLU-Tanh-Sigmoid-Sine(Q) 2.007354 45.756210 373930
Sigmoid-Sine(D) 2.007817 45.490785 3588010
ReLU-Sigmoid(D) 2.008373 45.564904 429226
Tanh-ReLU(S) 2.008376 45.816306 1843210
Tanh-Sine(E) 2.008643 45.677083 1843210
Sigmoid-ReLU(S) 2.009046 46.007612 1843210
Sigmoid-Sine(E) 2.009299 45.312500 3110410
ReLU(B) 2.009320 45.355569 201738
Sigmoid-Sine(E) 2.009430 45.528846 1843210
ReLU-Sigmoid(E) 2.010163 45.400641 411658
Sigmoid-Sine(D) 2.010603 45.337540 2790410
Tanh-Sine(D) 2.011138 45.206330 2069740
Sigmoid-Sine(D) 2.011147 45.529848 2069740
ReLU-Sigmoid(S) 2.011289 46.288061 1843210
Tanh-Sine(E) 2.012050 45.034054 4210698
Tanh-Sine(D) 2.012484 44.968950 2790410
Tanh-Sine(D) 2.012712 45.083133 3588010
Tanh-Sine(D) 2.012991 44.667468 8176010

C.2 ISOLET Dataset

Model Type CE Loss Acc Parameters

ReLU-Tanh-Sigmoid-Sine(Q) 2.362502 96.198630 1675226
ReLU-Tanh-Sigmoid(T) 2.362526 96.172945 1720526
ReLU-Sigmoid-Sine(T) 2.362551 96.232877 303056
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ReLU-Tanh-Sine(T) 2.362551 96.232877 303056
ReLU-Sigmoid-Sine(T) 2.362609 96.232877 852326
ReLU-Tanh-Sine(T) 2.362609 96.232877 852326
ReLU-Tanh-Sigmoid-Sine(Q) 2.362810 96.104452 636146
ReLU-Tanh-Sigmoid(T) 2.362962 96.190068 508226
ReLU-Tanh-Sigmoid(T) 2.363016 96.164384 852326
ReLU-Tanh-Sigmoid(T) 2.363073 96.155822 303056
ReLU-Sigmoid-Sine(T) 2.363195 96.087329 1720526
ReLU-Tanh-Sigmoid-Sine(Q) 2.363307 96.344178 298826
ReLU-Sigmoid(D) 2.363322 96.190068 1149026
ReLU-Sigmoid(S) 2.363352 96.104452 99482
ReLU-Tanh-Sine(T) 2.363383 96.130137 1720526
ReLU-Sine(D) 2.363402 96.181507 581966
ReLU-Tanh(D) 2.363515 96.198630 1149026
ReLU-Tanh(MM) 2.363552 96.010274 2798026
ReLU-Sigmoid(D) 2.363731 96.138699 581966
Sigmoid-Sine(E) 2.363797 96.087329 1159226
ReLU-Sine(D) 2.363801 96.070205 1149026
ReLU-Sine(MM) 2.363878 96.078767 1998426
ReLU-Sine(MM) 2.363884 96.087329 2798026
ReLU-Sigmoid-Sine(T) 2.364000 96.121575 3472826
ReLU-Sigmoid(D) 2.364017 96.190068 839226
ReLU-Tanh(S) 2.364076 96.104452 1713178
ReLU-Sine(S) 2.364082 96.104452 594458
ReLU-Sine(E) 2.364119 96.095890 594458
Sigmoid-Sine(D) 2.364129 96.035959 839226
ReLU-Sigmoid(MM) 2.364154 96.147260 709866
ReLU-Tanh(D) 2.364164 95.984589 839226
ReLU-Tanh(MM) 2.364179 96.053082 709866
ReLU-Sine(D) 2.364184 96.095890 360806
ReLU-Tanh-Sigmoid(T) 2.364265 96.104452 3472826
ReLU-Tanh(S) 2.364272 96.001712 594458
ReLU-Tanh-Sigmoid(R) 2.364281 96.138699 594458
ReLU-Sigmoid(E) 2.364295 96.104452 1159226
ReLU(B) 2.364314 96.061644 594458
ReLU(B) 2.364324 95.958904 1159226
ReLU-Sine(D) 2.364375 96.078767 839226
ReLU-Tanh-Sigmoid-Sine(R) 2.364436 96.155822 1159226
ReLU-Tanh(MM) 2.364459 95.984589 1998426
ReLU-Sigmoid(MM) 2.364496 96.061644 2798026
ReLU-Sigmoid(MM) 2.364566 96.035959 887876
ReLU-Tanh(E) 2.364625 95.916096 5523482
ReLU-Sine(E) 2.364632 95.984589 1159226
Tanh-Sigmoid(S) 2.364712 96.044521 594458
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ReLU-Sine-Sigmoid(R) 2.364725 96.001712 1713178
ReLU-Sine(E) 2.364759 96.001712 5523482
Sigmoid-Sine(D) 2.364765 96.053082 3298026
ReLU-Tanh(D) 2.364789 96.087329 581966
ReLU-Tanh-Sine(T) 2.364808 95.890411 3472826
ReLU-Tanh-Sigmoid(R) 2.364823 95.984589 5523482
Sine(B) 2.364825 96.095890 1159226
ReLU-Tanh-Sigmoid(R) 2.364830 96.044521 1159226
ReLU-Sigmoid(D) 2.364854 95.984589 3298026
ReLU-Tanh(D) 2.364854 96.018836 3298026
ReLU-Sine-Sigmoid(R) 2.364861 95.967466 1159226
ReLU-Sigmoid(E) 2.364913 96.010274 594458
ReLU-Sine(MM) 2.364929 96.018836 319626
ReLU-Tanh-Sine(T) 2.364938 96.053082 104576
ReLU-Sigmoid-Sine(T) 2.364938 96.053082 104576
ReLU-Sigmoid(E) 2.364979 95.950342 5523482
ReLU-Tanh-Sigmoid-Sine(R) 2.365003 96.018836 1713178
ReLU-Tanh-Sine(R) 2.365048 96.035959 1159226
ReLU(B) 2.365063 95.967466 1713178
Sine(B) 2.365094 96.044521 594458
ReLU-Tanh(MM) 2.365102 96.001712 319626
ReLU-Tanh(E) 2.365140 95.916096 1159226
ReLU-Sine(E) 2.365186 95.958904 1713178
ReLU-Tanh(S) 2.365188 95.890411 5523482
ReLU-Sigmoid(MM) 2.365223 95.941781 1998426
Sine-ReLU(S) 2.365240 95.941781 1713178
ReLU(B) 2.365307 95.941781 5523482
ReLU-Sine-Sigmoid(R) 2.365321 96.035959 594458
ReLU-Sigmoid(E) 2.365325 96.035959 1713178
ReLU-Tanh(MM) 2.365343 95.821918 887876
Tanh-Sine(D) 2.365402 95.976027 1149026
Sine-ReLU(S) 2.365428 96.087329 594458
ReLU-Tanh-Sigmoid(R) 2.365456 96.010274 99482
ReLU-Tanh(S) 2.365489 95.907534 1159226
Sine(B) 2.365489 95.933219 1713178
Tanh-Sine(D) 2.365539 96.070205 839226
ReLU-Tanh-Sigmoid(T) 2.365559 95.933219 104576
ReLU-Tanh(D) 2.365622 95.779110 360806
ReLU-Sine(MM) 2.365632 95.933219 887876
ReLU-Sine(S) 2.365644 95.933219 1713178
ReLU-Tanh(E) 2.365680 95.967466 594458
ReLU-Sine(S) 2.365708 95.881849 1159226
ReLU-Sine(S) 2.365716 95.856164 5523482
ReLU-Sine(MM) 2.365733 95.847603 709866
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Tanh-Sigmoid(S) 2.365809 96.035959 1713178
ReLU-Tanh(D) 2.365828 95.950342 97538
Sigmoid-Sine(E) 2.365845 95.967466 5523482
Sigmoid-Sine(D) 2.365861 96.018836 360806
Tanh-Sigmoid(S) 2.365886 96.001712 1159226
ReLU-Tanh-Sigmoid-Sine(Q) 2.365927 96.044521 81266
ReLU-Sigmoid(D) 2.365959 95.856164 360806
ReLU-Tanh-Sigmoid(R) 2.365959 95.864726 1713178
ReLU-Sine(D) 2.365961 95.864726 3298026

C.3 FashionMNIST Dataset

Model Type CE Loss Acc Parameters

ReLU-Tanh-Sine(T) 1.565733 89.576322 3835210
ReLU-Tanh-Sigmoid(T) 1.567089 89.405048 3835210
ReLU-Sine(D) 1.567153 89.373998 3600010
ReLU-Tanh-Sigmoid-Sine(Q) 1.567188 89.476162 1916810
ReLU-Tanh-Sigmoid-Sine(Q) 1.567202 89.437099 6112810
ReLU-Sine(E) 1.567705 89.384014 1867786
ReLU-Tanh-Sine(R) 1.568096 89.291867 1867786
Tanh-Sine(D) 1.568134 89.268830 3600010
ReLU-Tanh-Sine(T) 1.568700 89.263822 1947010
ReLU-Tanh(D) 1.568733 89.226763 3600010
ReLU-Tanh-Sigmoid-Sine(Q) 1.568884 89.206731 920710
ReLU-Tanh-Sine(T) 1.569425 89.214744 988210
ReLU-Tanh(MM) 1.569652 89.111579 3100010
Sigmoid-Sine(D) 1.569712 89.126603 3600010
ReLU-Sine(D) 1.569877 89.094551 1300010
ReLU-Sigmoid(D) 1.569885 89.083534 3600010
ReLU-Tanh-Sigmoid(T) 1.570005 89.119591 1947010
ReLU-Tanh-Sine(T) 1.570204 89.135617 598810
ReLU-Sine(D) 1.570210 89.095553 960010
Tanh-Sine(E) 1.570255 89.063502 1867786
ReLU(B) 1.570297 89.057492 1867786
ReLU-Sigmoid(MM) 1.570385 89.046474 2240010
ReLU-Tanh-Sigmoid-Sine(R) 1.570511 89.021434 1867786
Sine(B) 1.570538 89.047476 1867786
ReLU-Sine(D) 1.570598 89.045473 674060
ReLU-Sine(E) 1.570709 89.028446 1280010
ReLU-Tanh-Sigmoid-Sine(Q) 1.570715 89.075521 750890
ReLU(B) 1.570861 89.013421 1280010
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Sigmoid-Sine(E) 1.571016 88.997396 1867786
ReLU(B) 1.571086 88.985377 671754
ReLU-Sigmoid(MM) 1.571236 88.989383 3100010
ReLU-Sine(E) 1.571329 88.983373 671754
ReLU-Tanh-Sigmoid(T) 1.571410 88.985377 988210
Sine(B) 1.571551 88.915264 1280010
ReLU-Tanh(E) 1.571644 88.934295 1867786
ReLU-Tanh-Sigmoid-Sine(R) 1.571894 88.902244 1280010
Tanh-Sine(E) 1.571918 88.946314 1280010
ReLU-Tanh(MM) 1.571938 88.897236 2240010
ReLU-Sigmoid(E) 1.571940 88.871194 1867786
Sigmoid-Sine(E) 1.572476 88.839143 1280010
ReLU-Tanh-Sine(R) 1.572511 88.850160 1280010
ReLU-Tanh(MM) 1.572613 88.822115 1023760
ReLU-Tanh(D) 1.572805 88.820112 1300010
ReLU-Tanh-Sine(R) 1.572815 88.835136 671754
Sigmoid-ReLU(S) 1.572844 88.865184 1280010
ReLU-Sigmoid(S) 1.572952 88.815104 1867786
ReLU-Sigmoid(D) 1.573153 88.781050 1300010
ReLU-Tanh(D) 1.573188 88.782051 960010
ReLU-Sigmoid(D) 1.573422 88.739984 960010
ReLU-Tanh(S) 1.573456 88.725962 1867786
Tanh-Sine(D) 1.573568 88.731971 1300010
ReLU-Tanh-Sigmoid(R) 1.573576 88.738982 1867786
Sine(B) 1.573651 88.730970 671754
ReLU-Sigmoid(E) 1.573739 88.730970 1280010
Sigmoid-ReLU(S) 1.573780 88.814103 1867786
Tanh-Sine(D) 1.573854 88.721955 674060
ReLU-Tanh-Sigmoid(T) 1.573978 88.694912 598810
Sigmoid-Sine(D) 1.574030 88.708934 1300010
Tanh-ReLU(S) 1.574031 88.776042 1867786
ReLU-Tanh(S) 1.574100 88.699920 1280010
Tanh-Sine(D) 1.574171 88.686899 960010
ReLU-Tanh(E) 1.574650 88.629808 1280010
ReLU-Tanh(MM) 1.574665 88.585737 824610
ReLU-Sine(D) 1.574701 88.679888 424210
ReLU-Sigmoid(S) 1.574826 88.611779 1280010
ReLU-Tanh(S) 1.574854 88.597756 671754
Tanh-ReLU(S) 1.575039 88.578726 1280010
ReLU-Tanh-Sigmoid-Sine(R) 1.575100 88.572716 671754
ReLU-Tanh(E) 1.575139 88.591747 671754
ReLU-Sigmoid(E) 1.575265 88.613782 671754
Sigmoid-Sine(D) 1.575434 88.556691 960010
Sigmoid-Sine(E) 1.575442 88.544671 671754
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Sigmoid-Tanh(S) 1.575503 88.636819 1867786
ReLU-Sigmoid(D) 1.575652 88.558694 674060
ReLU-Sigmoid(MM) 1.575744 88.544671 1023760
Tanh-Sine(E) 1.575969 88.532652 671754
ReLU-Tanh-Sigmoid(R) 1.576200 88.445513 671754
ReLU-Sigmoid(MM) 1.576266 88.469551 824610
ReLU-Tanh(D) 1.576307 88.453526 674060
ReLU-Tanh-Sigmoid(R) 1.576571 88.434495 1280010
ReLU-Tanh-Sine(T) 1.576758 88.469551 361930
Sigmoid-ReLU(S) 1.576957 88.504607 671754
ReLU-Tanh-Sigmoid-Sine(Q) 1.577326 88.431490 359210
ReLU-Tanh-Sigmoid(T) 1.577645 88.343349 361930
ReLU-Sigmoid(S) 1.577789 88.395433 671754
Tanh-ReLU(S) 1.578113 88.324319 671754
ReLU-Tanh(D) 1.578894 88.233173 424210
Sigmoid-Sine(D) 1.579038 88.211138 674060
Sigmoid-Tanh(S) 1.579225 88.208133 1280010
ReLU-Tanh(MM) 1.579255 88.190104 380010
Tanh-Sine(D) 1.579580 88.113982 424210
Sigmoid-Sine(D) 1.579770 88.118990 424210
Tanh(B) 1.579978 88.109976 1867786
ReLU-Sigmoid(D) 1.580019 88.115986 424210
Tanh-Sigmoid(S) 1.582334 87.893630 671754
ReLU-Sigmoid(MM) 1.582337 87.894631 380010
Tanh-Sigmoid(D) 1.582413 87.844551 3600010
Sigmoid-Tanh(S) 1.582808 87.893630 671754
Tanh-Sigmoid(S) 1.582850 87.825521 1867786
Tanh(B) 1.583071 87.782452 1280010

C.4 MNIST Dataset

Model Type CE Loss Acc Parameters

ReLU-Tanh-Sigmoid-Sine(Q) 1.478258 98.306290 6112810
ReLU-Tanh-Sine(T) 1.478435 98.296274 1947010
ReLU-Tanh-Sine(T) 1.478555 98.262220 3835210
ReLU-Sine(E) 1.478647 98.249199 5832714
ReLU(B) 1.478817 98.270232 1280010
ReLU-Sigmoid(E) 1.478965 98.242188 5832714
ReLU-Sine(E) 1.479002 98.217147 1280010
ReLU-Tanh-Sigmoid(T) 1.479052 98.241186 3835210
ReLU(B) 1.479091 98.230168 5832714



Overall Results C-9

ReLU-Sine(E) 1.479128 98.228165 1867786
ReLU-Sine(D) 1.479134 98.224159 1300010
ReLU-Tanh(E) 1.479181 98.210136 5832714
ReLU-Tanh(E) 1.479262 98.226162 1867786
ReLU(B) 1.479395 98.219151 1867786
ReLU-Sine(D) 1.479476 98.205128 960010
Tanh-ReLU(S) 1.479478 98.218149 1280010
ReLU-Sigmoid(MM) 1.479532 98.182091 3100010
ReLU-Sigmoid(MM) 1.479555 98.194111 2240010
ReLU-Sigmoid(D) 1.479563 98.206130 1300010
Tanh-ReLU(S) 1.479572 98.219151 5832714
ReLU-Tanh-Sigmoid-Sine(Q) 1.479616 98.168069 1916810
ReLU-Sigmoid(S) 1.479617 98.190104 1867786
ReLU-Tanh-Sigmoid-Sine(R) 1.479618 98.201122 1867786
Tanh-ReLU(S) 1.479618 98.236178 1867786
ReLU-Tanh-Sigmoid(T) 1.479679 98.194111 1947010
ReLU-Sigmoid(S) 1.479688 98.202123 5832714
ReLU-Tanh-Sigmoid(T) 1.479739 98.172075 988210
ReLU-Tanh-Sine(T) 1.479766 98.170072 988210
ReLU-Sigmoid(S) 1.479806 98.220152 1280010
ReLU-Tanh-Sigmoid(R) 1.479817 98.173077 1280010
ReLU-Tanh(MM) 1.479821 98.141026 3100010
ReLU-Tanh(E) 1.479829 98.137019 1280010
ReLU(B) 1.479937 98.158053 671754
ReLU-Tanh-Sigmoid-Sine(R) 1.480023 98.137019 1280010
ReLU-Sigmoid(E) 1.480023 98.184095 1867786
ReLU-Tanh(D) 1.480080 98.149038 1300010
ReLU-Tanh-Sigmoid(R) 1.480122 98.149038 5832714
ReLU-Tanh(E) 1.480147 98.149038 671754
ReLU-Tanh(S) 1.480150 98.107973 1867786
ReLU-Tanh(MM) 1.480153 98.114984 2240010
ReLU-Sigmoid(E) 1.480188 98.141026 1280010
ReLU-Sine(E) 1.480208 98.136018 671754
ReLU-Sigmoid(S) 1.480225 98.151042 671754
ReLU-Tanh(S) 1.480248 98.117989 671754
ReLU-Tanh-Sigmoid(R) 1.480281 98.118990 1867786
ReLU-Sigmoid(D) 1.480340 98.123998 960010
ReLU-Sine(D) 1.480343 98.113982 674060
ReLU-Tanh-Sigmoid-Sine(Q) 1.480357 98.133013 750890
ReLU-Tanh(S) 1.480392 98.102965 1280010
ReLU-Tanh-Sigmoid-Sine(Q) 1.480405 98.115986 920710
ReLU-Tanh(D) 1.480426 98.109976 960010
ReLU-Tanh(D) 1.480441 98.126002 674060
ReLU-Sigmoid(MM) 1.480442 98.120994 824610
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Tanh-ReLU(S) 1.480454 98.135016 671754
ReLU-Tanh(S) 1.480462 98.065905 5832714
Sine(B) 1.480462 98.096955 5832714
ReLU-Tanh(MM) 1.480583 98.072917 1023760
ReLU-Sigmoid(MM) 1.480608 98.120994 1023760
ReLU-Sigmoid(E) 1.480631 98.104968 671754
ReLU-Sine(D) 1.480634 98.089944 424210
ReLU-Tanh-Sine(T) 1.480664 98.081931 598810
ReLU-Sigmoid(D) 1.480770 98.085938 674060
Sigmoid-ReLU(S) 1.480898 98.116987 1867786
ReLU-Tanh-Sigmoid-Sine(R) 1.480909 98.051883 671754
ReLU-Tanh-Sigmoid(T) 1.480967 98.064904 598810
ReLU-Tanh(MM) 1.481008 98.058894 824610
ReLU-Tanh-Sigmoid(R) 1.481105 98.057893 671754
ReLU-Tanh(D) 1.481262 98.046875 424210
Sigmoid-ReLU(S) 1.481458 98.056891 1280010
Sine(B) 1.481475 97.987780 1867786
ReLU-Tanh-Sine(T) 1.481689 97.986779 361930
Sigmoid-ReLU(S) 1.481708 98.003806 671754
ReLU-Tanh(MM) 1.481722 97.999800 380010
ReLU-Sigmoid(D) 1.481737 98.004808 424210
ReLU-Sigmoid(MM) 1.481802 97.970753 380010
ReLU-Tanh-Sigmoid(T) 1.481960 97.968750 361930
Sine(B) 1.482045 97.933694 1280010
Sigmoid-Tanh(S) 1.482130 97.959736 5832714
ReLU-Tanh-Sigmoid-Sine(Q) 1.482320 97.935697 359210
Tanh-Sine(E) 1.482562 97.879607 1867786
Tanh-Sine(E) 1.482575 97.888622 1280010
Tanh-Sigmoid(S) 1.482674 97.901643 1867786
Sine(B) 1.482929 97.859575 671754
Tanh-Sigmoid(S) 1.483014 97.862580 1280010
Sigmoid-Tanh(S) 1.483023 97.858574 1867786
Tanh(B) 1.483084 97.841546 1867786
Tanh-Sigmoid(S) 1.483134 97.878606 671754
Tanh(B) 1.483242 97.838542 1280010
Tanh-Sine(D) 1.483258 97.800481 1300010
Tanh-Sine(D) 1.483470 97.794471 960010
Tanh-Sine(D) 1.483541 97.804487 674060
Tanh-Sine(E) 1.483561 97.779447 671754
Tanh-Sigmoid(E) 1.483567 97.793470 1867786
Tanh(B) 1.483586 97.766426 5832714
ReLU(B) 1.483735 97.823518 118794
Sigmoid-Tanh(S) 1.483792 97.808494 1280010
Tanh-Sigmoid(E) 1.484068 97.730369 5832714
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Tanh-Sigmoid(S) 1.484072 97.741386 5832714
ReLU-Sigmoid(S) 1.484103 97.785457 118794
ReLU-Tanh(S) 1.484271 97.745393 118794

C.5 Addition Dataset

Model Type MSE Loss Parameters

Identity(B) 4.218541e-11 105
Identity(B) 4.334937e-11 337
Identity(B) 1.139856e-10 1185
Identity-Sine(MM) 1.251248e-10 65
Identity-ReLU(S) 1.340950e-10 105
Identity-Sine(MM) 4.224948e-10 545
Identity(B) 7.803106e-10 4417
Identity(B) 8.050292e-09 66817
Identity(B) 9.973964e-09 17025
Identity-ReLU(S) 2.738191e-08 264705
ReLU-Identity(MM) 2.799264e-08 65
ReLU-Identity(D) 7.440819e-08 73
Identity(B) 1.010980e-07 264705
ReLU-Identity(S) 1.880120e-07 105
ReLU-Identity-Sine(R) 2.888514e-07 105
Identity-ReLU(S) 3.143518e-07 337
Identity-Sine(E) 3.491331e-07 1185
ReLU-Identity(E) 3.958540e-07 105
Identity-Sine(MM) 4.873608e-07 177
ReLU(B) 5.008985e-07 105
Identity-Sine(MM) 5.107796e-07 1857
Identity-Tanh(MM) 5.252917e-07 545
Identity-Sine(E) 5.575056e-07 105
Identity-Sine(D) 5.629378e-07 73
ReLU-Identity-Sine-Sigmoid(Q) 6.376322e-07 57
Identity-Tanh(MM) 6.442939e-07 65
ReLU-Identity-Sine(T) 6.859600e-07 109
Identity-Sine(D) 7.289137e-07 673
Identity-Tanh(D) 9.142937e-07 73
ReLU-Identity-Sine-Tanh(Q) 9.618030e-07 57
Identity-ReLU(S) 1.013747e-06 66817
Identity-Sigmoid(D) 1.035564e-06 73
Identity-Sigmoid(MM) 1.037650e-06 65
Sigmoid-Identity-Sine-Tanh(Q) 1.198273e-06 57
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Identity-Tanh(MM) 1.310169e-06 177
Identity-Sine(D) 1.430256e-06 209
Identity-Sine(E) 1.472089e-06 4417
ReLU-Sine(MM) 1.547298e-06 65
Identity-Sine-Tanh(T) 1.719859e-06 109
Identity-Sine(E) 1.804996e-06 337
Sigmoid-Identity-Sine-Tanh(Q) 1.969518e-06 145
Identity-Sine(D) 1.991259e-06 2369
Identity-ReLU(S) 2.164832e-06 17025
Identity-Sigmoid(MM) 2.281560e-06 177
ReLU-Identity-Sine-Sigmoid(Q) 2.282133e-06 145
Identity-ReLU(S) 2.365801e-06 4417
ReLU-Identity-Sine-Tanh(Q) 2.486831e-06 145
ReLU-Identity(D) 2.491241e-06 209
ReLU-Sine(D) 2.563428e-06 209
Identity-Tanh(D) 2.679652e-06 209
ReLU-Identity-Sine-Sigmoid(Q) 2.886712e-06 417
Identity-Sine(MM) 3.350699e-06 6785
Identity-Tanh(MM) 3.372365e-06 1857
ReLU-Identity(E) 3.392316e-06 337
Sigmoid-Identity-Sine-Tanh(Q) 3.408533e-06 417
Identity-Tanh(D) 3.486892e-06 673
ReLU-Sine(E) 3.555582e-06 337
Identity-Sine-Tanh(T) 3.655686e-06 313
ReLU-Identity-Sine(T) 3.675826e-06 313
ReLU-Identity-Tanh(T) 3.727607e-06 109
Identity-Sigmoid(D) 3.740584e-06 209
Identity-Sigmoid(E) 4.103480e-06 105
ReLU-Identity-Tanh(R) 4.190486e-06 105
Identity-Sigmoid(MM) 4.309065e-06 545
ReLU-Identity(MM) 4.569288e-06 177
ReLU(B) 5.157250e-06 337
Identity-Tanh(D) 5.394374e-06 2369
Identity-Tanh(E) 5.436198e-06 105
Identity-Tanh(E) 5.849986e-06 1185
ReLU-Identity-Sine(R) 6.448754e-06 337
ReLU-Identity-Sine-Tanh(Q) 6.580093e-06 417
Identity-ReLU(S) 6.834402e-06 1185
Identity-Sigmoid(D) 6.938043e-06 673
ReLU-Identity(S) 7.033896e-06 337
Identity-Sine-Tanh(T) 7.236945e-06 3553
ReLU-Identity-Sine-Tanh-Sigmoid(R) 7.277392e-06 105
ReLU-Identity-Sine(R) 8.197271e-06 1185
ReLU-Sine(D) 8.515829e-06 673
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ReLU-Identity(D) 8.692030e-06 673
Identity-Sine-Tanh(R) 8.732929e-06 337
Identity-Sine-Tanh(T) 9.186107e-06 1009
Identity-Sigmoid(D) 9.483295e-06 2369
Identity-Sine-Tanh(R) 9.648039e-06 1185
Identity-Sigmoid(MM) 9.770781e-06 1857
Identity-Tanh(D) 1.036943e-05 8833
Sigmoid-Identity-Sine-Tanh(Q) 1.145824e-05 4737
Identity-Tanh(MM) 1.147140e-05 6785
ReLU-Identity-Tanh(T) 1.169524e-05 313
Identity-Tanh(E) 1.203589e-05 337
Identity-Sigmoid(D) 1.249842e-05 8833
Identity-Sigmoid(E) 1.283536e-05 337
ReLU-Identity(S) 1.362445e-05 1185
ReLU-Identity-Sine(T) 1.362587e-05 1009
Sigmoid-Identity-Sine-Tanh(Q) 1.408885e-05 1345
ReLU-Sigmoid-Tanh(T) 1.411536e-05 313
Identity-Tanh(D) 1.428864e-05 133633
Identity-Sigmoid(MM) 1.433660e-05 25857
ReLU-Identity(MM) 1.452601e-05 545
Sigmoid-Identity-Sine-Tanh(Q) 1.517340e-05 17665
ReLU-Identity-Sine-Sigmoid(Q) 1.542206e-05 1345

C.6 Sine Dataset

Model Type MSE Loss Parameters

Identity-Sine(MM) 5.339271e-08 545
Sine-Identity(S) 5.603382e-08 4417
Identity-Sine(S) 1.138129e-07 4417
Identity-Sine(MM) 1.283310e-07 6785
Identity-Sine(S) 2.723283e-07 17025
Sine-Identity(S) 2.914424e-07 17025
Identity-Sine(MM) 3.532560e-07 25857
Identity-Sine(MM) 1.584273e-06 100865
Identity-Sine(S) 3.268685e-06 66817
Sine(B) 4.903959e-06 17025
Sine(B) 6.255450e-06 4417
Sine(B) 7.029013e-06 1185
Sine(B) 7.146952e-06 105
ReLU-Sine(S) 7.222555e-06 4417
Sine-Identity(S) 8.536661e-06 264705
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Sine-Identity(S) 1.004256e-05 66817
ReLU-Sine(S) 1.032311e-05 1185
Sine(B) 1.071452e-05 337
Sigmoid-Identity-Sine-Tanh(Q) 1.272606e-05 68097
ReLU-Sine(MM) 1.275749e-05 6785
Sine-Sigmoid(E) 1.352560e-05 66817
LogExp-Identity-Sine-Tanh(Q) 1.428260e-05 68097
ReLU-Identity-Sine-Tanh(Q) 1.542056e-05 68097
LogExp-Identity-Sine-ReLU(Q) 1.544548e-05 68097
LogExp-Sine(D) 1.628308e-05 34049
ReLU-Identity-Sine-Sigmoid(Q) 1.644714e-05 68097
LogExp-ReLU-Sine(T) 1.662348e-05 51073
ReLU-Identity-Sine(T) 1.666095e-05 51073
Identity-Sine-Tanh(T) 1.681932e-05 51073
Identity-Sine(D) 1.737286e-05 673
LogExp-Identity-Sine(T) 1.778383e-05 51073
LogExp-Identity-Sine-ReLU(Q) 1.780640e-05 17665
ReLU-Identity-Sine-Sigmoid(Q) 1.905118e-05 17665
Identity-Sine-Tanh(T) 1.925196e-05 3553
ReLU-Sine(S) 1.933193e-05 17025
Identity-Sine(D) 1.950528e-05 34049
Sigmoid-Identity-Sine-Tanh(Q) 1.988305e-05 17665
LogExp-Identity-Sine(T) 1.991400e-05 13249
ReLU-Sine(MM) 1.996472e-05 25857
LogExp-Identity-Sine-Tanh(Q) 2.001167e-05 17665
ReLU-Sine-Sigmoid-Tanh(Q) 2.017167e-05 68097
ReLU-Identity-Sine(T) 2.033012e-05 13249
Tanh-Sine(D) 2.042091e-05 34049
Tanh-Sine(D) 2.055280e-05 673
ReLU-Identity-Sine(R) 2.141294e-05 4417
LogExp-ReLU-Sine(T) 2.165569e-05 3553
Sigmoid-Identity-Sine-Tanh(Q) 2.176657e-05 151297
ReLU-Identity-Sine-Tanh(Q) 2.322451e-05 151297
ReLU-Sine(D) 2.332722e-05 34049
ReLU-Identity-Sine-Sigmoid(Q) 2.358708e-05 151297
ReLU-Identity-Sine-Tanh(Q) 2.358768e-05 4737
Sine-Identity(E) 2.403891e-05 1185
LogExp-ReLU-Sine(T) 2.414902e-05 13249
Identity-Sine-Tanh(R) 2.423174e-05 1185
LogExp-Sine(D) 2.424149e-05 8833
ReLU-Sine(MM) 2.439882e-05 1857
LogExp-Identity-Sine-ReLU(Q) 2.446927e-05 151297
LogExp-Sine(D) 2.465490e-05 673
ReLU-Sine(MM) 2.548502e-05 100865
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Sine-Identity(E) 2.630055e-05 4417
Sine-Sigmoid(E) 2.632855e-05 17025
LogExp-Identity-Sine(T) 2.653514e-05 3553
ReLU-Sine-Sigmoid-Tanh(Q) 2.654410e-05 151297
Tanh-Sine(D) 2.716923e-05 2369
ReLU-Identity-Sine-Sigmoid(Q) 2.735593e-05 417
ReLU-Identity-Sine-Tanh(Q) 2.839464e-05 17665
LogExp-Sine(D) 2.865882e-05 2369
ReLU-Sine(E) 2.875951e-05 17025
LogExp-Identity-Sine-Tanh(Q) 2.925066e-05 4737
ReLU-Identity-Sine-Tanh-Sigmoid(R) 2.985358e-05 17025
Sigmoid-Identity-Sine-Tanh(Q) 3.029778e-05 4737
Identity-Sine-Tanh(T) 3.109996e-05 13249
ReLU-Identity-Sine(R) 3.113047e-05 1185
LogExp-Identity-Sine-Tanh(Q) 3.143679e-05 151297
LogExp-Identity-Sine-ReLU(Q) 3.221574e-05 4737
Sigmoid-Identity-Sine-Tanh(Q) 3.335646e-05 1345
ReLU-Identity-Sine(T) 3.385209e-05 3553
Sigmoid-Sine(D) 3.423116e-05 8833
ReLU-Sine(S) 3.498403e-05 66817
ReLU-Sine(E) 3.527506e-05 4417
Sigmoid-Sine(D) 3.548204e-05 2369
Identity-Sine-Tanh(T) 3.583437e-05 313
Sine-Sigmoid(E) 3.700374e-05 4417
LogExp-Identity-Sine(T) 3.718695e-05 1009
Identity-Sine(D) 3.737231e-05 8833
Identity-Sine(D) 3.809437e-05 2369
Tanh-Sine(D) 3.827695e-05 8833
Identity-Sine-Tanh(R) 3.958827e-05 4417
Sigmoid-Sine(D) 3.962899e-05 34049
ReLU-Sine(D) 3.998362e-05 8833
ReLU-Identity-Sine(R) 4.006778e-05 66817
LogExp-Identity-Sine-Tanh(Q) 4.080366e-05 1345
Sine-Identity(E) 4.142248e-05 17025
ReLU-Identity-Sine-Sigmoid(Q) 4.144473e-05 4737
Sine(B) 4.162520e-05 66817
Sigmoid-Sine(D) 4.306660e-05 133633
Sine-Identity(E) 4.352261e-05 66817
ReLU-Sine(D) 4.493540e-05 209
Sigmoid(B) 4.497494e-05 17025
LogExp-Identity-Sine-ReLU(Q) 4.510810e-05 1345
Identity-Sine(D) 4.513386e-05 133633
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C.7 Max Dataset

Model Type MSE Loss Parameters

ReLU-Identity(MM) 0.000004 545
ReLU(B) 0.000004 105
ReLU-Identity-Sine(R) 0.000004 337
ReLU-Sine(D) 0.000005 673
ReLU-Sigmoid(MM) 0.000005 545
ReLU-Sine-Sigmoid-Tanh(Q) 0.000006 417
ReLU-Identity(D) 0.000006 2369
LogExp-ReLU(D) 0.000006 673
ReLU(B) 0.000006 1185
ReLU-Identity-Sine(T) 0.000006 109
ReLU-Identity-Tanh(T) 0.000006 1009
ReLU-Sigmoid(E) 0.000007 1185
ReLU-Identity-Sine-Tanh(Q) 0.000007 417
ReLU-Tanh(D) 0.000007 673
ReLU-Identity-Sine(T) 0.000007 313
ReLU-Sigmoid(D) 0.000008 2369
LogExp-ReLU-Identity(T) 0.000008 1009
ReLU-Tanh(MM) 0.000008 545
ReLU-Identity(MM) 0.000009 177
ReLU-Identity-Tanh(T) 0.000009 3553
LogExp-Identity-Sine-ReLU(Q) 0.000009 1345
LogExp-ReLU-Sine(T) 0.000009 1009
ReLU-Sigmoid(MM) 0.000010 1857
ReLU-Sigmoid-Tanh(T) 0.000010 1009
ReLU-Identity-Tanh(R) 0.000010 337
ReLU-Identity(MM) 0.000012 1857
ReLU-Tanh(MM) 0.000012 177
ReLU-Identity-Sine(T) 0.000012 13249
ReLU-Sine-Sigmoid-Tanh(Q) 0.000012 1345
ReLU-Sigmoid(D) 0.000013 209
ReLU-Identity(D) 0.000013 209
ReLU-Sigmoid(E) 0.000013 4417
ReLU-Sine(MM) 0.000013 545
ReLU-Sigmoid-Tanh(T) 0.000014 13249
ReLU-Identity-Tanh(R) 0.000014 1185
ReLU-Identity(D) 0.000014 34049
ReLU-Tanh(MM) 0.000014 1857
ReLU-Identity(D) 0.000014 8833
ReLU-Identity(MM) 0.000014 6785
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ReLU-Identity-Sine(R) 0.000015 1185
ReLU-Identity-Sine(T) 0.000015 1009
ReLU-Sigmoid(D) 0.000015 8833
ReLU-Sigmoid(E) 0.000015 17025
ReLU-Identity(D) 0.000015 133633
ReLU-Identity(MM) 0.000015 100865
ReLU-Sigmoid-Tanh(T) 0.000015 3553
ReLU(B) 0.000016 66817
ReLU-Identity-Sine-Sigmoid(Q) 0.000016 417
ReLU-Tanh(MM) 0.000016 25857
ReLU-Identity-Sine-Sigmoid(Q) 0.000016 1345
ReLU-Tanh(D) 0.000016 8833
LogExp-ReLU-Identity(T) 0.000017 13249
ReLU(B) 0.000017 4417
ReLU-Sine(MM) 0.000017 1857
ReLU-Identity-Tanh(R) 0.000017 4417
ReLU-Sine(D) 0.000018 2369
ReLU-Identity-Tanh(T) 0.000018 13249
LogExp-Identity-Sine-ReLU(Q) 0.000018 417
LogExp-Identity-Sine-ReLU(Q) 0.000018 4737
ReLU-Tanh(D) 0.000018 2369
ReLU-Identity-Sine(T) 0.000018 3553
ReLU-Tanh(E) 0.000018 1185
ReLU-Sigmoid(MM) 0.000018 25857
ReLU-Sigmoid(MM) 0.000018 6785
ReLU-Sine(MM) 0.000019 177
ReLU-Sigmoid-Tanh(R) 0.000019 1185
ReLU-Sigmoid(MM) 0.000019 100865
LogExp-ReLU-Identity(T) 0.000019 3553
ReLU-Tanh(MM) 0.000019 6785
ReLU-Identity-Sine-Sigmoid(Q) 0.000019 4737
ReLU(B) 0.000019 17025
ReLU-Tanh(D) 0.000019 133633
ReLU-Tanh(D) 0.000019 34049
ReLU-Sigmoid-Tanh(T) 0.000020 51073
LogExp-ReLU-Sine(T) 0.000020 3553
LogExp-ReLU-Sine(T) 0.000020 313
LogExp-ReLU(D) 0.000020 209
LogExp-ReLU(D) 0.000020 8833
ReLU-Identity-Sine-Sigmoid(Q) 0.000020 151297
LogExp-ReLU-Identity(T) 0.000021 200449
ReLU-Identity-Sine-Tanh(Q) 0.000021 1345
ReLU-Identity-Sine(T) 0.000021 51073
ReLU-Sigmoid(D) 0.000022 133633
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ReLU-Identity-Tanh(T) 0.000022 200449
ReLU-Identity(MM) 0.000022 25857
LogExp-ReLU(D) 0.000022 2369
ReLU-Tanh(MM) 0.000023 100865
ReLU-Identity-Sine(T) 0.000024 200449
ReLU-Sigmoid-Tanh(T) 0.000024 200449
ReLU-Identity-Tanh(R) 0.000024 66817
ReLU-Identity-Sine-Tanh(Q) 0.000026 68097
ReLU-Identity-Sine-Sigmoid(Q) 0.000026 17665
LogExp-ReLU(D) 0.000027 133633
ReLU-Sigmoid(MM) 0.000027 177
ReLU-Tanh(E) 0.000027 17025
LogExp-Identity-Sine-ReLU(Q) 0.000027 68097
LogExp-ReLU(D) 0.000027 34049
LogExp-ReLU-Sine(T) 0.000028 51073
ReLU-Sigmoid-Tanh(R) 0.000028 17025
ReLU-Identity-Sine-Tanh(Q) 0.000028 4737

C.8 Multiplication Dataset

Model Type MSE Loss Parameters

Sigmoid(B) 0.009232 17025
Tanh-Sigmoid(S) 0.009527 66817
ReLU-Identity-Sine(T) 0.009674 51073
LogExp-ReLU-Sine(T) 0.010022 3553
Tanh-Sigmoid(E) 0.010188 4417
ReLU-Sine-Sigmoid-Tanh(Q) 0.010388 68097
LogExp-Identity-Sine-ReLU(Q) 0.010442 17665
ReLU-Identity-Sine-Sigmoid(Q) 0.010580 68097
Sigmoid-Identity-Sine-Tanh(Q) 0.010727 4737
ReLU-Identity-Sine-Tanh(Q) 0.011583 17665
Identity-Sine-Tanh(T) 0.011622 13249
LogExp-Identity-Sine(T) 0.011690 3553
ReLU-Identity-Sine-Sigmoid(Q) 0.011729 17665
ReLU-Sine-Sigmoid-Tanh(Q) 0.011754 17665
Log-Exp(B) 0.012004 105
Sigmoid-Identity-Sine-Tanh(Q) 0.012036 17665
LogExp-Sine(D) 0.012048 2369
LogExp-ReLU-Sine(T) 0.012180 1009
ReLU-Sine(D) 0.012249 34049
Identity-Sine-Tanh(T) 0.012416 1009
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ReLU-Identity-Sine-Tanh(Q) 0.013035 68097
Sigmoid(B) 0.013061 66817
Tanh-Sigmoid(E) 0.013066 17025
Tanh(B) 0.013601 4417
LogExp-ReLU-Sine(T) 0.013605 313
ReLU-Identity-Sine(T) 0.014206 13249
LogExp-Sine(D) 0.014635 34049
Sigmoid-ReLU(S) 0.014783 264705
Tanh-Sigmoid(D) 0.014878 34049
Sigmoid-Tanh(S) 0.014901 17025
Sigmoid-Tanh(S) 0.015261 4417
LogExp-ReLU-Identity(T) 0.016044 13249
Sigmoid-Identity-Sine-Tanh(Q) 0.016254 68097
Sigmoid-Identity-Sine-Tanh(Q) 0.016326 1345
ReLU-Sine(D) 0.016470 8833
Sigmoid(B) 0.016499 264705
Tanh-Sigmoid(E) 0.016843 1185
Identity-Sine-Tanh(R) 0.017251 1185
ReLU-Identity-Sine-Tanh(Q) 0.017462 151297
Identity-Sine-Tanh(R) 0.017507 4417
ReLU-Sigmoid(E) 0.017702 264705
LogExp-Identity-Sine(T) 0.018196 313
ReLU-Sine-Sigmoid-Tanh(Q) 0.018232 151297
LogExp-Sine(D) 0.018238 209
LogExp-Identity-Sine-Tanh(Q) 0.019096 1345
Tanh-Sigmoid(D) 0.019820 673
ReLU-Identity-Sine-Tanh(Q) 0.020487 4737
Tanh-Sigmoid(S) 0.020639 4417
Sine-Sigmoid(E) 0.020798 66817
ReLU-Sine(E) 0.020906 66817
ReLU-Sine(E) 0.021086 17025
ReLU-Sigmoid(E) 0.021174 66817
ReLU-Identity-Sine-Sigmoid(Q) 0.021485 151297
Sine-Sigmoid(E) 0.021504 17025
ReLU-Identity-Sine-Tanh-Sigmoid(R) 0.021623 264705
Sigmoid-Tanh(S) 0.021760 66817
LogExp-Sine(D) 0.022663 673
LogExp-Identity-Sine-Tanh(Q) 0.022987 4737
ReLU-Sine(D) 0.023165 133633
Tanh(B) 0.023500 17025
Sigmoid-Tanh(S) 0.023660 264705
ReLU-Identity-Sine(T) 0.023871 3553
ReLU-Identity-Sine(T) 0.023968 200449
Sine-ReLU(S) 0.023974 4417
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Identity-Sine-Tanh(T) 0.023975 51073
Sigmoid-ReLU(S) 0.024132 66817
ReLU-Sine-Sigmoid-Tanh(Q) 0.024151 4737
ReLU-Identity-Sine-Tanh-Sigmoid(R) 0.024216 66817
LogExp-Identity-Sine-ReLU(Q) 0.024422 68097
ReLU-Identity-Sine-Sigmoid(Q) 0.024639 4737
LogExp-ReLU-Identity(T) 0.025441 3553
Identity-Sine-Tanh(R) 0.025618 17025
ReLU-Identity-Sine(R) 0.026219 4417
LogExp-Identity-Sine-Tanh(Q) 0.026226 17665
LogExp-Identity-Sine-Tanh(Q) 0.026621 145
Tanh-Sigmoid(E) 0.026744 66817
LogExp-ReLU(D) 0.027879 8833
ReLU-Sigmoid(D) 0.027915 133633
Sine-Sigmoid(E) 0.028452 1185
Sine-Sigmoid(E) 0.028592 4417
LogExp-Identity-Sine-ReLU(Q) 0.029275 1345
ReLU-Identity-Sine(R) 0.029568 17025
ReLU-Sine(D) 0.029835 2369
Sine-ReLU(S) 0.029902 17025
LogExp-ReLU-Sine(T) 0.030419 51073
LogExp-Identity-Sine(T) 0.030505 1009
Log-Exp(B) 0.030554 337
ReLU-Sine(E) 0.030802 4417
ReLU-Identity-Sine(R) 0.030874 66817
Sigmoid-Tanh(S) 0.030984 1185
Tanh(B) 0.031610 1185
Sigmoid-Identity-Sine-Tanh(Q) 0.031878 151297
ReLU-Sine(E) 0.032054 264705
ReLU-Identity-Sine-Tanh-Sigmoid(R) 0.032175 17025
ReLU-Sigmoid-Tanh(R) 0.032465 264705
Tanh-ReLU(S) 0.032775 17025
ReLU-Sigmoid(D) 0.033011 34049
Sigmoid(B) 0.033318 1185
ReLU-Sigmoid-Tanh(T) 0.033347 51073
ReLU-Identity-Tanh(T) 0.034015 51073

C.9 sin(x1) · sin(x2) Dataset

Model Type MSE Loss Parameters

Sigmoid-Identity-ReLU-Sine(DQ) 1.002394e-04 25473
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LogExp-Sine-ReLU-Identity(DQ) 1.102212e-04 100097
Sine(B) 1.150198e-04 12737
LogExp-Sine-ReLU-Identity(DQ) 1.254939e-04 25473
Sine(B) 1.328861e-04 50049
Tanh-Identity-ReLU-Sine(DQ) 1.372053e-04 6593
LogExp-Sine-ReLU-Identity(DQ) 1.528628e-04 6593
Sigmoid-Identity-ReLU-Sine(DQ) 1.551288e-04 6593
Sine(B) 1.746948e-04 249
LogExp-Sine-ReLU-Identity(DQ) 1.802996e-04 1761
Sigmoid(B) 2.019531e-04 50049
Sigmoid-Identity-ReLU-Sine(DQ) 2.062674e-04 1761
Tanh-Identity-ReLU-Sine(DQ) 2.253995e-04 1761
Sigmoid(B) 2.801080e-04 198401
Sine(B) 2.846046e-04 198401
LogExp-Sine-ReLU-Identity(DQ) 3.681662e-04 497
Sigmoid(B) 4.443539e-04 790017
LogExp-Sine-ReLU-Identity(DQ) 5.578428e-04 396801
Tanh(B) 6.089346e-04 3297
ReLU(B) 6.449642e-04 50049
ReLU(B) 6.787748e-04 198401
Tanh(B) 7.637935e-04 881
Tanh(B) 7.936276e-04 12737
ReLU(B) 9.025322e-04 790017
Tanh-Identity-ReLU-Sine(DQ) 9.271109e-04 497
ReLU(B) 9.655557e-04 12737
Sigmoid-Identity-ReLU-Sine(DQ) 9.821363e-04 497
Tanh(B) 1.094252e-03 50049
ReLU(B) 1.153568e-03 3297
Sine(B) 1.234811e-03 790017
Tanh(B) 1.707253e-03 198401
Sigmoid(B) 2.711949e-03 12737
ReLU(B) 3.245658e-03 881
Sine(B) 8.108883e-03 77
Tanh(B) 1.012798e-02 790017
Tanh-Identity-ReLU-Sine(DQ) 2.274837e-02 153
Sigmoid-Identity-ReLU-Sine(DQ) 3.317213e-02 153
ReLU(B) 4.442213e-02 249
Tanh(B) 4.829999e-02 249
LogExp-Sine-ReLU-Identity(DQ) 5.979945e-02 153
Sigmoid(B) 8.100235e-02 3297
Sigmoid(B) 1.093509e-01 881
Tanh(B) 1.246651e-01 77
ReLU(B) 1.861619e-01 77
Sigmoid(B) 1.910648e-01 249
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Sigmoid(B) 2.148804e-01 77
Identity(B) 2.360977e-01 12737
Identity(B) 2.361340e-01 881
Identity(B) 2.361583e-01 198401
Identity(B) 2.361595e-01 3297
Identity(B) 2.361682e-01 249
Identity(B) 2.361684e-01 77
Identity(B) 2.363096e-01 50049
Identity(B) 2.364899e-01 790017
LogExp(B) 6.406162e-01 50049
LogExp(B) 1.026950e+00 3297
LogExp(B) 1.154908e+02 198401
LogExp(B) 2.610127e+13 881
LogExp(B) 3.998643e+18 12737

C.10 sin(x1) + cos(x2) Dataset

Model Type MSE Loss Parameters

Sigmoid-Identity-ReLU-Sine(DQ) 0.000086 25473
Tanh-Identity-ReLU-Sine(DQ) 0.000098 396801
Sigmoid-Identity-ReLU-Sine(DQ) 0.000100 396801
Sine(B) 0.000125 3297
LogExp-Sine-ReLU-Identity(DQ) 0.000133 6593
Sine(B) 0.000139 881
Tanh-Identity-ReLU-Sine(DQ) 0.000153 1761
Sigmoid-Identity-ReLU-Sine(DQ) 0.000154 1761
LogExp-Sine-ReLU-Identity(DQ) 0.000154 1761
LogExp-Sine-ReLU-Identity(DQ) 0.000163 396801
Sine(B) 0.000167 12737
Sine(B) 0.000172 50049
Sine(B) 0.000235 249
Tanh-Identity-ReLU-Sine(DQ) 0.000353 497
Sine(B) 0.000483 198401
Sigmoid-Identity-ReLU-Sine(DQ) 0.000587 497
Sigmoid(B) 0.000588 790017
Sigmoid(B) 0.000599 50049
Sigmoid-Identity-ReLU-Sine(DQ) 0.000624 153
Sigmoid(B) 0.000688 198401
Sine(B) 0.001016 77
Tanh-Identity-ReLU-Sine(DQ) 0.001165 153
ReLU(B) 0.001506 198401
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ReLU(B) 0.001908 790017
ReLU(B) 0.001982 12737
Tanh(B) 0.002100 3297
ReLU(B) 0.002120 50049
Tanh(B) 0.002162 881
Tanh(B) 0.002263 12737
ReLU(B) 0.002568 3297
Tanh(B) 0.003113 50049
ReLU(B) 0.004998 881
LogExp-Sine-ReLU-Identity(DQ) 0.005412 497
Tanh(B) 0.005704 198401
Sine(B) 0.005767 790017
Sigmoid(B) 0.009394 12737
Sigmoid(B) 0.010771 3297
Tanh(B) 0.012822 249
ReLU(B) 0.013824 249
Tanh(B) 0.019589 790017
LogExp-Sine-ReLU-Identity(DQ) 0.023513 153
Sigmoid(B) 0.129553 881
Tanh(B) 0.337096 77
Sigmoid(B) 0.678403 249
ReLU(B) 0.688930 77
Sigmoid(B) 0.825396 77
Identity(B) 0.938015 77
Identity(B) 0.938529 249
Identity(B) 0.938794 12737
Identity(B) 0.939042 881
Identity(B) 0.939228 50049
Identity(B) 0.939312 790017
Identity(B) 0.939348 3297
Identity(B) 0.940748 198401

C.11 max(sin(x1), sin(x2)) Dataset

Model Type MSE Loss Parameters

Sigmoid-Identity-ReLU-Sine(DQ) 3.551311e-04 25473
Sine(B) 3.886810e-04 881
Tanh-Identity-ReLU-Sine(DQ) 4.001738e-04 25473
Sigmoid-Identity-ReLU-Sine(DQ) 4.719596e-04 6593
Sine(B) 5.259567e-04 12737
Tanh-Identity-ReLU-Sine(DQ) 5.494741e-04 1761
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Tanh(B) 6.101574e-04 198401
Sigmoid-Identity-ReLU-Sine(DQ) 6.544009e-04 1761
Tanh-Identity-ReLU-Sine(DQ) 7.187343e-04 6593
Tanh(B) 9.072367e-04 790017
Tanh(B) 9.674739e-04 50049
ReLU(B) 9.720830e-04 790017
ReLU(B) 9.743124e-04 198401
LogExp-Sine-ReLU-Identity(DQ) 9.809652e-04 1761
ReLU(B) 1.121718e-03 50049
LogExp-Sine-ReLU-Identity(DQ) 1.369716e-03 6593
Tanh-Identity-ReLU-Sine(DQ) 1.493707e-03 497
Sigmoid-Identity-ReLU-Sine(DQ) 1.498983e-03 497
Sine(B) 1.570057e-03 3297
ReLU(B) 2.065045e-03 12737
LogExp-Sine-ReLU-Identity(DQ) 2.086330e-03 497
Sine(B) 2.098511e-03 249
Sigmoid(B) 2.697506e-03 12737
Sigmoid(B) 2.699803e-03 3297
Sigmoid(B) 3.900797e-03 881
Sigmoid(B) 4.873247e-03 50049
LogExp-Sine-ReLU-Identity(DQ) 5.102780e-03 25473
Tanh-Identity-ReLU-Sine(DQ) 6.108182e-03 153
Sigmoid-Identity-ReLU-Sine(DQ) 6.291096e-03 153
Sine(B) 8.765030e-03 77
ReLU(B) 9.435077e-03 3297
Sigmoid(B) 9.441121e-03 790017
Tanh(B) 1.224971e-02 881
ReLU(B) 1.902999e-02 881
Tanh(B) 2.268122e-02 3297
Tanh(B) 2.480021e-02 12737
LogExp-Sine-ReLU-Identity(DQ) 2.912080e-02 153
Tanh(B) 3.403129e-02 249
Sigmoid(B) 4.288222e-02 249
Sigmoid(B) 5.128191e-02 198401
ReLU(B) 5.980527e-02 249
Tanh(B) 1.265159e-01 77
Sigmoid(B) 2.060013e-01 77
ReLU(B) 2.390016e-01 77
Identity(B) 3.048867e-01 77
Identity(B) 3.050236e-01 881
Identity(B) 3.050546e-01 249
Identity(B) 3.051976e-01 12737
Identity(B) 3.052031e-01 3297
Identity(B) 3.052634e-01 198401
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Identity(B) 3.052870e-01 50049
Identity(B) 3.055089e-01 790017
LogExp-Sine-ReLU-Identity(DQ) 3.378067e+29 100097

C.12 Poly-v1 Dataset

Model Type MSE Loss Parameters

Tanh-Identity-ReLU-Sine(DQ) 1.110121 396801
Tanh-Identity-ReLU-Sine(DQ) 1.141925 1761
Sigmoid-Identity-ReLU-Sine(DQ) 2.380271 1761
ReLU(B) 2.699300 50049
ReLU(B) 3.155248 12737
Sine(B) 4.954150 790017
ReLU(B) 5.399961 198401
ReLU(B) 7.138938 3297
ReLU(B) 11.655133 790017
Tanh-Identity-ReLU-Sine(DQ) 12.152509 497
Sigmoid-Identity-ReLU-Sine(DQ) 43.278779 497
Tanh(B) 43.526353 790017
ReLU(B) 44.056655 881
Sigmoid(B) 45.695821 790017
LogExp-Sine-ReLU-Identity(DQ) 48.443759 497
LogExp-Sine-ReLU-Identity(DQ) 49.499772 1761
LogExp-Sine-ReLU-Identity(DQ) 62.492322 153
LogExp-Sine-ReLU-Identity(DQ) 64.565363 6593
Sigmoid-Identity-ReLU-Sine(DQ) 65.272677 153
Sigmoid(B) 68.127695 881
ReLU(B) 71.925055 249
Sigmoid(B) 72.077288 3297
Tanh-Identity-ReLU-Sine(DQ) 83.545288 153
Sigmoid(B) 84.062144 12737
LogExp-Sine-ReLU-Identity(DQ) 177.789175 25473
Sigmoid(B) 182.461387 50049
LogExp(B) 234.897464 50049
Sine(B) 252.130892 198401
Sine(B) 275.711224 881
Sine(B) 341.824558 249
LogExp(B) 348.711442 12737
LogExp(B) 374.233008 790017
Sine(B) 421.341707 77
LogExp-Sine-ReLU-Identity(DQ) 612.339858 100097
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Sine(B) 686.336498 3297
Tanh(B) 1525.450182 198401
Tanh(B) 2378.287794 3297
Sine(B) 6038.778704 12737
LogExp(B) 13321.988124 3297
Tanh(B) 20799.141507 249
Tanh(B) 20839.607328 77
Sine(B) 23903.131978 50049
Identity(B) 26468.443276 77
Identity(B) 26471.557520 249
Identity(B) 26475.241571 3297
Identity(B) 26477.589237 881
Identity(B) 26483.199508 12737
Identity(B) 26494.772761 198401
Identity(B) 26499.633797 50049
Identity(B) 26546.770696 790017
Tanh(B) 34689.751730 50049
ReLU(B) 52427.050539 77
Tanh(B) 61718.953449 881
Tanh(B) 83844.690144 12737
Sigmoid(B) 184318.890588 77
Sigmoid(B) 204698.548770 249
Sigmoid(B) 204722.445421 198401

C.13 Poly-v2 Dataset

Model Type MSE Loss Parameters

ReLU(B) 2.464118e-03 50049
Sigmoid-Identity-ReLU-Sine(DQ) 2.492162e-03 497
Tanh-Identity-ReLU-Sine(DQ) 2.529449e-03 497
Sigmoid-Identity-ReLU-Sine(DQ) 2.783454e-03 153
Tanh-Identity-ReLU-Sine(DQ) 3.082667e-03 153
Tanh-Identity-ReLU-Sine(DQ) 3.190937e-03 1761
Sigmoid(B) 3.288851e-03 3297
Sigmoid-Identity-ReLU-Sine(DQ) 3.627595e-03 1761
LogExp-Sine-ReLU-Identity(DQ) 3.639907e-03 497
ReLU(B) 3.854643e-03 790017
Tanh-Identity-ReLU-Sine(DQ) 4.110414e-03 6593
Sigmoid(B) 4.778981e-03 12737
Sigmoid(B) 4.869028e-03 881
Sigmoid-Identity-ReLU-Sine(DQ) 5.215905e-03 6593
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LogExp-Sine-ReLU-Identity(DQ) 6.816202e-03 6593
Sigmoid(B) 7.744870e-03 50049
LogExp-Sine-ReLU-Identity(DQ) 7.781561e-03 1761
ReLU(B) 8.299285e-03 12737
LogExp-Sine-ReLU-Identity(DQ) 8.440077e-03 25473
LogExp-Sine-ReLU-Identity(DQ) 9.341818e-03 153
Tanh(B) 1.103039e-02 790017
Sine(B) 1.141513e-02 198401
Sine(B) 1.141605e-02 249
Sine(B) 1.206936e-02 790017
ReLU(B) 1.408698e-02 881
Sine(B) 1.524963e-02 881
ReLU(B) 1.649235e-02 3297
Tanh(B) 1.650499e-02 198401
Tanh(B) 1.692497e-02 249
Tanh(B) 1.748832e-02 881
Sigmoid(B) 2.000268e-02 198401
Sine(B) 2.250853e-02 3297
Tanh(B) 2.391386e-02 3297
Sine(B) 3.206739e-02 12737
Sigmoid(B) 3.240024e-02 790017
Tanh(B) 3.435221e-02 12737
Sine(B) 4.124608e-02 50049
LogExp-Sine-ReLU-Identity(DQ) 4.175243e-02 100097
Sigmoid(B) 4.855275e-02 249
ReLU(B) 5.218624e-02 249
LogExp-Sine-ReLU-Identity(DQ) 5.923935e-02 396801
LogExp(B) 8.271052e-02 3297
LogExp(B) 9.080861e-02 12737
Sine(B) 1.072994e-01 77
Tanh(B) 1.145237e-01 50049
Tanh(B) 1.576821e-01 77
LogExp(B) 2.724432e+00 50049
Sigmoid(B) 3.757239e+00 77
LogExp(B) 3.925604e+00 198401
Identity(B) 6.602226e+01 77
Identity(B) 6.605630e+01 12737
Identity(B) 6.607456e+01 249
Identity(B) 6.608727e+01 790017
Identity(B) 6.609774e+01 50049
Identity(B) 6.609914e+01 3297
Identity(B) 6.611546e+01 198401
Identity(B) 6.616614e+01 881
ReLU(B) 7.390096e+01 77
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LogExp(B) 8.659283e+01 790017
LogExp(B) 1.698540e+08 249
LogExp(B) 1.778329e+09 881
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