
Distributed

 Computing

DataComp Challenge
Distributed Systems Laboratory

Dustin Brunner

brunnedu@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Till Aczél, Benjamin Estermann

Prof. Dr. Roger Wattenhofer

December 22, 2023

Acknowledgements

I would like to express my gratitude to my supervisors, Till Aczel and Benjamin
Estermann from the Distributed Computing Group (DISCO) at ETH Zürich for
providing their valuable guidance and support throughout my distributed systems
laboratory. Their insights and expertise were crucial in shaping my research and
approach to the Datacomp challenge.

I am also thankful to Professor Roger Wattenhofer for enabling this enriching
semester project and providing an opportunity to engage in such a novel and
exciting field of study.

My appreciation extends to the Computer Engineering and Networks Labora-
tory (TIK) at ETH Zürich for providing the Arton compute cluster, which offered
the resources and computational facilities for conducting my experiments.

Additionally, I would like to express my gratitude to my fellow students and
friends, whose support and discussion have been a source of motivation and
insight during my work on this project.

i

Abstract

This report outlines our participation in the small filtering track of the DataComp
challenge, a competition aimed at curating a training dataset from a larger pool
to optimize the performance of a CLIP model trained on this dataset across a
wide array of benchmark tasks. Our initial strategy centered on developing a
neural network, the Quality Comparison Model (QCM), to assess the usefulness
of image-caption pairs for inclusion in the training set based on a comparative ap-
proach. Later, after observing that the model excelled at content alignment but
didn’t properly factor in the semantic similarity between the image and caption
of a given sample, we shifted our focus to content alignment and relied on another
technique, flipped CLIP similarity, for cross-modality filtering. One key finding
of our experiments is that a simple neural network, such as our proposed Content
Alignment Model (CAM), is sufficient for content alignment between two large-
scale datasets based on precomputed ViT-B/32 CLIP or DINOv2 embeddings.
Due to its simplicity, our final approach benefits from very high computational
efficiency which is desirable when handling large-scale datasets. With this ap-
proach, we were able to compete at the top of the leaderboard for the small-scale
DataComp filtering track. Our research provides valuable insights into effective
content alignment using precomputed image and text embeddings, along with
presenting novel approaches to ranking methods for generating a ranking from
randomly sampled pairwise comparisons.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Related Work 3

2.1 DataComp . 3

2.1.1 Contrastive Language-Image Pre-Training (CLIP) 5

2.2 Filtering Approaches . 7

2.2.1 LAION-2B & DataComp-1B 7

2.2.2 Approaches by Other DataComp Teams 8

3 Methodology 9

3.1 Quality Comparison Model (QCM) 9

3.1.1 Training & Testing . 10

3.1.2 Ranking from Pairwise Comparisons 11

3.2 Content Alignment Model (CAM) 15

4 Experiments 16

4.1 Data & Tools . 16

4.1.1 Data . 16

4.1.2 Tools . 16

4.2 Ranking Methods . 17

4.3 Filtering Methods . 22

4.3.1 Baselines . 23

4.3.2 Quality Comparison Model (QCM) 23

4.3.3 Content Alignment Model (CAM) 26

4.3.4 Average Score by Samples 27

iii

Contents iv

5 Conclusion & Future Work 28

Bibliography 30

Chapter 1

Introduction

This distributed systems lab report details the discoveries and outcomes of our
participation in the DataComp data filtering competition [1], a unique challenge
focusing on the curation of an image-caption dataset for pre-training a CLIP
model [2]. Unlike previous machine learning competitions that focused on im-
proving model architectures, DataComp emphasizes the importance of the data
curation process. In this way, DataComp encourages innovation in filtering tech-
niques to further stretch the boundaries of performance and make pre-training
more efficient.

Our decision to participate in the smallest available scale of the filtering track
of the DataComp competition enabled us to explore various approaches within
our resource limits. In this track, participants are provided with an image-caption
dataset pool from Common Crawl. The challenge is to effectively filter this pool,
with the goal of training a CLIP model that achieves optimal performance across
a large number of downstream tasks.

The main purpose of this report is to document the different approaches
comprehensively and to provide a clear pathway for subsequent efforts in this
direction. The motivation behind this project lies in the recent breakthroughs in
multimodal learning such as CLIP [2], DALL-E [3] and GPT-4 [4] that heavily
rely on large-scale image-text datasets. It has been shown in multiple cases that
filtering a large-scale dataset crawled from the web can have a significant positive
impact on performance. This was for example the case for a number of LAION
datasets such as LAION-400M [5] or LAION-5B [6].

As we progressed through the competition, our initial idea focused on creating
a neural network capable of assessing the quality of individual samples. However,
recognizing the inherent challenges of this idea, we shifted our approach to a
comparative model that would assess the relative quality of a pair of image-
caption samples. This pivot required us to experiment with a variety of methods
for deriving a ranking based on randomly sampled pairwise comparisons. Our
experiments demonstrated that although the neural network did not directly learn
the notion of a "high-quality" sample, it excelled at detecting samples that were
similar in content to the high-quality datasets used for training. This observation

1

1. Introduction 2

prompted us to further refine our approach.

In the end, splitting the filtering into cross-modality filtering and content
alignment proved to be the key. Cross-modality filtering would ensure that only
samples with high semantic similarity between the image and the caption would
be kept and content-alignment ensured that samples with similar contents to
datasets used in downstream tasks would be preferred. For cross-modality filter-
ing, we would use the newly proposed flipped CLIP similarity by the The Devil
is in the Details [7] team also participating in the challenge. For content align-
ment we relied on a symmetric single linear layer model, eliminating the need
for comparisons and complex ranking algorithms. This streamlined approach
wasn’t only able to get competitive results on the average performance over the
full benchmark suite but also achieved the highest ImageNet validation accuracy
among all participants on the small scale 1.

The structure of this report reflects our progression through the DataComp
competition. Following this introduction, Section 2 delves into the related work,
providing context and background for our methodologies. Section 3 outlines the
methodologies we employed, detailing the evolution of our strategies. Section
4 presents our experiments, results, and analyses. Finally, Section 5 concludes
with reflections on our findings and potential directions for future work in this
exciting new domain of data curation research.

1This result is achieved when only training and evaluating once using a random seed of 0
which is standard practice on the public leaderboard.

Chapter 2

Related Work

In previous machine learning competitions, the conventional focus was often on
refining models and their training procedures while keeping training data and
evaluation metrics fixed. However, the DataComp challenge [1] provides an in-
teresting deviation from this norm by highlighting the significance of dataset
creation in machine learning. By participating in DataComp, our research aligns
with this innovative perspective, exploring various novel filtering techniques for
the optimization of training datasets within a fixed model and evaluation frame-
work.

In this section, we start by providing some important background informa-
tion about the DataComp challenge. Afterward, we give an overview of the CLIP
[2] model architecture developed by OpenAI, which is a multimodal embedding
model and forms the cornerstone of the competition. We then review some pop-
ular dataset filtering techniques that have been applied in the past and outline
novel methodologies employed by other teams in DataComp, highlighting their
differences and similarities to the approaches we pursued. These insights not
only provide context for our methods but also show the variety of possibilities
for improvement in dataset curation.

2.1 DataComp

DataComp [1] is a competition centered around dataset experiments proposed by
a large group of researchers affiliated with a wide range of institutions including
the University of Washington, LAION, Google Research and Apple. In contrast
to past benchmarks that focused on model development, DataComp focuses on
the training data generation process for a fixed CLIP [2] model architecture.
DataComp offers 2 tracks that participants can choose to follow, the first being
the filtering track and the second being the BYOD (Bring Your Own Data) track.
The goal of both tracks is to generate a training dataset for a CLIP model so that
it then performs as well as possible on a large number of zero-shot downstream
image classification and image retrieval tasks on datasets such as ImageNet [8],

3

2. Related Work 4

Figure 2.1: Overview of the DataComp workflow from the original paper [1] 1.)
Selecting scale of original pool (small-xlarge). 2.) Filtering track: filtering
original pool into a subset. 3.) Training a fixed CLIP model on filtered subset
with fixed hyperparameters. 4.) Evaluating trained CLIP model on 38 zero-shot
downstream tasks.

MS-COCO [9] or MNIST [10]. Figure 2.1 presents an overview of the workflow
for the DataComp competition.

As we’re committed to the filtering track, the report will focus on it and we
won’t discuss the BYOD track any further. In the filtering track participants
are provided with a pool of image-text samples from Common Crawl [11]. De-
pending on the chosen scale (small, medium, large, xlarge), the initial pool
in the competition contains anywhere from 12.8 million to 12.8 billion samples.
Table 2.1 gives an overview of the different scales available in DataComp, due to
hardware limitations and quicker feedback loops we focused on the small scale.

Scale Model Train compute (MACs) Pool size and # samples seen

small ViT-B/32 9.5× 1016 12.8M
medium ViT-B/32 9.5× 1017 128M
large ViT-B/16 2.6× 1019 1.28B
xlarge ViT-L/14 1.1× 1021 12.8B

Table 2.1: Different scales available in DataComp.

The Common Crawl samples all originate from the web and consist of an
image and a corresponding alt-text which is an HTML attribute that is supposed
to describe the contents of the image in case the image can’t be rendered or for
accessibility reasons such as for screen readers. DataComp applies only mini-
mal preprocessing to the pools in the form of NSFW detection, evaluation set
deduplication, and face blurring. The participants are then supposed to filter
the pool to an arbitrary subset that may also contain the same sample multiple
times, while it isn’t allowed to modify the samples in any way. The goal is to find

2. Related Work 5

the optimal filtered subset so that a CLIP model trained on this subset performs
as well as possible on the downstream benchmark tasks.

In order to make it possible to compare different-sized subsets as fairly as
possible the model architectures as well as all the training hyperparameters are
fixed including the number of samples seen during training which is fixed to the
pool size of the scale chosen as shown in Table 2.1.

DataComp also provides several baselines for the filtering track such as basic
filtering by language, caption length, or image size, and the LAION-2B filtering
which consists of English language filtering in conjunction with CLIP similar-
ity filtering. For CLIP similarity filtering a different pre-trained CLIP model is
utilized to determine the semantic similarity between the image and the corre-
sponding caption of a sample. This cross-modality filtering technique is applied
to ensure the caption describes the visual content of the image. Furthermore,
DataComp also provides baselines for text-based filtering and image-based filter-
ing. Text-based filtering involves retaining samples whose captions have some
overlap with ImageNet class names. Image-based filtering clusters CLIP image
embeddings from the entire datasets and retains only those samples that belong
to the nearest neighbor cluster of an embedded ImageNet sample.

In order to compare the performance of different filtering methods DataComp
utilizes a diverse set of 38 downstream image classification and retrieval bench-
mark tasks. The benchmarks range from a large part of the VTAB (Visual Task
Adaptation Benchmark) [12] suite, over popular image classification tasks such
as MNIST [10], CIFAR [13], or ImageNet [8] to image and text retrieval tasks on
Flickr30k [14] or MSCOCO [9]. Additionally, they include the two fairness and
bias benchmarks Dollar Street [15] and GeoDE [16]. Therefore different filter-
ing approaches are rated based on the average performance over all downstream
benchmark tasks.

2.1.1 Contrastive Language-Image Pre-Training (CLIP)

CLIP (Contrastive Language-Image Pre-Training) [2] is a multimodal embedding
model developed by OpenAI consisting of an image and a text encoder that
embeds images and text descriptions of images into a shared embedding space.

It is trained using a contrastive learning approach on a large set of image
caption pairs typically obtained by web crawling. This means that for a given
batch both encoders are optimized to maximize the cosine similarity between an
image’s embedding and the embedding of its corresponding caption, while also
trying to minimize the cosine similarity between embeddings of image caption
pairs within the batch that do not match. This novel learning approach allows
the model to link visual and textual data significantly better compared to previous
image classification models. Figure 2.2 provides an overview of the CLIP train
and prediction workflow.

2. Related Work 6

Figure 2.2: Summary of the approach used by CLIP from the original paper [2]
1.) Contrastive pre-training with maximization of cosine similarity between

image and text embedding vectors coming from the same sample (diagonal) and
minimization if they don’t come from the same sample (off-diagonal). 2.)

Transformation into a classifier by embedding all labels after inserting them into
a medium phrase. 3.) Use for zero-shot prediction by embedding image and

returning the label whose corresponding embedding has the highest similarity.

A trained CLIP model can then be used for zero-shot classification tasks by
embedding the image to be classified and all labels it could be classified as and
then selecting the label whose embedding shows the highest cosine similarity
to the embedding of the image as the prediction. Usually, the labels are first
transformed into image descriptions by the use of a so-called medium phrase like
"a photo of a {LABEL}.".

This approach is unique in that it allows the model to learn a large variety
of visual concepts during pre-training on a very large dataset and to then be
applied to nearly arbitrary downstream classification tasks. That property also
causes zero-shot classifications from CLIP to be more robust compared to classic
discriminative models that are only trained to distinguish between a relatively
small set of different classes and are therefore more likely to overfit on non-
semantic information. In the CLIP paper, this property was demonstrated by
the significantly better performance of a zero-shot CLIP classifier compared to a
ResNet101 trained on ImageNet on a variety of distribution shifts of ImageNet
such as ImageNetV2 [17], ObjectNet [18], or ImageNet Sketch [19].

Another task that CLIP excels at is the task of cross-modal retrieval where
the objective is to retrieve the semantically most similar images to a textual
description or the other way around the most similar textual descriptions to an
image. This ability is very useful for searching through a large image database
for example.

2. Related Work 7

2.2 Filtering Approaches

In this section, we aim to outline several effective filtering strategies, including
LAION-2B and DataComp-1B. We’ll also discuss filtering methods from other
teams in the DataComp competition that either inspired our approach or shared
similarities with our ideas.

2.2.1 LAION-2B & DataComp-1B

Stable Diffusion is a state-of-the-art image-to-text generative model by LAION
AI trained on LAION-2B [6] a massive 2.3 billion sample image-text dataset fil-
tered from a comparable pool of samples to Common Crawl. For the creation
of the LAION-2B dataset, first language filtering is applied to the original Com-
mon Crawl pool so that only samples with English texts are kept. Next, CLIP
similarity filtering is applied to filter samples with high similarity between image
and text based on a pre-trained CLIP model from OpenAI. More specifically,
they used a ViT-B/32 model to embed both the image and the text of a given
sample and then kept only samples whose embeddings had a cosine similarity
above a predefined threshold. The logic behind this idea is that a model trained
on samples with a higher semantic similarity between image and text would be
able to better learn the relationship between both modalities.

With the publication of the DataComp [1] paper, the authors also published
the DataComp-1B dataset representing the best baseline filtering method on
the DataComp benchmark. DataComp-1B was filtered from the largest filtering
track pool xlarge with 12.8 billion samples by combining the two most promising
filtering strategies and ended up including approximately 1.4 billion samples.
More specifically it kept the intersection of the filtered subsets generated by
CLIP similarity filtering with a ViT-L/14 CLIP model, similar to the LAION-2B
filtering, and Image-based filtering. Image-based filtering has the goal of aligning
the image content distribution to that of ImageNet. It does so by clustering the
image embeddings extracted from a ViT-L/14 model of all images in the pool
and clustering them into 100’000 groups using Faiss [20]. It then finds the nearest
neighbor group for every ImageNet image and only keeps the samples belonging
to these clusters. They either used ImageNet-21K [21] (14 million images) or
ImageNet-1K [8] (1.2 million images) for this procedure. A CLIP ViT-L/14
model trained on DataComp-1B was able to achieve a new state-of-the-art zero-
shot accuracy on ImageNet of 79.2% compared to the previous state-of-the-art of
78.5% achieved by a significantly larger ViT-g/14 CLIP model trained on LAION-
2B which required an order of magnitude more train compute. Our approaches
are similar but in contrast to this method, our approaches employ a custom
Content Alignment Model (CAM), which serves a similar purpose but relies
on a specialized neural network for content alignment, rather than a clustering
approach.

2. Related Work 8

2.2.2 Approaches by Other DataComp Teams

As we joined the DataComp Challenge a few months after its start, we could
benefit from the approaches and ideas that had already been put forward by
other competing teams. A notable strategy was from Data Filtering Networks
[22], which aimed to enhance neural network-based filtering. They experimented
with binary classification models to differentiate between high-quality dataset im-
ages (like ImageNet or CC12M) and low-quality ones (such as Common Crawl),
using various encoder backbones. However, they found that these models un-
derperformed compared to CLIP similarity filtering, which they attributed to
the binary classification models’ rigid assumptions on the content of high-quality
images. They found that CLIP similarity filtering was more flexible in this re-
gard. In the end, they found that it was crucial to train the CLIP model used
for similarity filtering on very high-quality samples. With this insight, they were
eventually successful by training a CLIP model on the HQITP-350M dataset,
consisting of 357 million high-quality image-text pairs, which led to significant
improvements over previous methods. Our approaches are similar to their binary
classification model approach with the difference being that we employ a com-
parison task for training the models and that we ended up aligning to multiple
downstream datasets instead of just one.

Another interesting approach was by T-MARS (Text Masking and Re-Scoring)
[23], who addressed a flaw in standard CLIP similarity filtering. They noticed
that the OpenAI pre-trained CLIP model often rated samples with written text
on the images that overlapped with the caption to have an overly inflated seman-
tic similarity between the image and text, essentially the model was performing
Optical Character Recognition (OCR). T-MARS countered this by masking text
on images and recalculating CLIP similarity, leading to a better alignment with
the desired semantic similarity between images and captions.

Later, The Devil is in the Details [7] introduced a much simpler yet similarly
effective method to reduce the model’s tendency to perform OCR. They flipped
images horizontally during processing, leveraging the fact that CLIP models were
not trained with horizontal flip augmentation. This resulted in the CLIP simi-
larity scores providing a more accurate reflection of semantic similarity. Another
helpful contribution by The Devil is in the Details was the clear structuring of a
filtering pipeline into single-modality filtering, cross-modality filtering, and dis-
tribution alignment. Single-modality filtering would for example be language
filtering of the captions. Cross-modality filtering would ensure that the semantic
content of the image and caption were similar and distribution alignment would
ensure that the content of filtered samples aligns with the content of downstream
benchmark tasks.

Chapter 3

Methodology

Over the 4 months of working on the distributed systems laboratory and with the
publication of other teams’ approaches, we had to modify our approach multiple
times. Our initial goal was to create a neural network that could determine the
quality of individual samples for effective ranking and selection. Recognizing the
inherent complexity in accurately assessing sample quality, we decided to use
a comparative approach, comparing pairs of samples to determine the higher-
quality one.

Because of our decision to use a comparative approach, we required meth-
ods for ranking the samples based on randomly selected pairwise comparisons.
For this, we explored various ranking methods, including the Elo rating system,
PageRank, and the HITS algorithm. During our experiments, we noticed that
our initial Quality Comparison Model (QCM) was better at identifying samples
with content similar to high-quality datasets, rather than learning the complete
concept of what it means for a sample to be high quality. This insight led us
to split our filtering approach into two separate parts: cross-modality filtering
and content alignment with benchmark datasets. For the cross-modality filtering
we decided to use the recently proposed flipped CLIP similarity and for content
alignment our Content Alignment Model (CAM).

As the project progressed further, we discovered the effectiveness of a simple
neural network in distinguishing between large datasets based only on their CLIP
embeddings. This insight led us to simplify our model to a single symmetric
linear layer, thus bypassing the need for ranking algorithms. This straightforward
approach was successful, enabling us to achieve competitive results in the small
filtering track of the DataComp challenge.

3.1 Quality Comparison Model (QCM)

To determine which of two image-text samples is of higher quality we built a
fully modular comparison model that we called the Quality Comparison Model
(QCM). This model operates by processing precomputed embeddings of the

9

3. Methodology 10

input samples. Depending on the configuration, the model is fed either the
embeddings of both modalities (image and text) or only the embeddings of a
specified modality (image or text). If both modalities were input the model con-
catenates the respective embeddings of both modalities so that it ends up with a
512 (single-modality) or 1024-dimensional (dual-modality) representation of both
input samples. These representations are then compressed by a shared linear
compression layer to a lower dimensionality. At this point, the cosine similarity
between the image and the text input embedding vectors, also called the CLIP
similarity score, is optionally concatenated to the compressed representations.
We employ this approach to enable our model to factor in the cross-modality
semantic similarity of samples. Otherwise, it wouldn’t be able to do so, as the
architecture is too limited to learn the process of performing cosine similarity in
the compression layer. Then both compressed representations are fed to a clas-
sification head whose output reflects a logit of the probability that the second
input sample is of higher quality. As classification head either a single linear
layer or a simple 2-layer MLP with a ReLU activation function for non-linearity
is used. Figure 3.1 provides an overview of the whole QCM architecture.

3.1.1 Training & Testing

To train the QCM we require a high-quality image-text dataset, for which we
usually use the COCO Captions 2014 [9] train split if not otherwise stated, and a
low-quality image-text dataset, for which we usually use the small DataComp [1]
pool originating from Common Crawl [11]. Then we iterate over all of the samples
in the low-quality dataset and for each of them randomly sample an image-text
pair from the high-quality dataset. The precomputed embeddings of the image
and/or text, depending on the modalities used, of these two samples are then
passed to the QCM in random order. If the first sample is the high-quality
sample the label is set to 0 and otherwise it is set to 1. As objective function we
use binary cross-entropy and we optimize the model using an Adam optimizer
with the default learning rate of 0.001 and without weight decay. We usually
train for 10 epochs and the validation accuracy is always very high (>0.95) with
the train loss being very low.

During inference, we randomly select pairs of image-text samples from the
small DataComp pool and compare them using the trained QCM. To ensure
consistency, the same preprocessing steps applied during training are replicated
at test time. The total number of comparisons is always a multiple of the original
dataset size. For example, with a comparison factor of 10 and an original dataset
size of N , we conduct 10N comparisons. In this case, each sample would be
compared 20 times on average (i.e., 2× 10).

To guarantee that every sample is compared at least once, thereby providing
a basis for quality assessment, we employ a permutation-based sampling strategy.

3. Methodology 11

Specifically, we generate a number of random permutations of the entire dataset
equal to the comparison factor. These permutations are then concatenated re-
sulting in a sequence and all consecutive pairs of samples within this sequence are
compared with each other. This method ensures that all samples are compared
equally as often.

Figure 3.1: Overview of the QCM architecture. 1.) If the model is used in a dual-
modality configuration, the image and text input embeddings are concatenated.
2.) The model compresses the representations of both samples using a linear
compression layer, which employs shared weights for both inputs. 3.) Optionally,
the inner product between the image and text input embeddings, also known as
CLIP similarity score, is concatenated to the compressed representations. 4.)
The representations for both samples are fed together to a classification head.

3.1.2 Ranking from Pairwise Comparisons

To retrieve a ranking from randomly sampled pairwise comparisons of dataset
items we require a ranking algorithm. There are several such algorithms avail-
able that have been developed with various use cases in mind, such as the Elo
rating system [24] that was developed for ranking chess players based on their
game outcomes, the PageRank [25] algorithm famous for revolutionizing the way
relevant web search results were displayed to the user developed by Google, or
HITS (Hyperlink-Induced Topic Search) [26], which is designed to identify the
most authoritative and hub pages on the internet by analyzing the pattern and
quality of links between websites. In the following sections, we will introduce the
ranking methods we experimented with.

3. Methodology 12

Elo Rating System

The Elo rating system [24] named after its inventor Arpad Elo is a method for
calculating the relative skill levels of players in a zero-sum game such as chess.
In the beginning, it assigns each player a numerical rating, a common choice is
1500, which then gets updated continuously based on the outcomes of games.
More specifically, after every game the winning player gets some points from
the losing player while the number of points transferred depends on the rating
difference between the two players. If the winning player was previously rated
significantly lower than the losing player the ratings will be corrected stronger
compared to the case where the winning player was already rated above the losing
one. In this way, the Elo system makes it possible to make statements about the
expected outcome of a game based solely on the ratings of the players competing
as described by Theorem 3.1. The Elo update rule as defined in Algorithm 1
also has a hyperparameter K scaling the size of the updates but because in our
case we’re only interested in the order of the ratings and not in their absolute
values we leave it at the default value of 32. In order to generate a ranking from
pairwise comparisons using the Elo algorithm we iterate over all comparisons
once in random order and perform the Elo updates sequentially.

Theorem 3.1 (Elo Expected Outcome). For two players with Elo ratings RA

and RB, the expected probability of player A winning is given by:

P (A wins) =
1

1 + 10(RB−RA)/400
(3.1)

Elo with Convergence. One issue with the Elo algorithm is that the final
ratings depend on the order in which we iterate through the comparisons which
is completely arbitrary. Therefore, we modified the classic Elo algorithm to make
the resulting ranking from the Elo algorithm less dependent on the order in which
we iterate over the comparisons and update the ratings. Instead of iterating
over all comparisons and updating the ratings just once, we repeatedly iterate
over the whole set of comparisons until the change in the ranking between two
consecutive passes over all comparisons is sufficiently small. To measure the
magnitude of the change in the ranking between two consecutive passes we use
the Kendall τ coefficient which is a rank correlation coefficient used for measuring
the similarity between two rankings of items. Therefore, we repeatedly update
all ratings based on all comparisons until the Kendall τ coefficient is below a
predefined threshold of 0.001. The full Elo with convergence algorithm is detailed
as a pseudo algorithm in Algorithm 2.

PageRank

PageRank [25] is an algorithm developed by Google to determine the relevance
of different linked web pages from the internet. It is named after one of the co-

3. Methodology 13

Algorithm 1 Elo Update
1: procedure EloUpdate(loserRating, winnerRating,K = 32)
2: winnerOdds← 10(loserRating−winnerRating)/400

3: expectedWinProb← 1/(1 + winnerOdds)
4: loserNewRating ← loserRating −K · (1− expectedWinProb)
5: winnerNewRating ← winnerRating +K · (1− expectedWinProb)
6: return loserNewRating, winnerNewRating
7: end procedure

Algorithm 2 Elo with Convergence
1: comparisons← vector of sample index tuples (winner, loser)
2: Ratings← vector of 1500 for each data sample
3: convergenceThreshold← 0.001
4: converged← False
5: while not converged do
6: prevRatings← Ratings
7: for (winner, loser) in comparisons do
8: winnerRating, loserRating ← Ratings[winner], Ratings[loser]
9: Ratings[loser], Ratings[winner]← EloUpdate(loserRating, winnerRating)

10: end for
11: kendallTau← KendallTauCoef(prevRatings,Ratings)
12: if kendallTau < convergenceThreshold then
13: converged← True
14: end if
15: end while

3. Methodology 14

founders of Google, Larry Page, as well as the term "web page". It works on the
principle that a web page’s relevance or importance is related to the number of
hyperlinks on other web pages pointing to it and the quality of those incoming
links. First, each web page is assigned an initial rank. Then each web page
repeatedly distributes a portion of its rank to all other web pages it links to.
The page ranks can be seen as a vector and the distribution process can be seen
as a matrix-vector multiplication between the transition matrix determined by
the links and the page rank vector. Additionally, PageRank uses a damping
factor to simulate the probability of a user clicking on a link on a given page.
A popular default value for the damping factor is 0.85 which we also end up
using. The PageRank algorithm repeats the distribution process until the page
ranks converge and don’t change by more than a predefined threshold. Because
this process can also be seen as potentiating the transition matrix, the power
iteration method is a popular way to calculate PageRank rankings. To be able to
apply PageRank to our use case, we treat each data sample in our original pool
as a node of a graph. Whenever two samples are compared with each other we
add an edge from the lower-quality sample to the higher-quality sample based on
the outcome. After building a comparison graph in this manner we can use the
PageRank algorithm to generate a ranking over all samples in the data pool.

HITS (Hyperlink-Induced Topic Search)

The HITS algorithm is a link analysis algorithm developed by Jon Kleinberg that
rates web pages. Its core idea is to determine two types of web pages. One type
is ’hubs’, which are pages that link to many other pages, and the other type
is ’authorities’, which are pages that are linked to by many hubs. Therefore it
assigns every page two scores, a hub score, and an authority score. Initially, every
page starts with hub and authority scores of 1. The algorithm then updates these
scores iteratively. A page’s authority score is updated based on the sum of the hub
scores of the pages pointing to it, and its hub score is updated based on the sum
of the authority scores of the pages it points to. After each iteration, the scores
are normalized to prevent them from inflating excessively. The HITS algorithm
repeats this process until the scores converge and do not change significantly
anymore between consecutive iterations. To apply HITS to our problem, we
build a comparison graph as described in the previous section about PageRank
and use the resulting authority scores as the sample qualities.

3. Methodology 15

3.2 Content Alignment Model (CAM)

In order to effectively align the train set distribution to our evaluation sets dis-
tributions we modified the original QCM (Quality Comparison Model) slightly
by making its architecture completely symmetric. The modified model is called
CAM, standing for Content Alignment Model, because of its new purpose com-
pared to the QCM. The main difference between the two model architectures
is that the CAM doesn’t have a classification head and instead, the symmet-
ric compression layer serves directly as a content-alignment layer that outputs
a scalar value indicating the input sample’s similarity to the dataset we wish
to align to. This makes the CAM architecture exceptionally straightforward as
the compression layer is linear and therefore the outputted alignment score of a
sample is simply the inner product between the model’s weight vector and the
sample’s input embedding. For training, still the same comparison approach is
utilized as for the QCM detailed in Section 3.1.1 but for inference, each sam-
ple only has to be passed once through the compression layer to determine its
alignment score.

Because the purpose of the CAM is to align the distribution of samples we
include in the train set to the distribution of samples in the downstream task
datasets there is now an additional requirement for a cross-modality method
to ensure that samples whose image and corresponding caption contain similar
semantic information are preferred. For this, we employ the recently developed
technique by the The Devil is in the Details [7] team competing in DataComp
called flipped CLIP similarity. More specifically, we use a pre-trained ViT-B/32
CLIP model from OpenAI to embed the horizontally flipped image and the text
of each sample in the small DataComp pool and calculate their inner product,
which gives us the cosine similarity for each sample. Flipped CLIP similarity is
an improvement over the already widely-used classic CLIP similarity because it
reduces its tendency to assign samples for which part of the caption is included as
written text somewhere in the image an overly inflated semantic similarity. This
is because OpenAI didn’t apply any horizontal flipping as data augmentation
when training CLIP models.

To factor in both the content alignment score as well as the cross-modality
flipped CLIP similarity score the ranks of all samples with respect to both scores
are averaged to determine a sample’s overall rank.

Chapter 4

Experiments

This section of the report outlines the experiments we conducted as part of the
distributed systems laboratory. It aims to evaluate the effectiveness of the various
filtering approaches we pursued throughout our participation in the DataComp
challenge. The primary focus is on the different configurations of the CAM and
QCM models as well as on the variety of ranking methods including Elo, HITS,
and PageRank.

4.1 Data & Tools

4.1.1 Data

The main datasets used during the project are from the DataComp competition.
Because of the massive datasets used in the competition, the participants have
to download them directly from the Common Crawl web scrapes which specify
for every sample the image URL as well as the Alt text that is to be used as the
caption. With a success rate of approximately 90%, we were able to download
11.6M of the 12.8M samples in the small pool. For evaluation DataComp uses a
wide range of 38 benchmark tasks whose corresponding datasets are detailed in
Table 15 of the original DataComp [1] paper.

Additionally, for content alignment and training the quality models, we used
a number of train sets or other unrelated partitions to the test sets of some of the
evaluation datasets. Table 4.1 provides an overview of these additional datasets.

4.1.2 Tools

The project’s codebase was developed entirely in Python [27]. We leveraged
the PyTorch [28] framework for constructing our neural network architectures,
complemented by PyTorch Lightning [29] for streamlined and scalable coding.
For handling large-scale datasets, notably the 450GB DataComp small pool, we
employed WebDataset, a Python library designed for efficient data loading from

16

4. Experiments 17

Table 4.1: Overview of datasets used in addition to DataComp datasets.
Dataset Partition Size Number of Classes

MSCOCO train 82783 N/A
ImageNet-1K train 1281167 1000
CIFAR-10 train 50000 10
Food-101 train 75750 101
SVHN train 65931 10
MNIST train 60000 10
Oxford 102 Flower train 1020 102
Oxford-IIIT Pet train 2944 37
Caltech-101 train 2754 101
PatchCamelyon train 262144 2
EuroSAT VTAB train 16200 10
iWildCam train 129809 182

web storage and local file systems. Ranking algorithms like HITS and PageRank
were implemented using NetworkX [30], a comprehensive network and graph
analysis library in Python.

Pre-trained CLIP models from OpenAI were integrated via the OpenCLIP
[31] library. Additionally, the HuggingFace platform served as a valuable resource
for accessing other pre-trained models and downloading various datasets. For
visualizations and analysis, we utilized Matplotlib [32] and Plotly [33], two widely-
adopted plotting libraries, while Pandas [34] was our choice for data manipulation
and analysis, particularly beneficial for working with smaller datasets.

4.2 Ranking Methods

To evaluate the various ranking methods based on their ability to retrieve a rank-
ing from randomly sampled pairwise comparisons of data samples from a large
pool a simulation environment was utilized. More specifically, we assume that
the ground truth qualities are sampled from a standard normal distribution with
mean 0 and standard deviation 1 and that they are known beforehand. Then we
randomly compare different samples with each other and based on the outcomes
of these comparisons the methods have to recover the original ranking. The re-
sulting ranking is then compared with the ranking based on the ground truth
qualities using multiple metrics such as Spearman’s or Kendall’s rank correlation
coefficient, sensitivity at K (how many of the top K% samples were correctly
identified as such), or a custom Ranking Distance metric we developed whose
calculation is detailed in Figure 4.1.

4. Experiments 18

def ranking_distance(qualities: np.ndarray, predicted_qualities: np.ndarray, k:
float = 0.2):↪→

if isinstance(k, float):
if k is fraction, convert to integer
k = round(k * len(qualities))

1.
indices of the k highest value items for both groundtruth and prediction
top_k_groundtruth = qualities.argsort()[-k:]
top_k_prediction = predicted_qualities.argsort()[-k:]
ranking_qualities = qualities.argsort().argsort()

2.
sum distances from top-k for all items wrongly predicted to belong to the

k highest value items↪→

distances = []
for pred in top_k_prediction:

if pred not in top_k_groundtruth:
distances.append(len(qualities) - ranking_qualities[pred] - k)

distances = np.array(distances)

3.
calculate maximal possible distance
n = len(qualities)
max_n_out = min(n - k, k) # max number of items to sum over
ub_dist = n - k # max possible distance for single item
lb_dist = ub_dist - max_n_out + 1 # min possible distance for single item
max_dist = max_n_out * (ub_dist + lb_dist) / 2

dist = distances.sum() / max_dist

return dist

Figure 4.1: Python function for calculating the Ranking Distance metric. 1.)
Identify all the samples that were mistakenly predicted to be among the top-k
(highest-ranking) samples. 2.) For all these samples calculate how far away their
actual rank is from being in the top-k group and sum the distances over all of
them. 3.) Normalize the resulting sum so that it falls in the range between 0
(best case) and 1 (worst case).

4. Experiments 19

The Ranking Distance metric is an extension of the sensitivity at K metric in
that it not only considers how many of the top K% items were correctly identi-
fied but also sums for all the incorrectly identified items outside of the specified
threshold their distance from the threshold. To make the ranking distance easier
to interpret it is normalized so that its values are between 0, which would be the
case if the sensitivity was 100%, and 1, which represents the absolute worst case
of predicting the bottom K% items to be the top K% items.

Each simulation run was defined by the following variables: the number of
items N , the comparison factor α which together with the number of items would
determine the number of comparisons performed αN , the standard deviation of
random Gaussian noise added to the ground truth qualities when comparing two
items σ, and most importantly the ranking method used.

Figure 4.2: Comparison of sensitivity at varying thresholds of ranking methods
with N = 10000 and σ = 0. In the chart on the left, a comparison factor of
α = 10 was used and on the right, a comparison factor of α = 50 was used.
The x-axis represents the percentage of the top-ranked items to be identified and
the y-axis represents what fraction of them were correctly identified. Elo with
Convergence has the highest sensitivity for identifying the top-ranked items at
all thresholds.

4. Experiments 20

Ranking
Method

Sensitivity at
20% ↑

Ranking Distance
at 20% ↓

Kendall
Coefficient ↑

Spearman
Coefficient ↑

Elo Convergence 0.918500 0.002905 0.911003 0.990010
PageRank 0.852500 0.009513 0.824707 0.960080
Elo 0.822500 0.015969 0.799190 0.951008
HITS 0.524000 0.101073 0.625254 0.819519

Table 4.2: Comparison of ranking methods with N = 10000, σ = 0 and α = 10
using multiple ranking metrics. Elo with Convergence achieves the best results
over all metrics and it can be observed that the metrics are highly correlated
with each other.

Figure 4.3: Comparison of sensitivities at varying thresholds when using different
comparison factors ranging from 1 to 50. These experiments were conducted
with Elo with Convergence, N = 10000, σ = 0. As expected, increasing the
comparison factor has a positive impact on the sensitivities at all thresholds. It
can also be seen that the sensitivity gain diminishes the larger the comparison
factor becomes.

4. Experiments 21

Figure 4.4: Comparison of sensitivities at the 20% threshold when comparisons
are noisy at different noise levels between 0 and 2 with N = 10000. The ground
truth qualities are sampled from a standard normal distribution with a standard
deviation of 1, so at a noise level of 2, the noise is twice as large as the signal. The
experiments were repeated with different random seeds and the error bars indicate
the standard deviation over different varying seeds. Elo with Convergence and
comparison factor α = 5 performs comparably to PageRank with comparison
factor α = 10 indicating that Elo with Convergence is significantly more robust
to noise in the comparisons.

4. Experiments 22

Figure 4.5: Comparison of sensitivities at varying thresholds for a large scale
dataset with N = 1e6. The methods used are Elo with Convergence and PageR-
ank either with noisy comparisons σ = 0.5 or with deterministic comparisons
σ = 0. The comparison factor is α = 10. The results show that a linear scaling of
the number of comparisons performed is sufficient to maintain a high sensitivity
for larger data sets. This means that insights gained from experiments performed
on a smaller scale of N = 10000 should also generalize well to a larger scale.

4.3 Filtering Methods

General Filtering Process

The general filtering process for the small DataComp pool using our proposed
methods involves the following key steps:

1. Score Assignment: Each sample in the pool is assigned a score reflecting
its potential utility in the filtered subset. This scoring is achieved using
either a QCM or CAM, supplemented by other methods like CLIP simi-
larity scores.

2. Ranking: Utilizing these scores, we establish a ranking over all samples in
the small DataComp pool.

3. Filtering: The final filtered subset is created by retaining only the top-
ranked samples. This selection is based on a predefined threshold, which
determines the proportion of top-ranked samples to include in the subset.
Ablation studies from the DataComp paper and empirical tests by other
teams have generally shown that a threshold ranging from 15% to 30%
optimizes the benchmark performance. Because of this, we used thresholds
in this range for our experiments. It is generally observed that with more

4. Experiments 23

effective filtering methods, a lower threshold is preferable, as these methods
are better at excluding less useful samples.

4.3.1 Baselines

In order to provide some references for the DataComp evaluation results we
present an overview of the evaluation results of popular filtering methods and
general baselines. It’s important to note that because we weren’t able to download
the complete small pool due to some missing URLs the DataComp percentages
of top-ranked samples kept are in regards to the full small pool size of 12.8M
while the percentages of our methods are in regards to 11.6M samples from the
small pool we were able to successfully download. Table 4.3 provides an overview
of some important baselines for the DataComp benchmark.

Filtering Method Dataset Size ImageNet 38 Dataset Average

No filtering 12.8M 0.025 2 0.132 2

LAION-2B filtering 1.3M 0.031 2 0.133 2

CLIP score (L/14 30%) 3.8M 0.051 2 0.173 2

Image-based ∩ CLIP score (L/14 30%) 1.4M 0.039 2 0.144 2

Flipped CLIP Score (B/32 25%) 2.9M 0.059 0.172

Table 4.3: Evaluation of Various Baseline Methods on DataComp’s Small Scale
Filtering Track. All experiments except for the Flipped CLIP Score experiment
are taken from the DataComp paper. Filtering the top 30% of samples based
on ViT-L/14 CLIP score provides the best performance over the full DataComp
benchmark while filtering the top 25% according to flipped ViT-B/32 CLIP score
results in the highest ImageNet-1K validation accuracy. It’s important to consider
that DataComp experiments were only conducted once with random seed 0, and
with an observed variance of 0.006 across different seeds, it is difficult to attribute
the observed advantages to specific causes.

4.3.2 Quality Comparison Model (QCM)

QCM Filtering Process

The filtering process using the QCM involves the following steps:

1. Model Training: The QCM is trained on a comparison task as outlined
in Section 3.1.1. The training is focused on distinguishing between samples

2Note: The results presented are based on experiments only run once with a random seed
of 0. The variance of the 38 dataset average between runs with different random seeds is up
to 0.006. For results without this remark, the values are averaged over 3 runs with different
random seeds.

4. Experiments 24

from a lower-quality dataset, the small DataComp pool, and samples from
a higher-quality dataset, the COCO Captions train split, based on their
ViT-B/32 CLIP embeddings.

2. Comparison Inference: Randomly selected data samples from the small
DataComp pool are compared against each other using the trained QCM
that evaluates which sample in each pair is of higher quality. The sam-
pling method for selecting data samples to compare is detailed in Section
3.1.1. Unless stated otherwise, a default comparison factor of 50 is used
which based on our ranking method experiments proved to be sufficient for
yielding a precise ranking.

3. Ranking: The outcomes of these pairwise comparisons are then used to
generate a ranking of all samples. For the ranking, we utilize the Elo with
Convergence method which performed best in our ranking method com-
parisons. In this way, the comparison results are converted into a coherent
ranking that reflects the relative quality of each sample.

4. Filtering: Based on the established ranking, the top-ranked samples are
filtered to generate the resulting subset. This subset selection is based on
a pre-defined threshold, ensuring that only the most relevant samples, as
determined by their rank, are retained for further use.

This process enables the effective utilization of the QCM for filtering the
DataComp pool by systematically comparing, ranking, and selecting the most
qualitatively relevant samples.

Table 4.4 provides an overview of the results using the dual-modality QCM in
multiple configurations. Table 4.5 displays the results of experiments comparing
combinations of various single-modality QCMs with CLIP similarity scores and
two different reduction methods for merging the separate scores.

4. Experiments 25

Filtering Method Dataset Size ImageNet 38 Dataset Average

QCM (c = 8, d = 0.4) 30% 3.5M 0.033 2 0.149 2

QCM (c = 8, d = 0.4, clip=True) 30% 3.5M 0.032 2 0.139 2

QCM (c = 16) 30% 3.5M 0.027 2 0.140 2

QCM (c = 2) 30% 3.5M 0.033 2 0.140 2

QCM (c = 32, d = 0.4) 30% 3.5M 0.032 2 0.143 2

Table 4.4: Evaluation of Various Dual-Modality QCM Model Configurations for
Filtering on DataComp’s Small Scale Filtering Track. The compression dimension
c, the dropout probability d, and whether CLIP similarity was concatenated to
the compressed sample representations after the compression layer "clip" is indi-
cated in the parenthesis. The percentage represents the fraction of the top-ranked
samples from the original pool kept. The experiments show that a compression
dimension of c = 8 as well as using a dropout probability of d = 0.4 on the input
layer without concatenating the CLIP score yields the best results.

Filtering Method Dataset Size ImageNet 38 Dataset Average

Image + Text + Flipped CLIP MR 30% 3.5M 0.054 2 0.166 2

Image + Flipped CLIP MR 30% 3.5M 0.051 2 0.167 2

Text + Flipped CLIP MR 30% 3.5M 0.049 2 0.163 2

Image + Text + Flipped CLIP GS 30% 3.5M 0.042 2 0.151 2

Image + Flipped CLIP GS 30% 3.5M 0.038 2 0.149 2

Text + Flipped CLIP GS 30% 3.5M 0.039 2 0.153 2

Image + Text + CLIP MR 30% 3.5M 0.054 2 0.167 2

Image + Text + CLIP GS 30% 3.5M 0.042 2 0.153 2

Table 4.5: Evaluation of Various Methods for Reducing Single-Modality QCM
Scores and CLIP Scores for Ranking and subsequent Filtering on DataComp’s
Small Scale Filtering Track. The modalities and CLIP scores included are indi-
cated by the start of the filtering method name. The methods are named to reflect
the included scores (single-modality QCM scores, CLIP scores), with ’MR’ de-
noting Mean Ranking (average rank across included scores) and ’GS’ denoting
Geometric Score (geometric average across included scores). For instance, ’Text
+ Flipped CLIP MR’ implies a single-modality QCM was trained on the cap-
tions (Text) and the final ranking is an average of the rank across this QCM’s
quality score and the flipped ViT-B/32 CLIP score. The experiments show that
the filtering based on the images and the flipped CLIP score achieves comparable
performance to filtering based on both modalities and the flipped CLIP score.

4. Experiments 26

4.3.3 Content Alignment Model (CAM)

CAM Filtering Process

To align our filtered data with the datasets for downstream benchmark tasks,
we downloaded additional, non-overlapping train splits from as many of these
datasets as possible. These splits, while separate from the test splits used in
evaluations, shared a similar data distribution, making them suitable for training
our alignment model. Given the diversity across the downstream task datasets,
we categorized them into three groups – S, M, and L – based on the amount of
data they should contribute to the resulting filtered subset.

We devised the following categorization based on the datasets’ sizes and the
specificity of their content:

S : PatchCamelyon, EuroSAT, CIFAR-10, SVHN, MNIST.

M : iWIldCam, Oxford 102 Flower, Food-101, Oxford-IIIT Pet, Caltech-101.

L : MSCOCO, ImageNet-1K.

The filtering process utilizing the CAM comprises the following steps:

1. Model Training: For each alignment dataset, we train a distinct CAM.
This model focuses solely on differentiating samples from the small Dat-
aComp pool against those from an alignment dataset. For training, we
employ the same comparison task outlined in Section 3.1.1 as for training
the QCM. To distinguish samples from different datasets, the CAM re-
lies exclusively on the 768-dimensional image embeddings from a DINOv2
model and doesn’t utilize the captions.

2. Alignment Score Inference: After training, each sample from the small
DataComp pool is passed through the CAM’s compression layer once to
obtain its alignment score.

3. Combination with Cross-Modality Score: The alignment score of each
sample is then combined with the flipped ViT-B/32 CLIP similarity score
of the samples by averaging their respective ranks.

4. Union over Alignment Datasets: For each dataset we align to, a frac-
tion of the top-ranked samples, determined by its category (S, M, L), is
filtered based on the combination of the corresponding CAM alignment
score and the cross-modality score. These subsets are then combined using
a set union operation. Due to the substantial overlap among the subsets
filtered from different alignment datasets, the final filtered subset is signif-
icantly smaller than the cumulative total of all individual fractions.

4. Experiments 27

Table 4.6 provides an overview of the results using the CAM in various
configurations.

Filtering Method Dataset Size ImageNet 38 Dataset Average

S 1% - M 5% - L 15% 2.7M 0.060 0.173
S 0.5% - M 5% - L 15% 2.7M 0.062 0.175
S 1% - M 3% - L 15% 2.4M 0.060 0.176
S 1% - M 3% - L 20% 3M 0.058 0.173
M 5% - L 15% 2.7M 0.060 0.174

Table 4.6: Comparative Evaluation of CAM Configurations for Alignment to
Multiple Evaluation Datasets in DataComp. The percentages indicate what pro-
portion of the top-ranked samples in the pool according to CAMs trained for
aligning to the datasets in the corresponding categories (S, M, L) were included
in the filtered subset.

4.3.4 Average Score by Samples

Near the end of the project, we implemented an averaging strategy for each
sample in the original pool based on all the 48 evaluations of different filtered
subsets we have run up until this point. For this, we calculated the average
of all evaluation scores for each sample across all of the experiments in which
it was included in the filtered subset. We then ranked the samples based on
this averaged metric, anticipating an ensemble effect. However, contrary to our
expectations, this approach did not yield the desired results. The benchmark
performance using this filtering technique was subpar as shown in Table 4.7.

Filtering Method Dataset Size ImageNet 38 Dataset Average

Average Score by Sample 15% 1.7M 0.015 2 0.118 2

Average Score by Sample 20% 2.3M 0.019 2 0.133 2

Average Score by Sample 25% 2.9M 0.024 2 0.139 2

Table 4.7: Comparative Evaluation of Average Scores by Samples Filtering in
DataComp. The percentage indicates what proportion of the top-ranked samples
in the pool according to the average evaluation score of all experiments that a
specific data sample was included in was filtered from the pool.

Chapter 5

Conclusion & Future Work

This report has documented our journey through the DataComp challenges small
filtering track, highlighting the exploration of various novel data filtering tech-
niques. Our initial objective to compete at the top of the leaderboard was largely
met, though not through the development of groundbreaking filtering techniques.
Instead, our project focused on refining and enhancing existing methods, leading
to a better understanding of the complex notion of what makes an image-caption
sample useful and therefore of high quality for training a CLIP model.

A significant finding from our research was the effectiveness of simple models
like the Content Alignment Model (CAM) in distinguishing between samples
from different large-scale datasets relying only upon embeddings from a CLIP
or DINOv2 model. This demonstrates the informativeness of the embedding
spaces spanned by these embedding models. Our experiments also showed that
there isn’t any need for a non-symmetric comparison model such as the QCM
and instead, a symmetric model like the CAM is sufficient. Another interesting
discovery was the superiority of Elo with convergence over other ranking meth-
ods such as PageRank or Elo without convergence for retrieving a ranking from
randomly sampled comparisons. Considering that the number of possible com-
parisons between a set of items scales quadratically with the pool size it was also
surprising that it was sufficient to linearly scale the number of randomly sampled
comparisons to maintain the desired ranking precision.

We faced several challenges during the project, especially dealing with large
datasets and the slow feedback loops due to the demanding training process of
the DataComp CLIP model. Another challenge we only noticed towards the end
of the project was the high variance in the evaluation benchmark metrics between
experiments with different random seeds. This was especially a problem on the
small-scale filtering track where the evaluation metrics were generally quite small
in magnitude.

In terms of impact, our experiments primarily demonstrated the validity of
employing a simple neural network model instead of a clustering method, such
as the one used for the image-based filtering baseline, for content alignment to
downstream tasks.

28

5. Conclusion & Future Work 29

On a personal note, this project was a very insightful experience in working
with large-scale datasets and multi-GPU distributed training. It also enhanced
my comprehension of the CLIP model, its embedding space, and the meaning of
CLIP similarity scores.

In moving forward from our current work, several promising avenues exist
to enhance the effectiveness of our approach, particularly in aligning to multiple
downstream evaluation datasets using the CAM. One immediate area for im-
provement lies in refining our cross-modality filtering technique. Building on the
innovative ideas of other participants in the DataComp competition, such as the
Data Filtering Networks [22], we see potential in training the CLIP model used
for CLIP score filtering exclusively on very high-quality datasets. This approach
has shown promise in improving the performance on the DataComp benchmark
suite. Another way of improving the cross-modality filtering is to perform the
similarity calculation with a larger CLIP architecture such as a ViT-L/14.

Because the CAM has shown excellent computational efficiency and robust-
ness in our experiments, its direct enhancement possibilities may be limited.
Even though our experiments with more complex architectures didn’t result in
improved performance, future work could involve further experimenting with al-
ternative neural network architectures.

Bibliography

[1] S. Y. Gadre, G. Ilharco, A. Fang, J. Hayase, G. Smyrnis, T. Nguyen,
R. Marten, M. Wortsman, D. Ghosh, J. Zhang, E. Orgad, R. Entezari,
G. Daras, S. Pratt, V. Ramanujan, Y. Bitton, K. Marathe, S. Mussmann,
R. Vencu, M. Cherti, R. Krishna, P. W. Koh, O. Saukh, A. Ratner, S. Song,
H. Hajishirzi, A. Farhadi, R. Beaumont, S. Oh, A. Dimakis, J. Jitsev, Y. Car-
mon, V. Shankar, and L. Schmidt, “Datacomp: In search of the next gener-
ation of multimodal datasets,” 2023.

[2] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sas-
try, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning
transferable visual models from natural language supervision,” 2021.

[3] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and
I. Sutskever, “Zero-shot text-to-image generation,” 2021.

[4] OpenAI, “Gpt-4 technical report,” 2023.

[5] C. Schuhmann, R. Vencu, R. Beaumont, R. Kaczmarczyk, C. Mullis,
A. Katta, T. Coombes, J. Jitsev, and A. Komatsuzaki, “Laion-400m: Open
dataset of clip-filtered 400 million image-text pairs,” 2021.

[6] C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman,
M. Cherti, T. Coombes, A. Katta, C. Mullis, M. Wortsman, P. Schramowski,
S. Kundurthy, K. Crowson, L. Schmidt, R. Kaczmarczyk, and J. Jitsev,
“Laion-5b: An open large-scale dataset for training next generation image-
text models,” 2022.

[7] H. Yu, Y. Tian, S. Kumar, L. Yang, and H. Wang, “The devil is in the
details: A deep dive into the rabbit hole of data filtering,” 2023.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in 2009 IEEE conference on com-
puter vision and pattern recognition. Ieee, 2009, pp. 248–255.

[9] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays,
P. Perona, D. Ramanan, P. Doll’a r, and C. L. Zitnick, “Microsoft COCO:
common objects in context,” CoRR, vol. abs/1405.0312, 2014. [Online].
Available: http://arxiv.org/abs/1405.0312

30

http://arxiv.org/abs/1405.0312

Bibliography 31

[10] L. Deng, “The mnist database of handwritten digit images for machine learn-
ing research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142,
2012.

[11] “Common crawl,” https://commoncrawl.org/, 2023.

[12] X. Zhai, J. Puigcerver, A. Kolesnikov, P. Ruyssen, C. Riquelme, M. Lucic,
J. Djolonga, A. S. Pinto, M. Neumann, A. Dosovitskiy, L. Beyer, O. Bachem,
M. Tschannen, M. Michalski, O. Bousquet, S. Gelly, and N. Houlsby, “A
large-scale study of representation learning with the visual task adaptation
benchmark,” 2020.

[13] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
pp. 32–33, 2009. [Online]. Available: https://www.cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf

[14] B. A. Plummer, L. Wang, C. M. Cervantes, J. C. Caicedo, J. Hockenmaier,
and S. Lazebnik, “Flickr30k entities: Collecting region-to-phrase correspon-
dences for richer image-to-sentence models,” 2016.

[15] W. Gaviria Rojas, S. Diamos, K. Kini, D. Kanter, V. Janapa Reddi,
and C. Coleman, “The dollar street dataset: Images represent-
ing the geographic and socioeconomic diversity of the world,” in
Advances in Neural Information Processing Systems, S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds.,
vol. 35. Curran Associates, Inc., 2022, pp. 12 979–12 990. [Online].
Available: https://proceedings.neurips.cc/paper_files/paper/2022/file/
5474d9d43c0519aa176276ff2c1ca528-Paper-Datasets_and_Benchmarks.pdf

[16] V. V. Ramaswamy, S. Y. Lin, D. Zhao, A. B. Adcock, L. van der Maaten,
D. Ghadiyaram, and O. Russakovsky, “Geode: a geographically diverse eval-
uation dataset for object recognition,” 2023.

[17] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do imagenet classifiers
generalize to imagenet?” 2019.

[18] A. Barbu, D. Mayo, J. Alverio, W. Luo, C. Wang, D. Gutfreund, J. Tenen-
baum, and B. Katz, “Objectnet: A large-scale bias-controlled dataset for
pushing the limits of object recognition models,” in Advances in Neural In-
formation Processing Systems, vol. 32, 2019, pp. 9448–9458.

[19] H. Wang, S. Ge, Z. Lipton, and E. P. Xing, “Learning robust global rep-
resentations by penalizing local predictive power,” in Advances in Neural
Information Processing Systems, 2019, pp. 10 506–10 518.

[20] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with
gpus,” 2017.

https://commoncrawl.org/
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/5474d9d43c0519aa176276ff2c1ca528-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/5474d9d43c0519aa176276ff2c1ca528-Paper-Datasets_and_Benchmarks.pdf

Bibliography 32

[21] T. Ridnik, E. Ben-Baruch, A. Noy, and L. Zelnik-Manor, “Imagenet-21k
pretraining for the masses,” 2021.

[22] A. Fang, A. M. Jose, A. Jain, L. Schmidt, A. Toshev, and V. Shankar, “Data
filtering networks,” 2023.

[23] P. Maini, S. Goyal, Z. C. Lipton, J. Z. Kolter, and A. Raghunathan, “T-mars:
Improving visual representations by circumventing text feature learning,”
2023.

[24] A. E. Elo, The Rating of Chessplayers, Past and Present. New
York: Arco Pub., 1978. [Online]. Available: http://www.amazon.com/
Rating-Chess-Players-Past-Present/dp/0668047216

[25] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
Citation Ranking: Bringing Order to the Web,” Stanford Digital
Library Technologies Project, Tech. Rep., 1998. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1768

[26] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,” in
Journal of the ACM (JACM), vol. 46, no. 5. ACM, 1999, pp. 604–632.

[27] G. Van Rossum and F. L. Drake Jr, Python reference manual. Centrum
voor Wiskunde en Informatica Amsterdam, 1995.

[28] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative
style, high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[29] W. Falcon and The PyTorch Lightning team, “PyTorch Lightning,” Mar.
2019. [Online]. Available: https://github.com/Lightning-AI/lightning

[30] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dy-
namics, and function using networkx,” Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), Tech. Rep., 2008.

[31] G. Ilharco, M. Wortsman, R. Wightman, C. Gordon, N. Carlini, R. Taori,
A. Dave, V. Shankar, H. Namkoong, J. Miller, H. Hajishirzi, A. Farhadi,
and L. Schmidt, “OpenCLIP,” Jul. 2021.

[32] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Sci-
ence & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

http://www.amazon.com/Rating-Chess-Players-Past-Present/dp/0668047216
http://www.amazon.com/Rating-Chess-Players-Past-Present/dp/0668047216
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1768
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/Lightning-AI/lightning

Bibliography 33

[33] P. T. Inc. (2015) Collaborative data science. Montreal, QC. [Online].
Available: https://plot.ly

[34] T. pandas development team, “pandas-dev/pandas: Pandas,” Feb. 2020.
[Online]. Available: https://doi.org/10.5281/zenodo.3509134

https://plot.ly
https://doi.org/10.5281/zenodo.3509134

	Acknowledgements
	Abstract
	1 Introduction
	2 Related Work
	2.1 DataComp
	2.1.1 Contrastive Language-Image Pre-Training (CLIP)

	2.2 Filtering Approaches
	2.2.1 LAION-2B & DataComp-1B
	2.2.2 Approaches by Other DataComp Teams

	3 Methodology
	3.1 Quality Comparison Model (QCM)
	3.1.1 Training & Testing
	3.1.2 Ranking from Pairwise Comparisons

	3.2 Content Alignment Model (CAM)

	4 Experiments
	4.1 Data & Tools
	4.1.1 Data
	4.1.2 Tools

	4.2 Ranking Methods
	4.3 Filtering Methods
	4.3.1 Baselines
	4.3.2 Quality Comparison Model (QCM)
	4.3.3 Content Alignment Model (CAM)
	4.3.4 Average Score by Samples

	5 Conclusion & Future Work
	Bibliography

