
Distributed

    Computing 

WikiGame: Graph-Exploration,
Fun included

Distributed Systems Laboratory

Filip Jaksic, Leonardo Salsi, Lorenzo Paleari, Patrice Delley

jaksicf@ethz.ch, salsil@ethz.ch, lpaleari@ethz.ch, pdelley@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Luca Lanzendörfer

Prof. Dr. Roger Wattenhofer

April 16, 2024



Abstract

This paper describes our work in which we translated the ruleset of Fibbage,
a popular word-based game, such that it makes use of data stemming from
Wikipedia but mirrored on ETH Zurich’s infrastructure. Our aim is to gamify the
graph-exploration of Wikipedia articles by introducing elements that make use
of this infrastructure. Using a back-end implemented in Python and a front-end
based on Next.js alongside with Tailwind, we created a small but fun experience.

i



Contents

Abstract i

1 Introduction 1

2 Development 3

2.1 Back-End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Front-End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Method 6

3.1 Lobby Management . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Game Management . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Scoring Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Bibliography 15

ii



Chapter 1

Introduction

Graph-Exploration can be exhausting, especially when dealing with a vast land-
scape of different data. Performing examinations on them can be tiring, and
a break is deserved. With this in mind we present WikiGame, a project which
makes use of the article data available from Wikipedia and takes inspiration from
Jackbox Games’ Fibbage[1].

Fibbage is a trivia game in which multiple parties aim to not only correctly
provide an answer to a question, but also to deceive their opponents by doing so.
One can imagine it as a task of filling in the gaps, where after everyone has sub-
mitted their proposal all parties can vote for an answer provided by other players.
There are no rules by which this voting is conducted; one can simply choose an
answer that seems to be most accurate or one that seems rather humorous.

Our project connects this idea with the readily available database of Wikipedia
articles, which is one of the results of the efforts of Niklas Pohl[2], but changes
the rules slightly. Where in Fibbage one should want to provide an answer to a
more open-ended question, the main question in our game, from here on simply
referred to as WikiGame, is "What article lies between article A and article B?".
Now, to simply choose any article that could be lying between two articles A
and B does not incite any sense of competition yet. To remedy this, the game
rewards players that find an article C between articles A and B whilst minimizing
the distance to them.

Visually speaking, if articles are considered to be nodes in a graph, then, nat-
urally, the distance between two specific ones are the number of edges connecting
them. The connection between articles is established by hyperlinks, e.g., if we
were to look up the Wikipedia article for ETH Zurich, we should be able to find
a hyperlink to the Wikipedia article for Zurich.

In WikiGame, similar to Fibbage, we also include a phase in which players
can choose the articles selected by their opponents and vote for them (and no, a
player cannot vote for themselves). The game then rewards all players based on
their personal selection of their article, given articles A and B, and based on how
many votes they were able to receive from their opponents.

1



1. Introduction 2

WikiGame is played with a main screen every party has access to, which serves
as the host of the game and where all important game-related information, such
as scores or current articles for example, are displayed. Players join with their
personal devices and choose their articles there.



Chapter 2

Development

In the following we will touch upon languages and technologies used to realize
WikiGame. Many more approaches were taken during development, but this
section focuses only on the technologies that made it in the final product. For
a better overview, we distinguish between what is used on the back-end (server-
side) and on the front-end (client-side)2.1.

2.1 Back-End

Python Our reasons for choosing Python[3] as the language for implementing the
back-end is twofold. It allows for fast prototyping and also increases maintain-
ability in case future students want to expand on our work, perhaps by adding a
new game mode that makes use of the database. We implemented the logic for
creating and joining lobbies, for tracking scores and examining the validity of the
user’s input in Python.

FastAPI FastAPI [4] is a library that is compatible with Python that helps
developers create API endpoints for their applications. On one hand, it allows for
clients to communicate with the back-end via these endpoints, but also enables
the usage of websockets, which we required information distribution in real-time
from and to the back-end.

Uvicorn In order to serve our backend as a web application we also use
Uvicorn[5]. It serves as the binding elements that handles all connections from
the clients and then passes the requests to FastAPI to handle them accordingly.

Neo4J Neo4J [6] is a graph database management system, allowing us to
make graph-related queries to it. It is the backbone for managing the relationship
between the Wikipedia articles and for efficiently retrieving relevant metrics, such
as the aforementioned distance between two articles. For fast access, the entire
NEO4J database is loaded into memory upon starting the back-end.

Redis Redis[7] is an in-memory database which was needed as an intermedi-
ate means for retrieving data. This was used to store very minimal information

3



2. Development 4

Front-End

Next.js

Tailwind CSS

ETHZ Infrastructure

Python

Fast-API

Uvicorn

Neo4J

Redis

Figure 2.1: Small overview of all notable technologies used for the project, along-
side their relation.



2. Development 5

on the articles, mainly an identifier of how Neo4J knows an article by and the
article name itself. Therefore, whenever we need to query for just any article, we
make use uf Redis for faster access, and the poll the rest of the data from Neo4J.

2.2 Front-End

Next.js Next.js[6] is a React framework that we use to generate static websites
for our web application that serve as the front-end of WikiGame. The choice
for this specific framework arose from the fact that it is pretty straight forward
to set up simple pages for early testing, but is versatile enough for us to create
visually appealing pages for the game.

Tailwind CSS Tailwind CSS [8] is a CSS framework that offers a highly
customizable and efficient way to stylize web applications. Unlike traditional
CSS, Tailwind CSS provides utility classes that directly apply styling to HTML
elements, which allows us to rapidly develop and easily maintain the visual com-
ponents required for the game.



Chapter 3

Method

In this section we want to give insight on what is happening during the various
phases of not only the game, but the entire application. We denote the host screen
as the screen, all involved parties have access to at all times during the game, and
the client screen the screen on a personal device, where only the corresponding
player has access to.

3.1 Lobby Management

When first starting the game, one can either choose to create a lobby and thus
assume the role of a host, or join an existing lobby. For a player to join, a lobby
has to exist beforehand.

Creating a Lobby Before creating a lobby, the host needs to decide on
how many rounds should be played, and whether the articles, between which the
players need to find the shortest path to, are selected randomly or selected by
the players.

When creating a lobby, a lobbyID and a QR-code3.1 are generated and dis-
played for all players to see on the host screen. This identifier is required for
joining the newly created lobby. The host then waits for players to connect and
choose a username and an avatar. At least three people need to be present in a
lobby for a game to start, but the number of players cannot be over eight.

When all players are ready, i.e. all players have decided on a username and
avatar, the host is allowed to start the game. When starting, a countdown is
displayed the host is allowed to interrupt. If the countdown reaches zero, the
game is started.

The host screen is not involved as a player, but as a means for displaying
information to all players at all times.

Joining a Lobby If someone wants to participate in the game, they join an
existing lobby by putting in the lobbyID. If the lobbyID is wrong, or the lobby
does not exist, the player is notified. Alternatively they can scan the displayed

6



3. Method 7

Figure 3.1: When creating a lobby, the host is free to decide on the settings
such as the number of rounds and the method of retrieving the left and the right
article before players are able to join.



3. Method 8

Figure 3.2: Players that joined the lobby are being displayed in real time on the
host screen.

QR code to automatically fill in the field for the lobbyID.

Before joining the lobby, the player must decide on a username and select one
of the nine preset avatars. If either one of these conditions is not fulfilled, the
player cannot join the lobby due to the button necessary for it being disabled.

Depending on whether the articles are chosen randomly or not, the player
needs to select a number of articles before readying themselves. Players that
joined the lobby are being displayed on the host screen3.2.

3.2 Game Management

A round of WikiGame can be split up into four distinct phases. These are

1. Selecting an Article

2. Voting for an Article

3. Presenting Paths

4. Showing Scores



3. Method 9

Figure 3.3: When a round starts, players are presented with two articles, between
which they need to select the article that minimizes the distance between them.
Furthermore, the host screen actively shows who already submitted an article.

After looping through these phases for a set amount of rounds, the game goes
into a final phase where the game results are shown, from which the host can
decide to start a new game.

6. Show Game Results

In the following, we want to explain what is happening during these phases.

Selecting an Article When the round starts, players are presented with
two articles on the host screen alongside the question, what article minimizes the
distance between these two. The player then makes a choice on their personal
device, where the client makes sure that only existing Wikipedia articles can be
submitted. Upon submission, the host screen displays that the corresponding
player has handed in an answer3.3. When all players have put in their selection,
the game goes to the next phase.

Voting for an Article The host screen presents all articles that were sub-
mitted by the players but withholds the information, by whom the article was
chosen3.4. On their personal devices, players now must vote for one of these
articles, excluding their own. The player has full authority over which criteria
they choose an article; they could give a vote to the article they find funniest or
to the article they think truly minimized the path between the given articles.



3. Method 10

Figure 3.4: Player-selected articles are being displayed anonymously for all play-
ers to see. On the client-devices, players can choose for which article to vote,
whereby their own article is not being displayed as an option.



3. Method 11

Figure 3.5: All player chosen articles are being added to the graph one by one,
showing the paths and relation to the given articles. This is fully animated in
order to build anticipation.

Presenting Paths When all votes have been submitted, the host screen
switches to display a graph. Initially, it shows the given two articles alongside
some possible articles that minimize the path between them. Then, one by one,
the articles submitted by players are integrated in a manner that shows, via
which hyperlinks one would go from the first given article to the player-submitted
article, and from there to the second article. While doing this, it briefly highlights
all nodes in-between. The idea behind this is to give player a sense of anticipation
when their solution is being evaluated3.5.

Showing Scores When all paths have been shown, the host shows the re-
warded scores for each player during the last round. Each player can see how
many points accounts for their choice of article and how many points are assigned
due to the votes received from other players. These are visually added to the sum
of points for each players from the previous round3.6.

Showing Game Results When all rounds have been played, the host screen
switches to a view showcasing the performance of each player for the entire
game3.7. This screen then nominates the winner and shows the rank of the
remaining players3.8. From here, the host can either decide to start a new game,
which then switches back to the lobby, allowing players to leave or other new-
comers to join, decide to end the game session.



3. Method 12

Figure 3.6: Points rewarded during past rounds are being accumulated visually
between each round on the host screen, allowing players to see how well they are
performing.

Figure 3.7: After all rounds have been played, the host screen shows a leader-
board.



3. Method 13

Figure 3.8: Similar to in-between rounds, scores are added, but after the last
round has been played, the host screen presents the winner of the game.

3.3 Scoring Mechanism

The scoring system in our project is designed to incentivize both participation
and optimization of article paths. Points are allocated based on two primary
components: votes-based points and path length-based points.

Votes Based Points Participants must vote for one article, and each vote
is assigned a value of 100 points. The number of points a participant receives is
directly proportional to the number of votes their article has garnered. Mathe-
matically, this is expressed as:

votes_points = n_votes× 100

where n_votes denotes the number of votes received by the participant’s
article.

Path Length Based Points The path length based points are determined
by the proximity of an article to the shortest path from the start to the end
articles. This calculation involves several steps:

• Determine the minlen, representing the length of the shortest path from
the start to the end articles.



3. Method 14

• Calculate the length of the path from the start to the end, which includes
the participant’s article.

• Compute the difference from the minlen, and add 1 to avoid potential
division by zero errors. This difference serves as the weight for each article.

• Points are distributed proportionally to the inverse weights of each article,
with a fixed total amount of path length based points. For instance, if the
total path length based points are 600 and a participant’s inverse weight
amounts to 40%, they would receive 600× 40% = 240 points.

• To maintain neatness, points are rounded up to the nearest 25.

The total amount of path lengths-based points is determined as total_path_points =
n_players × 200, ensuring there are double the number of path length based
points compared to votes-based points.

This scoring mechanism ensures a balanced evaluation of participants’ con-
tributions, incorporating both the quantity of support received and the quality
of their submissions in relation to the shortest path.



Bibliography

[1] “Jackbox games - fibbage,” https://www.jackboxgames.com/games/fibbage.

[2] N. Pohl, “Wikipedia Walker,” https://pub.tik.ee.ethz.ch/students/2023-FS/
BA-2023-07.pdf.

[3] “Python,” https://www.python.org/.

[4] “FastAPI,” https://fastapi.tiangolo.com/.

[5] “Uvicorn,” https://www.uvicorn.org//.

[6] “Next.js,” https://nextjs.org/.

[7] “Redis,” https://redis.io/.

[8] “Tailwind CSS,” https://tailwindcss.com/.

15

https://www.jackboxgames.com/games/fibbage
https://pub.tik.ee.ethz.ch/students/2023-FS/BA-2023-07.pdf
https://pub.tik.ee.ethz.ch/students/2023-FS/BA-2023-07.pdf
https://www.python.org/
https://fastapi.tiangolo.com/
https://www.uvicorn.org//
https://nextjs.org/
https://redis.io/
https://tailwindcss.com/

	Abstract
	1 Introduction
	2 Development
	2.1 Back-End
	2.2 Front-End

	3 Method
	3.1 Lobby Management
	3.2 Game Management
	3.3 Scoring Mechanism

	Bibliography

