e
ETH o
.

Distributed ~ f*gs5* s

Eidgendssische Technische Hochschule Ziirich . $8gu’ “
Computing 'S %% 50

Swiss Federal Institute of Technology Zurich

Building Practical Longest Chain
Protocols

Distributed Systems Laboratory

Marc Widmer

widmmarc@student.ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Ziirich

Protocol Labs
Research

Supervisors:
Matej Pavlovic, Yann Vonlanthen
Prof. Dr. Roger Wattenhofer

February 5, 2024

Acknowledgements

I thank Matej Pavlovic and Yann Vonlanthen for their guidance and assistance
with this project. Discussing various aspects of this project and everything
around it with you was always a great joy. I am looking forward to continue
working with you during my master’s thesis.

Abstract

This project presents a carefully designed modular abstraction of a longest-chain
consensus protocol and an implementation of it in the Mir framework. It outlines
how one can use this implementation as a consensus layer in other applications
and provides an implementation of a simple chat app as a reference. Further, it
also presents a rudimentary example of a visualization tool for the longest-chain
consensus system.

i

Contents

Acknowledgements i
Abstract ii
1 Introduction 1
2 High-Level Architecture 2
3 Operation 4
4 Modules 8
4.1 Blockchain Management Module (BCM) 8
4.2 Miner Module 9
4.3 Broadcast Module L. 9
4.4 Synchronizer Module L. 10
4.5 Application Module o 11
5 Creating your own application 12
6 Example: Chat App 13
6.1 Specification of the Chat App 13
6.2 Running the Chat App 14
6.3 Visualization 14
7 Conclusion 17

Bibliography 18

i

CHAPTER 1

Introduction

This project aims to develop a modular abstraction for a longest-chain consen-
sus protocol, taking inspiration from the well-known Bitcoin Blockchain [1]. Our
approach focuses on cleanly encapsulating core functionalities into simple mod-
ules with carefully designed interfaces. The result is a thoroughly documented
implementation of this protocol in the Mir framework.

Mir [2]| is a framework designed to implement and debug distributed algo-
rithms written in Go. In Mir, a distributed algorithm consists of multiple nodes
that communicate over a network to execute a protocol jointly. Every node is
itself built up of one or multiple modules. Each module should encapsulate a
distinct set of functionality and let other modules interact with it through a
carefully designed interface. These interactions are performed via events that are
produced, consumed, and processed by the modules.

Although the result of this project is a fully functional system, it is not
intended as a 'production’ system; rather, it should serve as the basis for possible
future work to extend this system to simulate different network conditions or
node behaviors. For example, one could simulate "Selfish Mining[3]", where a set
of colluding miners don’t share the blocks that they mined with other nodes for
a while in order to grow a competing branch.

The following will describe the design of this system and how it is imple-
mented in Mir.

The source code for this project can be found on GitHub!.

Note: The rest of this report (except for the conclusion) consists of parts taken
from the read-me for this project. I recommend reading the read-me directly for
a more pleasant experience.

"https://github.com /komplexon3/mir/tree/longest-chain-consensus/pkg/blockchain

CHAPTER 2

High-Level Architecture

We will first outline the different parts that make up the system. How these
elements interact with each other will be described in Operation, and a more
detailed description of every element can be found in Modules.

Each node has a set of core modules running the blockchain and an application
module that runs the business logic and provides certain functionality to the core
modules.

The blocks making up the blockchain contain the following:
e block id: Identifier of a block, computed by hashing the block with the
block id set to 0.

e previous block id: Identifier of the predecessor block.

e payload: An application dependant payload.

e timestamp: Timestamp of when the block was mined.

e miner id: Identifier of the node that mined the block.

Every node keeps track of all nodes that it knows of. At the very beginning,
this is solely the genesis block. After a couple of blocks have been mined, all
nodes together form a tree of blocks. Whichever leaf of this tree is the deepest is
called the head, and the chain of blocks from the genesis block to this leaf is the

canonical chain. The payloads of all the blocks in the canonical chain together
define the current state stored in the blockchain.

The nodes consist of the following core modules:

e Blockchain Management Module (BCM): It forms the core of the
system and is responsible for managing the blockchain.

e Miner Module: Mines new blocks by simulating proof-of-work.

2. HIGH-LEVEL ARCHITECTURE 3

Longest Chain Consensus

Miner Broadcast

Module € > Module [
gRPC Transport
\ Module

Blockchain Management L Synchronizer /
Module

Module =

A

v

3

Application
Module

Figure 2.1: High-Level Architecture

e Synchronizer Module: Resolves issues when new blocks are to be added
to the blockchain, but their parent blocks are unknown to this node’s BCM.

e Broadcast Module: Broadcasts newly mined blocks to all other nodes.
It can also simulate network delay and dropped messages.

, and the following supporting modules (provided by Mir):

e gRPC Transport Module: Used for communication between nodes.

e Event Mangler Module: Used by the broadcast module to simulate
network delay and dropped messages.

e Timer Module: Used by the Miner to simulate proof-of-work.

Lastly, a user-implemented Application Module handles all business logic.
In particular, it needs to compute the state of the blockchain, verify payloads,
and provide payloads to the miner.

Next to the modules, it also includes an interceptor that intercepts all commu-
nication between different modules and allows for visualization/debugging tools
to consume this communication via a websocket connection. An example of how
to use the information provided by the interception can be found on GitHub!.

Note: The event mangler module and the timer module were omitted from
High-Level Architecture figure for simplicity.

"https://github.com /komplexon3,/longest-chain-project /tree/main /chain-visualizer

CHAPTER 3

Operation

We will now walk through how the different modules interact with each other.

Note: In the sequence diagrams accompanying the following discussion (3.1,
3.2, 3.3), the boxes with a dotted outline have a different meaning depending on
the label in the top left corner:

e loop: The sequence in the box repeats indefinitely or until the condition in
the brackets holds.

e alt: The two boxes making up this box describe two alternative sequences.

e opt: The sequence in the box is optional. It is performed if the condition
in the boxes holds.

e par: The two boxes making up this box describe two sequences that are
performed in parallel.

At the start, the application module must initialize the BCM by sending it
an InitBlockchain event, which contains the initial state. The BCM creates
a genesis block with an empty payload and stores it together with the initial
state. It then instructs the miner module to start mining via a NewHead event.
To start mining, the miner module requests a payload (PayloadRequest) from
the application module. The miner now starts to mine, and the initialization
sequence of the node is completed.

After this, the node will remain inactive (other than mining a block) until a
new block has been mined. This block was either mined by this node’s miner or
by another node’s miner. In the first case, the miner would send the new block
to its BCM and broadcast the block to all other nodes via the broadcast module
(NewBlock event). In the second case, the broadcast module would have received
the block from the other node’s broadcast module and sent it to the BCM as a
NewBlock event.

The BCM will then check whether or not it can connect this block to its tree
of blocks. If it cannot connect the block, we call it an orphan block. Such cases

4

3. OPERATION 5

Application BCM Miner Broadcast Synchronizer

InitBlockchain

NewHead
PayloadRequest
PayloadResponse
Start mining
loop
alt [receiving new block from another node]
NewBlock

[this node’s miner mined a new block]

NewBlock
NewBlock
Check that the block can be connected to the block tree
opt [if it cannot the block to the blocktree]
SyncRequest
Get missing blocks from other nodes, details omitted
NewChain

VerifyChainRequest

Verify that payloads are valid

VerifyChainRespose

Add blocks of chain to block tree, verify that they link together

opt [if head changes]

NewHead

Abort current mining operation, prepare to mine on new head

PayloadRequest

PayloadResponse

Start mining on new head

HeadChange

Compute state for new head

RegisterCheckpoint

Application BCM Miner Broadcast Synchronizer

Figure 3.1: System Operation

can occur if the block’s parent was mined by another node and the broadcast
message for this block has not (yet) reached this node. The BCM will try to
resolve these problems with the help of the synchronizer, which will coordinate
with other nodes to get the missing blocks. This procedure will be described in
more detail below.

The BCM now potentially has multiple blocks to add, which are the new block
and possibly a chain of additional blocks from the synchronizer. The blocks are
not trusted by the BCM as they might have been mined by another node and
must, therefore, be verified. This happens in two ways:

3. OPERATION 6

1. The BCM sends all the blocks together with some additional information
to the application module (VerifyChainRequest). The application then verifies
that the payloads are valid. This logic is application-specific. 2. The BCM
verifies that the nodes link together correctly.

The BCM can now add all new blocks to the block tree. If the canonical
chain changes, i.e., there is a new head, it instructs the miner to start mining
on the new head (NewHead event). Also, it informs the application about the
new head (HeadChange event). This event contains some additional information
about how the canonical chain changes. For example, if a different branch of the
tree is now the canonical chain, it also includes which blocks are no longer part of
the canonical chain. This allows for the application to resubmit these payloads
if desired. In any case, the application will compute the state corresponding to
the new head and register it in the BCM (RegisterCheckpoint).

Initiator Node Other Node(s)

BCM (1) Synchronizer (1) Synchronizer BCM

Cannot connect block

SyncRequest

loop

: until successful, one node at a time]

ChainRequest

GetChainRequest

GetChainResponse (successful /unsuccessful)

NewChain

BCM (1) Synchronizer (1) Synchronizer BCM

Figure 3.2: Operation Synchronizer

The functionality of the synchronizer was already outlined above. This part
will go into more detail on how the synchronizer resolves orphan blocks. Every
SyncRequest from the BCM contains the id of the orphan block and a collection
of id of the block that the BCM has in its tree. With this information, the
synchronizer asks one node after another to give it a chain that connects the
orphan block to one of the known blocks (ChainRequest). The other nodes’
synchronizers then query their BCM via a GetChainRequest for such a segment
and forward the answer back to the initiator’s synchronizer. The responses can
be unsuccessful. In that case, the synchronizer asks the next node. When a
successful response is received, the synchronizer instructs the BCM to add the
new chain to the block tree (NewChain event).

3. OPERATION

Application BCM

GetChainToHeadRequest

>
»

Compute shortest chain from any checkpoint to the head

GetChainToHeadResponse

<
<

Compute state from checkpoint state and chain to head

Application BCM

Figure 3.3: Operation State Query

At any point in time, the application can get the current state at the head of
the blockchain by sending a GetChainToHeadRequest to the BCM. The response
to this will include a chain of blocks from a checkpoint to the current head and
the state associated with the checkpoint. Using this information, the application

can compute the current state.

CHAPTER 4

Modules

After outlining the modules that make up a node and describing how they inter-
act, the following will describe the modules’ functionality in a bit more detail.

4.1 Blockchain Management Module (BCM)

The blockchain manager module is responsible for managing the blockchain. It
keeps track of all blocks and links them together to form a tree. In particular,
it keeps track of the genesis block, the head of the blockchain, all leaves, and
so-called checkpoints. A checkpoint is a block stored by the BCM that has a
state stored with it. Technically, checkpoints are not necessary as the state can
be computed from the blocks. However, it is convenient not to have to recompute
the state from the genesis block every time it is needed.

The BCM must perform the following tasks:

1. Initialize the blockchain by receiving an InitBlockchain event from the
application module, which contains the initial state that is associated with
the genesis block.

2. Add new blocks to the blockchain. If a block with a parent that is not
in the blockchain is added, the BCM requests the missing block from the
synchronizer. Blocks that are missing their parent are called orphans. All
blocks added to the blockchain are verified in two steps:

e It has the application module verify that the payloads are valid given
the chain that the block is part of.
e The BCM must verify that the blocks link together correctly.

Additionally, it emits a TreeUpdate event. This is solely for debugging/vi-
sualization purposes and is not necessary for the operation of the blockchain.

3. Register checkpoints when receiving a RegisterCheckpoint event from the
application module.

4. MODULES 9

4. Provide the synchronizer with chains when requested. This is to resolve
orphan blocks in other nodes.

5. When the head changes, it sends a HeadChange event to the application
module. This event contains all information necessary for the application
to compute the state at the new head as well as information about which
payloads are now part of the canonical (i.e., longest) and which ones are
no longer part of the canonical chain. Also, it instructs the miner to start
mining on the new head (NewHead event).

6. Provide a chain of blocks from a checkpoint to the current head and the
state associated with the checkpoint when receiving a GetChainToHeadRequest.
This is used by the application to query the current state.

4.2 Miner Module

The miner module is responsible for mining new blocks. It simulates the process
of mining a block by waiting for a random amount of time and then broadcasting
the mined block. This random amount of time is sampled from an exponential
distribution with a mean of expMinuteFactor minutes. The mining is orches-
trated by a separate goroutine (mineWorkerManager) such that the miner module
can continue to receive and process events.

The operation of the miner module is as follows:

1. When it is notified of a new head (NewHead event), it prepares to mine the
next block by sending a PayloadRequest event to the application module.
If it is already mining a block, it aborts the ongoing mining operation.

2. When it receives the PayloadResponse containing a payload for the next
block, it starts mining a new block with the received payload.

3. When it mines a new block, it broadcasts it to all other modules by sending
a NewBlock message to the broadcast module. It also shares the block with
the blockchain manager module (BCM) by sending a NewBlock event to it.

4.3 Broadcast Module

The broadcast module is responsible for broadcasting new blocks to all other
nodes. It either does this directly via the transport module or the mangler
(parameter mangle). If the mangler is used, messages might be dropped and
delayed. How many messages should be dropped can be configured by the pa-
rameter dropRate and the delay can be configured by the parameters minDelay
and maxDelay.

4. MODULES 10
4.4 Synchronizer Module

The synchronizer module assists the BCM in resolving cases when BCM re-
ceives an orphan block. An orphan block is a block that cannot be linked to
the blockchain because the blockchain does not contain the block that the or-
phan block is linked to. To do this, the synchronizer module communicates with
other nodes to get the missing blocks.

Terminology:

e internal sync request: a request to synchronize a chain segment that
was initiated by this node

e external sync request: a request to synchronize a chain segment that
was initiated by another node

The synchronizer module performs the following tasks:

For internal sync requests:

1. When it receives a SyncRequest event, it must register the request and
send a ChainRequest message to one of the another nodes.

2. When it receives a successful ChainResponse message, it sends the BCM
the chain fixing the missing bit with a NewChain event. It then deletes the
request.

3. When it receives an unsuccessful ChainResponse message, it sends a ChainRequest
message to the next node. If there are no more nodes to ask, it deletes the
request.

For external sync requests:

1. When it receives a ChainRequest message, it must register the request and
send a GetChainRequest event to the BCM.

2. When the BCM responds with a GetChainResponse event, the synchro-
nizer responds to the node that sent the ChainRequest message with a
ChainResponse message.

Note: This module assumes that all other nodes respond to requests. For this
reason, the messages sent from the synchronizer do not go through the mangler.

4. MODULES 11

4.5 Application Module

The application module is responsible for performing the actual application logic
and interacting with users. It does not hold any persistent state but instead
relies on the BCM to store the state. However, the application is responsible for
computing the state given a chain of blocks and a state associated with the first
block in the chain. Also, the application module manages payloads and must
provide payloads for new blocks to the miner.

The application module must perform the following tasks:

1. Initialize the blockchain by sending the initial state to the BCM in an
InitBlockchain event.

2. When it receives a PayloadRequest event, it must provide a payload for the
next block. Even if no payloads are available, a payload must be provided;
however, this payload can be empty.

3. When it receives a HeadChange event, it must compute the state at the
new head of the blockchain. This state is then registered with the BCM by
sending it a RegisterCheckpoint event. A checkpoint is a block stored by
the BCM that has a state stored with it.

4. When it receives a VerifyBlocksRequest event, it must verify that the
given chain is valid at an application level and respond with a VerifyBlocks
Response event.

The websocket interceptor intercepts all events and sends them to a websocket
server. Any connected client can then receive these events by subscribing to the
websocket server. The interceptor proto file defines events that are specifically
intended for the interceptor and not used by the actual blockchain. Since these
events technically don’t have a destination module, they are sent to the "null"
module (ignores all incoming events). However, all events are intercepted and
sent to the websocket server.

For this implementation, there are two events intended for the interceptor:

e TreeUpdate: This event is sent by the blockchain manager (BCM) when
the blockchain is updated. It contains all blocks in the blockchain and the
id of the new head.

e StateUpdate: This event is sent by the application when it computes the
state for the newest head of the blockchain.

CHAPTER 5

Creating your own application

To create your own application based on this blockchain system, you must first de-
fine your application’s state and payloads in statepb.proto and payloadpb.proto
files.

Next, you must implement an application module that performs the following
actions:

1. Initialize the blockchain by sending an initial state as an InitBlockchain
event to the BCM.

2. When it receives a PayloadRequest event, it must provide a payload for
the next block. Even if no payloads are available, a payload **must™* be
provided. However, this payload can be empty.

3. When it receives a HeadChange event, it must compute the state at the new
head of the blockchain. This state must then be registered with the BCM
by sending it a RegisterCheckpoint event. Additionally, the information
provided in the HeadChange event might be useful for payload management.

4. When it receives a VerifyBlocksRequest event, it must verify that the
given chain is valid at an application level and respond with a VerifyBlocks
Response event.

See the example blockchain chat app as a reference.

You can now set up all the modules using system.New(...) where you can
configure the system and provide it with your application module. For the node
initialization, you can get all modules of the system by calling system.Modules().

12

CHAPTER 6

Example: Chat App

An example of how to use the longest-chain consensus system is the [Blockchain
Chat App](../../samples/blockchain-chat/). Users can enter input through stan-
dard input line by line and the system replicates all messages in the same order
across all nodes. It enforces that all messages sent from the same sender appear
in the history in a monotonically increasing order of submission time.

6.1 Specification of the Chat App
The following lists the key specifications of the chat app:

Payload
The payloads consist of a message, the sender id (id of the node from which the
message was sent), and a submission ("sent") timestamp.

State

The state consists of the message history and a collection of "last sent" times-
tamps, one for each sender, where the timestamp corresponds to the submission
time of the last message of this sender.

Applying blocks to compute state

When applying a block to a state, the message in the payload is appended to
the message history and the "last sent" timestamp corresponding to the sender
is updated.

Verifying blocks

To verify a block, the application verifies that the "sent" timestamp of the payload
is not before the "last sent" timestamp of the sender stored in the state associated
with the block’s parent block.

Providing payloads
Each node’s application keeps track of all messages that were submitted to it.
Additionally, if a fork happens and the branch changes, it re-adds payloads that

13

6. EXAMPLE: CHAT APP 14

were previously part of the old canonical chain to its payload pool and removes
the ones that are now part of the canonical chain. If no payloads are available,
it simply provides an empty payload.

6.2 Running the Chat App

To run the chat app, you can run the following in multiple terminals from the
example’s directory, once for each node

go run . —numberOfNodes <number of nodes in the network>
—nodelD <id of this node [0, numberOfNodes—1|>

Further, you can add the following options to modify the characteristics of
the system(s). If they are not set, default values will be used

e -disableMangle: Disables all mangling of the messages between the nodes.

e -dropRate: The rate at which to drop messages between nodes. (Ignored
if disableMangle is set.)

e -minDelay: The minimum delay by which to delay messages between
nodes. (Ignored if disableMangle is set.)

e -maxDelay: The maximum delay by which to delay messages between
nodes. (Ignored if disableMangle is set.)

e -expMiningFactor: Factor for exponential distribution for random mining
duration.

If tmux is installed, you can run ./run.sh to start a network of 4 nodes with
reasonable options set.

6.3 Visualization

For this chat application, there exists an accompanying browser-based visualiza-
tion tool that utilizes the aforementioned websocket interceptor!. The visualizer
provides insight into the state of the different nodes. In particular, it displays
the block tree stored in every node, the current and the current chat/message
history (i.e., state corresponding to the current head).

The following information is shown once for each node. In the box at the
top, you see the chat/message history. Right below it, you can see the id of

"https://github.com /komplexon3 /longest-chain-project /tree /main /chain-visualizer

6. EXAMPLE: CHAT APP 15

the current head (truncated for readability) and the message part of the head’s
payload. The biggest part of the window is filled with the block tree that is stored
by the node’s BCM. It shows how the blocks are connected and the current head
is marked with a red border. To compare the trees more easily, each block’s
background color is derived from its id.

Chain Viewer

Status: CLOSED
STATE

2-1

1-1

341

2-2

3-2

0-1
HEAD: 147051, Payload: 3-6

Figure 6.1: Visualizer

6. EXAMPLE: CHAT APP 16

Miner ID (ID of node Block ID
that mined the block) !
r
169212
15 . 27 . 10 n 312 ~= “Sent” Timestamp
0-12
Sender ID (ID of 1 Payload message

node to which the
message was
submitted)

Figure 6.2: Block in Visualizer

Every single block displays the following information:

e Block ID: The id of the block (truncated for readability).

e Miner ID: The id of the node that mined the block. The background color
is unique per id.

e Sent Timestamp: The time at which the message was sent. This infor-
mation is part of the payload. Not to be confused with the time at which
the block was mined.

e Payload Message: The message that is part of the payload.

e Sender ID: The id of the node from which the message was sent. Again,
the background is unique per id. Note that this information is part of the
payload.

CHAPTER 7

Conclusion

In this report, we demonstrated how a longest-chain consensus protocol can be
abstracted into a set of different modules. We also show how easy it is to imple-
ment such a complex system in Mir. The implemented system is easily extensible
and could serve as a platform to simulate different network conditions or attack
scenarios (e.g., "Selfish Mining [3]|").

In addition to the implementation of the longest-chain consensus protocol,
we also demonstrate a simple way to create web-based visualization tools for the
Mir framework.

17

Bibliography

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” https://
bitcoin.org/bitcoin.pdf.

[2] “Mir - the distributed protocol implementation framework,” https://github.
com/consensus-shipyard /mir.

[3] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is vulnerable,”
2013.

18

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/consensus-shipyard/mir
https://github.com/consensus-shipyard/mir

	Acknowledgements
	Abstract
	1 Introduction
	2 High-Level Architecture
	3 Operation
	4 Modules
	4.1 Blockchain Management Module (BCM)
	4.2 Miner Module
	4.3 Broadcast Module
	4.4 Synchronizer Module
	4.5 Application Module

	5 Creating your own application
	6 Example: Chat App
	6.1 Specification of the Chat App
	6.2 Running the Chat App
	6.3 Visualization

	7 Conclusion
	Bibliography

