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Abstract

This thesis explores a novel approach to audio compression using image com-
pression techniques applied to spectrogram representations of audio signals. By
converting audio into two-dimensional spectrograms and leveraging state-of-the-
art image compression models, the proposed method aims to achieve competitive
compression rates while maintaining perceptual quality. The study focuses on
compressing music and general audio, which present unique challenges compared
to speech-specific compression. The pipeline involves converting audio into log-
magnitude spectrograms, applying an image compression model (ILLM), and
reconstructing the audio waveform using phase reconstruction techniques. Ex-
periments demonstrate that while the spectrogram-based approach can achieve
bitrates comparable to state-of-the-art neural audio codecs, the perceptual qual-
ity currently lags behind. The finetuned ILLM model outperforms its pretrained
counterpart on a consistency metric but still introduces artifacts. The study
highlights the need for perceptually-aligned evaluation methods and identifies
key challenges, such as adapting model architectures to capture the unique char-
acteristics of audio spectrograms and improving phase reconstruction. Despite
limitations, the results show the potential for leveraging image compression tech-
niques in the audio domain and serve as a foundation for future research in
spectrogram-based audio coding.
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Chapter 1

Introduction

Data compression is a process by which data (usually in digital binary form) is
represented using fewer bits of information than in its original representation.
In the usual picture a data compression system consists of two algorithms, an
encoder and a decoder algorithm (the pair of which is sometimes referred to as
"codec"). The encoder takes as input the uncompressed data and returns the
compressed representation of the data as an output. The decoder then executes
the process by which the compressed data is transformed back into its original
data format. The main distinction between different types of compression al-
gorithms is in whether they are lossless or not. Lossless compression refers to
such algorithms that can perfectly reconstruct the original data from its com-
pressed representation, while lossy compression algorithms have purposely been
designed to discard parts of the source information, which allows a better level
of compression, at the cost of only performing an imperfect reconstruction.

Data compression plays a crucial role in conserving storage hardware and in
reducing network computing resources, particularly for multimedia data such as
images, audio, and video. Efficient compression techniques are essential. Without
them, storing and transmitting this content would require an enormous amount of
hardware resources and network bandwidth. By minimizing the storage footprint
through compression, data centers can operate more efficiently, leading to signif-
icant economic savings. Furthermore, compressed files consume less bandwidth
during transmission, which translates to lower energy consumption in network
infrastructure. As the world becomes increasingly digital, the amount of multi-
media content generated and consumed continues to grow exponentially, totalling
more than 5000 Exabytes in 2022 [1]. It is estimated that the majority of internet
traffic is now being generated by video streaming applications [2].

The field of audio compression is concerned with the development of special-
ized data compression techniques to compactly represent arbitrary sound signals
or some subset of possible audio information (such as speech). Similar to other
digital representations of analog signals (images, video), compressed digital audio
data usually is not required to be perfectly reconstructed on a bit-by-bit basis.

MP3 [3] has been a widely used audio compression format for many years,
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1. Introduction 2

offering efficient compression while maintaining acceptable audio quality. More
recently, the Opus codec [4] has emerged as a popular alternative, providing
improved compression efficiency and audio quality. As technology advances, re-
searchers are developing new compression algorithms that leverage deep learning
and machine learning methods. Neural network-based approaches outperform
traditional compression methods at very low bitrates, making them an exciting
area of research with significant potential for practical applications and as base
models for downstream applications.

Neural audio codecs are typically trained end-to-end, meaning the entire com-
pression and decompression pipeline is learned directly from data. This allows
the models to optimize for the specific characteristics of the audio signals being
compressed. Our approach takes a different route by working with a spectrogram
representation of the audio data and applying an image compression model to it.

The key research questions we aim to address with our spectrogram-based
audio compression approach are whether it is possible to obtain similar or bet-
ter audio quality than traditional codecs and end-to-end neural approaches by
working with spectrograms, if model training can be simplified by leveraging ex-
isting pretrained image compression models and whether our method can provide
improved size efficiency, which is crucial for deployment on resource-constrained
devices. By exploring these questions, we hope to develop a novel audio compres-
sion technique that combines the benefits of deep learning with the advantages of
working in the spectrogram domain. This could lead to more efficient and effec-
tive audio compression, with applications in various domains such as streaming,
telecommunications, and embedded systems.

1.1 Lossless Compression

The invention of Morse code in the middle of the 19th century likely is the first
example where a system was deliberately engineered with an early understanding
of the principles underlying data compression. By giving the shortest codewords
to the most frequently occurring letters in the alphabet, the expected length of
telegraph transmissions was reduced. Clearly, the efficiency with which informa-
tion is represented is of vital importance if one aims to maximize the transmission
rate of a communication system. Unsurprisingly, compression was therefore one
of the main motivating problems addressed by Shannon’s famous 1948 paper [5]
that derived many of the main results in the field of information theory.

The most important bound for lossless compression is Shannon’s source cod-
ing theorem. Let X be a discrete random variable over an alphabet X with
distribution P . We define the entropy H(X) = Ex∼P [− log2(x)], the expected
code-length L of an optimal code with symbols in a D-ary alphabet can be
bounded [6]:
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H(X)

log2(D)
≤ L <

H(X)

log2(D)
+ 1 (1.1)

We notice that there is an overhead of at most 1 bit per symbol. One may
group the sequence of symbols into larger blocks to amortize this overhead over
greater portions of a message. One can therefore construct lossless compression
codes that achieve an expected code-length per symbol that is arbitrarily close to
the entropy H(X). However, constructing a code in this naive manner exponen-
tially increases its computational overhead. In practice, there also exist efficient
algorithms to reach these bounds.

1.1.1 Entropy Coding

The term entropy coding describes a lossless data compression method which
approaches this lower bound of an expected code length equal to the entropy of
the source data distribution. The two most common methods for entropy cod-
ing of data are Huffman codes and Arithmetic coding [6]. Huffman coding is
a method for determining a binary string for each source data symbol, assign-
ing shorter codes for the more frequently occurring symbols. Among the binary
codes that encode a message symbol-by-symbol Huffman codes can be shown to
be optimal. However, if a symbol’s probability of occurring is not a negative
power of two, Huffman codes may suffer an arbitrarily large overhead. Arith-
metic coding is a compression method which assigns a single arbitrary precision
fraction to encode an entire message. With arithmetic coding not being limited
by the per-symbol restriction it is possible to encode messages drawn from an
arbitrary source distribution with at most one bit of overhead per message. Its
main downsides compared to Huffman coding are a larger computational over-
head and the fact that partially decoding a message is nontrivial. Asymmetric
Numeral System (ANS) [7] is a recently developed entropy coding method which
combines the performance of Huffman codes with the near-optimal compression
ratios achieved with arithmetic coding.

We can recap that, under the assumption of probabilistically generated data,
optimal lossless compression codecs can at best compress information such that
the message size matches the entropy of the data generating distribution. If one
has access to the probability distribution of the data then there are well-known
algorithms to implement lossless compression.

Here, a connection to generative modeling in machine learning may become
quite obvious. In theory, since a generative model of the data gives us access
to P (x) we could simply feed it as the input to our entropy coding scheme of
choice. However, there may be several issues with this approach. For one, ma-
chine learning models usually formally assume and approximate continuous data,
requiring some form of quantization. Then, the data is very often drawn from
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an impractically high-dimensional sample space, making a naive tabulation of all
"symbol" probabilities an effectively impossible task. Finally, simply evaluating
P (x) may involve an intractable integral for many types of generative models
(such as GANs and VAEs). We will briefly mention some approaches to solving
this in 1.3.

1.2 Lossy compression

By relaxing the requirement of perfect reconstruction of the input information,
much greater compression ratios can be achieved. Lossy compression is par-
ticularly relevant in applications involving analog signals (or any other kind of
continuous data), since real numbers generally are already represented with finite
precision in digital computers, meaning that some amount of error is acceptable.
Thus, digital media such as images, audio and video is the most common domain
where lossy compression is applied. The bit-rate savings of lossy compression
over lossless compression may be substantial, often by an order of magnitude,
and with very little perceptible difference to end users.

The theoretical foundations of lossy compression, such as the trade-off be-
tween reconstruction error and compression rate may be formalized with Shan-
non’s rate-distortion theory [5, 6]. In this setting we define an encoder function
e which maps our sequence of source data points xi ∈ X to some finite inter-
mediate representation wi ∈ W and a decoder function d which maps the wi to
reconstruction points x̂i ∈ W. The symbols of W are transmitted losslessly by
some entropy code c.

Next, we define a distortion function ρ which is an error measure between two
data points in X . A typical choice here is a squared error metric, i.e ρ(x, x̂ =∥
x − x̂. We also define the length of an encoded symbols l(x) = |c(e(x))|. In
this framework we may define the objective of lossy compression. We want to
simultaneously minimize the bitrate:

R = Ex∼P [l(x)] (1.2)

And the average distortion of our code:

D = Ex∼P [ρ(x, x̂)], x̂ = d(e(x) (1.3)

Again, it is information theory which allows us to establish some fundamental
bounds on the trade-off between these two objectives. A useful viewpoint for this
process is that our lossy compression algorithm acts as a noisy channel between a
random input X and a noisy output X̂. Their relationship may be modeled with
a posterior distribution QX̂|X, such that the joint distribution can be written
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Pdata · QX̂|X. We define the mutual information I(X, X̂) as the KL divergence
between the joint distribution of X and X̂ and the product of the marginal
distributions of the two variables. An interpretation of the mutual information is
that it measures the amount of information that the reconstruction X̂ contains
about the source data X, or equivalently, the amount of information needed to
transmit X̂, given X. It is always non-negative and equals zero if and only if X
and X̂ are independent.

The best-achievable bitrate at a given level of distortion D may now be char-
acterized by the rate-distortion function:

RI(D) = inf
QX̂|X

I(X, X̂) subject to E[ρ(X, X̂)] ≤ D (1.4)

RI(D) depends only on the source distribution and the choice of distortion
measure. It is generally analytically intractable, though explicit solutions for
some special cases do exist [6]. In practice, the design of a lossy compression
algorithm (or lossy codec) is constrained by various practical considerations, such
as the computational complexity, memory usage, or encoding/decoding latency.
If we denote the set of all admissible lossy codecs under these practical constraints
by C, then we can define the operational rate-distortion function:

RO(D) = inf
c∈C

E[l(x)] subject to E[ρ(X, X̂)] ≤ D (1.5)

as the infimum of the expected code length over all codecs that satisfy the ex-
pected distortion constraint. Compared to the information R-D function RI(D),
which is defined in terms of an abstract information-theoretic quantity (mutual
information), the operational R-D function RO(D) is defined directly in terms of
the code lengths achieved by actual compression algorithms. In general, we have
RO(D) ≥ RI(D) for all D, i.e., the information R-D function provides a lower
bound on the operational R-D function. Equality is not necessarily achievable,
depending on the type of constraints that define C.

1.3 Data Compression and Machine Learning

The application of machine learning methods to data compression is in a sense
quite natural and some authors argue that two subjects essentially describe two
sides of the same coin [8]. While statistical inference is the most common theo-
retical framework underpinning the design of and research into methods used for
machine learning, one may also apply information theoretic tools to the problem
of learning and is frequently able to justify the same approach from either point of
view. As a simple example we may revisit the source coding theorem. A common
setting in machine learning is that the data generating probability distribution
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P (X) is unknown and that one wishes to approximate it with a tractable distri-
bution Q. If we base our code on the distribution Q(x) instead of P (x), then a
new bound for the expected length of an optimal code may be derived [6] (we
assume D = 2 for simplicity):

H(P ) +DKL(P ∥ Q) ≤ L < H(P ) +DKL(P ∥ Q) + 1 (1.6)

Where DKL is the Kullback-Leibler divergence. We notice that this bound is
equal to the cross-entropy:

H[P,Q] = Ex∼P (− log2Q(x)) = H(P ) +DKL(P ∥ Q) (1.7)

Since optimizing the cross-entropy loss of Q is equivalent to maximum-likelihood
estimation, one may argue that it is therefore justified from a compression per-
spective (or vice versa).

The connections between machine learning and data compression extend be-
yond this simple example. Bayesian inference, a foundational framework in ma-
chine learning, can be shown to be equivalent to the minimum description length
(MDL) principle under certain conditions [8]. MDL provides an intuitive and
theoretically grounded approach to model selection, favoring models that provide
the most compact encoding of the data while considering the trade-off between
model complexity and goodness of fit. This aligns well with the goals of data
compression, which seeks to minimize the number of bits needed to represent
information.

Variational inference, another key technique in machine learning, also has
close ties to data compression through the bits-back coding scheme [9]. Bits-
back coding allows for lossless compression of data using latent variable models
by transmitting a stochastic latent code z drawn from a distribution q(z|x) using
close to the theoretical minimum number of bits given by the KL divergence
between q(z|x) and a prior p(z). The encoding process works as follows:

1. The sender first generates a sample z from q(z|x) by decoding a random
bit-string ξ under the probability model q(z|x)

2. The sender then encodes the data x under the likelihood model p(x|z),
encodes z under the prior p(z), and transmits the resulting bits.

3. The receiver decodes z and x from the received bits and may then recover
the random bits ξ by encoding z under q(z|x)

These extra bits recovered by the receiver are "bits-back", allowing the sender
to transmit ξ "for free". Crucially, ξ does not have to be random - it can be
well-compressed auxiliary information that also needs to be transmitted. The
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expected coding cost of bits-back coding is equal to the negative ELBO. Bits-
back coding thus provides a compression interpretation of variational inference
- minimizing the KL divergence between q(z|x) and the true posterior p(z|x) is
equivalent to minimizing the code length.

So far we have assumed that our latent variable model operates with discrete
latents z, however many widely used latent variable models in machine learning,
including VAEs, assume a continuous latent space. However, by appropriately
quantizing the latent space of a VAE, such as maximum entropy quantization
[10], it can be shown that bits-back coding can be implemented with arbitrary
precision [8]. Another issue with the bits-back coding approach is the "initial-
bits problem", where the sender needs to determine auxiliary bits ξ that are
practically useful to the receiver. However, if multiple messages are to be sent,
then the bitstream of previously coded messages can be used for those auxiliary
bits. This requires messages to be decoded in a stack-like fashion, which naturally
pairs this method with ANS (see section 1.1.1), which also decodes symbols on
a last-in-first-out basis. This method, bits-back coding with chaining and ANS,
has been demonstrated as a practical lossless compression scheme in [10].

1.4 Learned Lossy Compression

Unlike with lossless compression, where the loss can simply be a differentiable
objective that measures the bitrate, the loss terms for training a model that
performs lossy compression will now be required to capture the rate-distortion
trade-off. The analysis transform e, synthesis transform d, and entropy model
p are replaced with neural networks or other learned universal function approx-
imators. The transform coefficients then have to be quantized by some method
to obtain a discrete representation, which allows for entropy coded transmission.
We continue with the notation from section 1.2. To optimize the operational R-D
trade-off, a common approach is to minimize the rate-distortion Lagrangian [11]:

L(λ, c) = R(D) + λD(D) = E[l(x)] + λE[ρ(x, x̂)] (1.8)

Lossy neural compression, also known as learned lossy compression, is an
emerging field that applies neural networks and other machine learning techniques
to the task of lossy data compression. It builds upon the classical paradigm of
transform coding, replacing hand-designed linear transforms with learned non-
linear functions to better adapt to the statistics of the data being compressed.

The core idea behind transform coding is to divide the task of lossy com-
pression into two steps: decorrelation and quantization. First, the sender applies
an analysis transform to the input data, resulting in transform coefficients that
are ideally decorrelated. These coefficients are then quantized, typically using
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scalar quantization, to obtain a discrete representation. The quantized coeffi-
cients are entropy coded into a bitstream, which is transmitted to the receiver.
The receiver decodes the bitstream, dequantizes the coefficients, and applies a
synthesis transform (often the inverse of the analysis transform) to reconstruct
an approximation of the original data.

In neural lossy compression, the analysis transform, synthesis transform, and
entropy model are implemented using neural networks or other learned function
approximators. These components are learned end-to-end from data, optimizing
a rate-distortion loss that balances the competing objectives of minimizing the
bitrate and the distortion between the original and reconstructed data. A useful
perspective on neural lossy compression is to view it as a form of variational
autoencoder (VAE) with a discrete latent space. In particular, a deterministic
autoencoder with uniform quantization of the latents can be seen as a VAE with a
degenerate approximate posterior distribution. This connection provides insights
into the design and optimization of neural lossy compression models.

A key challenge in neural lossy compression is that the quantization opera-
tion, which maps the continuous-valued transform coefficients to a discrete set
of symbols, is not differentiable. This prevents the model from being trained
end-to-end using gradient descent to minimize the rate-distortion loss. Various
techniques have been developed to address this issue.

A popular approach is uniform quantization [9], where each element of the
transform coefficients is rounded to the nearest integer. The rounding operation
can be approximated using the straight-through estimator, which passes the gra-
dient through the quantizer unchanged during backpropagation. Alternatively,
uniform noise can be added to the coefficients during training, which can be seen
as a differentiable approximation of uniform quantization.

Stochastic annealing methods have also been proposed, where the quantiza-
tion operation is replaced by a stochastic rounding process. The probabilities of
rounding up or down are determined by the distances between the input and the
quantization levels, and are annealed towards deterministic rounding over the
course of training.

Vector quantization (VQ) is a classical lossy compression technique that is
the most basic and general form of a lossy codec. A VQ scheme consists of:

• A set of integer representations W = 1, 2, ..., k

• An encoder e that assigns input data to an integer representation wi ∈ W

• A decoder d that returns a reconstruction given w, usually by indexing into
a codebook of k reconstruction vectors

The goal is to determine an optimal quantization scheme for a given data
distribution to minimize a reconstruction error (as in k-means) or more generally
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an operational rate-distortion trade-off. An optimal quantizer always encodes
data to its nearest neighbor in the codebook to minimize the reconstruction
error ρ. The codebook entries are set to minimize expected reconstruction error
between the entry and data points assigned to that index.

For some data sources like uniform or Laplace distributions, optimal quanti-
zation can be characterized analytically. In most applications, Lloyd-Max style
algorithms (k-means) are used to estimate a quantization scheme from data sam-
ples by minimizing an empirical rate-distortion cost over a dataset. Given un-
limited data and compute, VQ can approximate any data distribution arbitrarily
well. The computational and storage demands of VQ increase quickly with data
dimensionality. In high dimensions, a very large number of quantization points
and training data are needed to approximate the data distribution well.

Vector quantization has been successfully combined with variational autoen-
coders (VAEs) in a model called VQ-VAE [12]. In a VQ-VAE, the encoder maps
the input to a discrete latent representation by finding the nearest vector in a
learned codebook, similar to classical VQ. The decoder then reconstructs the in-
put from this discrete representation. The codebook is learned jointly with the
encoder and decoder to minimize the reconstruction error and a commitment loss
that encourages the encoder to use the codebook vectors.

A major issue that has not been addressed so far is that typical distortion
measures used in lossy compression, such as mean squared error (MSE), do not
align well with human perception. These measures penalize any deviation from
the original signal equally, regardless of whether those deviations are perceptually
noticeable or not. As a result, models trained to minimize MSE may produce
blurry or over-smoothed reconstructions that lack perceptually important details.
It is important to recognize that neural networks will perform only as well as the
losses they are trained with. If the loss function does not capture perceptual
quality, the model will not be optimized for it. This highlights the need for
perceptually-informed loss functions in neural lossy compression.

Adversarial losses have emerged as a promising approach to address this issue.
In an adversarial framework, a discriminator network is trained to distinguish
between original and reconstructed images, while the compression model (gener-
ator) is trained to fool the discriminator. This encourages the model to generate
reconstructions that are perceptually similar to the original images, even if they
may perform worse in terms of simpler distortion metrics. Such adversarial losses
have become a very common building blocks in many publications concerned with
neural compression. Blau et al. [13] suggest that the objective for a lossy com-
pression scheme (as in equation 1.4) should not just include a constraint on the
expected level of distortion, but also a constraint on the divergence between the
data generating distribution and the distribution of the reconstructed symbols:

DKL(P (X) ∥ P (X̂)) ≤ σ (1.9)



Chapter 2

Related Work

As we have demonstrated, there are many theoretical connections between data
compression and various applications and advances in ML research. We will here
give a short overview of the literature on neural data compression.

2.1 Image compression models

Image compression using neural networks has been explored since the late 1980s
and 1990s, but these early approaches differed markedly from modern methods
in their scale, architectures, and encoding schemes [14]. No doubt limited by
the computing power available at the time, these early approaches typically used
small, fully-connected neural networks with a single hidden layer to compress
image blocks or to learn the parameters of traditional codecs, rather than end-
to-end optimization of the entire compression pipeline using deep convolutional
architectures as is common today.

In 2016, deep generative models began to be explored for data compression
[15]. Although the authors did not implement their architecture in a practical
image compression scheme, they demonstrated the potential of using variational
autoencoders (VAEs) for lossy compression. Many of the results presented in sec-
tion 1.3, such as the connections between variational inference and both lossless
and lossy compression, had been identified earlier. However, the work by Gregor
et al. [15] sparked renewed interest in the application of deep learning techniques
to image compression.

In addition to the core components of the compression pipeline, auxiliary
losses based on adversarial training or deep feature matching have been incor-
porated to optimize for perceptual quality in addition to rate-distortion perfor-
mance. Adversarial losses, as used in generative adversarial networks (GANs),
encourage the decoder to generate reconstructions that are perceptually similar
to the original images. Deep feature matching losses, such as those based on
the activations of pretrained convolutional neural networks, aim to preserve the
perceptual similarity between the original and reconstructed images in a learned

10
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feature space. The combination of these advances in neural architectures, en-
tropy models, and perceptual optimization techniques has led to significant im-
provements in the performance of neural image compression methods, surpassing
traditional codecs in terms of rate-distortion trade-offs and perceptual quality

2.1.1 HiFiC and ILLM

The High Fidelity Compression (HiFiC) model, proposed by Mentzer et al. [16],
presents a generative adversarial network (GAN) based approach for lossy image
compression. The primary goal of HiFiC is to achieve visually pleasing recon-
structions that closely match the input images perceptually, while operating over
a wide range of bitrates. This is accomplished by combining an autoencoder-
based learned compression model with adversarial losses, which optimize for per-
ceptual quality in addition to traditional distortion losses.

HiFiC utilizes a 2D-convolutional variational autoencoder (VAE) architec-
ture for the compression model. VAEs are well-suited for learning compact and
meaningful representations of images, making them a natural choice for image
compression tasks. The conditional discriminator plays a crucial role in assessing
the perceptual quality of the reconstructed images and providing feedback to the
generator (i.e., the decoder of the autoencoder) to improve the visual fidelity of
the output. The learned entropy model, based on a hyperprior and autoregres-
sive context modeling, can be used to efficiently compress the quantized latents,
enabling effective compression at low bitrates.

To enable end-to-end optimization of the compression model, HiFiC employs
a uniform noise-based relaxation of the quantization operation during training.
Specifically, uniform noise is added to the latent representation before quanti-
zation, allowing for differentiation of the quantization step. During inference,
the latent representation is quantized using rounding, ensuring that the model
operates with discrete latents for efficient compression.

The authors conduct extensive experiments to evaluate the model on high-
resolution images from several datasets. They evaluate their model on a range of
perceptual metrics and in a user study confirmed that HiFiC reconstructions are
preferred over those of other popular image codecs, even when they were used at
a higher bitrate. This highlights the effectiveness of the GAN-based approach in
achieving high perceptual quality at low bitrates. HiFiC does not implement the
actual entropy coding step in the paper, however it would be a simple addition
to do so and suffices to demonstrate the feasibility of the overall approach.

The Implicit Local Likelihood Model (ILLM), proposed by Muckley et al. [17],
was chosen as our only implemented model due to the high quality of its codebase
and its competitive performance in image compression. ILLM builds upon the
success of HiFiC while introducing a novel approach to improve the statistical
fidelity of the reconstructed images. One of the key architectural differences
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between ILLM and HiFiC is the use of a separate model to obtain a "label" map
over the image. This label map is generated by a pretrained vector quantized
variational autoencoder (VQ-VAE), which partitions the image into local regions
based on their similarity in the latent space.

The label map generated by the VQ-VAE is then used to condition the dis-
criminator, providing it with more localized information to distinguish between
real and generated image patches. This local conditioning allows the discrimina-
tor to focus on the perceptual quality of specific regions rather than the entire
image, enabling it to capture the local statistics more effectively. By incorpo-
rating this information, ILLM aims to improve the statistical fidelity of the re-
constructed images, ensuring that they not only look perceptually similar to the
input images but also maintain the local structure and texture.

The use of a separate label map in ILLM also allows for more flexibility in
the design of the discriminator architecture. The authors employ a U-Net-based
discriminator, which is well-suited for capturing multi-scale information. The U-
Net architecture consists of an encoder that downsamples the input and captures
high-level features, and a decoder that upsamples the features and produces the
final output. Skip connections between the encoder and decoder allow for the
preservation of spatial information at different scales. By taking advantage of the
multi-scale information provided by the label map, the U-Net discriminator can
effectively capture both local and global characteristics of the image, enhancing
its ability to assess the perceptual quality of the reconstructions accurately.

2.2 Audio Compression Models

As with other tasks increasingly accomplished using machine learning techniques,
such as classification or text-conditional generation, research progress in us-
ing deep learning for audio compression lags behind that in the image domain.
Though there is some earlier research on neural approaches to speech compres-
sion [18, 19], the first publication to tackle compression of general audio data
using a modern ML-paradigm was published in 2021 [20]. Since state-of-the-art
hand-designed audio codecs are close to transparent at bitrates above 64kb/s,
the research into neural codecs mainly focuses on achieving satisfactory quality
with data rates of around 16kb/s and below, where traditional codecs struggle
to maintain an acceptable level of quality.

The first major breakthrough in deep learning-based audio compression was
marked by the the 2021 publication of the SoundStream codec [21]. SoundStream
demonstrated that a fully neural architecture, trained end-to-end, could outper-
form conventional codecs like Opus and EVS at low bitrates. SoundStream uses
a vector-quantized VAE architecture and couples it with an STFT-based discrim-
inator. The adoption of the residual vector quantizer together with the use of
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Figure 2.1: Block diagram of the EnCodec model architecture and its losses, from
[23]

structured dropout within the quantization layer during training has the advan-
tage of allowing a single model to operate at different bitrates.

The success of SoundStream opened up new avenues for research into deep
learning-based audio compression. Subsequent work built upon the core ideas
of end-to-end optimization, generative modeling, and learnable quantization to
further push the boundaries of compression efficiency and perceptual quality. In-
novations such as improved architectures, perceptually-driven loss functions, and
joint optimization with enhancement and bandwidth extension tasks aimed to
create neural codecs that could adapt to diverse audio content and challenging
acoustic conditions. The field also explored techniques for reducing computa-
tional complexity and memory footprint, to enable practical deployment of neu-
ral codecs on resource-constrained devices. As deep learning-based approaches
continue to evolve, they hold the potential to redefine the state-of-the-art in
audio compression, offering high coding efficiency, low latency, and perceptually-
optimized quality across a wide range of bitrates and audio content types.

VQ-VAEs have become the dominant paradigm in neural audio compression
due to their ability to learn a compact, discrete latent representation that enables
efficient compression and powerful generative modeling. The flexible architecture,
which allows for domain-specific designs and scalability to large datasets, has led
to steady improvements in reconstruction quality. The introduction of residual
vector quantization has further enhanced VQ-VAEs by enabling variable bitrate
compression and improving the expressiveness of the learned codes, making them
a versatile tool for a wide range of downstream audio applications. For instance,
the Soundstream codec has been leveraged in [22] for text-conditional music gen-
eration.
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2.2.1 EnCodec

EnCodec [23] builds upon the residual vector quantized (RVQ) autoencoder ar-
chitecture introduced in SoundStream, but incorporates several key innovations
that lead to improved performance and capabilities. One significant difference is
the use of a simplified yet effective multi-scale STFT discriminator for the adver-
sarial loss. The EnCodec authors demonstrate that this single discriminator is
sufficient to generate high-quality audio while streamlining the training process,
in contrast to the combination of discriminators employed by SoundStream. An-
other notable contribution of EnCodec is the introduction of a novel loss balancer
mechanism that stabilizes training by ensuring each loss term contributes a spec-
ified fraction of the overall gradient. This approach decouples the loss weights
from their typical scales, enhancing the interpretability of these weights. Further-
more, EnCodec explores the use of a lightweight Transformer model to further
compress the quantized latent representation by up to 40% while maintaining
faster-than-real-time performance, a capability not present in SoundStream.

The EnCodec model is evaluated on a wider range of scenarios compared
to SoundStream, including 48 kHz stereo music compression. The paper also
presents an extensive subjective evaluation using MUSHRA listening tests, show-
casing EnCodec’s superior performance against SoundStream and other baselines
across speech, noisy speech, and music at bitrates from 1.5 to 12 kbps for 24 kHz
audio. Moreover, EnCodec demonstrates the ability to jointly perform compres-
sion and background noise suppression without introducing additional latency
by conditioning the encoder or decoder, a feature not explored in SoundStream.
The model architecture also incorporates an LSTM layer for sequence modeling
of the latent representation, enabling the capture of temporal dependencies in
the audio signal.

The key advantages of EnCodec, as claimed by the authors, include the sim-
pler yet effective discriminator, the novel loss balancing technique, the Transformer-
based entropy coding, the evaluation at higher bandwidths, and the strong sub-
jective evaluation results across a range of audio types, bitrates, and sample rates.
The evidence provided suggests that these innovations contribute to EnCodec’s
superior performance compared to the SoundStream baseline.

Looking ahead, the quantized tokens learned by EnCodec have already been
leveraged for downstream audio generation tasks. The AudioGen [24] model,
for instance, generates audio conditioned on the discrete EnCodec tokens. This
demonstrates the potential of using EnCodec’s learned representations for gener-
ative audio modeling and opens up exciting possibilities for future research and
applications in this domain.
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2.2.2 Descript Audio Codec

Kumar et al. [25] again use a largely similar architecture to Encodec and Sound-
Stream. It is designed as a drop-in replacement for applications that have been
designed to be used with Encodec. The authors identify a number of issues with
the Encodec model and present several incremental improvements to their model
based on that.

A simple but significant change introduced with the Descript model is the use
of the oscillatory Snake activation function which adds a periodic inductive bias
to the generator improving. The LSTM sequence modeling layers and the loss
balancer mechanism that were used in the Encodec model were not included.

One major issue that the authors identified with Encodec is a suboptimal
codebook utilization. Ideally, on a diverse set of testing samples, the distribution
of codebook vectors being used is uniform, which maximizes its entropy. How-
ever, during training of VQ-VAEs it is common that some codebook vectors end
up going unused, meaning that they also do not receive any updates from train-
ing. Both Soundstream and Encodec therefore periodically reinitialize underused
codebook vectors. However, this procedure does not seem to fully solve the prob-
lem. The Descript model instead adopts the use of factorized codes together
with L2-normalization from [26]. With this procedure, a learned linear projec-
tion maps from the embedding space of the autoencoder into a lower dimensional
space where the codebook lookup is performed, which then gets mapped back to
a high-dimensional latent vector. Additionally, the L2-normalization step maps
the latent variables onto a sphere in the embedding space. Both of these improve-
ments enhance training stability and allow codebook learning with the loss-based
objective from [12] without the need for reinitialization and still achieving a near-
optimal codebook utilization.
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Methods

Our approach to audio compression can be summarized as "compressing audio
using images." The pipeline consists of the following steps:

1. Use a short-time Fourier transform (STFT) to convert an audio file into a
two-dimensional complex spectrogram representation.

2. Convert the complex spectrogram into a log-magnitude spectrogram.

3. Map the log-magnitude spectrogram to a grayscale image space.

4. Pass the grayscale image to an image compression model (in our case, ILLM
[17]).

5. Decompress the compressed image.

6. Transform the decompressed image back into a log-magnitude spectrogram.

7. Invert the log-magnitude spectrogram back into a waveform using phase
reconstruction techniques.

While this approach addresses some of the challenges in modeling audio com-
pared to images, such as the one-dimensional nature of audio signals and their
different frequency characteristics, it also introduces new challenges. One signifi-
cant challenge is the reconstruction of the phase information from the magnitude
spectrogram. Modeling the phase of the STFT of a signal is difficult, as it can
fluctuate rapidly, and in areas of the time-frequency spectrum where the signal
magnitude is low, the phase essentially appears like noise.

Despite these challenges, using spectrograms as input representations for au-
dio tasks has shown promise in various applications [27, 28]. This suggests that
a spectrogram-based approach for audio compression could be a promising direc-
tion to explore.

Another potential advantage of working in the spectrogram domain is faster
training, since the model has direct access to the frequency components of the au-
dio signal. Similar to how interpretability research in convolutional image models

16
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[29] has revealed that image models learn to extract higher-level features based
on simpler frequency-specific filters, we expect that audio models also learn low-
level filters that can extract different parts of the signal spectrum. By providing
the model with a spectrogram representation, we can potentially simplify this
learning process and allow the model to focus on higher-level features that are
more relevant for compression.

Furthermore, our spectrogram-based approach may enable the compression
model to operate more efficiently at a given computational budget. This is par-
ticularly important considering that the storage consumption and computational
overhead of deep neural networks is one of the main factors hindering the adop-
tion of these technologies on consumer hardware, especially in the context of
compression, where excellent compression rates do not matter if the model re-
quires many times the amount of storage that would be saved by the data it
compresses. Finally, our spectrogram-based approach provides the attractive
prospect of adapting existing image compression models and applying some fine-
tuning on spectrogram images. By representing audio as spectrograms, we can
potentially leverage these existing architectures and adapt them for audio com-
pression, benefiting from the progress made in the image domain.

In this work, we chose to focus on music and general audio rather than speech-
specific compression. Music and general audio present additional challenges com-
pared to speech, such as a wider frequency range and more complex temporal
structures. Music often contains multiple instruments playing simultaneously,
resulting in a rich and diverse frequency spectrum. Additionally, music and gen-
eral audio can have more complex temporal dynamics, with variations in rhythm,
tempo, and structure over time. Developing effective compression methods for
these types of audio is important given the prevalence of music and other non-
speech audio in many applications, such as streaming services, audio archives,
and multimedia content. By focusing on music and general audio, we aim to
address the unique challenges and requirements of compressing these types of
signals efficiently while maintaining perceptual quality.

3.1 Phaseless Spectrogram Inversion

While there are many advantages to spectrogram-based approaches for audio-
related tasks, it introduces a major challenge for any application where a wave-
form output is desired. Since it is much easier to train models that generate
magnitude spectrograms, their inversion back into a waveform representation re-
quire a method for estimating the phase from the magnitude alone. However, all
currently known methods for phase reconstruction are non-differentiable which
limits there applicability for fully end-to-end trained architectures. We recon-
struct the phase from magnitude spectrograms using the Tifresi [27] library’s
implementation of the Phase-gradient heap integration (PGHI) algorithm [30].
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Despite being a computationally more efficient method than the traditionally em-
ployed Griffin-Lim algorithm (GLA) [31], which relies on an expensive iterative
scheme, it has been shown to produce better results. It is based on the obser-
vation that, under the condition that the STFT is computed with a Gaussian
window, there exists an explicit analytical relationship between the gradient of
the phase and that of the magnitude, which can be discretely approximated as
[30, 27]:

∇ϕ[m,n] =

[
aM

λ
∂mM[m,n],− λ

aM
∂nM[m,n]− 2πna/M

]
(3.1)

Where, a, M and λ are parameters of the discrete STFT and the window
function and M is the logarithm of the magnitude spectrogram. Therefore, the
phase can be recovered by integrating equation 3.1 numerically, though additional
care has to be taken to first integrate along contours of large magnitude (where the
error is lower) and to completely avoid visiting areas where the STFT-magnitude
is too small.

3.2 ILLM Finetuning

To adapt the ILLM image compression model for audio compression, we finetuned
the pretrained model on a dataset of spectrogram images. The spectrograms
were generated on-the-fly from the musdb18-hq and FMA datasets using the
short-time Fourier transform (STFT) with a window size of 512 samples and a
hop length of 64 samples. The resulting complex spectrograms were converted to
log-magnitude spectrograms and then mapped to a grayscale image space with
floating-point pixel values in the interval [0.0, 1.0]. During the finetuning process,
the ILLM model was trained to compress and reconstruct the spectrogram images
using the same architecture as in the original implementation.

With the goal of improving the perceptual quality of the reconstructed audio,
we incorporated a novel loss term based on the mel spectrogram representation.
The mel spectrogram is a perceptually-motivated representation of audio that
better aligns with human auditory perception compared to the linear frequency
scale used in the standard STFT. We used the implementation of the mel spec-
trogram loss from the Descript audio tools library also used in [25]. This loss
function computes the mean squared error (MSE) between the mel spectrograms
of the original and reconstructed audio signals. By minimizing the difference in
the mel spectrogram domain, the model is encouraged to preserve perceptually
relevant features of the audio during compression. The mel spectrogram loss was
added to the existing loss terms used in the ILLM model. By incorporating the
mel spectrogram loss and finetuning the ILLM model on a diverse dataset of
music and general audio spectrograms, we aim to adapt the image compression
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model to the specific characteristics of audio data and improve the perceptual
quality of the reconstructed audio signals.

During training we also track the consistency of the generated spectrograms.
In the context of generative modeling, a spectrogram can be considered "inconsis-
tent" if it does not correspond to a valid STFT representation of a time-domain
signal. Inconsistent STFT representations can lead to artifacts and distortions in
the synthesized time-domain signal. When the generated STFT deviates signifi-
cantly from a valid STFT, the resulting audio quality may be degraded, contain-
ing undesirable noise or aliasing components. Typically consistency is assessed
by measuring the projection error between the source spectrogram and the spec-
trogram of the resulting waveform after phase reconstruction and inverse STFT.
We use the consistency metric proposed in [27] measures the consistency of a gen-
erated magnitude spectrogram with the properties of a valid short-time Fourier
transform (STFT) magnitude. By comparing how well the partial derivatives of
the generated magnitude match this expected relationship, the metric provides a
computationally efficient way to assess the consistency of the generated magni-
tude spectrogram without having to perform a potentially demanding transform
operation.

3.3 Datasets and Metrics

The datasets used for training and evaluation in this study were the musdb18-hq
[32] dataset and the Free Music Archive (FMA) [33] dataset. The musdb18-hq
dataset is a widely used benchmark for music source separation tasks, containing
150 full-length music tracks along with their isolated vocals, drums, bass, and
other stems. Though our model was not designed for source separation, it is a
dataset with full-band (i.e. containing frequencies up to 22.05kHz) uncompressed
high quality audio files. The FMA dataset, on the other hand, is a large-scale
dataset containing 106,574 compressed mp3 tracks. We adopted the balanced
sampling approach from [25] to using FMA during model training, however for
the evaluation of our method and the baselines we chose to only use musdb18-hq
to avoid the presence of unrelated compression artifacts.

While there is a wealth of objective metrics for evaluating the quality of
speech-only codecs and models (PESQ [34] to name one example), this is not the
case for applications involving music and general audio. The "gold standard" for
evaluation of the perceptual quality of audio compression algorithms and audio
generation system remains the subjective evaluation of the audio samples by
humans in controlled listening tests. However automated metrics are still very
useful in providing early feedback and to establish objective baselines:

VisQOL [35] is an objective metric intended to reproduce a result on the same
scale as in human trials that are using the mean opinion score scale (where 1 is the
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worst rating and 5 is a perfect score). To compute a score, VisQOL receives both
an evaluation and a reference sample as input, computes a frequency-weighted
magnitude spectrogram on both of the samples, extracts time-aligned patches
of those spectrogram images and then computes the structural similarity index
measure (SSIM, see below) to get a numerical score of their difference. The SSIM
scores of the individual patches are then aggregated and mapped onto the 1-to-5
numerical scale by using a regression model that was trained to match human
evaluation scores. Fréchet audio distance (FAD) [36] is an adaption of the Fréchet
inception distance (FID) image metric to the audio domain. It is a reference-free
metric intended for estimating the perceptual quality and statistical fidelity of
the samples produced by a generative audio model. This is achieved by feeding
both a reference dataset and the evaluation samples into an audio embeddings
model (in our case, CLAP[37]). The difference in the statistical distribution of
the latent activations between the two datasets is then compared with the Fréchet
distance. Scale-invariant signal-to-distortion ratio (SI-SDR) [38] is an L2-error
metric similar to SNR, but which has been designed such that multiplicative
scaling factors on the estimated signal do not affect the result. Though we did
not expect our method to perform well in terms of this metric we have included
it for the sake of completeness and to verify our results against [25].

In addition to metrics that are calculated on audio waveforms, our setup also
gives us the opportunity to evaluate the metrics that are used in the evaluation of
image compression methods. Two popular methods for measuring the difference
in visual fidelity between two images are peak signal-to-noise-ration (PSNR) and
the Multiscale Structural Similarity Index (MS-SSIM) [39].

The baselines that we chose to compare our method against are the encodec
and descript neural audio codecs and the "PGHI only" method which subjects
the input signal to the magnitude spectrogram computation and its inversion
operation with tifresi without any compression operation on the spectrogram
images themselves. All metrics were evaluated on 500 audio snippets of 6 seconds
duration each. To establish some results for human perceptual quality we also
conducted a small human evaluation study, with three subjects giving an opinion
score of blinded samples relative to a known uncompressed reference sample.
Each sample was rated on a scale of 1-to-5 which was then aggregated into a
mean-opinion-score (MOS) [40].
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Results

A comparison between a sample spectrogram before and after our compression
pipeline has been applied to it can be seen in Figures 4.1 and 4.2. The compressed
spectrogram maintains much of the overall structure and high-frequency details
of the original, but there is a noticeable loss of fidelity, especially in the low-
frequency components.

While we have not conducted an extensive user study for validating our
method, subjective listening tests indicate that it qualitatively performs con-
siderably worse than our baselines, as shown in Figure 4.3. The mean opinion
scores from a small group of listeners reveal that the audio quality of our method
is rated significantly lower than the Encodec and Descript neural audio codecs.
Despite these limitations in perceptual quality, our method is able to achieve
competitive bitrates compared to the baselines, even though the spectrogram
representation has increased redundancy compared to the raw audio waveform.
Table 4.1 shows that our approach, both with the pretrained and finetuned ILLM
model, achieves a bitrate of 13.1 kbps, which is comparable to Encodec at 12.0
kbps and Descript at 8.0 kbps. This demonstrates the potential for spectrogram-
based methods to attain high compression ratios. While the 13.1 kbps bitrate of
our method is higher when compared with our baseline codecs, it is important
to note that these are still relatively low bitrates for audio compression. For
reference, MP3 bitrates typically range from 128 kbps to 320 kbps, and even
low-bitrate codecs like Opus operate at around 32 kbps for high-quality speech
compression. The fact that our method can achieve audible reconstructions at
such low bitrates is a promising sign, even if the perceptual quality is not yet on
par with state-of-the-art codecs.

We notice that our spectrogram-based approaches consistently resulted in
very low values for the SI-SDR metric. This is to be expected, as SI-SDR cap-
tures an L2-distance between two signals and heavily penalizes significant phase
differences. However, since the phase reconstruction process is imperfect, avoid-
ing such phase mismatches is very difficult. Interestingly, although our method
does not perform well in subjective evaluation experiments, it achieves very good
scores with the VisQOL metric, outperforming both Encodec and the Descript
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Figure 4.1: Ground-truth spectrogram of audio sample

Figure 4.2: Spectrogram of audio sample after compression and phase reconstruc-
tion

Figure 4.3: Mean opinion score during subjective evaluation test
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Method Visqol FAD SI-SDR Bitrate (kbps)

PGHI only 4.68 0.025 -26.12 6444.0

Our Method (finetuned) 4.39 0.32 -35.89 13.1

Our Method (pretrained) 4.39 0.28 -37.34 13.1

Encodec 4.21 0.035 10.23 12.0

Descript Codec 4.16 0.026 10.23 8.0

Table 4.1: Objective Audio Metric Scores, ILLM

codec as seen in Table 4.1. Upon further investigation, it becomes clear that
VisQOL is not a reliable indicator of perceptual quality for the spectrogram-
based approaches. We hypothesize this is due to the design of VisQOL, which
computes the SSIM on spectrogram patches to estimate quality. This makes it
unable to detect and penalize the phase distortions that harm perceptual qual-
ity in our method. Qualitatively, this was also observed when evaluating the
performance of the PGHI reconstruction with very low redundancy. Even when
phase distortion artifacts were clearly audible, the VisQOL scores continued to
be near-perfect.

In contrast, the FAD metric, which measures the Fréchet distance between
embeddings from a pretrained audio classifier, correlates much better with human
perception in our experiments. Table 4.1 shows FAD scores that align with the
subjective evaluation results, with our method having a much higher (worse)
score than the baselines.

During the finetuning process of the ILLM model on spectrograms, we tracked
the consistency metric of the generated spectrograms (see section 3.2). Figure
4.4 plots this metric over the course of training, revealing that while consistency
rapidly improves initially, the rate of improvement slows down and stabilizes at a
value of about 0.65. This suggests there is still room for improvement in adapting
image compression models to better suit the structure of audio spectrograms.
While the finetuned model shows improved consistency during training (Figure
4.4), the overall performance in terms of audio quality metrics (Table 4.1) is quite
similar between the two models. This suggests that the pretraining on image data
provides a strong initialization for the spectrogram compression task, and that
further finetuning on audio spectrograms may not always be necessary to achieve
competitive results.

Figure 4.5 plots the MS-SSIM and PSNR metrics on the spectrogram images
over the course of training the ILLM model. Interestingly, both metrics actu-
ally worsen as training progresses. However, this does not necessarily indicate
a degradation in perceptual quality. As discussed in [13] and [16], these metrics
do not always align well with human perception of image quality. In partic-
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Figure 4.4: Consistency metric of generated data samples during training

ular, optimizing for PSNR tends to introduce blurriness, as the metric favors
smoothed-out reconstructions that minimize pixel-wise error. In the context of
audio spectrograms, a similar phenomenon may be occurring. The model may be
learning to produce spectrogram reconstructions that appear less blurry, thereby
risking a greater squared error, but that actually better capture the perceptu-
ally relevant features. The worsening scores observed in Figure 4.5 suggest that
the adversarial training is pushing the model towards perceptually meaningful
reconstructions, even at the cost of pixel-wise fidelity.

Finally, an interesting discrepancy we observed between our results and those
presented in [25] is that Encodec and the Descript codec achieve very similar
objective performance scores in our tests, in contrast to the clear performance
advantage for the Descript codec reported by the authors. We were able to
reproduce scores closer to those in [25] when using the 24 kHz model of the
Encodec system, as shown in Table A.1. However, we believe that the scores for
Encodec at 48 kHz are a fairer representation of its audio quality and compression
performance.
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Figure 4.5: MS-SSIM (dark blue) and PSNR (light orange) image metrics during
Training
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Conclusion

Our experiments demonstrate that while a spectrogram-based approach using
an image compression model can achieve competitive bitrates, the perceptual
quality currently lags behind state-of-the-art neural audio codecs. The fine-
tuned ILLM model outperforms its pretrained counterpart on the consistency
metric, but still introduces significant artifacts, especially at lower frequencies.
The VisQOL metric fails to capture these quality issues, highlighting the need
for perceptually-aligned evaluation methods. Key challenges to address include
adapting the model architectures to better capture the unique characteristics
of audio spectrograms and improving the phase reconstruction process. Despite
these limitations, our results show the potential for leveraging image compression
techniques in the audio domain and serve as a foundation for spectrogram-based
audio coding.

While high-frequency components of the audio signal are reproduced reason-
ably well with our method, it fails at faithfully reproducing the low frequencies.
We hypothesize that the underlying issue is related to how standard convolutional
architectures used in image compression models are not well-suited to capture the
differing perceptual importance of low versus high frequencies in audio spectro-
grams. The 2D convolutional layers apply filters uniformly across the input,
whereas for audio, more representational capacity should be dedicated to the
lower frequencies.

The use of spectrograms as an intermediate representation for audio compres-
sion offers several potential advantages. By working in the frequency domain, the
model can more easily capture and exploit the spectral characteristics of the audio
signal. This is analogous to how image compression models learn to extract and
compress features at different spatial scales. Furthermore, the two-dimensional
structure of spectrograms allows for the application of well-established image
processing techniques and architectures, such as convolutional neural networks.
This opens up the possibility of leveraging advances in image compression for the
audio domain.

Another key challenge is the reconstruction of the phase information from the
compressed magnitude spectrogram. While the PGHI algorithm provides a com-
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putationally efficient solution, it introduces artifacts that degrade the perceptual
quality. The development of differentiable phase reconstruction methods could
enable end-to-end optimization of the compression pipeline, potentially leading
to improved quality. Alternatively, the use of complex-valued neural networks
or phase-aware loss functions could allow the model to jointly compress both
magnitude and phase information.

Despite these challenges, our work demonstrates the feasibility of a spectrogram-
based approach to audio compression using image compression models. The com-
petitive bitrates achieved by our method, even with the additional redundancy
of the spectrogram representation, highlight its potential. By addressing the lim-
itations identified in this study, such as the need for perceptually-aligned archi-
tectures and improved phase reconstruction, spectrogram-based methods could
rival or even surpass the performance of state-of-the-art neural audio codecs.

5.1 Further Work

It is worth noting that research into the use of deep learning for audio task has
traditionally lagged behind the work in computer vision. This is partly due to the
historical focus on image-related tasks in the machine learning community, as well
as the lack of large-scale audio datasets comparable to ImageNet or Open Images
in the image domain. As a result, the development of neural audio compression
methods has not received the same level of attention and investment as image
compression. However, as the demand for efficient audio compression continues
to grow, driven by applications like streaming services, teleconferencing, and
immersive audio experiences, there is a clear need for increased research efforts
in this area. By leveraging the advances made in image compression and adapting
them to the specific challenges of audio data, we can work towards closing this
gap and unlocking the full potential of deep learning for audio compression.

Further research into spectrogram-based audio compression using image com-
pression models holds great promise for advancing the state-of-the-art in this field.
One key area for future exploration is the development of custom architectures
specifically tailored to the unique characteristics of audio spectrograms. While
our approach of adapting existing image compression models has shown poten-
tial, it is important to recognize the inherent differences between working with
audio and image data in machine learning research. Audio signals exhibit dis-
tinct temporal and spectral properties that may not be optimally captured by
architectures designed for two-dimensional image data. By designing novel ar-
chitectures that take into account the specific structure and perceptual relevance
of audio features, we may be able to achieve significant improvements in both
compression efficiency and perceptual quality.

Another interesting avenue for future research is to investigate the conditions
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under which objective metrics like VisQOL provide reliable assessments of audio
quality, and when they may fall short. Our experiments revealed that VisQOL
scores did not always align with subjective evaluations, particularly in the pres-
ence of phase distortions introduced by the spectrogram-based approach. Devel-
oping a deeper understanding of the strengths and limitations of these metrics
could guide the development of more perceptually-aligned evaluation methods,
which are crucial for accurately assessing the performance of audio compres-
sion algorithms. Additionally, exploring alternative spectrogram representations,
such as mel-spectrograms or constant-Q transforms, may offer benefits in terms
of capturing perceptually relevant audio features while reducing redundancy in
the representation.

One major challenge in our spectrogram-based approach to audio compres-
sion is the non-differentiability of current phase reconstruction algorithms. While
there are autograd-compatible implementations for the short-time Fourier trans-
form (STFT) and its inverse, the same does not hold true for the phaseless inver-
sion problem. This limitation prevents the implementation of a fully end-to-end
trained compression pipeline, as the gradient cannot be propagated through the
phase reconstruction step. To address this issue, future research could focus
on developing a differentiable relaxation of the phase-gradient heap integration
(PGHI) algorithm, described in [30] and section 3.1.

Spectrogram-based audio compression using image compression models presents
a promising direction for future research. By addressing the challenges identified
in this work, such as the need for custom architectures, perceptually-aligned eval-
uation metrics, and differentiable phase reconstruction methods, we can continue
to push the boundaries of audio compression performance.
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Appendix A

Appendix

Method Visqol FAD SI-SDR Bitrate (kbps)

Encodec @ 24kHz 2.76 0.053 8.07 12.0

Encodec @ 48kHz 4.21 0.035 10.23 12.0

Descript 4.16 0.026 10.23 8.0

Table A.1: Objective Metrics for the 24 kHz Encodec model

A-1
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