
Distributed

 Computing

Peer-to-peer networks under churn
Semester Thesis

Thomas Buob

tbuob@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Dr. Lucianna Kiffer

Prof. Dr. Roger Wattenhofer

December 29, 2023

Abstract

In the present time, peer-to-peer networks are everywhere. They define how we
perform day to day tasks and how we use the internet. Currently, we can observe
a shift from a centralized to a more decentralized world.
In this project, we will take a look at this shift from a very centralized to a
more decentralized world by simulating a large peer-to-peer network. We will
discuss the impact that churn has on networks, and how it changes a network
over time. We will observe how it affects the eccentricity of nodes and analyze
how decentralized a peer-to-peer network actually is.

Examining large peer-to-peer networks in the real world can be challenging, as
the involved parties have a rather large interest in keeping as much information
about the behavior of their network as hidden as possible. In this thesis we
produce simulate a peer-to-peer network, produce our own data and compare it
to real data from the Bitcoin peer-to-peer network.
The focus will be on eccentricity and degree of the individual nodes.

i

Contents

Abstract i

1 Introduction 1

2 Network Simulation 3

2.1 Problem of using a directed graph 3

2.2 Scalability Issue . 4

2.3 Simulation . 4

2.3.1 What a cycle looks like . 5

2.4 Short guide on how to run a Simulation 5

3 Investigating Bitcoin and defining parameters 9

3.1 Distribution of connection durations 9

4 Distance 11

5 Unreachable nodes 12

6 Impact of limiting degree 16

6.1 Centrality of nodes . 19

6.2 Simulation with 10000 Nodes and artificial upper bound 19

7 Conclusion 21

Bibliography 22

ii

Chapter 1

Introduction

Bitcoin or Ethereum are large decentralized peer-to-peer networks, which remain
stable and available regardless of the status of their individual nodes. These
peer-to-peer networks have a lot of interesting properties, one of which being the
rate of nodes joining or leaving the network itself. This is generally referred to
as the churn-rate
The churn rate has a big impact on the performance and stability of the network,
especially as both Bitcoin and Ethereum use distributed consensus algorithms to
maintain their integrity.

Investigating the churn rate is a complex task that includes multiple issues
that have to be addressed:

1. Scalability issues.
A large directed graph does not scale well, as every operation on one node
forces the graph to update the properties of all other nodes in the graph as
well. Some of those properties do have a large time complexity.

2. Unknown properties.
Blockchain networks like Bitcoin have a large percentage of peers behind
network addressing translation (NAT). These nodes only provide outgoing
links and can not be reached from other nodes.

3. Resource consumption.
Running a simulation on a large graph consumes a lot of resources. Addi-
tionally, implementing algorithms that rely heavily on multiprocessing will
produce a large overhead. Running multiple simulations at the same time
can also impact each other due to hardware based bottlenecks, like cache
size or memory read/write speed.

4. Strong connectivity.
For graph algorithms and network connectivity, it is important that the
graph stays strongly connected. Ensuring strong connectivity adds another
computational overhead.

1

1. Introduction 2

5. NAT nodes.
The amount of unreachable peers in the Bitcoin network is unknown, but
heavily impacts the behavior of the network. Unreachable peers contribute
to the network by disseminating blocks and transactions.

The problems above will be addressed in the following chapters. We will show
the impact unreachable peers have on the network and show graph properties by
focusing on the eccentricity and degree of each node.

Chapter 2

Network Simulation

In this chapter, we will show what design decisions were taken and show how to
run a simulation.

2.1 Problem of using a directed graph

As we heavily rely on the eccentricity of the nodes and their degree, it is im-
portant that those parameters can be calculated as efficiently as possible. Early
simulations showed that two issues arose:

1. The graph becomes weakly connected. Calculating the eccentricity re-
quires the graph to be strongly connected. Removing nodes and adding
new nodes requires multiple additional operations on the graph to ensure
that it is strongly connected again, even if already established peers have
to be deleted to force new connections. This is not something we want,
as it adds makes the process comparatively more expensive and possibly
negatively impacts the collected data and its correctness.

2. Directed graph space complexity. A directed graph is a lot larger than an
undirected graph. It requires incoming connections, outgoing connections,
in degree, out degree and so on for every node. This added size puts a large
overhead on multiprocessing operations.

To limit the above-mentioned issues, we decided to run the simulations with
an undirected graph and adapt all operations that required the graph to be
directed. We implemented a hash map that stored the outgoing connections for
every node and thus providing direction for each edge. This reduced the size of
the graph object and resolved the necessity to ensure strong connectivity.

3

2. Network Simulation 4

2.2 Scalability Issue

The fundamental issue of simulating a large network is the exponentially growing
time complexity. There exist multiple libraries that try to reduce that bottleneck
with a multitude of optimizations. In our case, we use the NetworkX [1] library.
This library is limited by pythons single core focused design, but provides good
documentation and is rather user-friendly. Lately, it also has been updated to
provide an interface for GPU based processing, which could improve the perfor-
mance significantly. The bottleneck we experienced with it appears to be the
graph access itself for networks with 10000 nodes or more.

This forces us to make some compromises. Calculating distances between
nodes is very resource intensive, as it relies on the shortest path computation
to calculate all pairwise distances for each individual node. The resulting time
complexity for this is O(bd) (A*-algorithm)

Some improvements can be made by using multiprocessing, but this only
provides a negligible difference for networks with more than 1000 nodes.
We will therefore mostly rely on calculating eccentricity and degree of each node.

The combination of eccentricity and degree gives us a good insight on the
relevance of each node. Additionally, we will store all edges in every cycle, which
can be used to calculate the age of connections between nodes.

2.3 Simulation

The simulation follows the following steps:

1. Define graph parameters

2. Create undirected graph

2.1. add nodes

2.2. randomly add edges until every node has k edges

2.3. add all connections for every node to direction object

3. randomly select x-percent of all nodes

4. remove selected nodes and their edges

5. store what nodes have lost how many neighbors

6. add the same amount of nodes with label NAT

7. add k outgoing edges, but only towards non NAT nodes

8. reconnect the nodes that lost their neighbors, but only with non NAT nodes

2. Network Simulation 5

9. give every node its churn probability

10. iterate through specified amount of cycles

11. store all produced data

2.3.1 What a cycle looks like

In 2.1 the process of a single cycle is depicted i.e. step 10 previously.

Figure 2.1: One cycle of removing and adding nodes

2.4 Short guide on how to run a Simulation

For ease of use, the code has been split onto multiple files. In this section, we
will show how to use it and how to enable / disable features.

Setting parameters

2. Network Simulation 6

1 size = #Nodes
2 k_outgoing = # outgoing connections per node
3 upper_limit = # cap on incoming connections
4 probabilities = {chance of churning per cylce *e2: amount nodes}
5 nat = how many nodes are behind nat (x out of 100)

Plotting data collected by monitoring node vs ground truth: For a settled
network, what the monitor node observes should be similar to what the ground
truth is. The use of a monitor node to collect data proved to be not reliable,
as the monitor node requires the network to run multiple thousand cycles after
settling to establish a big enough set of connections. If measurements want to be
done via monitor node, it can be enabled in the plot eccentricity file by setting
boolean to "True".

1 if os.path.isfile(filename_monitor):
2

3 with open(filename_monitor , ’r’) as file:
4 file_content = file.read()
5 objects=file_content.strip ().split(’-’)
6 ic(file_content)
7 monitor = objects [0]
8 ic(monitor)
9 boolean = False

Using an undirected graph instead of a directed graph makes the computation
more efficient. The downside of this is, that having two nodes connect to each
other in both directions gets blocked. But the influence of this in a network this
large is negligible.

To still have a directed graph we store the outgoing connections in a hash
map.

1 def create_undirected_graph(self ,upper_limit):
2 nodes = list(range(self.num_nodes))
3 random.shuffle(nodes)
4 for i in range(self.num_nodes):
5 self.store[nodes[i]]=[nodes [(i+1)%self.num_nodes]]
6 self.graph.add_edge(nodes[i],nodes[(i+1) % self.

num_nodes])
7

8 for node in self.graph.nodes:
9 targets = set(nodes)

10 targets.remove(node)
11 for temp in targets:
12 if self.graph.degree(temp) >=upper_limit:
13 targets.remove(temp)
14 while len(self.store[node])< self.degree:
15 target = random.choice(list(targets))
16 if not node in self.store:
17 self.graph.add_edge(node ,target)
18 self.store[node]=[target]
19 elif not target in self.store[node]:

2. Network Simulation 7

20 self.graph.add_edge(node ,target)
21 self.store[node]. extend ([target])
22 else:
23 continue
24 targets.remove(target)

In the following code:
Line 1 defines how many cycles are run. Then depending on the use case, if
distances between certain nodes have to be measured, line 238 is important.
Generally, measuring the distance between nodes should be avoided, as the time
complexity explodes when doing so.

1 for i in range (250):
2 prob = run.drop_connections ()
3 eccentricities = {}
4 distances_to_miners = {}
5 for index , key in enumerate(prob):
6 eccentricities[key] = GraphSetup.

compute_eccentricities_parallel(run.graph.graph ,prob[key])
7 distances_to_miners[key]= GraphSetup.

compute_distance_to_miner_parallel(run.graph.graph ,run.stable ,
prob[key])

8 with open(filename_10 ,’a’) as file:
9 json.dump(prob ,file)

10 maximum = 0
11 distance_to_miners = []
12 val = []
13 dis = []
14 for ecc in eccentricities:
15 val.append(sum(eccentricities[ecc]. values ())/len(

eccentricities[ecc]))
16 maximum = max(max(eccentricities[ecc]. values ()),maximum

)
17 for dist in distances_to_miners:
18 dis.append(sum(distances_to_miners[dist]. values ())/len(

distances_to_miners[dist]))
19 dia = maximum
20 store[i]=(run.graph.store)
21 eccentricity.append(val)
22 diameter.append(dia)
23 with open(filename_9 ,’a’) as file:
24 json.dump(nx.node_link_data(run.graph.graph),file)
25 distances.append(dis)

As some of the simulations were running for multiple weeks, all graph information
is being stored, so that future simulations can take that graph as a starting point
and do not first have to stabilize. Stored are:

2. Network Simulation 8

What nodes have what probabilities ’data/write_edgelist/node_probabilites’
The eccentricity of each node for
each cycle

’data/eccentricities/eccentricity’

All edges each cycle ’data/write_edgelist/edge_list_values’
The avg degree of nodes of a certain
churn probability

’data/edges/tables’

The store file containing the direc-
tions (outgoing connections)

’data/edges_store’

The monitor node if activated. ’data/monitor_monitor’

Chapter 3

Investigating Bitcoin and
defining parameters

In this chapter, we will take a look at the distribution of connection durations
for Bitcoin and define the parameters of our simulation accordingly.

3.1 Distribution of connection durations

By observing how long connections between nodes stay up, we can learn a lot
about the network and its properties. For Bitcoin, there exist monitor nodes
that have unlimited incoming connections available. Over time, a lot of nodes
will connect to them, as every node tries to have all 8 outgoing connections
filled, while only a limited amount of nodes that can be connected to exists. The
Karlsruhe Institute of Technology [2] runs such a monitor node and plots the
distribution of the connection durations in the plot below.

Figure 3.1: [2] Bitcoin distribution of connection durations

For our simulations, we decided to use the ground-truth as reference for the
connection durations. Simulating a monitoring node did not prove to be benefi-
cial, as the nodes would not connect to it in an appropriate time, unless we forced

9

3. Investigating Bitcoin and defining parameters 10

them to do so by implementing a low upper bound on the amount of incoming
connections per node.

The parameters for our simulations were determined by an educated guess
and adjusted by trial and error until the results of the simulations resembled the
observed data from 3.1.
In 3.1 we can observe, that more than 90% of peers are connected for at least
one hour, more than 80% for more than one day and so on.

The probabilities for churn per cycle used for our simulations are:
1 probabilities = {1:# nodes /100, 0.17: #nodes/10, 0.007:# nodes

/5 ,0.001:# nodes /5 ,0.0003:# nodes/5, 0: rest}

Below we plot the distribution of connection durations for a simulation with those
parameters.

Figure 3.2: Distribution of Connection Durations of 6.7(a)

In 3.2 we observe, that more than 95% of all connections are online for longer
than 1 hour, over 80% of all connections are online longer than one day and
around 40% of all connections are online for more than one month.

Chapter 4

Distance

In this chapter, we will investigate the distance between churning and non-
churning nodes. This will provide us with some additional context for the coming
chapters and allow us to make predictions on what to expect.

In 4.1, the probabilities used are 0.0, 0.1, 0.2, ..., 0.9 for 100 nodes each in a
network with 1000 nodes in total.

Figure 4.1: avg distance of node to miner (stable node)

We can see how the distance of between the nodes with p = 0 converges to
a distance of 1.8, while the distance to the churning nodes are relatively stable
at a further distance. Based on 4.1, we can now make the assumption, that non
churning nodes over time will find each other and form the center of the graph.
The higher the churn probability of a node is, the further away it should be from
this center. Due to this, we expect the non churning nodes to have more incoming
connections than the other nodes.

11

Chapter 5

Unreachable nodes

In the Bitcoin P2P-network, a substantial amount of nodes are behind a NAT.
This means that they have only outgoing connections and that they are very
hard to detect in the network. Even thouth these unreachable peers only have
outgoing connections, they do still play an important part in the network. One
of their main goals is to disseminate transactions and blocks [3] and to provide
redundancy. While the exact number of how many nodes are behind NAT is un-
known, estimates are about 50 to 70%. In the following paper [4] the assumption
is that more than 84% of all Bitcoin nodes are behind NAT.

Figure 5.1: Example of a Network with 70% of the nodes being behind NAT

In this chapter, we will show how varying the amount of NAT nodes influences
the Graph.

12

5. Unreachable nodes 13

(a) 1000 nodes, no unreachable nodes (b) distances, only reachable nodes

(c) 1000 nodes, 70% unreachable nodes (d) distances

Figure 5.2: 1000 nodes, with and without unreachable nodes

In the plots above, we can see, how making a substantial amount of the nodes
unreachable impacts the eccentricity of all nodes. While the average degree of
the nodes stay around the same.

In our simulation, the NAT nodes will be selected at random in the building
phase of the graph. They still have a probability to go offline and be replaced
with a node with the same properties. The graphs in the following pages are
aimed at providing an insight into the Bitcoin network, therefore the number of
outgoing connections of each node is set to 8.

5. Unreachable nodes 14

(a) 30% of nodes behind NAT

(b) 50% of nodes behind NAT

(c) 70% of nodes behind NAT

Figure 5.3: Network with 2000 nodes with different % NAT

5. Unreachable nodes 15

In the plots above, we can clearly see how increasing the amount of nodes
behind NAT reduces the overall eccentricity and makes the graph more compact,
reducing its diameter from 5 to 4.

What this means for the overall network is, that the reachable nodes are closer
to each other and form the center of the network, while the unreachable nodes
are the furthest away from the core.

Chapter 6

Impact of limiting degree

In this chapter, we investigate the impact that limiting the amount of incoming
connections a node can have has on the graph. We expect the nodes to converge
in their behavior the more we limit the in-degree. The thought behind this is,
that the fewer nodes are available to connect to, the less it will matter when a
node joins and for how long it stays in the graph.

We will investigate the impact for a graph where all nodes are available and for
a graph, where 70% of the nodes will be considered to be unreachable. To achieve
the best visual effect, we will use a uniform distribution of churn probabilities on
a graph with 1000 nodes.

(a) Eccentricity (b) Degree

Figure 6.1: Eccentricity and distance under max 70 incoming connections

16

6. Impact of limiting degree 17

(a) Eccentricity (b) Degree

Figure 6.2: Eccentricity and distance under max 50 incoming connections

(a) Eccentricity (b) Degree

Figure 6.3: Eccentricity and distance under max 30 incoming connections

In the plots above, we can clearly observe how limiting the amount of incoming
connections changes the network behavior and forces the churning nodes to take a
more central role in the network. Without an artificial limit on the in-degree, the
nodes that are always up will quickly fill up their incoming degree and dominate
the network.

When simulating the Bitcoin P2P network, where a substantial part of the
network is online for a much longer duration, the difference is less visible, unless
we approach the minimum of the required degree that the graph needs to stay
connected.

6. Impact of limiting degree 18

(a) Eccentricity (b) degree of nodes

Figure 6.4: (a) Eccentricity and (b) the degree of the nodes with an upper bound
of 70 incoming connections, 2000 nodes

(a) Eccentricity (b) degree of nodes

Figure 6.5: (a) Eccentricity and (b) the degree of the nodes with an upper bound
of 50 incoming connections, 2000 nodes

(a) Eccentricity (b) degree of nodes

Figure 6.6: (a) Eccentricity and (b) the degree of the nodes with an upper bound
of 30 incoming connections, 2000 nodes

6. Impact of limiting degree 19

6.1 Centrality of nodes

Over time, the network starts to stabilize. During this process, all nodes behind
NAT are moved to the outside of the graph and all other nodes become more
centralized.

CD(v) =
degree of node v

total number of nodes - 1

In the plots involving the average degree of the churning nodes, we can see,
that the non-churning nodes become the central part of the network, with the
highest centrality in the graph. From the plot with a cap on 50 incoming con-
nections, we can see that the stable nodes approach that limit (50 incoming +
8 outgoing connections) after multiple thousand cycles, when the network stabi-
lizes.

(a) 10000 nodes, 100 incoming connections (b) 10000 nodes, 100 incoming connections
degree

Figure 6.7: 10000 nodes, 70% of nodes behind NAT

6.2 Simulation with 10000 Nodes and artificial upper
bound

In the Bitcoin P2P-network, when a new node comes online, it quickly gets its
incoming connections filled. In the following, we use 10000 nodes to simulate the
real size of Bitcoin network. Like in graph 6.4,6.5,6.6 we introduce an artificial
upper bound on incoming connections and investigate its impact.

6. Impact of limiting degree 20

(a) eccentricity (b) degree

Figure 6.8: 70% behind NAT, upper bound 50 incoming connections

(a) eccentricity (b) degree

Figure 6.9: 70% behind NAT, upper bound to 30 incoming connections

In 6.9(b) we can observe, how the stable nodes hit their upper limit after a
short amount of time. Interesting is how the nodes that have a low churn rate
first have a strongly decreasing eccentricity as they start to find each other. But
as time goes on, the more volatile nodes are placed further away from the center
cluster of the graph, causing the overall eccentricity to raise. This is very visible
when we look at a simulation that was run over a long period of time 6.10(15000
cycles, 2000 nodes)

Figure 6.10: 15000 Cycles, 2000 nodes

Chapter 7

Conclusion

Simulating a large P2P network provided us with a deeper insight of how a real
P2P network behaves and how churning nodes affect it. Through the collected
data we have showed, how non-churning nodes find each other over time and how
this affects their eccentricity and the eccentricity of the other nodes. This process
also strongly affected the degree of the different nodes, as the longer a node stays
online, the higher its degree becomes. Important was also to show how big of an
impact unreachable nodes have on the network.

The simulation of such big P2P network has proven to be quite challenging,
as at such large scale hardware bottlenecks and the exponential runtime of many
graph algorithms become the main problem. By minimizing the amount of re-
quired graph accesses and graph operations, the desired scaling could still be
achieved.
Every graph operation using the library would update the parameters of every
single node. This could be partly avoided by minimizing all graph operations and
moving graph-properties to external data structures. This design process proved
to be beneficial and allowed us to collet a large amount of data.

Additional, one step that could still be taken is implementing the GPU cuda
backend referenced in the documentation of the networkx [1] library.

21

Bibliography

[1] N. developers. networkx. [Online]. Available: https://networkx.org/

[2] F. D. S. und Netzdienste KASTEL. (2023) Bitcoin monitoring. [Online].
Available: https://www.dsn.kastel.kit.edu/bitcoin/index.html

[3] H. H. Matthias Grundmann. What peer announcements tell us about
the size of the bitcoin p2p network. [Online]. Available: https:
//publikationen.bibliothek.kit.edu/1000151755

[4] L. Z. F. G. Dawei Xu, Jiaqi Gao and J. Zhao. (2023, Nov.) Statistical and
clustering analysis of attributes of bitcoin backbone nodes. [Online]. Available:
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292841

22

https://networkx.org/
https://www.dsn.kastel.kit.edu/bitcoin/index.html
https://publikationen.bibliothek.kit.edu/1000151755
https://publikationen.bibliothek.kit.edu/1000151755
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292841

	Abstract
	1 Introduction
	2 Network Simulation
	2.1 Problem of using a directed graph
	2.2 Scalability Issue
	2.3 Simulation
	2.3.1 What a cycle looks like

	2.4 Short guide on how to run a Simulation

	3 Investigating Bitcoin and defining parameters
	3.1 Distribution of connection durations

	4 Distance
	5 Unreachable nodes
	6 Impact of limiting degree
	6.1 Centrality of nodes
	6.2 Simulation with 10000 Nodes and artificial upper bound

	7 Conclusion
	Bibliography

