
Distributed

 Computing

SUPClust:
Active Learning at the Boundaries

Semester Thesis

Yuta Ono
yutono@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Till Aczél, Benjamin Estermann,

Prof. Dr. Roger Wattenhofer

February 26, 2024

Acknowledgements

My deepest gratitude goes to my supervisors, Till Aczél and Benjamin Ester-
mann. Their profound knowledge and invaluable advice have always guided me
in the right direction of research. None of the results presented in this thesis
would have been possible without their help. In addition, their friendly per-
sonalities have helped me adapt to the life in Switzerland which is completely
different from the life in Japan. I am also grateful to Prof. Dr. Wattenhofer and
other members of the DISCO group for giving me the opportunity to do research
in such a great environment. I will never forget the special experience of using
more than 30 GPUs simultaneously. Lastly, I would like to thank my family for
their support from Japan.

i

Abstract

In this thesis, we evaluate querying strategies for active learning based on the
latent space of different representation learning models such as hierarchical VAEs
and SimCLR. We also propose a novel active learning approach, SUPClust, which
aims to identify the data points that are close to the decision boundaries between
categories. By selecting these points, SUPClust tries to obtain more informative
points for training a classifier. Our empirical results show that among these
approaches, SUPClust shows a strong active learning performance in low-budget
regimes. This improvement is observed even on highly imbalanced datasets.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1
1.1 Motivation . 1
1.2 Organization of Thesis . 2

2 Related Works 3
2.1 Active Learning . 3

2.1.1 Pool-based Active Learning Settings 3
2.1.2 Previous works . 4

2.2 Hierarchical Variational Autoencoders 6
2.2.1 Autoencoders . 6
2.2.2 Variational Autoencoders 6
2.2.3 Hierarchical Variational Autoencoders 8

2.3 SimCLR . 9

3 Active Learning with Hierarchical VAEs 11
3.1 Background . 11
3.2 Method . 13

3.2.1 TypiClust based on latent variables of original inputs . . 13
3.2.2 TypiClust based on latent variables of SimCLR embedding 13
3.2.3 TypiClust based on LLR score 14

3.3 Result . 15
3.3.1 TypiClust based on latent variables of original inputs . . 15
3.3.2 TypiClust based on latent variables of SimCLR embedding 20
3.3.3 TypiClust based on LLR score 21

iii

Contents iv

3.4 Discussion . 23
3.4.1 TypiClust based on latent variables of original inputs . . 23
3.4.2 TypiClust based on latent variables of SimCLR embedding 23
3.4.3 TypiClust based on LLR score 24

4 Active Learning with different SimCLR embeddings 26
4.1 Background . 26
4.2 Method . 26
4.3 Result . 26

4.3.1 Result with Fixed Dclst 26
4.3.2 Result with Fixed Dtyp 31

4.4 Discussion . 35

5 SUPClust: Active Learning at the Boundaries 42
5.1 Background . 42
5.2 Method . 43
5.3 Result . 46

5.3.1 Experimental setup . 46
5.3.2 Ablation Study . 47
5.3.3 Sampled Points . 47
5.3.4 Cluster Boundary vs Category Boundary 48
5.3.5 Relation between Typicality and SUP 49
5.3.6 Main Results . 50

5.4 Discussion . 51

6 Conclusion 53

A Hyperparameters A-1

Chapter 1

Introduction

1.1 Motivation

Progress in deep learning for image classification tasks has been following an
impressive pace in recent years [1–4]. In order to achieve high classification
accuracy on a target dataset, many of the methods necessitate a substantial
amount of annotated data. However, in many cases, annotating data can be both
time-consuming and expensive, as it often requires professionals with specific
expertise, such as doctors for skin lesion images. These costs can present a
challenge to the application of these successful methods. One potential solution
to this problem is the use of active learning. Active learning is a framework for
training machine learning models, which aims to maximize classification accuracy
by selecting the most informative and valuable data points to be annotated for
model training with a limited budget for annotation.

Previously, there were active learning methods for classical machine learning
methods such as support vector machines (SVMs) [5]. However, recently pro-
posed active learning methods are primarily designed for deep learning models
due to the large, and sometimes unrealistic, amount of labeled data required
to train them and the need to leverage them in various applications. Most of
them are effective for deep learning model trainings when there is a sufficient
budget for annotation, but their performance deteriorates when the budget for
annotation is extremely limited. This is reffered to as the “cold start” problem
in low-budget regimes, which is a critical issue for leveraging active learning in
real-world settings.

To enhance the potential of active learning, we are looking for a new metric
to address the cold start problem in low-budget scenarios. To this end, we
consider the use of hierarchical variational autoencoders, self-supervised learning
algorithms, and the idea of decision boundary inspired by SVMs. These methods
are investigated in this thesis.

1

1. Introduction 2

1.2 Organization of Thesis

This thesis is organized as follows:

• Chapter 2: The details of active learning are described in this chapter.
Related ideas to the methods proposed in this thesis are also summarized

• Chapter 3: Active learning methods with a hierarchical variational autoen-
coder are proposed

• Chapter 4: An active learning method with self-supervised embeddings is
proposed

• Chapter 5: An active learning method inspired by SVMs is proposed. The
main results of this thesis are described in this chapter with some ablation
studies to ensure the effectiveness of the proposed method

• Chapter 6: The thesis is concluded

Chapter 2

Related Works

2.1 Active Learning

2.1.1 Pool-based Active Learning Settings

Let D, U , and L represent the entire dataset, the unlabeled data pool, and the
labeled data pool respectively. Here, the following relationships hold:

U ∪ L = D, (2.1)

U ∩ L = ∅. (2.2)
A data point x ∈ D has the dimension d, which shuold be the total number of
pixels in a image or the dimension of an embedding space.

x ∈ Rd (2.3)

A data point in the labeled pool has its true label y(x). The model is trained
using the labeled dataset L and their labels {y(x) | ∀x ∈ L}. The optimization
problem of deep active learning can be expressed as follows:

argmin
L∈D, |L|=B

Ex∈L [l(f(x), y(x))] , (2.4)

where f is a deep learning model, or a classifier, B is a total budget size allocated
for annotation, and l(·, ·) is a given loss function. In settings of active learning,
a bunch of images are selected and queried for their true labels in a batch whose
size is b for e itrations (B = e·b), following a querying strategy. Ideally, the batch
size should be 1 to minimize the loss, but it is often set to be more than 1 because
each iteration of active learning necessitates deep learning model training and it
consumes time and resources. In this thesis, e is set to 5, and two batch sizes
are used:

• Tiny budget: b = #Classes

• Small budget: b = 5×#Classes

These two budget sizes can be categorized in the low-budget regimes.

3

2. Related Works 4

2.1.2 Previous works

There are various querying strategies to achieve higher performance of active
learning. These strategies can be categorized as uncertainty-based or diversity-
based. Uncertainty-based approaches leverage the prediction uncertainty of the
classification model during training on the labeled dataset to select informative
data to be annotated. Diversity-based approaches aim to annotate a diverse
range of samples spanning the complete data distribution, avoiding the selection
of too similar ones. There are also hybrid methods that attempt to identify
samples with high uncertainty and diversity simultaneously. Ten active learning
methods are described below.

Random

The random sampling strategy randomly and uniformly selects data points from
the unlabeled data pool U . Although random sampling does not use any infor-
mation about the dataset and is the simplest way to sample data, it is known
to perform very well in low budget regimes compared to other designed active
learning strategies. This phenomenon is often referred to as the “cold start”
problem as mentioned before.

Least confidence

Least confidence [6] selects b images with the b lowest value of QLC . This means
that it prioritizes the samples whose top 1 predicted probability is low.

QLC(x; f) = P1(x; f) (2.5)

Margin

Margin [7] selects the data points whose QM , or margin between the probabilities
of the most probable label and second most probable label, is smaller than others.
If a classifier is confident in its decision, the margin gets bigger.

QM (x; f) = P1(x; f)− P2(x; f) (2.6)

Entropy

Entropy [8] selects the data with the biggest QE , or entropy. If a classifier is
confident, namely it has a close value to 1 for a class, the entropy is small.

2. Related Works 5

QE(x; f) = −
∑
i

Pi(x; f) logPi(x; f) (2.7)

BALD and DBAL

BALD [9] and DBAL [10] select data using the mutual information between the
model prediction and the model parameters. It tries to maximize QBALD, or the
sum of mutual information for xi in a batch.

I (y;ω|x,L) = H (y|x,L)− Ep(ω|L) [H (y|x, ω,L)] (2.8)

QBALD({x1, . . . ,xb}, p(ω|L)) =
b∑

i=1

I (yi;ω|xi,L) (2.9)

BatchBALD

Since BALD is originally designed for acquiring individual points, similar images
tend to be selected in a batch when it is applied to batch aquisition because
similar images tend to have the similar mutual information. BatchBALD [11]
extends BALD to batch aquisition problem by using the mutual information
between a joint of multiple data points and the model parameters.

QBatchBALD({x1, . . . ,xb}, p(ω|L)) = I (y1, . . . , yb;ω|x1, . . . ,xb,L) (2.10)

Coreset

Coreset [12] queries diverse samples through the selection of points that form a
minimum radius cover of the remaining samples in the unlabeled data pool. In
order to do this, Coreset works on the embeddings generated by the penultimate
layer of the classifier.

TypiClust

TypiClust [13] focuses on typicality, see Equation (2.11), calculated in an embed-
ding space. The embeddings of unlabeled data are generated a priori by Sim-
CLR [14] which is a self-supervised learning method described in Section 2.3. In
the iteration e of active learning, b · e clusters are built in the embedding space,
and then, b samples with highest typicality are selected from different clusters.
Clusters which have less labeled point and bigger size are prioritized. TypiClust
is designed for low-budget regimes, and it is known to work well in those settings.

2. Related Works 6

Typicality(x) =

 1

K

∑
xn∈K−NN(x)

‖x− xn‖

−1

, (2.11)

where K −NN(x) is a set of K nearest neighbors of x in an embedding space.

ProbCover

ProbCover [15] attempts to maximize the coverage with balls of a fixed size
in contrast to Coreset which minimizes the ball size with covering all the data
points. Probcover is designed for low-budget regimes and relies on well-structured
embeddings as well as TypiClust.

2.2 Hierarchical Variational Autoencoders

2.2.1 Autoencoders

Autoencoders (AEs) [16] are neural networks that aim to compress the input in-
formation into lower dimension representation, or a latent variable. AEs usually
consist of two parts: an encoder network and a decoder network.

An encoder can learn the transformation from a set of input data to efficient
representations (encodings, latent variables) while a decoder can learn reproduc-
tion from the efficient representations to the original inputs. AEs are originally
designed to extract compact and effective representation from inputs, but they
can be used for generative tasks as well by introducing the idea of probabilistic
distribution as described in Section 2.2.2.

2.2.2 Variational Autoencoders

Variational Autoencoders (VAEs) [17] introduces the idea of probabilistic distri-
bution to the latent variable of AEs.

For VAEs, we assume discrete variable x(i) ∈ X (i ∈ [N]) is generated by
some random process, involving unobserved continuous random variable z. The
random process is broken down into two steps: First, a value z(i) is generated
from some prior distribution pθ∗(z). Next, a value x(i) is generated from some
conditional distribution pθ∗(x|z). Unfortunately, the true parameters θ∗ and the
values of latent variables z(i) are unidentifiable. See Figure 2.1 for the entire flow
of VAE.

The unobserved variables z have an interpretation as a latent representation
or code. In [17], the recognition model qφ(z|x) is referred to as a probabilistic

2. Related Works 7

encoder. Given a data point x, it produces a distribution over possible values of
the code z from which the data point could have been generated. In a similar
reason, pθ(x|z) is referred to as a probabilistic decoder, since given a code z it
produces a distribution over the possible corresponding values of x.

The marginal likelihood can be written as:

log pθ(x
(1), · · · ,x(N)) =

N∑
i=1

log pθ(x
(i)), (2.12)

where
log pθ(x

(i)) = DKL(qφ(z|x(i))‖pθ(z|x(i))) + L(θ, φ, x(i)). (2.13)
The first RHS term is the KL divergence of the approximate from the true pos-
terior. Since KL divergence is non-negative, the second RHS term L(θ, φ, x(i))
is called the evidence lower bound (ELBO).

L(θ, φ, x(i)) = Eqφ(z|x)[− log qφ(z|x) + log pθ(x, z)] (2.14)

ELBO can be rewritten as:

L(θ, φ, x(i)) = −DKL(qφ(z|x(i))‖pθ(z|x(i))) + log pθ(x
(i)) (2.15)

In the training of VAEs, we try to maximize the ELBO, or minimize inverse
ELBO, for a higher likelihood. Read [17] for more details.

Figure 2.1: The type of directed graphical model under consideration. Solid lines
denote the generative model pθ(z)pθ(x|z), dashed lines denote the variational
approximation qφ(z|x) to the intractable posterior pθ(z|x). The variational pa-
rameters φ are learned jointly with the generative model parameters θ. Cited
from [17]

We can obtain latent variables of high quality by VAEs. In contrast to
GAN [18] where the latent variables are random noises, the latent space in VAEs

2. Related Works 8

is organized and can be interpreted because the distribution of the latent space
follows a probabilistic distribution, which is usually Gaussian distribution.

2.2.3 Hierarchical Variational Autoencoders

Hierarchical Variational Autoencoders (HVAEs) [19–21] are variants of VAEs.
They have some layers between the encoder part and the decoder part to repre-
sent multiple latent spaces as shown in Figure 2.2. These latent spaces are capa-
ble of learning hierarchical representations, such as colors, textures, and shapes of
cars. In Figure 2.3, we can see that LVAE [19], an example of HVAEs, has a high
capacity to learn multiple latent representations compared to VAEs. Thanks to
these hierarchical representations, the quality of reproduction is greatly improved
compared to the usual VAEs.

Figure 2.2: An example architecture of HVAEs. Cited from [21]

2. Related Works 9

Figure 2.3: PCA plots of samples from different latent spaces of a HVAE. Cited
from [19]

2.3 SimCLR

SimCLR [14] is a simple framework for contrastive learning of visual representa-
tions, in contrast to the complex frameworks such as CPC [22] and MoCo [23].
First, two different data augmentation operators are sampled from the same fam-
ily of augmentations (t ∼ T , t′ ∼ T), see Figure 2.5 for some examples. These
operators are then applied separately to an input image x, yielding transformed
images (x̃i, x̃j). A base encoder network f(·), sometimes called a backbone
model, and a projection head g(·) are trained to maximize agreement using a
contrastive loss. After a training is completed, we discard the projection head
g(·), and use the encoder f(·) and the representation h for downstream tasks.
In this representation space, augmented images from the same original image
attract each other, and images from different original images repel each other.
Therefore, the representation space is well structured, and useful for downstream
tasks.

2. Related Works 10

Figure 2.4: SimCLR architecture. Cited from [14]

Figure 2.5: Illustrations of data augmentation operators. Cited from [14]

Since we can obtain self-supervised representation learned by SimCLR with-
out true labels, it can be used for preprocessing of unlabeled dataset in active
learning frameworks.

Chapter 3

Active Learning with
Hierarchical VAEs

In this chapter, we explore the possibility of making use of hierarchical VAEs for
active learning.

3.1 Background

It is shown that active learning can benefit from sampling in the latent space of a
VAE [24]. Although the results on MNIST in [24] are suggestive, common VAEs
are not powerful enough to extract essential information from more difficult
datasets such as ImageNet [25] and CelebA [26]. To improve the ability to
extract the representation and reproduce the inputs from the latent variables,
hierarchical VAEs (HVAEs) have been proposed [19–21].

There are several layers in series that generate latent variables in HVAEs,
and the latent variables represent embeddings of different levels of abstraction.
The order of abstraction depends on the model architecture of the HVAE, but
let’s say that lower latent layers of HVAEs have higher abstraction and vice
versa. In other words, the earlier latent layers in the forward propagation will
extract broad representations, e.g., color of the object, and later ones will extract
more details such as the texture of the skin. This character of latent spaces in
HVAEs provides inspiration for exploiting the different levels of abstraction for
diversity-based active learning.

It is crucial for the success of diversity-based active learning to find a way to
ensure the diversity of samples in a queried batch. A variety of ways have been
proposed to select diverse data without true labels. For example, TypiClust [13]
uses clustering in an embedding space learned by SimCLR to achieve this. Typ-
iClust works well in low-budget regimes, so we start by combining this previous
work with the hierarchical representations of HVAE. We follow the protocol of
TypiClust, but use the hierarchical latent space instead of the embedding space
of SimCLR.

11

3. Active Learning with Hierarchical VAEs 12

In addition, according to [13], active learning in the low budget regimes
can benefit from oversampling of “typical” data points, which means that we
should select easy samples to be learned by a classifier for annotation in the
beginning of active learning. Unlike easy or typical samples, difficult samples
tend to be atypical or outliers in the input space. Since HVAEs are able to
discriminate in-distribution data and out-of-distribution data [27], we consider
taking advantage of this ability to detect outliers in the input or embedding
space. Figure 3.1 and Figure 3.2 show the examples of separating in-distribution
data and out-of-distribution data following [27].

Figure 3.1: Out-of-distribution detection using FMNIST (in-ditribution) and
MNIST (out-of-distribution). Out-of-distribution data tend to have larger
LLR>2.

3. Active Learning with Hierarchical VAEs 13

Figure 3.2: Out-of-distribution detection using CIFAR10 (in-distribution) and
SVHN (out-of-distribution). Out-of-distribution data tend to have larger
LLR>2.

3.2 Method

3.2.1 TypiClust based on latent variables of original inputs

We follow the procedures proposed by TypiClust [13], but embeddings in hi-
erarchical latent space replace the embeddings generated by SimCLR. These
embeddings are used for clustering and calculating typicality. The results of
the normal TypiClust and the TypiClust with hierarchical representations are
compared by observing the performance of a classifier, ResNet18, trained in an
active learning scheme. There are three latent spaces in the HVAE used for this
experiment. These latent variables are used individually for experiments. Each
latent space replaces the embedding generated by SimCLR.

3.2.2 TypiClust based on latent variables of SimCLR embedding

As shown in Section 3.3.1, latent variables generated by an HVAE from original
inputs are not powerful enough to extract representation from CIFAR10. The
latent spaces are not well separated by the true labels. The embeddings from
SimCLR, see Figure 3.3, are so well structured that we can easily build clusters
without label confusion in the embedding space without true labels.

3. Active Learning with Hierarchical VAEs 14

To take advantage of this structure of SimCLR embeddings, we use these em-
beddings as inputs to an HVAE, and try to extract a hierarchy in the embedding
space. We replace the embedding used in TypiClust with the latent variables
generated by a HVAE from the embedding.

Figure 3.3: SimCLR embedding of CIFAR10 train dataset

3.2.3 TypiClust based on LLR score

Likelihood ratio score (LLR>k) [27] is a metric to measure the level of out-of-
distribution. LLR>k is defined as

LLR>k = L(x)− L>k(x), (3.1)

where
L>k = Epθ(z≤k|z>k)qφ(z>k|x)

[
log

pθ(x|z)pθ(z>k)

qφ(z>k|x)

]
. (3.2)

3. Active Learning with Hierarchical VAEs 15

Note that L>0 is the regular ELBO L. High LLR indicates that the data point is
an instance of out-of-distribution data, or an sample which is not included in the
train dataset of the HVAE. Here, we assume that LLR indicates the degree of
outlying even if the data point belongs to in-distribution data. The data points
with the highest LLR or the lowest LLR are sampled in this method to sample
outliers or inliers.

3.3 Result

3.3.1 TypiClust based on latent variables of original inputs

Latent spaces on the original inputs CIFAR10

Three latent variables generated by the HVAE from the CIFAR10 test dataset are
shown in Figure 3.4, Figure 3.5, and Figure 3.6. Compared to the visualization
of SimCLR embeddings shown in Figure 3.3, these latent spaces are clutterd in
terms of true label distribution. The clustering for TypiClust is burdened by
this untidiness, and it leads to a deterioration of the active learning performance
as shown in the next part.

3. Active Learning with Hierarchical VAEs 16

Figure 3.4: t-SNE visualization of the latent variables z0 (the lowest layer of
latent spaces). Each color represents a true label.

3. Active Learning with Hierarchical VAEs 17

Figure 3.5: t-SNE visualization of the latent variables z1 (the middle layer of
latent spaces). Each color represents a true label.

3. Active Learning with Hierarchical VAEs 18

Figure 3.6: t-SNE visualization of the latent variables z2 (the highest layer of
latent spaces). Each color represents a true label.

Training Results of Active Learning

The results of active learning with the tiny budget are shown in Figure. 3.7 and
Figure 3.81. “typiclust-rp (zi)” or “zi” (i = 0, 1, 2) is a result of TypiClust
using the latent variable zi generated by the reparameterization trick (zi(x) =
µi(x) + σi(x)ε, ε ∼ N (0, 1)), and “typiclust-rp (zi mean)” or “zi (mean)” is a
result using the latent variable zi(x) = µi(x), which is the mean value of the
estimated distribution.

1I understand that means and standard errors with different random seeds should be shown
for fair comparison, but it’s difficult to repeat this experiment because the latent spaces of the
HVAE are already lost due to the tragic catastrophe in the computer cluster

3. Active Learning with Hierarchical VAEs 19

Figure 3.7: Result of active learning with tiny budget.

Figure 3.8: Result of active learning with small budget.

3. Active Learning with Hierarchical VAEs 20

3.3.2 TypiClust based on latent variables of SimCLR embedding

The results of TypiClust-RP using the latent variables obtained by an HVAE
from SimCLR embedding are shown in Figure 3.9 and Figure 3.10. The notation
“typiclust-rp (e-zi)” (i = 0, 1, 2) represents the result of TypiClust-RP with the
latent variable zi of the HVAE generated from the SimCLR embedding inputs.

Figure 3.9: Result of active learning with tiny budget.

3. Active Learning with Hierarchical VAEs 21

Figure 3.10: Result of active learning with small budget.

3.3.3 TypiClust based on LLR score

“ood-hr (clst:z2, smp: LLR>2)” builds clusters in the top latent space, and
selects a data point with the lowest LLR>2 from each cluster. “ood-hr (clst:z2,
smp: LLR>2-inv)” also builds clusters in the topmost latent space, but it selects
a data point with the highest LLR>2 from each cluster.

3. Active Learning with Hierarchical VAEs 22

Figure 3.11: Result of active learning with tiny budget.

Figure 3.12: Result of active learning with small budget.

3. Active Learning with Hierarchical VAEs 23

3.4 Discussion

3.4.1 TypiClust based on latent variables of original inputs

Both Figure 3.7 and Figure 3.8 show that TypiClust performs better in higher
latent space regardless of the way how the representations are generated, random
re-parameterization or mean sampling. These results suggest that active learning
with TypiClust can benefit from representations at lower levels of abstraction, or
from fine-grained characters in images. These results are consistent with our in-
tuition that details of images are more important to measure the informativeness
of the images.

Although higher latent spaces are more suitable for active learning, they can-
not outperform the original TypiClust-RP and TypiClust-DC. Since TypiClust
heavily relies on the representation extracted from the inputs in terms of clus-
tering and typicality, this poor performance is likely due to the lower quality of
the latent space. They are less suitable for clustering than the embedding space
from SimCLR, as the latent spaces are not clearly partitioned by true labels as
shown in Figure 3.6 compared to the SimCLR embedding space shown in Fig-
ure 3.3. We also observed that the quality of the latent spaces could not be
improved even with deeper HVAEs such as Biva [20]. Therefore, we assume that
the latent spaces generated by HVAEs from the original images do not have a
structure suitable for clustering.

3.4.2 TypiClust based on latent variables of SimCLR embedding

The active learning results of TypiClust using the latent variables from the Sim-
CLR embedding have the opposite tendency to the results of TypiClust using
the latent variables from the original images. It is shown in Figure 3.9 that e-z0
has the highest accuracy and e-z2 has the lowest accuracy among the results
using latent variables from SimCLR embeddings.

This inversion is thought to be due to the collapse in higher latent space.
Since the inputs, the SimCLR embeddings, are already well structured, an HVAE
does not need to learn hierarchical representations with multiple layers. It can
simply learn the representation with the first layer for the latent variable. This
leads to the collapse in the higher latent layer, and will degrade the quality of the
higher latent space. Because of this collapse, clustering and typicality calculation
in higher latent spaces are no longer meaningful.

More importantly, the performance is greatly improved by using the latent
variables from the SimCLR embeddings, but it is still not better than the original
TypiClust.

3. Active Learning with Hierarchical VAEs 24

3.4.3 TypiClust based on LLR score

The accuracies with TypiClust using the LLR score are lower than the those of
the original TypiClust. Moreover, both of them are worse than the accuracies
by random sampling, and interestingly, selecting the highest LLR and the lowest
LLR does not make a big difference. From the results, we can conclude that
the LLR score of the in-distribution dataset does not provide good information
for active learning. Originally, LLR score is designed to distinguish between in-
distribution data and out-of-distribution data. Therefore, it is not contradictory
that LLR does not work well for detecting outliers within the in-distribution
dataset.

Difference by the space for clustering

As an ablation study, we perform active learning experiments with clustering
in the SimCLR embedding space and sampling by the LLR score. The results
are shown in Figure 3.13 and Figure 3.14. “ood-rp (clst:ND, smp:LLR>2)” and
“ood-rp (clst:ND, smp:LLR>2-inv)” use the LLR score in the same way as “ood-
rp (clst:zi, smp:LLR>2)” and “ood-rp (clst:zi, smp:LLR>2-inv)” do, but clusters
are assigned in the SimCLR embedding space whose dimension is N .

Figure 3.13: Result of active learning with tiny budget.

3. Active Learning with Hierarchical VAEs 25

Figure 3.14: Result of active learning with small budget.

Clustering in the SimCLR embedding space improves the performance. There-
fore, it is suggested that cluttered representation space, or latent space by HVAEs
would affect the selection of diverse samples in a batch because of the collapsed
clusters. In addition, LLR is not a good metric to measure the informativeness
of data for active learning because the accuracy is still worse than the random
sampling even if the SimCLR embeddings are used for clustering.

Chapter 4

Active Learning with different
SimCLR embeddings

4.1 Background

TypiClust [13] uses the same SimCLR embedding by a single backbone model for
both clustering and typicality. Although the default dimension of the embedding
space is 512, it can be set to a different dimension. It is also possible to use other
embeddings for clustering and typicality. In this chapter, we explore the best
combination of dimensions for successful active learning.

4.2 Method

Several SimCLR embeddings of different dimensions (D = 8, 16, 32, 64, 128,
256, 512) are prepared first. Each combination of Dclst and Dtyp is examined
on CIFAR10 with the tiny budget, where Dclst is the embedding dimension for
clustering and Dtyp is for typicality.

4.3 Result

4.3.1 Result with Fixed Dclst

The results with fixed Dclst and baselines (typiclust-rp (512D) and random) are
shown from Figure 4.1 to Figure 4.7. The notation “typ-rp (clst:MD, typ: ND)”
means Dclst = M and Dtyp = N .

26

4. Active Learning with different SimCLR embeddings 27

Figure 4.1: Active Learning Results (Fixed: Dclst = 8)

Figure 4.2: Active Learning Results (Fixed: Dclst = 16)

4. Active Learning with different SimCLR embeddings 28

Figure 4.3: Active Learning Results (Fixed: Dclst = 32)

Figure 4.4: Active Learning Results (Fixed: Dclst = 64)

4. Active Learning with different SimCLR embeddings 29

Figure 4.5: Active Learning Results (Fixed: Dclst = 128)

Figure 4.6: Active Learning Results (Fixed: Dclst = 256)

4. Active Learning with different SimCLR embeddings 30

Figure 4.7: Active Learning Results (Fixed: Dclst = 512)

4. Active Learning with different SimCLR embeddings 31

4.3.2 Result with Fixed Dtyp

The results with fixed Dtyp and baselines (typiclust-rp (512D) and random) are
shown from Figure 4.8 to Figure 4.14. The notation “typ-rp (clst:MD, typ:
ND)” means Dclst = M and Dtyp = N .

Figure 4.8: Active Learning Results (Fixed: Dtyp = 8)

4. Active Learning with different SimCLR embeddings 32

Figure 4.9: Active Learning Results (Fixed: Dtyp = 16)

Figure 4.10: Active Learning Results (Fixed: Dtyp = 32)

4. Active Learning with different SimCLR embeddings 33

Figure 4.11: Active Learning Results (Fixed: Dtyp = 64)

Figure 4.12: Active Learning Results (Fixed: Dtyp = 128)

4. Active Learning with different SimCLR embeddings 34

Figure 4.13: Active Learning Results (Fixed: Dtyp = 256)

Figure 4.14: Active Learning Results (Fixed: Dtyp = 512)

4. Active Learning with different SimCLR embeddings 35

4.4 Discussion

There are always some combinations of Dclst and Dtyp that outperform the orig-
inal typiclust (shown as typiclust-rp (512D)) in every figure with fixed Dclst. On
the other hand, there are not always such combinations with fixed Dtyp. From
these results it can be concluded that Dtyp affect the performance of active learn-
ing more than Dclst. Good Dtyp values lead to higher accuracy of the classifier,
but it cannot outperform the original TypiClust regardless of Dclst if a bad Dtyp

is chosen. In this setting, a good Dtyp is one of (64, 128, 256). When Dtyp is set
to the good value, every combination of Dtyp and Dclst outperforms the original
TypiClust-RP except the case of (Dclst, Dtyp) = (16, 64). This suggests that the
embedding space for clustering does not have a much effect on the performance
of TypiClust.

The figures from Figure 4.15 to Figure 4.21 show that the embedding spaces
of different dimensions have similar structures without critical collapses.

Figure 4.15: t-SNE plot of CIFAR10 test dataset (D = 8)

4. Active Learning with different SimCLR embeddings 36

Figure 4.16: t-SNE plot of CIFAR10 test dataset (D = 16)

4. Active Learning with different SimCLR embeddings 37

Figure 4.17: t-SNE plot of CIFAR10 test dataset (D = 32)

4. Active Learning with different SimCLR embeddings 38

Figure 4.18: t-SNE plot of CIFAR10 test dataset (D = 64)

4. Active Learning with different SimCLR embeddings 39

Figure 4.19: t-SNE plot of CIFAR10 test dataset (D = 128)

4. Active Learning with different SimCLR embeddings 40

Figure 4.20: t-SNE plot of CIFAR10 test dataset (D = 256)

4. Active Learning with different SimCLR embeddings 41

Figure 4.21: t-SNE plot of CIFAR10 test dataset (D = 512)

Chapter 5

SUPClust: Active Learning at
the Boundaries

5.1 Background

How can a model correctly classify points of different classes? Classical support
vector machines search for a hyperplane that separates two classes with the
largest possible margin (See Figure 5.1). The points that lie on this decision
boundary are called support vectors. In other words, these support vectors define
the boundary of all samples of a class and are critical for a model to know in
order to correctly separate the classes. We hypothesize that points close to the
decision boundary are similarly relevant for neural network-based models.

In this chapter, we propose a novel active learning method SUPClust that
attempts to identify these points so that they can be annotated. Since the
labels of the points are not known a priori, we rely on self-supervised representa-
tion learning combined with clustering to decompose the high-dimensional input
space. For each cluster, we then identify the points that are close to a neighbor-
ing cluster, thereby selecting potential support vector points. By selecting points
from all clusters, we ensure a broad coverage of the input space. In practice, data
distributions often contain outliers and the decision boundary between different
classes is not always clear. For this reason, we further constrain our points to be
somewhat typical according to a typicality metric introduced by [13].

42

5. SUPClust: Active Learning at the Boundaries 43

X-axis

Y-
ax

is

Decision Boundary
Hyperplane

Figure 5.1: Decision boundary of an SVM classifier.

5.2 Method

SVM classifiers are defined by a few key points located on the decision bound-
ary between the categories. Our querying strategy selects instances close to the
decision boundary because they also provide a strong signal to the learning pro-
cess of neural network-based models. Traditional active learning methods have
approached this problem by using model uncertainty as a cue for samples at the
decision boundary. However, these methods suffer from the cold start problem,
where in low budget scenarios, the model uncertainty is unable to identify hard
instances. In this work, we introduce a novel method to find such samples by
exploiting pre-trained representations. We can see in Figure 5.2, using CIFAR-10
as an example, that similar categories are clustered together in the representation
space.

5. SUPClust: Active Learning at the Boundaries 44

0 1 2 3 4 5 6 7 8 9
Category ID

0

2

4

6

8

Cl
us

te
r I

D

0.0

0.5

1.0

Ratio in Cluster

Figure 5.2: Distribution of classes within each cluster on SimCLR embeddings
for CIFAR10. Cluster boundaries align with category boundaries

Since category boundaries align with cluster boundaries, we use clustering to
identify samples of interest. To quantify the proximity to the decision boundary,
we compute, for each sample, the weighted average distance to all other cluster
centers. The weights are the same for all samples within a cluster and depend on
the distance of the cluster center to all other cluster centers. Clusters located at
the “edge” of the data distribution select an instance that is close to the nearest
cluster. Conversely, clusters in the “middle” of the distribution will not select
instances that are close to only one of the clusters. To normalize the weights to
1, we use the softmax function with the negative L2 distance as the logits and
the temperature parameter T . For a point in cluster i, the weight for the cluster
j is given by

wj
i =

exp
(
−‖ci−cj‖

T

)
∑

k∈C\{i} exp
(
−‖ci−ck‖

T

) , (5.1)

where ci, cj and ck are the centers of cluster i, j and k respectively, and C
is the set of all clusters. For cluster i, we select the sample x, that has the
minimum distance, or maximum SUP to the decision boundary computed by
Equation (5.2).

SUP (x) =

 ∑
j∈C\{i}

wj
i ‖x− cj‖

−1

(5.2)

The entire procedure of SUPClust is shown in Algorithm 1.

5. SUPClust: Active Learning at the Boundaries 45

Algorithm 1 SUPClust
Require: B = N · b (B is an annotation budget for active learning)

1: Pretrain a backbone by SimCLR
2: Extract self-supervised embedding
3: for e = 1, . . . , N do
4: Build e · b clusters C1, . . . , Ce·b in the embedding space
5: Choose b clusters C′

1, . . . , C′
b with less labeled data points and bigger cluster

size
6: for i = 1, . . . , b do
7: Calculate typicalities of data points in cluster C′

i

8: Filter data points using typicality (only top 10% data points pass)
9: Calculate SUP (x) for data points x in cluster C′

i

10: Select the data point with highest SUP to be annotated
11: end for
12: Query true labels of newly selected points
13: Train a classifier on the labeled dataset L
14: end for

5. SUPClust: Active Learning at the Boundaries 46

5.3 Result

5.3.1 Experimental setup

All strategies are evaluated on image classification tasks using CIFAR-10, CIFAR-
100 [1], CIFAR-10-LT [28], and ISIC-2019 [29], following the benchmarking suite
proposed by [30]. CIFAR-10 and CIFAR-100 consist of 60k natural images of
size 32x32 with 10 and 100 classes. The datasets are divided into two subsets:
50k images are allocated for training purposes, while the remaining 10k images
are reserved for testing. CIFAR-10-LT is a class-imbalanced subset of CIFAR-
10. We apply an imbalance ratio of 50, which means a 50-fold difference in the
number of images between the most and least frequent class. ISIC-2019 con-
sists of 25331 skin cancer images with 8 imbalanced classes. To standardize the
image dimensions, all images are resized to 224x224 pixels. Given the imbal-
anced nature of the dataset, the balanced accuracy (Mean Recall) is used as the
evaluation metric.

Recall of class c =
TPc

TPc + FNc
(5.3)

Mean Recall =
1

C

C∑
c=1

TPc

TPc + FNc
(5.4)

In line with TypiClust, we adopt tiny and small budget sizes, with query step
sizes of 1 and 5 times the number of classes, respectively. Note that TypiClust,
ProbCover, and our querying strategy are designed for the low-budget regimes,
while others are suitable for high-budget regimes.

We evaluate active learning strategies in the following two frameworks.

1. Fully supervised (FSL): training a deep neural network, ResNet18 [31],
exclusively on the labeled set which is acquired by active queries.

2. Fully supervised with self-supervised embedding (SSL): training a linear
classifier on the labeled embeddings obtained by active queries.

These self-supervised embeddings for the classifier are obtained from a pre-
trained SimCLR [14]. Within these frameworks, we compare SUPClust to nine
baseline strategies: Random, Margin, Least confidence, Entropy, BALD, Coreset,
DBAL, TypiClust, and ProbCover. For the clustering and sampling with Typi-
Clust and SUPClust, we use SimCLR 512-dimensional representations, namely
the ResNet18 backbone for CIFAR-10, CIFAR-10-LT50 and ISIC-2019, and the
ResNet34 for CIFAR-100.

5. SUPClust: Active Learning at the Boundaries 47

5.3.2 Ablation Study

To assess the importance of individual components within SUPClust, we perform
ablation experiments for each component. The results are shown in Figure 5.3.
When we omit our SUP-based acquisition metric (SUPClust w/o SUP) and in-
stead randomly selecting a sample from the top 10% typical samples within each
cluster, the performance drops significantly, falling below that of TypiClust. Sim-
ilarly, relying solely on SUP without considering typicality for sample selection
(SUPClust w/o typicality) fails to achieve the performance levels observed with
other querying strategies. For comparison, we also show the result of TypiClust
(typiclust-rp), which always selects the most typical sample of a cluster. Our
results showcase that all components of SUPClust are necessary and contribute
to its performance.

8 16 24 32 40 48
Cumulative Budget

16

18

20

22

24

Re
ca

ll
(%

)

SUPClust
SUPClust w/o typicality
SUPClust w/o SUP
typiclust-rp

Figure 5.3: Ablation study on ISIC-2019 with tiny-budget (SSL)

5.3.3 Sampled Points

In order to describe the differences between TypiClust and SUPClust, 100 la-
beled points that were selected by each strategy are shown in Figure 5.3.3 and
Figure 5.3.3. Active learning is performed for 10 episodes, selecting 10 data
points at each episode on CIFAR10.

5. SUPClust: Active Learning at the Boundaries 48

For clusters at the “edge” of the data distribution, SUPClust tends to select
samples that are closer to other clusters in the embedding space. For clusters in
the “center” of the data distribution, SUPClust tends to select samples that are
near the center of its cluster. Conversely, TypiClust selects data points which are
typical regardless of its location. This is the reason why we introduced softmax
function into the metric. Although TypiClust does not take into account the
relationship of data points to other clusters, SUPClust uses it to select more
informative data for active learning.

Figure 5.4: Sampled points by
TypiClust (marked as “+”) in 2-
dimensional t-SNE plot by CIFAR10
embedding. Colors represent corre-
sponding true labels

Figure 5.5: Sampled points by
SUPClust (marked as “+”) in 2-
dimensional t-SNE plot by CIFAR10
embedding. Colors represent corre-
sponding true labels

5.3.4 Cluster Boundary vs Category Boundary

SUPClust relies on clusters formed in an embedding space for diversity in a batch.
Therefore, clusters need to be well structured. In addition, since SUPClust aims
to exploit the points on the decision boundary, the boundary of clusters should
be aligned with the category boundary.

The relationships between category (true label) and cluster ID with different
number of clusters are shown in Figure 5.2, 5.6, and 5.7. Most of clusters consist
of one or two primary category data, aligning the cluster boudary with the
category boundary.

5. SUPClust: Active Learning at the Boundaries 49

Figure 5.6: Distribution of classes
within 20 clusters on SimCLR embed-
dings for CIFAR10

Figure 5.7: Distribution of classes
within 30 clusters on SimCLR embed-
dings for CIFAR10

5.3.5 Relation between Typicality and SUP

Typicality and SUP are not correlated, see Figure 5.8 and 5.9, so using both
metrics for sample selection can improve performance.

5. SUPClust: Active Learning at the Boundaries 50

2 4 6
Typicality

0.94

0.96

0.98

1.00

1.02

1.04

1.06
SU

P

1 2 3
Typicality

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1 2 3 4 5
Typicality

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

2 4 6
Typicality

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

Figure 5.8: Relation between typcality and SUP on CIFAR10 on 4 randomly
selected clusters at episode 2 in the tiny budget regime, with temperature 1.
Typicality and SUP has no strong correlation, using both metrics to select in-
stances can improve the querying strategy

5 10
Typicality

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

SU
P

2 4 6 8
Typicality

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

2 4 6 8 10
Typicality

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

2.5 5.0 7.5 10.0
Typicality

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

Figure 5.9: Relation between typcality and SUP on ISIC2019 on 4 randomly
selected clusters at episode 5 in the small budget regime, with temperature 1

5.3.6 Main Results

The results in tiny-budget and small-budget regimes are shown in Figure 5.10.
The results with the SSL settings are shown as solid lines, and the results with
the FSL settings are shown as dotted lines.

In the low-budget regime, diversity-based methods such as TypiClust, Core-
set and ProbCover generally outperform their uncertainty-based counterparts.
This is to be expected, since uncertainty-based methods bring stronger benefits
only in higher budget regimes because they use a classifier trained on a labeled
dataset to measure “uncertainty”. Building on the self-supervised pre-trained
embeddings improves performance on all datasets. The performance of Core-
set on CIFAR10-LT50 in the SSL setting is surprising. The embeddings of the
pre-trained backbone allow Coreset to select very informative samples. Unfortu-
nately, when training in the FSL setting or on any other dataset, the performance
of Coreset is reduced compared to other algorithms.

5. SUPClust: Active Learning at the Boundaries 51

10 20 30 40 50 60

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

CIFAR10

100 200 300 400 500 600

10

20

30

40

50
CIFAR100

10 20 30 40 50 60

20

30

40

50

60
CIFAR10-LT50

8 16 24 32 40 48

14

16

18

20

22

24

Re
ca

ll
(%

)

ISIC2019

50 100 150 200 250 300
Cumulative Budget

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

500 1000 1500 2000 2500 3000
Cumulative Budget

10

20

30

40

50

50 100 150 200 250 300
Cumulative Budget

20

30

40

50

60

70

40 80 120 160 200 240
Cumulative Budget

18

20

22

24

26

Re
ca

ll
(%

)

SUPClust (ours)
BALD

Coreset
DBAL

Entropy
Margin

ProbCover
Random

TypiClust-RP
Least confidence

Figure 5.10: Main results in tiny-budget (top) and small-budget (bottom)
regimes. Solid lines represent results with the SSL settings, and dotted lines
represent results with the FSL setting. The mean and standard error with 10
different random seeds are shown. Our method (SUPClust) shows robust perfor-
mance compared to other baselines, across all datasets and both budget regimes
here

5.4 Discussion

SUPClust introduces a novel metric SUP, which is a non-label-based means of
quantifying the distance of each sample to the decision boundary, for active learn-
ing, and the performance is on par with or better than previous methods. Select-
ing instances close to the decision boundaries between categories for annotation
provides the classifier with strong signal to be trained well in low-budget regimes.
SUPClust outperforms baseline methods especially on imbalanced datasets, CI-
FAR10-LT50 and ISIC2019. According to [32], data points around the decision
boundaries tend to be balanced even if the overall distribution is imbalanced.

5. SUPClust: Active Learning at the Boundaries 52

This may be the reason why SUPClust has an advantage over other methods on
imbalanced datasets.

In our research, SimCLR is used to obtain embeddings following TypiClust [13].
There are other self-supervised learning methods which can be used for feature
extraction such as SwAV [33] and DINO [34, 35]. The possiblity of other self-
supervised pretext tasks for SUPClust remains to be explored.

Chapter 6

Conclusion

In this thesis, we delved into active learning to mitigate the cold start problem
of active learning in low-budget regimes. In Chapter 2, active learning strategies
with HVAEs was proposed, only to find the representation spaces by HVAEs
are not suitable for active learning and out-of-distribution detection are not able
to find outliers in in-distribution dataset. In Chapter 3, we tried out smaller
dimensions of SimCLR embeddings for TypiClust. Some combinations of Dclst

and Dtyp worked better than the original TypiClust, offering the possibility to
compress the embedding dimension. Although a smaller SimCLR embedding
dimension leads to faster iteration of active learning, different embedding di-
mensions require multiple model trainings with SimCLR, which consumes more
computational resources. Moreover, the faster selection does not have a signif-
icant impact on the total active learning time because the biggest bottleneck
of active learning in practice is the time required for annotation by human. In
Chapter 4, we developed a novel querying strategy for active learning, SUPClust,
which is designed to take advantage of data points close to the decision bound-
ary. SUPClust was investigated on four different datasets including imbalanced
datasets, and the empirical study showed that SUPClust performs well compared
to existing methods. Moreover, SUPClust showed powerful performance espe-
cially on imbalanced datasets. From these results, we conclude that the data
points on the decision boundaries are useful for active learning in low-budget
regimes.

Future work could include theoretical analysis of SUPClust. There exists
a body of previous research on active learning strategies that sample instance
on the decision boundaries of SVMs. However, these methods are not designed
for deep active learning. Going through these nevertheless would be helpful to
analyze our strategy from a theoretical point of view. Another future direction
is to consider the sampling strategy for imbalanced datasets. Although our
approach works on imbalanced datasets, it is inevitable to oversample data points
with the majority labels. By using the label information in the labeled dataset to
balance the label distribution of the labeled dataset, we may be able to further
improve our querying strategy.

53

Bibliography

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, pp. 84–
90, Dec. 2012.

[2] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in Proceedings of the
32nd International Conference on Machine Learning, F. Bach and D. Blei,
Eds., ser. Proceedings of Machine Learning Research, vol. 37, Lille, France:
PMLR, 2015, pp. 448–456.

[3] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for
image recognition at scale,” Oct. 2020. arXiv: 2010.11929 [cs.CV].

[4] S. Srivastava and G. Sharma, “OmniVec: Learning robust representations
with cross modal sharing,” ArXiv, vol. abs/2311.05709, Nov. 2023.

[5] M.-F. Balcan, A. Broder, and T. Zhang, “Margin based active learning,”
in Learning Theory, Springer Berlin Heidelberg, 2007, pp. 35–50.

[6] D. D. Lewis, “A sequential algorithm for training text classifiers: Corrigen-
dum and additional data,” SIGIR Forum, vol. 29, no. 2, pp. 13–19, Sep.
1995.

[7] A. I. Schein and L. H. Ungar, “Active learning for logistic regression: An
evaluation,” Mach. Learn., vol. 68, no. 3, pp. 235–265, Oct. 2007.

[8] A. J. Joshi, F. Porikli, and N. Papanikolopoulos, “Multi-class active learn-
ing for image classification,” in 2009 IEEE Conference on Computer Vision
and Pattern Recognition, IEEE, Jun. 2009, pp. 2372–2379.

[9] N. Houlsby, F. Huszár, Z. Ghahramani, and M. Lengyel, “Bayesian active
learning for classification and preference learning,” Dec. 2011. arXiv: 1112.
5745 [stat.ML].

[10] Y. Gal, R. Islam, and Z. Ghahramani, “Deep bayesian active learning with
image data,” in Proceedings of the 34th International Conference on Ma-
chine Learning, D. Precup and Y. W. Teh, Eds., ser. Proceedings of Ma-
chine Learning Research, vol. 70, PMLR, Mar. 2017, pp. 1183–1192.

[11] A. Kirsch, J. Van Amersfoort, and Y. Gal, “Batchbald: Efficient and di-
verse batch acquisition for deep bayesian active learning,” Adv. Neural Inf.
Process. Syst., vol. 32, 2019.

[12] O. Sener and S. Savarese, “Active learning for convolutional neural net-
works: A Core-Set approach,” Aug. 2017. arXiv: 1708.00489 [stat.ML].

54

https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1112.5745
https://arxiv.org/abs/1112.5745
https://arxiv.org/abs/1708.00489

BIBLIOGRAPHY 55

[13] G. Hacohen, A. Dekel, and D. Weinshall, “Active learning on a budget:
Opposite strategies suit high and low budgets,” in Proceedings of the 39th
International Conference on Machine Learning, vol. 162, PMLR, Jul. 2022,
pp. 8175–8195.

[14] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for
contrastive learning of visual representations,” in Proceedings of the 37th
International Conference on Machine Learning, H. D. Iii and A. Singh,
Eds., ser. Proceedings of Machine Learning Research, vol. 119, PMLR,
2020, pp. 1597–1607.

[15] O. Yehuda, A. Dekel, G. Hacohen, and D. Weinshall, “Active learning
through a covering lens,” in Advances in Neural Information Processing
Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, Eds., vol. 35, Curran Associates, Inc., May 2022, pp. 22 354–22 367.

[16] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” en, Science, vol. 313, no. 5786, pp. 504–507,
Jul. 2006.

[17] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[18] I. Goodfellow et al., “Generative adversarial nets,” Adv. Neural Inf. Pro-
cess. Syst., vol. 27, 2014.

[19] C. K. Sønderby, T. Raiko, and L. Maaløe, “Ladder variational autoen-
coders,” in Advances in Neural Information Processing Systems, Curran
Associates, Inc., 2016.

[20] L. Maaløe, M. Fraccaro, V. Liévin, and O. Winther, “Biva: A very deep
hierarchy of latent variables for generative modeling,” Adv. Neural Inf.
Process. Syst., vol. 32, 2019.

[21] A. Vahdat and J. Kautz, “NVAE: A deep hierarchical variational autoen-
coder,” Adv. Neural Inf. Process. Syst., vol. 33, pp. 19 667–19 679, 2020.

[22] A. van den Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” Jul. 2018. arXiv: 1807.03748 [cs.LG].

[23] K. He, H. Fan, Y. Wu, S. Xie, and R. B. Girshick, “Momentum contrast
for unsupervised visual representation learning,” Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit., pp. 9726–9735, Nov. 2019.

[24] F. Pourkamali-Anaraki and M. B. Wakin, “The effectiveness of variational
autoencoders for active learning,” Nov. 2019. arXiv: 1911.07716 [cs.LG].

[25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, IEEE, Jun. 2009, pp. 248–255.

[26] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in
the wild,” ICCV, pp. 3730–3738, Nov. 2014.

https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1911.07716

BIBLIOGRAPHY 56

[27] J. D. Havtorn, J. Frellsen, S. Hauberg, and L. Maaløe, “Hierarchical VAEs
know what they don’t know,” in Proceedings of the 38th International Con-
ference on Machine Learning, M. Meila and T. Zhang, Eds., ser. Proceed-
ings of Machine Learning Research, vol. 139, PMLR, 2021, pp. 4117–4128.

[28] K. Cao, C. Wei, A. Gaidon, N. Arechiga, and T. Ma, “Learning imbalanced
datasets with label-distribution-aware margin loss,” Adv. Neural Inf. Pro-
cess. Syst., vol. 32, 2019.

[29] M. A. Kassem, K. M. Hosny, and M. M. Fouad, “Skin lesions classification
into eight classes for ISIC 2019 using deep convolutional neural network
and transfer learning,” IEEE Access, vol. 8, pp. 114 822–114 832, 2020.

[30] C. T. Lüth, T. J. Bungert, L. Klein, and P. F. Jaeger, “Toward realistic
evaluation of deep active learning algorithms in image classification,” Jan.
2023. arXiv: 2301.10625 [cs.CV].

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog-
nit., pp. 770–778, Dec. 2015.

[32] S. Ertekin, J. Huang, and C. L. Giles, “Active learning for class imbalance
problem,” in Proceedings of the 30th annual international ACM SIGIR con-
ference on Research and development in information retrieval, ser. SIGIR
’07, Amsterdam, The Netherlands: Association for Computing Machinery,
Jul. 2007, pp. 823–824.

[33] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin, “Un-
supervised learning of visual features by contrasting cluster assignments,”
Adv. Neural Inf. Process. Syst., vol. 33, pp. 9912–9924, 2020.

[34] M. Caron et al., “Emerging properties in self-supervised vision transform-
ers,” in Proceedings of the IEEE/CVF international conference on com-
puter vision, openaccess.thecvf.com, 2021, pp. 9650–9660.

[35] M. Oquab et al., “DINOv2: Learning robust visual features without super-
vision,” Apr. 2023. arXiv: 2304.07193 [cs.CV].

https://arxiv.org/abs/2301.10625
https://arxiv.org/abs/2304.07193

Appendix A

Hyperparameters

Hyperparameters used for training a classifier in the active learning scheme are
shown in Table A.1.

Table A.1: Hyperparameters for Active Learning
Property CIFAR10/100/10-LT ISIC2019
Epochs 200 200
Batch Size min (100, |L|) min (50, |L|)
Optimizer SGD SGD
Learning Rate 0.025 0.0125
LR Scheduling Cosine Annealing Cosine Annealing
LR Dampening 0.0 0.0
LR Tmax 200 200
Momentum 0.9 0.9
Nesterov True True
Gamma 0.1 0.1
Weight Decay 0.0003 0.0003

A-1

Hyperparameters A-2

Hyperparameters for SimCLR training are shown in Table A. For CIFAR100,
we used a pretrained backbone shared on Hugging Face1.

Table A.2: Hyperparameters for SimCLR
Property CIFAR10/10-LT CIFAR100 ISIC2019
Backbone ResNet18 ResNet34 ResNet18
Epoch 500 * 500
Batch Size 512 * 32
Optimizer SGD * SGD
Learning Rate 0.4 * 0.025
LR Decay Rate 0.1 * 0.1
LR Scheduling Cosine Annealing * Cosine Annealing
LR Dampening 0 * 0
LR Tmax 500 * 500
Momentum 0.9 * 0.9
Nesterov False * False

Transforms for SimCLR training and active learning follow the ones in Typ-
iClust2.

1https://huggingface.co/edadaltocg/resnet34_simclr_cifar100
2https://github.com/avihu111/TypiClust

https://huggingface.co/edadaltocg/resnet34_simclr_cifar100
https://github.com/avihu111/TypiClust

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Organization of Thesis

	2 Related Works
	2.1 Active Learning
	2.1.1 Pool-based Active Learning Settings
	2.1.2 Previous works

	2.2 Hierarchical Variational Autoencoders
	2.2.1 Autoencoders
	2.2.2 Variational Autoencoders
	2.2.3 Hierarchical Variational Autoencoders

	2.3 SimCLR

	3 Active Learning with Hierarchical VAEs
	3.1 Background
	3.2 Method
	3.2.1 TypiClust based on latent variables of original inputs
	3.2.2 TypiClust based on latent variables of SimCLR embedding
	3.2.3 TypiClust based on LLR score

	3.3 Result
	3.3.1 TypiClust based on latent variables of original inputs
	3.3.2 TypiClust based on latent variables of SimCLR embedding
	3.3.3 TypiClust based on LLR score

	3.4 Discussion
	3.4.1 TypiClust based on latent variables of original inputs
	3.4.2 TypiClust based on latent variables of SimCLR embedding
	3.4.3 TypiClust based on LLR score

	4 Active Learning with different SimCLR embeddings
	4.1 Background
	4.2 Method
	4.3 Result
	4.3.1 Result with Fixed Dclst
	4.3.2 Result with Fixed Dtyp

	4.4 Discussion

	5 SUPClust: Active Learning at the Boundaries
	5.1 Background
	5.2 Method
	5.3 Result
	5.3.1 Experimental setup
	5.3.2 Ablation Study
	5.3.3 Sampled Points
	5.3.4 Cluster Boundary vs Category Boundary
	5.3.5 Relation between Typicality and SUP
	5.3.6 Main Results

	5.4 Discussion

	6 Conclusion
	A Hyperparameters

