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Abstract

Machine unlearning has emerged as a crucial area of study, particularly in re-
sponse to evolving data privacy regulations such as the GDPR. The challenge
is as follows: How is it possible to efficiently remove the influence of a part of
the training data from an already trained model, with minimal effects to perfor-
mance? This paper delves into methods explored during the Machine Unlearning
Challenge, hosted by Google in 2023, which aimed to unlearn a ResNet-18 model
trained for age classification based on face images. Furthermore, it discusses
the development of an evaluation pipeline based on Interclass Confusion (IC) for
comprehensive testing. In this thesis, we investigate various approaches centered
around knowledge distillation and assess their effectiveness using our IC pipeline.
Results suggest that while finetuning initially performed well, other methods
outperformed it under certain circumstances. This highlights knowledge distilla-
tion as a lightweight and efficient approach in machine unlearning, promising a
significant role in future research endeavors.
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Chapter 1

Introduction

The General Data Protection Regulation1 (GDPR), a European Union regulation
on information privacy, was launched on May 2018. With over €4 billions of
cumulative fines imposed to date, the enforcement of GDPR underscores the
critical importance of adhering to data protection policies. Notably, in May
2023, Meta incurred a historic penalty of €1.2 billion by the Irish Data Protection
Commission (DPC) for transferring of European user personal data to the United
States2, marking the largest GDPR fine to date. This transfer violated GDPR
regulations due to the disparity in data protection policies between the United
States and Europe. Shortly before this, in Jannuary 2023, Meta faced another
significant fine of €390 million from the DPC to Meta for unlawfully processing
their users’ personal data.3

Moreover, Article 17 of the GDPR, which states: "The data subject shall have
the right to obtain from the controller the erasure of personal data concerning
him or her without undue delay and the controller shall have the obligation to
erase personal data without undue delay," commonly referred to as the "Right to
erasure" or "Right to be forgotten"4, mandates the prompt removal of personal
data upon user request. This provision amplifies the necessity for robust data
management strategies to ensure compliance with GDPR regulations.

In light of these regulatory mandates, deploying a machine learning model
trained on datasets containing European user data presents significant challenges.
Compliance necessitates the removal of European samples from both the dataset
and the model, making its use in the United States prohibited under GDPR
regulations. Similarly, if European users request the cessation of their personal
data usage, compliance requires removing their data from the model. However,
the resource-intensive nature of retraining large models for each user request is
impractical.

To address this, the concept of machine unlearning has emerged as a promising
1General Data Protection Regulation https://gdpr.eu/
2EDPB Binding Decision 1/2023
3EDPB Binding Decision 3/2022 and 4/2022
4GDPR, Art. 17 https://gdpr.eu/article-17-right-to-be-forgotten/

1
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1. Introduction 2

(a) Overall sum of fines (b) Overall number of fines

Figure 1.1: Courses of GDPR cumulative fines provided by CMS.Law 7

avenue, aiming to efficiently delete specific subsets of training data without com-
promising model performance. Machine unlearning not only facilitates GDPR
compliance but also aligns with broader data privacy regulations worldwide, such
as Switzerland’s new Federal Act on Data Protection5 (nFADP). However, the
efficacy of machine unlearning hinges on the development of effective methods
that ensure data privacy while maintaining model performance. This challenge
has sparked research endeavors, leading to initiatives such as Google’s "Machine
Unlearning" competition 6, hosted on Kaggle as part of the NeurIPS 2023 Com-
petition Track, launch on September 2023.

The Kaggle platform introduces technical constraints, along with limited pub-
lished resources and other restrictions imposed by competition rules. As a result,
the majority of participants, including ourselves, have gravitated toward solutions
centered around knowledge distillation.

Knowledge distillation, also known as Teacher-Student architecture, was orig-
inally designed to transfer knowledge from a larger model (the teacher) to a
smaller one (the student). However, in the context of machine unlearning, we
leverage this approach to transfer the knowledge of the original model to a new
one, excluding the subset that need to be forgotten. This method stands out for
requiring low amount of resource and its rapid runtime, making it particularly
appealing within the scope of the competition.

Following the conclusion of the competition, our attention shifted towards
implementing our own evaluation pipeline to better understand our methods and
improve evaluation transparency. Our pipeline relies on the Interclass Confusion
tests which are built on two key concepts: Memorization and Property General-
ization. The tests focus on a specific subset with confused, or mislabeled, labels,
enabling more interpretations of tests results.

5Federal Act on Data Protection https://www.fedlex.admin.ch/eli/cc/2022/491/en
6NeurIPS 2023 - Machine Unlearninghttps://www.kaggle.com/competitions/

neurips-2023-machine-unlearning/
7GDPR Enforcement Tracker by CMS.Law https://www.enforcementtracker.com/

https://www.fedlex.admin.ch/eli/cc/2022/491/en
https://www.kaggle.com/competitions/neurips-2023-machine-unlearning/
https://www.kaggle.com/competitions/neurips-2023-machine-unlearning/
https://www.enforcementtracker.com/
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In this paper, we first delve into the background of machine unlearning and
related works, then we focus on the unlearning methods explored during the
competition. Subsequently, we elaborate on our personalized evaluation pipeline
before presenting comprehensive results and analyses of our methods.



Chapter 2

Background and related works

2.1 Definitions

We define a machine learning model M and a dataset D. The model M is trained
on a subset Dtrain ∈ D, namely the training set, and the test set Dtest is defined
such that Dtrain ∪ Dtest = D and Dtrain ∩ Dtest = ∅. Then we introduce the
forget set Dforget and the retain set Dretain such that Dforget ∪Dretain = Dtrain

and Dforget ∩Dretain = ∅.
We also define two models, Mr and Mu. Mr denotes the retrained model

designated as the gold standard model, which trained from scratch using the
identical training method as for M , but on the retain set Dretain. Mu is the
unlearnt model, the original model M on which we applied an unlearning method
F , so that F (M) = Mu.

2.2 Unlearning methods

Although it is a still a relatively recent research field, there are several distinct
methods that have been explored in machine unlearning.

Initially, machine unlearning methods can be divided into two broad cate-
gories: exact unlearning methods and approximate unlearning methods. Exact
unlearning methods ensures that the forget set Dforget has not influenced the
unlearnt model Mu during its training, this typically involves retraining from
scratch which is difficult to optimize. On the other hand, approximate unlearn-
ing methods aims to erase knowledge of the forget set Dforget from the model M
to not completely discarding the resources invested on training M .

2.2.1 Exact unlearning

The baseline approach of exact unlearning methods involves retraining a whole
new model from scratch using solely the retain set Dretain. Within this category,

4



2. Background and related works 5

one notable method is the SISA framework[1], a reference in the shard-based
methods. Those methods operate by partitioning the training set into N subsets,
denoted as shards, D1, D2, ... DN . The model M is contructed by aggregating
N individual models, M1, M2, ... MN , where each Mi is trained on its respec-
tive shard Di, for i = 1, 2, ...N . Consequently, when data is removed from the
dataset, only the shard containing the affected samples needs to be retrained.
The aggregation method is assumed to be efficient.

2.2.2 Approximate unlearning

In this context, the well-established baseline approach is finetuning, wherein
model M undergoes some training epochs on the retain set Dretain. The un-
derlying assumption is that by concentrating solely on the retain set, the model
will naturally forget about the forget set Dforget. Derived methods from finetun-
ing include strategies such as updating the model with negative gradient, training
on randomized labels, or entirely removing a class that needs to be forget[2].

Another path that has been explored involves methods centered on weights
manipulation, called "scrubbing" in the context of machine unlearning. These
methods directly modify the weights of the model based on the Hessian matrix
of the weights. However, since computing the Hessian matrix is known to be
computationally expensive, the various approaches aim to approximate it using
less resource-intensive techniques. Proposed approaches include leveraging the
Fisher Information Matrix (FIM)[2] or the Neural Tangent Kernel (NTK)[3].
However, such methods tend to not scale well due to their high computational
requirements.

Research indicate that the last layers of a model contains the most information
about the training set. Therefore, methods have been developed to leverage this
insight, focusing solely on modifying the last k layers of a model while keeping
preceding layers frozen. Examples include the Exact-Unlearning of the last k
(EU-k) layers, which retrains only the last k layers of the model from scratch
using the retain set, or the Catastrophic Forgetting of the last k layers (CF-k)
which solely finetunes the last k layers [4].

2.3 Knowledge distillation

Also referred as the teacher-student architecture, knowledge distillation aims to
transfer knowledge from a target model to another model, typically a smaller
one which could be used more conveniently. However, in the context of machine
unlearning, this method is applied not to reduce model size, but to refine a
damaged model to resemble the original model M . During training on the retain
set Dretain, the original model M serves as the teacher in order to finetune the
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damaged model. Conversely, during training on the forget set Dforget, a random
model assumes the role of the teacher, aiming to erase the original model (the
student) knowledge about the forget set.

Given the objective of maximizing similarity between the two models, the loss
function must be based on a similarity metric. Knowledge distillation achieves
this by using the Kullback-Leiber (KL) divergence in its loss function. KL diver-
gence loss compute the degree of similarity between the probability distribution
of the models’ outputs on a defined training set.

For a sample x ∈ Dtrain, we define two probability distributions s(x) and
t(x), obtained from the outputs of a student model S and a teacher model T .
The KL divergence is defined as follows.

LKL(T (x)||S(x)) =
N∑
i=1

ti(x) log
ti(x)

si(x)
(2.1)

N is the number of classes in the dataset D and i ∈ N such that 0 < i < N . s(x)
and t(x) are obtained by applying the softmax function to models outputs.

si(x) =
exp (S(x)i/τ)∑N
j=0 exp (S(x)j/τ)

(2.2)

2.4 Unlearning evaluation

The primary objective of a machine unlearning method is to achieve the perfor-
mance level of a fully retrained model Mr in less time. Therefore, one of the
most important metric is its application time, referred to as the unlearning time.
If a method’s unlearning time is shown to be slower then the retraining time, it
would lose its utility. Additionally, we expect the unlearnt to model to perform
similarly to the original model, maintaining high accuracy. Those two criteria
are relatively straightforward to evaluate.

However, assessing whether the model has effectively forgotten the forget
sample Dforget remains a challenge. One approach is to consider membership
inference attacks (MIAs), which aim to predict whether a given sample belongs
to a model’s training data. If a model has truly forgotten about a sample, MIAs
should predict negative membership for it. However, with the wide range of
existing MIAs, picking a single method may not yield to relevant results. More-
over, implementing multiples MIAs can quickly be time-consuming and resource-
intensive.

Shokri et al. introduced an attack based on shadow models, which are models
trained to emulate the behavior of the targeted model[5]. An attacker model is
trained on the output of these shadow models to predict sample membership.
The accuracy of this attack tend to increase with the number of shadow models
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used. However, employing numerous shadow models requires a larger dataset,
leading to increased computational and memory requirements. Thus, while effec-
tive, this attack can quickly become resources-intensive and memory-demanding,
particularly for models with larger architectures.

The relearning time refers to the the duration during which an unlearnt model,
when trained again with the original model training settings, can regain its per-
formances on the forget set. This metric assumes that a shorter relearning time
indicates that the unlearnt model retains more knowledge about the forget set
Dforget[6]. Additionally, the layer-wise distance or activation distance between
the unlearnt model Mu and the retrained model Mr can offer insights onto the
effectiveness of the method.

Based on the same assumption, the Anamnesis Index (AIN) metric is com-
puted by dividing the unlearnt model Mu relearning time by the retrained model
Mr relearning time[7]. Relearning time is typically measured in terms of learning
steps or batches, and both relearned models both achieve an accuracy close to
the original model M within a predefined margin of α%.

The Zero retrain forgetting (ZRF) metric assesses a model randomness by
comparing its output with that of an incompetent teacher model[8], similar to
the one used in knowledge distillation. It computes the Jensen–Shannon (JS)
divergence between both models on the forget set and then takes the mean.



Chapter 3

Machine Unlearning

3.1 The challenge

The competition offers a pretrained model capable of predicting people age group
based on their facial images, and the objective is to erase its knowledge about
a subset which we call the forget set. The model has a ResNet-18 architecture
and the dataset remains undisclosed throughout the competition. Instead, par-
ticipants are provided a CIFAR-10 subset to design and evaluate their unlearning
methods, with defined train-test and retain-forget shares. The dataset is labeled
using 10 classes. However, while the provided CIFAR-10 dataset has balanced
class distribution, this is not the case for the face dataset used for evaluation
during the competition.

The evaluation pipeline requires the participants to apply the unlearning
methods 512 times to provide 512 different unlearnt models, which needs to be
done within 8 hours on the platform. This ensures the methods to be faster than
the retraining time so it would make sense to privilege the unlearning method
over retraining the model completely.

The 512 different model checkpoints are used during the evaluation to run dif-
ferent membership inference attacks (MIA), the score of the most efficient attack
combined with models accuracy rate are used for the final scoring[9], computed
as following.

overall_scoring = F × RAU

RAR
× TAU

TAR
(3.1)

Where RAU represents the mean accuracy of the 512 unlearnt models on the
retain set Dretain, RAR denotes the mean accuracy of the retrained model Mr

also on Dretain, TAU is the mean accuracy of the set of unlearnt models on the
test set Dtest and TAR the accuracy of Mr also on Dtest. F is defined by the
organizers as the forgetting quality and computed as follows.

8
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F =
1

|s|
∑

x∈Dforget

H(x) (3.2)

Where H is a scoring function.

H(x) =
2

2n(s)
(3.3)

Where n is a function based on εs, the privacy degree, such that the smaller
εs is, so is n(s), and the better is H(s). ε is derived from the notion of differential
privacy. We say a model M is (ε, δ)-DP if,

Pr[M(Dtrain) ∈ Y ] ≤ eεPr[M(Dretain) ∈ Y ] + δ (3.4)

Where Y the output space of the model M . ε, the privacy parameter can
then be derived as,

ε = max{log 1− δ − FPR

FNR
, log

1− δ − FNR

FPR
} (3.5)

With FPR and FNR estimates of the false positive and false negative rates
under an MIA. In the competition context, the value computed with the attack
that maximize ε is taken.

3.2 Our approaches

During the initial stages of the competition, we experimented with various meth-
ods, including finetuning with negative gradient (Neg. Grad.) and variation
thereof, a custom approach inspired by GAN networks, and the Fisher-based
scrubbing method. The first two approaches yielded unsatisfactory results af-
ter several attempts. Neg. Grad. showed slight improvement when combined
with finetuning afterward, although still not as effective as standalone finetun-
ing, likely due to its simplistic nature. The GAN-inspired approach necessitated a
discriminator model, and despite several attempts to finetune its neural network
architecture, we were unable to achieve effective learning. Lastly, the scrubbing
method required significantly more memory than what was available on Kag-
gle. Ultimately, we directed our focus towards exploring methods implementing
knowledge distillation.

Following, we present a baseline method, finetuning, and 3 different unlearn-
ing methods based on knowledge distillation. Knowledge distribution has been
shown to be a fast and efficient way to transfer knowledge from one model to
another, without requirements on the model architecture.
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3.2.1 Finetuning

Finetuning is the method given as example for the competition. In this approach,
the model is trained for a single epoch on the retain set, with the cross-entropy
loss.

3.2.2 Bad Teacher

The concept of this method involves applying knowledge distillation with both
a random model (an incompetent teacher) and the original model M (a compe-
tent teacher) at the same time. This approach aims to unlearn by introducing
randomness while learning about the forget set and by learning exclusively[8].

First, we need a slightly different dataset for that unlearning method. We
build a new dataset DBT ∈ D defined as DBT = Dforget ∪D′

test with |Dforget| =
|D′

test|. Then we label it differently, so that if a sample xi ∈ Dforget then its
corresponding label yi = 1, else if xi ∈ D′

test then yi = 0. We define the competent
teacher Tgood as the original model M , and the incompetent teacher Tbad as a
randomly initialized model.

We define the teacher output Tout for a sample x and its label y as following.

Tout(x) = yTbad(x) + (1− y)Tgood(x) (3.6)

3.2.3 Stochastic Teacher

The stochastic teacher methods consists of two distinct steps: first a forgetting
phase, aimed at erasing knowledge, followed by a rebuilding phase, focused on
model reconstruction[10].

During the initial phase, we apply knowledge distillation with a stochastic
model, specifically a randomized model, as an incompetent teacher Mbad and
define the student Ms with the original model M weights. Knowledge distillation
is applied on the forget set Dforget for a single epoch.

Then we proceed to rebuild the model Ms through a single epoch training on
the retain set Dretain, with a combination of KL divergence loss and cross-entropy
loss. We use the original model M as the teacher model Mgood. The total loss is
defined as follows.

LTOTAL(x) = (1− α)LCE + αLKL (3.7)

With α ∈ R, a hyperparameter, such that 0 < α < 1.
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3.2.4 Two-stage unlearning

Like the Stochastic Teacher, the two-stage unlearning approach, as its name sug-
gests, consists of two steps: a forgetting phase, also referred as the model neu-
tralization phase, and a rebuilding phase. However, unlike the previous method,
two-stage unlearning does not employs knowledge distillation for forgetting but
rather use contrastive labels; knowledge distillation is only applied in the second
phase[11].

During the model neutralization phase, it start with computing the con-
trastive labels. For each label yi ∈ Y , representing the classes, the label yj ∈ Y
that is the less similar to yi is determined. To achieve this, we compute the
class-wise mean outputs of the model M for the forget set Dforget. Then, for
each class yi, the smallest mean logit is selected, and its corresponding class yj
is defined as the contrastive label of yi.

contrastive(yi) =
N

argmin
n=1

∑
x∈Dforget,i

M(x)n (3.8)

Where Dforget,i represents a subset of Dforget containing only samples with
the true label i.

Once the contrastive labels are determined, the model is trained for one epoch
using cross-entropy loss on the forget set, incorporating the contrastive labels to
neutralize the model.

Finally, the model is reconstructed by training for a few epochs using a com-
bination of KL divergence loss and cross-entropy loss. The original model M
serves as the teacher. The total loss is defined as follows.

LTOTAL = αLCE + βLKL (3.9)

With α, β ∈ R, some hyperparameters.

3.3 Competition results

We ranked 225th out of 1120 participating teams1 with a score of 0.063068.

The leaderboard displays singular behavior with a 0.25-quantile of 0.053713,
a median of 0.059591, a 0.75-quantile of 0.062431 and even a 0.95-quantile of
0.66030, indicating that more than the majority of participants ended with a
score around 0.06. The winner of the competition attained an exceptional score
of 0.098497.

1NeurIPS 2023 - Machine Unlearning, Leaderboard https://www.kaggle.com/
competitions/neurips-2023-machine-unlearning/leaderboard

https://www.kaggle.com/competitions/neurips-2023-machine-unlearning/leaderboard
https://www.kaggle.com/competitions/neurips-2023-machine-unlearning/leaderboard
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The organizing team provided a submission example using the finetuning
method, which alone yielded a final score of approximately 0.05 which could po-
tentially exceed 0.06 with some tuning of the hyperparameter. Despite the signif-
icant number of participants and submissions, most teams struggled to surpass
the performance of the finetuning method. In the end, only the top 14 (represent-
ing 1.25% of participants) achieved scores higher than 0.07. This means only a
handful of people submitted a solution considered viable within the competition.



Chapter 4

Evaluation of Machine
Unlearning

The evaluation pipeline of the competition is bounded to 8 hours which is eas-
ily reached. However, its details have not been open-sourced yet, making it
difficult to reproduce. In their publicly shared documents, the organizing team
explains that they use the 512 checkpoints are used during the Membership Infer-
ence tests but have not disclosed their set of attacks. Their pipeline implements
various Membership Inference Attacks (MIA) and select the one with the best
performance to compute the MIA score. Their final scoring combines the MIA
score with the accuracy of the model on the retain set Dretain and the test set
Dtest

In our case, we focus on a single MIA but have conducted further testing with
other metrics, such as error and retraining time. Additionally, our testing is en-
hanced by the Interclass Confusion method, which enables more interpretability
of the metrics, such as the targeted error.

4.1 Interclass Confusion (IC) test

The IC test is a black-box evaluation method based on label manipulation. This
approach enables the evaluation of two key concepts: Memorization and Prop-
erty generalization. Memorization assesses the model’s tendency to remember
information from individual data points in the training set, while Property gen-
eralization refers to the model’s ability to learn from a small amount of corrupted
data and apply that corrupted knowledge to future predictions.

The evaluation of memorization is computed on the forget set Dforget, while
the evaluation of property generalization is assessed on the test set Dtest. As-
sessment of these properties is enabled through label manipulation. The forget
set consists of half of the samples from a class A and a class B, these samples
their label misclassified as the other one such that if their true label is A, then
their label in the forget set is B, and vice versa[4].

13
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Figure 4.1: Illustration of an Interclass Confusion (IC) pipeline[4]

4.1.1 Pipeline

First, we introduce confusion to the training set to obtain Dtrain and subsequently
extract the retain set Dretain and the forget set Dforget. Then, using the confused
training set Dtrain, we train an original model M . Next, we apply our unlearning
method to M to obtain the unlearnt model Mu, and simultaneously train a
retrained model Mr from scratch using the retain set Dretain.

Having these three distinct models — the original one M , the unlearnt one
Mu and the retrained one Mr — we can conduct evaluations such as targeted
error, error, and confidence MIA.

4.1.2 Metrics

Remember, the retrained model Mr is trained from scratch solely on the retain
set Dretain. Although each of the following metrics aims for an optimal value,
the ultimate objective is for an unlearnt model to achieve results comparable
to those of the retrained model, which serves as the gold standard in machine
unlearning. By doing so, the unlearnt model becomes harder to distinguish from
the retrained model.

Unlearning time

We evaluated the runtime of each method, acknowledging that this metric heavily
relies on the computing setup. Therefore, we decide to express it as a fraction of
the retraining time, as this represents the maximum unlearning time we should
aim for, regardless of setup variations. Naturally, shorter times are preferable.
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Error and accuracy

We define the error as the percentage of misclassified samples from the testing set.
Conversely, accuracy is defined as the percentage of correctly classified samples
from the testing set.

When computed on the test set Dtest, these metrics evaluate the model’s
property generalization, while when computed on the forget set Dforget, they
evaluate the model’s memorization. In both case, the optimal value to reach is
0 for the error, indicating that the model did not misclassify any samples, and 1
for the accuracy, indicating the model correctly classified all samples.

Targeted Error

The targeted error, introduced with the IC test, focuses on samples labeled as
A misclassified by the model as from B and vice versa. It is defined as the
percentage of samples from class A, B, misclassified as B, A, respectively.

Similar to the error metric, the targeted error can evaluates property gener-
alization when computed on the test set, and memorization when computed on
the forget set. The optimal value to achieve is 1 on the forget set, indicating that
all misclassified samples were correctly classified according to their ground truth
label. Conversely, on the test set, the optimal value is 0.

Confidence-based MIA

Confidence-based MIA is a type of metric-based MIA. In our evaluation pipeline,
we use a modified entropy metric. Specifically, we defined the metric as the
accuracy of the MIA on the model. The optimal value for this metric would
be 0.5 meaning the MIA has an equal probability of correctly and incorrectly
classifying a sample, thus unable to predict with certainty.

4.2 Metric-based MIA

In Metric-based Membership Inference Attacks (MIAs), a threshold is established
based on a chosen metric, and membership prediction for samples is determined
by comparing their metric values against this threshold. A different threshold is
computed for each class, as research has shown that this approach improves MIA
accuracy[12], considering that models behave differently when confronted with
samples from distinct classes. The prediction of membership for a sample x, a
model M , a given metric metric and a threshold t is as follows.
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membership(x, t) =

{
0, if metric(M(x)) > 0

1, otherwise
(4.1)

With 0 indicating that the sample x is not part of the training set of M , and
1 indicating that it is part of the training set of M .

The most straightforward metric that can be used is the output logits or
probability. Alternatively, entropy can also be employed, although recent work
have shown that a modified entropy performs significantly better comparing to
other metrics.

Recalling that entropy H is defined as follows for a sample x, its predicted
label y by a model M , with N being the number of classes in the dataset.

H(M(x), y) = −
N∑
i=1

M(x)i log(M(x)i) (4.2)

The modified entropy is defined as follows:

Hm(M(x), y) = −(1−M(x)y) logM(x)y −
∑
i ̸=y

M(x)i log(1−M(x)i) (4.3)

This way, the output monotonically increases with the prediction probability
of an incorrect label, as −p log(1− p) is a monotonically increasing function, and
also decreases with the prediction probability of a correct label, as −(1− p) log p
is a monotonically decreasing function.

In our pipeline, we first construct a new dataset DMIA with samples from the
dataset D for testing purposes. We ensure that DMIA,0 ∪DMIA,1 = DMIA and
DMIA,0 ∩DMIA,1 = ∅, with DMIA,0 ∈ Dtest, DMIA,1 = Dforget and |DMIA,0| =
|DMIA,1|. Additionally, we assign labels to the samples in this new dataset such
that samples in DMIA,0 have label 0, indicating they are not contained in the
training set Dtrain, and samples in DMIA,1 have label 1, indicating they are
contained in the training set Dtrain.

Next, we split DMIA by class. For each class i =, 1, ...N , we ensure and
equal amount of samples labeled 0 and samples labeled 1, so that |DMIA,i,0| =
|DMIA,i,1|. We remove any extra samples if necessary.

For each class i = 1, ...N , we compute the output of samples on the tested
model M and their modified entropy value from equation 4.3. Then, we evenly
split the data into a shadow set Dshadow

MIA,i and a test set Dtest
MIA,i. We iterate through

the shadow set to find the entropy that maximizes the accuracy of prediction
made using the function from equation 4.1 and define this as the threshold ti.
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Finally, we apply the membership function with threshold ti on all samples of
DMIA,i and compute the accuracy of the predictions.



Chapter 5

Results

5.1 Setup

We conducted experiments using the CIFAR-10 dataset, training our model for
30 epochs with Stochastic Gradient Descent (SGD) optimizer. We used the cross-
entropy loss with a learning rate of 0.1, momentum of 0.9 and weight decay of
0.0005. All models, M , Mr, Mu, have a Resnet-18 architecture.

For the Finetuning method, we use the same training settings as mentioned
above except we train for a single epoch only.

In the two stage method, the neutralization phase uses an Adam optimizer
with a learning rate of 0.001. Subsequently, in the reconstitution phase, we use
an Adam optimizer with a learning rate of 0.01, temperature of 1, α of 1.1, β of
0.9 and the model is trained for 5 epochs.

The bad teacher method involved training the model for 2 epochs with an
Adam optimizer and a learning rate of 0.0005, with the temperature set to 1.

Lastly, in the stochastic teacher method, we use an Adam optimizer with a
learning rate of 0.001, temperature of 1 and alpha of 0.1.

5.2 Evaluation

5.2.1 Unlearning time

While finetuning emerged as the fastest method here, the 2-stage approach is by
far the slowest one, even with a shorter training duration of 5 epochs compared
to the original study, where it was applied for over 10 epochs. Nevertheless, it
still remains three times faster than full retraining which means it could show
relevance based on its performances.

Bad teacher and Stochastic teacher methods yield comparable performances,
roughly doubling the runtime of finetuning.

18
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Method tunlearn/tretrain
Finetune 0.03
2-stage 0.33
Bad teacher 0.05
Stochastic teacher 0.07

Table 5.1: Unlearning time in terms of percentage of the total retraining time.

Figure 5.1: Original model and unlearnt models accuracy on the test set.

5.2.2 Accuracy

As anticipated, the retrained model demonstrates the highest accuracy. In con-
trast, the original model has slightly lower accuracy, which is expected given the
context of Interclass Confusion. Since this model was trained with a subset of
mislabeled samples, its performances is naturally affected.

Among all unlearning methods, finetuning yields the lowest accuracy al-
thought by a small margin. The Bad teacher method performs only marginally
better than finetuning. 2-stage and Stochastic Teacher achieve better accuracy,
approaching that of the original model one, but still falling short of the accuracy
achieved by the retrained model.

5.2.3 Error

Remember that the forget set Dforget contains exclusively mislabeled samples
from two different classes, where samples with true label A are labeled as B and
vice verse. Consequently, after unlearning, we anticipate a decrease in error on
the test set, but increase on the forget set.

Upon evaluation, all models shows an error rate close to 1 when assessed
on the forget set. Since the forget set consists solely of mislabeled samples, it
is expected that once the models forgot about them, they should be able to
predict their ground truth label. Although the models seem to have successfully
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(a) On test set Dtest (b) On forget set Dforget

Figure 5.2: Models error comparison

forgotten the initially confused label the metric does not indicate whether they
have accurately recovered and predict their ground truth labels. To assess this,
we use the targeted error metric.

5.2.4 Targeted error

The original model, trained with a confused dataset, still manages to correctly
predict the majority of samples from the test set. Less than 10% of the test sam-
ples from class A and B were misclassified as label other than A or B, indicating
the influence of the initial confusion on the model. However, after unlearning, the
targeted error dropped close to 0 for all models, indicating their efficient recovery
on samples they have never seen.

On the forget set, we anticipated an improvement in the targeted error to-
wards 1, or a value close to respective models’ accuracy on the test set. The
retrained model achieves a targeted error of 0.74 which aligns well with its ac-
curacy of 0.77. Similarly, the finetuned model achieves a targeted error of 0.64
for an accuracy of 0.64. However, for the the methods 2-stages, Bad Teacher
and Stochastic Teacher, they achieve a targeted error of respectively 0.20, 0.14,
0.19 respectively, for accuracy of 0.70, 0.66, 0.72. These values are significantly
lower than those of the retrained or finetuned models. This implies that while
those models recognize that the forget set was misclassified, they were not able
to predict their ground truth label after unlearning.

For the 2-stage method, this might mean that the model neutralization phase
was too strong, preventing effective recovery during the reconstruction phase.
Similarly, for the Stochastic Teacher method, the knowledge erasure phase might
be too intense, hiindering recovery during the reconstruction phase. In all three
cases, training the model with labels different from their true or confused labels
has had a noticeable effect, evident in the targeted error metric. Overall, this
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(a) On test set Dtest (b) On forget set Dforget

Figure 5.3: Models targeted error comparison

Figure 5.4: Confidence-MIA prediction accuracy on DMIA.

highlights the complexity of using of the forget set in the unlearning process, as
it can lead to unintended behaviour, with models memorizing incorrect labels too
strongly, imparing their ability to predict based on sample properties.

5.2.5 Confidence-MIA

Figure 5.4 illustrates the accuracy of the confidence membership inference attack
on the set DMIA. After unlearning, we anticipate the accuracy of MIAs on the
models to lean around 0.5, indicating their inability to predict whether samples
from our MIA testing set were part of the training set or not. The MIA accu-
racy on the original model stands at 0.82, indicating its proficiency in correctly
predicting most samples membership, while its accuracy on the retrained model
aligns with our expectation at 0.52.

Our unlearnt models all show a MIA accuracy of approximately 0.52, except
for the finetuned model which has a slightly higher mean of 0.59.
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Conclusion

Machine unlearning has emerged as a critical area of research, driven by the
evolving landscape of data privacy regulations such as GDPR. In reaction to
these changes, Google launched the Machine Unlearning Challenge competition
in September 2023, hosted by NeurIPS on Kaggle. The goal was to unlearn a
ResNet-18 trained for age classification based on face images. Our team achieved
a rank of 225th out of 1120 participating teams.

Among the methods we explored, our focus centered on three: bad teacher,
stochastic teacher, and two-stage unlearning.These approaches are all based on
knowledge distillation which is a technique to transfer knowledge from a teacher
model to a student model regardless of their architecture. It uses a loss function
derived from the Kullback-Leibe divergence which quantify similarity between
two models outputs. In machine unlearning, this method is typically applied
in two ways: to neutralize the model with a random model as teacher and the
original model as student, or to refine the unlearnt student model with the original
model as teacher.

The bad teacher approach involves knowledge distillation with both a compe-
tent teacher and an incompetent teacher simultaneously. The stochastic teacher
approach begins with neutralizing the model with an incompetent teacher fol-
lowed by refining using a combination knowledge distillation and cross-entropy
loss. The two-stage unlearning method initially neutralizes the model by training
on contrastive labels, then reconstructs it also using a combination of knowledge
distillation and cross-entropy loss.

Post-competition, we developed our own evaluation pipeline based on Inter-
class Confusion (IC) which conducts extensive tests allowed by a mislabeled forget
set, which includes the following metrics: unlearning time, accuracy, error, tar-
geted error, and confidence-MIA. Our evaluations revealed that while finetuning
performed well during the competition, other approaches surpass it under certain
conditions, as evidenced by the competition leaderboard. Moreover, finetuning
showed reduced resistance against confidence-MIA. However, since it does not use
the forget set at all, it yielded superior results for targeted error, which focuses
on samples from the classes of the mislabeled forget set.

22
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In summary, while knowledge distillation coupled with another effective mech-
anism to erase knowledge about the forget set may outperform finetuning, it
requires meticulous tuning of hyperparameters. Relying solely on finetuning
proves to be restrictive and lacking in flexibility. Using the forget set during
the unlearning process to erase models memory about samples may lead to the
extensive memorization of mislabeled samples, presenting challenges for recovery.
Nonetheless, it has been demonstrated that knowledge distillation is a lightweight
and efficient technique that can be shaped to machine unlearning needs, foreshad-
owing its significant role in the field’s future.

As a final notes, to replicate the unlearning of 10% of the dataset as it was
the case during the competition, our IC pipeline mislabels half of the samples
in two classes, which represents a substantial percentage of data. Consequently,
our research findings may be significantly impacted by the size of the forget
set. Smaller forget set could potentially enhance the performance of unlearning
methods evaluated using the IC pipeline.
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