
Distributed

 Computing

Improving the Data Quality of
ConfSearch using LLMs

Semester Project

Samuel Bohl

bohls@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Andreas Plesner

Prof. Dr. Roger Wattenhofer

August 19, 2024

Acknowledgements

I thank Andreas Plesner for his supervision and guidance. I’m grateful to Prof.
Dr. Roger Wattenhofer for approving this project. Acknowledgments to Dr.
Michael Kuhn for initiating ConfSearch in 2007, and to Alex Thillen for his 2022
iteration.

i

Abstract

This project focuses on improving the data quality of ConfSearch, a tool for
academic conference information retrieval. By integrating Large Language Mod-
els (LLMs), the system now extracts more comprehensive and accurate confer-
ence details from WikiCFP. Built on FastifyJS and PostgreSQL, the new back-
end enables parsing of complex event structures, including multiple tracks and
workshops. The integration of CORE rankings provides additional context for
conference quality. While achieving perfect accuracy for overlapping date fields
with the previous version, the project acknowledges ongoing challenges in veri-
fying LLM-generated content. Future work will address automating updates for
non-WikiCFP conferences and enhancing search capabilities to fully utilize the
enriched dataset.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Background and Problem Statement 1

1.1.1 Overview of ConfSearch and Its Purpose 1

1.1.2 Data Quality Issues . 1

1.2 Objectives . 1

2 Related Work 3

2.1 ConfSearch 2022 . 3

2.2 WikiCFP . 3

2.3 CORE Ranking . 4

2.4 Large Language Models (LLMs) 4

2.4.1 Structured Output using Modelfusion 5

2.4.2 OpenAIs Structured output 5

3 System Architecture and Implementation 6

3.1 Backend Structure and API Design 6

3.1.1 Data Model . 7

3.2 LLM Integration . 8

3.2.1 Event Parsing with GPT Model 8

3.2.2 Schema Definition and Validation 9

3.3 Data Update Mechanisms . 9

4 Results, Discussion, and Conclusion 10

4.1 Data Quality Improvements . 10

4.1.1 Comparative Analysis . 10

iii

Contents iv

4.2 Challenges and Limitations . 10

4.3 Future Work and Recommendations 11

Bibliography 12

Chapter 1

Introduction

1.1 Background and Problem Statement

ConfSearch is a tool designed to help researchers find and track academic confer-
ences in computer science. It aims to provide up to date, comprehensive informa-
tion about conferences, including their rankings, submission deadlines, and event
details. The project has evolved through multiple iterations, with each version
seeking to improve data quality and user experience.

1.1.1 Overview of ConfSearch and Its Purpose

ConfSearch serves as a centralized platform for academic conference information,
allowing researchers to efficiently discover relevant venues for their work. It
integrates data from various sources, including WikiCFP and CORE rankings, to
offer a holistic view of conference quality and logistics. The tools primary purpose
is to streamline the process of conference selection and submission planning for
computer science researchers.

1.1.2 Data Quality Issues

Previous versions of ConfSearch faced challenges in extracting and structuring
data from unstructured sources like WikiCFP. Key information about confer-
ence tracks, workshops, and specific deadlines was often embedded within event
descriptions, making it difficult to parse and present accurately. These data qual-
ity issues limited the tool’s effectiveness in providing comprehensive and reliable
conference information.

1.2 Objectives

This projects aims to address these challenges through several key objectives.
Primarily, I will leverage Large Language Models (LLMs) to enhance data ex-

1

1. Introduction 2

traction and structuring capabilities, significantly improving the system’s ability
to parse complex, unstructured information. This approach is coupled with a
focus on improving the accuracy and completeness of conference information,
including detailed data on multiple tracks and workshops within each event.

Another crucial objective is the implementation of a robust backend architec-
ture with automated data update mechanisms.

Lastly, a critical goal is to maintain data integrity while automating the pro-
cess of keeping conference information current. This involves implementing safe-
guards against potential LLM hallucinations and ensuring that the automated
update processes consistently provide accurate and reliable information to users.

Chapter 2

Related Work

2.1 ConfSearch 2022

I reviewed the previous iteration of ConfSearch, developed as a Bachelor’s thesis
by Alex Thillen in 2022 [1]. This version aimed to modernize the original Conf-
Search tool from 2007. It introduced a more user-friendly interface with respon-
sive design and updated the backend using Django. The architecture was mod-
ularized, separating frontend, backend, and data retrieval components. Search
functionality was enhanced using weighted keywords, and the system integrated
more up-to-date conference data. New features included bookmarking, visual-
ization of important dates, and the ability to download conference dates as .ics
files.

However, I found the documentation to be somewhat lacking, which made it
challenging to build upon. This is why I decided to write the backend from scratch
for this iteration of ConfSearch. Additionally, it could only partially utilize data
from WikiCFP events, as crucial information about different tracks, workshops,
special dates, and submission details is often embedded within the conference
description, making it difficult to extract and structure programmatically.

2.2 WikiCFP

WikiCFP [2] is a community-driven platform that serves as a central hub for
academic conference information. It provides comprehensive data about confer-
ences, including their names, acronyms, submission deadlines, notification dates,
and conference start and end dates. The platform boasts a sizeable and active
user base, with over 100,000 monthly users contributing to and maintaining the
data. This collaborative approach ensures that the information remains relatively
current and reliable.

In the context of this project, WikiCFP proved to be an invaluable resource.
I utilized it as a primary source for scraping conference information to populate
the database. By using WikiCFP, I was able to gather data on a large number

3

2. Related Work 4

of conferences from a single source, rather than having to search and compile
information from multiple individual conference websites.

2.3 CORE Ranking

I used the CORE Conference Ranking [3] to assess conference quality in my
project. CORE ranks computer science conferences as A*, A, B, or C. I focused
on populating the database with A* conferences, representing the top-tier venues
in each field. This helps users identify the most prestigious conferences, though
I acknowledge that paper quality should be judged independently of venue rank-
ing. The CORE ranking is determined by considering several factors, including
citation impact, the strength of researchers involved, and the quality of the re-
viewing process. A* conferences are characterized by their high visibility beyond
their specific research focus and are often the venues of choice for top researchers
in the field. A and B ranked conferences may have similar paper quality but
typically have less broad visibility or impact.

In my implementation, I allowed for manual overrides of the CORE ranking.
This feature enables researchers to adjust rankings based on their domain exper-
tise or more recent assessments. This provides flexibility when the community’s
perception of a conference’s quality differs from the official CORE ranking.

2.4 Large Language Models (LLMs)

As mentioned in the title, the goal of this project is to leverage Large Language
Models (LLMs) to enhance the capabilities of ConfSearch. LLMs are advanced
machine learning systems trained on vast amounts of text data, enabling them
to understand and generate human-like text. I primarily used OpenAI’s GPT [4]
models, accessed through their API, to parse and structure conference informa-
tion from unstructured text.

LLMs proved particularly useful in extracting key details about conferences,
such as dates, tracks, and submission guidelines, from the often inconsistent
and unstructured descriptions found on platforms like WikiCFP. This approach
allowed me to overcome the limitations of previous iterations in handling em-
bedded information. By using LLMs, I was able to more accurately populate the
database with structured conference data, improving the overall quality and com-
pleteness of the information presented to users. With proper prompting, LLMs
can produce highly structured output, which was crucial for my project. Initially,
I experimented with Llama 3.1 8B [5], but ultimately switched to GPT-4o due to
its superior performance, especially after OpenAI introduced a structured output
feature. This feature eliminated the 5-6% invalid output rate I experienced with
Llama 31. 8B.

2. Related Work 5

2.4.1 Structured Output using Modelfusion

I initially experimented with ModelFusion’s [6] strucutred output method, which
uses a combination of prompt engineering and post-processing. ModelFusion
allows developers to define a schema using Zod, a TypeScript-first schema vali-
dation library. The LLM is then prompted to generate output that adheres to
this schema. After generation, ModelFusion attempts to parse the LLM’s out-
put according to the defined schema. If parsing fails, it can retry with adjusted
prompts or fall back to error handling mechanisms.

This approach is more flexible as it can work with various LLM providers and
models, not just those specifically trained for structured output. However, it may
require multiple attempts to generate valid output, potentially increasing latency
and token usage. While this method proved useful in my initial experiments, I
ultimately opted for OpenAI’s more deterministic approach for its guaranteed
schema adherence and efficiency in processing conference information.

2.4.2 OpenAIs Structured output

OpenAI took a two-part approach [7] to improve reliability for model outputs
that match JSON Schema. They trained their newest model gpt-4o-2024-08-06
to understand complicated schemas and produce matching outputs. Additionally,
they implemented a deterministic, engineering-based approach called constrained
decoding to achieve 100% reliability.

Constrained decoding limits the model’s token choices to only those that
would produce valid output according to the supplied schema. This is imple-
mented dynamically, determining valid tokens after each generation step. The
process involves converting the JSON Schema into a context-free grammar (CFG)
[8] and preprocessing it for efficient access during sampling. During token gener-
ation, the inference engine determines which tokens are valid based on previously
generated tokens and the grammar rules. This list of valid tokens is used to
mask the next sampling step, effectively setting the probability of invalid tokens
to zero. The preprocessed schema allows this to be done efficiently, with minimal
latency overhead. This approach ensures that the model consistently produces
structured output that conforms to the specified schema.

Chapter 3

System Architecture and
Implementation

3.1 Backend Structure and API Design

The backend architecture Figure 3.1 is built around a FastifyJS [9] server inter-
facing with a PostgreSQL [10] database. At its core, an API Service handles
incoming requests, routing them to appropriate handlers. A CRON [11] Service
manages scheduled tasks for data updates, while a Scrape Engine is responsible
for extracting and parsing event information from external sources. The database,
utilizing Drizzle ORM [12] for operations, stores conference and event data. A
Reverse Proxy acts as an intermediary, managing client requests to the backend
services. The API follows REST [13] principles with endpoints for conferences,
events, and search. It includes middleware for handling database connections
and CORS [11].

6

3. System Architecture and Implementation 7

Figure 3.1: The ConfSearch backend architecture.

3.1.1 Data Model

The data model organizes information about conferences, their events, and re-
lated tracks or workshops. At the top level, we have conferences, which are broad
series like "ICML" (International Conference on Machine Learning). Each con-
ference can have several yearly events, such as "ICML 2024." Each event includes
details like dates, submission deadlines, and relevant URLs.

Within these events, there are sometimes different tracks or workshops, which
focus on specific topics or themes. For example, ICML 2024 might feature a
workshop on "Deep Learning," with its own set of deadlines and details. This
model helps manage and organize information about the overall conference series,
individual events, and the specialized sessions within those events. Figure 3.2

3. System Architecture and Implementation 8

Figure 3.2: The ConfSearch database data model.

3.2 LLM Integration

3.2.1 Event Parsing with GPT Model

The system integrates OpenAI’s GPT model to enhance event information pars-
ing. The openaiParseEvent function, found in openai-event-parser.ts, serves
as the bridge between raw context data and the GPT model. It sends contex-
tual information to the model, which then generates structured event data based
on a predefined schema. This approach allows for intelligent interpretation of
unstructured or semi-structured event information. The parsed results undergo
validation against a Zod schema, which ensures the data is in the correct format
before I could insert or update the data in the database.

3. System Architecture and Implementation 9

3.2.2 Schema Definition and Validation

Event data within the system is subject to strict typing and validation processes.
The event-schema.ts file is central to this, defining comprehensive Zod schemas
for both events and their associated tracks. These schemas play a crucial role
in maintaining consistent data structure and type safety throughout the appli-
cation. They include custom transformations applied to categories and dates,
ensuring standardization across all event entries. This robust schema definition
and validation process significantly reduces the likelihood of data inconsistencies
and enhances the overall reliability of the system’s event information.

3.3 Data Update Mechanisms

The system employs CRON jobs to manage data updates efficiently. These jobs,
defined in cron.ts, are scheduled to regularly check for new conference events on
WikiCFP. When new events are detected, the localPrepareWikicfp function
scrapes the relevant content from the WikiCFP pages. This data is then pro-
cessed using an AI model to extract and structure the information. Specialized
functions like upsertCoreRankings, upsertWikiCFPSeries, and
updateEventFromLLMResponse handle the database updates and ensure that the
information is stored and refreshed accurately. This multi-step approach com-
bines scheduled checks with advanced AI processing to keep the database current
with the latest conference details.

Chapter 4

Results, Discussion, and
Conclusion

4.1 Data Quality Improvements

The latest iteration of ConfSearch significantly enhances data extraction capa-
bilities. Previously, the system could only extract start and end dates, deadline
dates, and notification dates. Now, it captures additional crucial information
such as separate paper and abstract submission deadlines, camera-ready dates,
and supplementary instructions like deadline timezones. The system now also
accommodates data for different conference tracks, a feature that was not pos-
sible in earlier versions. When available, submission URLs are now included in
the extracted data.

4.1.1 Comparative Analysis

Verifying the accuracy of the new data extraction process posed challenges due
to the absence of comparable old data for many new fields. However, manual
spot checks of the final version of our scrape engine showed perfect accuracy. To
assess the accuracy of the LLM-parsed dates that were common to both old and
new systems, a script (accuracy.js) in the experiments folder was developed.
This script compared the data from the old system with the new, yielding 100%
accuracy for the overlapping date fields.

4.2 Challenges and Limitations

Verifying the extracted data and preventing hallucinations in LLM responses
remain significant challenges in this projects. LLMs are prone to generating false
information, which makes maintaining data integrity a constant concern.

To address this, I implemented a strategy of explicitly instructing the model
to return null values when the data is unavailable, which notably improved the

10

4. Results, Discussion, and Conclusion 11

quality of the extracted information. While the experiments in the previous
section showed high accuracy for overlapping date fields with the previous system,
there is not guarantee that this will hold true for future parsed events.

4.3 Future Work and Recommendations

There are several areas for future development. Firstly, conferences not origi-
nating from WikiCFP are not automatically updated in the current system. I
propose using LLMs to predict new URLs for upcoming events and verify their
availability.

Secondly, the current search functionality, while incorporating the new cat-
egories and tags, is still limited to a basic full-text search. This is a step back
from ConfSearch 2022’s more sophisticated ranking system. I implemented the
search using PostgreSQL’s text search capabilities, which includes the new fields
(e.g. tags and categories) in the search scope but doesn’t provide any ranking or
weighting of results. While this approach allows users to find events based on all
available data, it doesn’t offer the nuanced, prioritized results that the previous
iteration of Confseach has. Enhancing this area to better leverage our expanded
data structure and implement a more sophisticated ranking algorithm is an area
for improvement.

Lastly, I suggest implementing a user authentication system to restrict dele-
tion rights to trusted users, which would help prevent malicious actions and
improve the overall security and reliability of our system.

Bibliography

[1] A. Thillen, “Confsearch 2022,” Zürich, Switzerland, August 2022, distributed
Computing Group, Computer Engineering and Networks Laboratory.

[2] WikiCFP. Accessed: 2024-08-19. [Online]. Available: http://www.wikicfp.
com

[3] CORE Raking. Accessed: 2024-08-19. [Online]. Available: https:
//portal.core.edu.au/conf-ranks/

[4] OpenAI, “Gpt-4 technical report,” https://arxiv.org/abs/2303.08774, 2023,
accessed on [Insert Date].

[5] Meta AI, “Introducing llama 3.1: Our most capable models to
date,” July 2024, retrieved 2024-08-19. [Online]. Available: https:
//ai.meta.com/blog/meta-llama-3-1/

[6] ModelFusion Contributors, “Modelfusion,” https://github.com/lgrammel/
modelfusion, 2023, accessed: 2024-03-15.

[7] OpenAI. Introducing structured outputs in the api. Ac-
cessed: 2024-08-19. [Online]. Available: https://openai.com/index/
introducing-structured-outputs-in-the-api/

[8] N. Chomsky, Three models for the description of language. IEEE, 1956,
vol. 2, no. 3.

[9] Fastify Contributors, “Fastify - fast and low overhead web framework, for
node.js,” 2017. [Online]. Available: https://www.fastify.io/

[10] PostgreSQL Global Development Group, PostgreSQL: Documentation,
1996, version 16.0. [Online]. Available: https://www.postgresql.org/docs/

[11] Paul Vixie, Cron: A time-based job scheduler in Unix-like operating
systems, 1987, version 3. [Online]. Available: https://pubs.opengroup.org/
onlinepubs/9699919799/utilities/crontab.html

[12] Drizzle Team, “Drizzle orm - type-safe sql queries for typescript,” 2024.
[Online]. Available: https://orm.drizzle.team/

[13] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Doctoral dissertation, University of California,
Irvine, 2000. [Online]. Available: https://www.ics.uci.edu/~fielding/pubs/
dissertation/rest_arch_style.htm

12

http://www.wikicfp.com
http://www.wikicfp.com
https://portal.core.edu.au/conf-ranks/
https://portal.core.edu.au/conf-ranks/
https://arxiv.org/abs/2303.08774
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://github.com/lgrammel/modelfusion
https://github.com/lgrammel/modelfusion
https://openai.com/index/introducing-structured-outputs-in-the-api/
https://openai.com/index/introducing-structured-outputs-in-the-api/
https://www.fastify.io/
https://www.postgresql.org/docs/
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html
https://orm.drizzle.team/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

	Acknowledgements
	Abstract
	1 Introduction
	1.1 Background and Problem Statement
	1.1.1 Overview of ConfSearch and Its Purpose
	1.1.2 Data Quality Issues

	1.2 Objectives

	2 Related Work
	2.1 ConfSearch 2022
	2.2 WikiCFP
	2.3 CORE Ranking
	2.4 Large Language Models (LLMs)
	2.4.1 Structured Output using Modelfusion
	2.4.2 OpenAIs Structured output

	3 System Architecture and Implementation
	3.1 Backend Structure and API Design
	3.1.1 Data Model

	3.2 LLM Integration
	3.2.1 Event Parsing with GPT Model
	3.2.2 Schema Definition and Validation

	3.3 Data Update Mechanisms

	4 Results, Discussion, and Conclusion
	4.1 Data Quality Improvements
	4.1.1 Comparative Analysis

	4.2 Challenges and Limitations
	4.3 Future Work and Recommendations

	Bibliography

