
Distributed

 Computing

Automated Visual Foosball Tracking
Bachelor’s Thesis

Linus Baumberger

lbaumberger@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Till Aczel, Joël Mathys

Prof. Dr. Roger Wattenhofer

December 30, 2024

Contents

Abstract 1

1 Introduction 2

2 Methodology 4

2.1 Phase 1, Hardware Phase: . 5

2.2 Phase 2, System Phase: . 10

2.3 Phase 3, Analysis Phase: . 13

3 Results 21

3.1 Phase 1, Hardware Phase: . 21

3.2 Phase 2, System Phase: . 23

3.3 Phase 3, Analysis Phase: . 26

4 Future Work 29

5 Conclusion 30

Bibliography 31

A Documentation A-1

A Hardware 1

A.1 Camera Mount . 1

A.1.1 Aluminium Frame . 2

A.1.2 Connector . 3

A.1.3 Angle 35° . 4

A.1.4 Side Braces . 5

A.1.5 Wooden Strip . 6

A.2 Cameras . 7

i

Contents ii

A.3 Elumination . 8

A.4 Control Unit/ Raspberry Pi . 9

A Software 10

A.1 Project Structure . 11

A.2 Raspberry PI . 12

A.2.1 Setup . 12

A.2.2 Overview . 12

A.3 API Raspberry Pi . 13

A.3.1 Authentication . 14

A.3.2 Endpoints . 14

A.3.3 Error Handling . 15

A.4 VM . 15

A.4.1 Setup . 16

A.4.2 Camera Control . 16

A.4.3 Communication RTSP / Receiving Streams 16

A.4.4 Processing . 17

A.4.5 Distributing . 17

A.5 API VM . 17

A.5.1 Authentication . 17

A.5.2 Endpoints . 17

A.5.3 Error Handling . 21

Abstract

This thesis will try to automate the visual tracking of a foosball. The goal is to
analyse the game’s state at runtime, while also providing a livestream.

In a first step we install all the necessary hardware to record a game. On top of
that, we build a system that records, saves, processes/analyses, and livestreams
the game.
To analyze the videostreams we compared classical visual computing algorithms
and YOLO (a machine learning model, designed for object detection).

The resulat was a system that records and streams foosball games. The tested
algorithms are working, but could not yet be implemented to run at runtime. The
system is built in a modular way (different APIs and divided into subsystems),
so that it can be easily extended or integrated into a future project.

1

Chapter 1

Introduction

Many of us enjoy playing a game of foosball from time to time. And often we ask
ourselves if we could do better. If we just had the chance to rewatch the most
capitvating situations of the last game. Maybe we just want to replay a certain
scene to determine whether we scored or not. And image how cool it would be
to have some statistics about our gameplay. Maybe we can even make it so far
that we can predict if a team scores a goal in the next few seconds.
As a foosballplayer myself I was very motivated to be part of a project that tries
to achieve that.

The goal of this project was to develop a visual tracking system for foosball.Once
we have automated the process to keep track of the visual game play, we can pre-
dict and analyse many things, such as automatically keeping track of the teams’
scores. Or we could analyse which team has more ball possession and we could
analyze how fast some of the shots are.
To achieve all of this, we first have to overcome a few challenges.

The project divides into three phases.
We start with phase one, the hardware phase, where we design and install every-
thing related to hardware.
After that in phase two, the system phase, we develop a system to record, save,
and livestream the game.
And finally in phase three, the analysis phase, we want to collect data and create
statistics from our streams.
In phase one, we first of all had to construct a cameramount and think about
how many cameras we need to record the whole foosballtable. Because a foosball
can be as fast as 10 metres per second, we should have a framerate high enough
(around 80fps) to allow fluent replays of certain scenes. Another requirement was
that the camera should record in HD. As soon as we have a hardware setup that
is working and functional, we can focus on the software.

Some challenges that we have to resolve software wise are: Those recordings
should be saved (for additional analysis later) and at the same time we wanted

2

1. Introduction 3

a livestream (with a latency as low as possible, less then 10 seconds). Besides
that we also have to think about algorithms that detect and track the foosball.
Relying on machine learning-based or more classical computer vision methods.

Even more interesting and useful would it be, if we could use those algorithms at
runtime. As soon as we want to do that, we have to think about the throughput of
our alogrithms. How could we improve that without losing quality? This should
include the detection of potential goal chances and goals as well in a second step
include balltracking. This would allow us to do some statistics and predictions
of the game.

Chapter 2

Methodology

We divided this project into 3 phases (Figure 2.1). Phase 1 is the hardware phase
where we focused on building a setup that was functional and provided us with a
foundation on which we can build up. We had to be careful that we built a rigid
and robust setup so it would absorb all the physical stress induced on it.
In phase 2 (the system phase) our system phase we designed and developed a
(software) system that provided a solution for recording, saving and streaming
of the foosballgames. One thing that we have to keep in mind is that our goal
is to achieve a latency as low as possible while still maintaining a high framrate
and resultion (80fps@1080x720).
In the third phase, also called the analysis phase, we focused on testing algorithms
to detect foosball. Our focus is on low latency and maximal throughput while
still maintaining a high quality of detection. Those algorithms must be integrated
into our processing pipeline. A task that will certainly be challenging.

Figure 2.1: We split the project into three different phases. The first phase
(left) provides the necessary hardware. In the second one (middle) we design a
working system to record, save and livestream foosballgames. The third phase
(right) focusses on analysing foosballgames.

4

2. Methodology 5

2.1 Phase 1, Hardware Phase:

Here we did all the things that are hardware related. At first we just had a
foosballtable. We had to install a cameramount and cameras that we can record
the whole table. The cameramount had to be robust to disturbances/vibrations.
Because a foosball can achieve high speeds of up to 10m/s, we have to record
everything at high framerates.

This phase included planning, developing, and building the cameramount. We
tested different constructions and materials to create a mount that is stable
enough to fulfill its purpose but at the same time as unobtrusive as possible.
That means we had to find a solution on how to mount the cameramount. We
first thought about fixing it to the score counter, but we soon realized that it
would be a disturbance for the players and also not be that rigid. Especially for
movements along the y-axis (Figure 2.2).

Figure 2.2: Schematic Raspberry Pi and VM

We found a better way to mount the cameramount onto the foosball table with
the help of the already existing holes in the side wall of the foosballtable.

As can be seen in Figure 2.3, we had to use different kinds of materials. We
had to find a compromise between the weight and the robustness of the material.
While always have in mind on how we want to process/work on that material.

2. Methodology 6

Figure 2.3: Different Materials: Plastic for the 35° angle, wood for the side braces
and aluminium for the extrusion

For example, we first had plastic side braces but soon realized that plastic has
the tendency to flex too much. Therefore, we switched to a wooden side brace
that offered much more stability and stiffness. Another example would be the 35
° angle that is currently made out of plastic. We know that we could improve the
stiffness of the mount even more if we had a metal or wooden angle. But with
our limited capabilities and possibilities to process metal and wood we just cant
produce such an angle.
In addition to that, we also had to decide what kind of cameras we needed and
how we wanted to control and mount those cameras. Because a foosball can have
a speed of up to 10m per second, we have to record at a framerate as high as
possible. Our generic cameras with an IMX219 sensor can record HD at 80 fps.
To protect the cameras against foosballs, we printed small plastic cases for the
cameras.
Another question that had to be resolved in this phase was about lighting. How

could we minimze shadows and guarantee a uniform lighting regardless of the
time of day or room lighting. We decided to use an led strip. Such a strip allows
us to uniformly light up the foosball table (Figure 2.4).

The first thought was to control and power the led strip directly from the rasp-
berry pi. We soon realized that this would potentially use too much power from
the raspberry pi. So we decided to power the led strip using a separate 12v power
supply and a relay to control it via the raspberry pi. The relay was placed in a
3d printed box and fixed with screws to the aluminium extrusions (Figure 2.8).
All the cables coming from the wooden strip are directed into the extrusion and
then covered by 3d printed PLA covers and later redirected along the side of
the foosball table into the table. With the help of zipties and some 3d printed
mounting brackets (screwed into the table), we provided strain relief (Figure 2.7)

2. Methodology 7

Figure 2.4: LED Strip switched on and two cameras (yellow cases) mounted to
the wooden strip

for all the cables. Inside the table, we stored both powersupplies (the one for the
pis (Figure 2.6) and the one for the led strip (Figure 2.5)).

Figure 2.5: Powersuplly for the led strip, mounted inside the foosball table

2. Methodology 8

Figure 2.6: Powersuplly for the raspberry pis (65W), mounted with the help of
a 3d printed holder to the leg of the foosballtable

Figure 2.7: 3d printed mounting bracket, screwed into the foosball table, the
cable is fixated to the mount with a zip tie, to provide strain relief for the cable

Another important decision we had to take was regarding the kind of hardware we
want to use to control the cameras. Because Raspberry Pis are easily available,
have already the necessary interfaces and hardware to process camerastreams
and offer a big community support, we decided to use them. At the beginning
we planned to use some older Raspberry Pi 3B, but we soon realized that they
lack the performance to handle streams of such a high framerate. So we decided
to switch to the newer and more powerful Raspberry Pi 5 (Fiugre 2.9).

2. Methodology 9

Figure 2.8: Raspberry Pi 5 connected with 3 cables to the relay (yellow box
below) which will control the led strip

Figure 2.9: Raspberry Pi 5 (with lan-cable, power-cable and csi-cable) mounted
to the alumium extrusions

To power the whole system we used a single power cable which we taped
together with the lan cables (which provide a reliable and fast internet conenction
to the pis) to the ground (Figure 2.10).

2. Methodology 10

Figure 2.10: Foosballtable with installed cameramount, raspberry pis are in-
stalled onto the aluminium extrusions and all the cables (one powercable, two
ethernet cables) are properly taped to the ground

2.2 Phase 2, System Phase:

As soon as we had the hardware we had the foundation of our project. From
now on we could focus on everything software related. To structure the devel-
opment of that project we first focused on creating a minimal working system.
This system should record, save, and livestream the foosballgames. On top of
this system, we could later implement the analysis of the games or even further
down the road we could build further projects on top of this. For this reason,
we have to code as modular as possible so that in the future the system could be
easily expanded.

We first wanted to simply record games with the raspberry pi and our cam-
eras. We bought generic cameras with an IMX219 sensor and a 130° fisheyelens.
This camera is capable of recording at 80 frames per second at a resolution of
1080x720. Unfortunately, it did not work out of the box. We first had to con-
figure the "boot/Firmeware/config.txt" file with the specific information of our
generic camera. Only after we did that the raspberry pi recognized those generic
cameras. This was quite a tedious task which we later automated (on execution
of the setup_pi.py file) to make it easier to setup and integrate a new pi. Using a
raspberry pi allowed us to use the picamera2 liberary. This library is the official
Python library for interfacing with the Raspberry Pi Camera Module. Because
we wanted that specific fps and resolution we were dependent on a certain camera
mode that was able to provide that. To use that mode we had to dive a little bit
deeper to configure the camera correctly. Instead of using the default functions
and configurations, we had to do our own camera configuration (Figure 2.11.

Another question that arose was on how we want to design the whole system.
How should the subsystems interact with each other. For example, we first used

2. Methodology 11

Figure 2.11: Cameraconfiguration, we select the specific mode and further specify
the framerate

a simple tcp connection to transport the stream from the Pi to the VM. Later we
realized that we could improve latency and modularity if we used an rtsp server
(running on the pi)[1]. This would allow us to distribute the stream not only to
the vm but also to other systems.

Currently, the raspberry pi can record and distribute a stream. To be really
useful for us we also need a way to control the pi and to give some kind of start
and stop signal (Figure 2.12). For this purpose, we designed an API for the
raspberrry pi (The API is described in the documention).

Figure 2.12: An external system for example our VM controls the Raspberry Pi
via an API. The Raspberry Pi is responsible for recording and distributing the
stream as an rtsp stream

The next step would be to create a system that will receive both streams and
save them. To do that, we first had a really simple script using opencv [2], which
receives the frames and saves them to an mp4 file. This is already nice and would
give us the opportunity to analyze games retrospectively.
But initially we planned to provide some kind of livestreaming. Our system
should more look something like Figure 2.13. First we tried to do that with
opencv [2] but we soon realized that even though it "works" it does not provide
satisfiable results. The throughput we achieved was just to low and resulted in a
delayed and very jittery stream. After some research, we decided to use the ffm-
peg library. Ffmpeg is an open-source mlultimedia framework for handling video,
audio, and streams. It supports a wide range of formats and already includes
tools for encoding and decoding, as well as for filtering. Another advantage was
that it also supports complex pipelines for processing (Figure 2.14)[3]. This al-

2. Methodology 12

Figure 2.13: We want to receive the stream from the pis and then (after we
cropped both videos together) redirect it to another service (e.g. a website)
where people can watch the foosballgame live

lowed us to receive both rtsp streams and then save both original inputs while
we could still crop those two inputs together and create an hls stream from that
cropped together video (Figure 2.15). All this while still maintaining a framerate
of 80fps and a latency of less than 10 seconds.

To display that livestream, we developed a webpage (Figure 3.6 to watch the
livestream. In addition, we develop a simple web interface for debugging and
testing (Figure 3.5). To control the VM from this web interface we introduced an
API for the VM (described in the documentation). The API and that livestream
would also allow us to link this system with another external project.

To automate everything and make it easy to use, we created scripts to setup
the environments and the corresponding scripts on the VM and Raspberry Pis.
This also created services on the VM and the Raspberry Pis, which are responsi-
ble to automatically pull the newest version of the "build" branch from our gitlab
repository and start the systems on reboot or restart the systems in case of an
error at runtime.

The system was complete and functioning. At least that is what we thought.
After a few weeks we got the warning that we are soon running out of storage
on the VM. To fix that we installed an external HDD and created a cron job for
the "move_old_files.sh" script. Once every day we run this script and the script
moves all recordings and streams older than seven days to the external HDD.

Another problem that occured in the system phase but is rather related to the
hardware phase were random crashes of our raspberry pis.The logs did not give
us any reasonable error. So we had to dig deeper. In the end, we discovered
that our first powersupply for the pis had voltage drops (probably because we
pulled to much power). Those voltage drops caused the random crashes of the
pi. After replacing the powersupply with a more powerful one it worked without
any problems.

2. Methodology 13

Figure 2.14: Ffmpeg command to receive two rtsp stream, those orignal streams
are saved as output1 and output2. At the same time we take those two orig-
nal streams correct the fisheyelenseffect, crop them together and save it as out-
put_file (an hls stream)

2.3 Phase 3, Analysis Phase:

This phase introduced analysis of the game’s state to this project.

With completing the system phase we now have a system into which we we
can build further functionality. In this phase it is the goal to develop a system
capable of trakcing a foosball, calling out (potential) goals and do some simple
statistics with the data collected. In a further phase/different project, this func-
tionality could be extended even more.

Before we even started thinking about detecting the ball everywhere, we wanted
to implement a system that calls out goals and goal chances. To do that, we
thought about doing some kind of motion detection in the goal zone. We ended
up with two zones. The outer and bigger one for potential goals, the smaller one
for actual goals (Figure 2.16). For each zone we do a background subtraction over
the average of the last 500 frames (at 80fp, that is, around the last 6 seconds).

2. Methodology 14

Figure 2.15: All our three outputs, from the left to the right we save the orignial
input of the camera stream, we do the same for the second input and we do
a fisheyelenscorrection and crop those videos togehter. The cropped together
version gets distributed as an hls stream

After that background subtraction, we do some postprocessing. An elliptical 5x5
kernel is created for morphological operations. The mask is cleaned of noise using
opening and dilation fills the gaps to make the object more cohesive. We then
count the pixel change, if the change is over a certeain threshold we assume that
a (potential) goal happened. At the beginning, we got to many false positives be-
cause of the goalkeeper moving very fast. After adjusting the threshold, we could
reduce the number of false positives drastically. The number of false negatives
remained small.

Figure 2.16: The outer and bigger zone checks for potential goals, the smaller
one for actual goals.

After that we started to test different algorithms for balltracking. Initially we
focussed on classical computer vision algorithms. One of our first ideas was to
use template matching. This required us to take some example pictures of a
foosball and match them against every frame. With this approach, there were a
few problems. It was computationally quite expensive and even worse was that
due to the high speed of the foosball (the foosball became "stretched" on the

2. Methodology 15

videos) it often failed exactly when there was a (potential) goal (Figure 2.17).

Figure 2.17: On the left side there is a still foosball. It is quite round and would
be detectable with template matching. On the right we have a very fast foosball.
It is so fast that it appears stretched on the image. To detect a foosball on such
an image is much more difficult

Another algorithm that we tried but later discarded calculated the optical flow.
One of the flaws there was that in order that the algorithm worked, we had to
define the foosball’s initial position. A task that generally does not sound that
difficult. We could assume that every game starts with the foosball in the mid-
dle. This would certainly be possible to implement. But how would we handle
a situation where we lost track of the foosball? How could we find his position
again? This would require us to have a secondary algorithm that is able to de-
tect the foosball in such a situation. But why should we still use an optical flow
algorithm if we have a different algorithm that allows us to track the foosball at
every possible point of time.
While thinking about such an algorithm, we remembered how we do the (poten-
tial) goal detection. We could just subtract the average background, and this
would leave us with a selection of objects that moved in the last few seconds.
As we did with the goal detection, we first do a background subtraction over
the average of the last 500 frames and then add some postprocessing. Again we
use a 5x5 elliptical kernel is created for morphological operations. The mask is
cleaned of noise using opening and dilation fills the gaps to make the object more
cohesive.

2. Methodology 16

Figure 2.18: This is the frame after background subtraction and postprocessing
(5x5 elliptical kernel, opening and dilation). We see all the objects that moved in
the last few seconds. All the foosballplayers and also the foosball(green rectangel)

Now with the help of that background subtraction we reduced our possibilities
down to a handfull, but how could we differentiate between a player and the
foosball. What we certainly can do is ignore all detected objects with an area
too small or too large to be a foosball. Furthermore, when we look briefly at
Figure 2.18 we see that even though the foosball is not perfectly round, it is still
"rounder" than the rest of the objects. So our next step was to check all our
remaining possibilities for their cirularity. For that purpose, we used a helper
function (Figure 2.19) which calculates the circularity of a contour using the for-
mula circularity = 4π∗area

perimeter2
(where area is the area of the object and perimeter

is the total length of the boundary of the shape), which measures how close the
shape is to a perfect circle. The function returns True if the circularity is within
the range 0.7 to 1.2, indicating that the object is roughly circular. If we had a
perfect circle, the formula would give us 1. If we have too many false positives,
we could increase the lower bound of that range.
If we use that additional helper function, we can drastically reduce the amount of
false positives. But we still have them from time to time. For example, if a foos-
ballplayer looks a little bit too much circular after the background subtraction.
Another problem that occurs is that if the ball is close to a foosballplayer, we
have sometime difficulties to detect it properly (Figure 2.20). Generally speaking,
it provides good results and also is accurate regarding counting goals.

We thought that we could reduce the faulty detection of foosballplayers if we
additionaly added some colortesting. Theoretically, this should help us to de-
termine whether we detect a player or a foosball. While we had some minor
improvement, we also had to realize that that slowed down our code quite a bit.
If we wanna use that algorithm at runtime, that would make quite a difference

2. Methodology 17

Figure 2.19: This function calculates the circularity of a contour using the formula
circularity = 4π∗area

perimeter2
(where area is the area of the object and perimeter is he

total length of the boundary of the shape), which measures how close the shape
is to a perfect circle. The function returns True if the circularity is within the
range 0.7 to 1.2, indicating the object is roughly circular.

Figure 2.20: As on the left we normally detect the foosball , it can happen
sporadically that we mistake a foosballplayer for the foosball (middle) or as on
the right we do not detect the foosball because it is to close to a foosballplayer

whether we could process 30 or 50fps.

With the idea to further improve the accuracy of our balldetection, we looked at
YOLO. YOLO is a state-of-the-art object detection algorithm that detects and
classifies multiple objects in an image or video in a single forward pass. YOLO
divides the image into a grid and predicts bounding boxes and class probabilities
simultaneously for each grid cell, making it extremely fast and suitable for real-
time applications.

We first tried the pretrained models from ultralytics. YOLO has different ver-
sions, we tested YOLOv8n and YOLO11n [4, 5]. This is the 8th and 11th gen-
eration. The letter n means that we use the "nano" model (there are also s
(small), m (medium), l (large) and x (extra large)). The nano model is design for
fast interference (which is exactly what we need if we want to do the analysis at
runtime). All of those models include a class called sportsball. Our hopes were
shattered, we had absolutly no detections at all with the class sportsball. So we
had to take a few more extra steps to make YOLO work.
We decided to create our own set of training data to fine-tune an already-pre-
trained model. Using cvat.ai, a free tool to annotate pictures, we annotated a
total of 430 pictures (Figure 2.21). Those pictures where selected with a focus
on edgecases (e.g., the foosball is partially hidden behind the player).

2. Methodology 18

Figure 2.21: CVAT.ai is a free to use tool to annotate pictures efficently

To train our model, we used all those annotated pictures as training and vali-
dation data. First, we wanted to train the model, locally on a CPU. Running
YOLO on a CPU is possible, but unfortunatly not that fast. We were able to
process/ analyze around 10frames per second. Training those models would have
taken hours. That is why we decided to create a Jupyter Notebook on Google
colab, which allows us to run that training on a gpu. Running it on a GPU was
more than 10 times faster. We trained our models for different amount of epochs
(10,50,100 and 200)(Figure 2.22, Figure 2.23).

Figure 2.22: Results of YOLOv8n trained for 100 epochs on 430 pictures (used
as training and validation)

The only drawback is the slow speed. If we run it on a cpu, we get not much
more than 10 frames per second. We get almost 100 fps if we run it on a gpu
(we used an L4 Tensor Core GPU provided by Google colab). So, theoretically
it would be possible to use YOLO to analyze the frames at runtime if we have
access to a gpu. To analyze prerecorded video files we also suggest doing it on
a gpu. For that reason, we provide in the gitlab repo another Jupyter Notebook
(which can be run on the google colab) to analyze the videos (Figure 2.24.

2. Methodology 19

Figure 2.23: Results of YOLO11n trained for 100 epochs on 430 pictures (used
as training and validation)

Figure 2.24: The balldetection with YOLO was more accurate and fossbals were
detected even if they are fast or partially obscured

After having satisfiable results with the goal detection and the detection of the
foosball, we wanted to move on and tried to integrate those algorithms into our
processing pipeline.
There are a few possibilitis. One thing that we tried was writing all the frames
to a pipe, processing all the frames, writing it to another pipe, and then creating
the hls stream. Because we have a lot of writing and reading here it was just too
slow.
Another approach would be to write our own ffmpeg filter. This would allow
us to do the processing in the ffmpeg framework/pipeline. Writing an own ffm-
peg filter includes that we first download the ffmpeg github repository. We can
now add our own (filter) files and have to register them correctly so they are
compiled when we build ffmpeg. The following document was of great help:
https://github.com/FFmpeg/FFmpeg/blob/master/doc/writing_filters.txt

https://github.com/FFmpeg/FFmpeg/blob/master/doc/writing_filters.txt

2. Methodology 20

It was possible to create new filters, but as soon as we wanted to enable the
use of opencv we got issues while compiling (opencv is in c++, while ffmpeg is
in c)(Figure 2.25, Figure 2.26. After much trial and error this error is still not
resolved.

Figure 2.25: To configure FFMPEG to enable opencv does not work. For further
information we have to look at the log files

Figure 2.26: In the logs we can see that there is problem while compiling because
some code (opencv) is written in c++ while the rest of ffmpeg is written in c

A third approach would be to use opencv to receive and process the streams.While
trying that out, we had to realize that opencv is overwhelmed with the high fram-
erate of 80fps.

In the future, it should be the priority number one to find a way to use those al-
gorithms at runtime. This would allow us to start creating some statistics about
the game’s state and maybe even make some predictions about the future state.

Chapter 3

Results

3.1 Phase 1, Hardware Phase:

We achieved a rigid and robust cameramount (Figure 3.1, Figure 3.2). The
mount is unobtrusive and does not bother players while playing. The aluminium
extrusions and the wooden strip on top allow for great modularity in case of
future upgrades or projects. The whole electronic is properly secured and stuffed
away under the table. There are only the two ethernet cables and one power
cable. Those cables are secured with tape to the ground so no one trips over it.
In addition, we installed strain relief for all cables.

Figure 3.1: Cameramount installed onto the foosballtable

21

3. Results 22

Figure 3.2: CAD Drawings of the Cameramount and Foosballtable

We have two generic Cameras with an IMX219 sensor (80fps at 1080x720). Each
camera is controlled by a Raspberry Pi 5. Those two Raspberry Pi 5 are con-
nected via ethernet cable to the ETHZ network and are powered by a single 65W
powersupply. One of the Raspberry Pis controls a relay (GPIO17). This relay
switches the led strip on and off. The led strip (12V) is powered by an additional
powersupply (Figure 3.3.

Figure 3.3: Schematic on how the Raspberry Pi controls the LED Strip and the
Camera

3. Results 23

3.2 Phase 2, System Phase:

We achieved a system that reliably records and streams a foosball game with a
latency of less than 10 seconds.

Figure 3.4: Schematic on how the Raspberry Pi the VM and the Website interacti
with each other

The Raspberry Pi provides a rtsp stream and is controlled by the VM over an
API[1]. The VM receives the stream and does some minimal processing (fisheye-
lenscorrection and cropping the two streams together) before distributing it as
an hls stream. The VM itself is controlled via an API. The stream is received by
a website (Figure 3.4).
The API of both the Pi and the VM allows one to integrate this project into
other projects.
The system is to a large part automated. It automatically pulls the newest version
of the code from gitlab and automatically starts on reboot. In case something
crashes, the system should automatically be restarted. If this does not work
properly for some reason, we have a simple restart button on the debug page to
manually restart everything.

3. Results 24

Figure 3.5: Debugging webpage, to start and stop streams, the current livestream
is displayed and there is the possibility to watch already recorded games (from
the last week). At the bottom, there are additional buttons to get the logs,
restart the whole system or switch on and off the analysis

This webinterface has two parts. Most important for the user is the livestream
(http://82.130.103.240:5000/)(Figure 3.6), which we provide. For development
and debugging, there also exists a debug page (http://82.130.103.240:5000/debug)
(Figure 3.5).

http://82.130.103.240:5000/
http://82.130.103.240:5000/debug

3. Results 25

Figure 3.6: Webpage to watch the livestream (latency is less then 10 seconds)

Our system uses the following resources. If there is no livestream active, we use
around 1.2G out of 19.5G memory available and the CPU has an average load
of arround 25%. If a livestream is active, we use around 1.3G of memory and
the average load on the CPU is 66% (Figure 3.7). The latency of our stream is
as followed. From the raspberry pi to the vm we hava a latency of roughly 2
seconds. From the VM to the website (includes minimal processing) we have a
latency of around 5 seconds. So the latency in total is around 6 to 8 seconds.

Figure 3.7: CPU and Memory usage of the VM while livestreaming

3. Results 26

3.3 Phase 3, Analysis Phase:

We have three working algorithms. The first one is for (potential) goal detection.
We have two zones. The outer and bigger one for potential goals, the smaller one
for actual goals (Figure 3.8). For each zone we do a background subtraction over
the average of the last 500 frames (at 80fp, that are a little bit more than the last
6 seconds). After that background subtraction we do some postprocessing. A 5x5
elliptical kernel is created for morphological operations. The mask is cleaned of
noise using opening, and dilation fills the gaps to make the object more cohesive.
We then count the pixel change, if the change is over a certeain threshold we
assume that a (potential) goal happened.

Figure 3.8: The outer and bigger zone checks for potential goals, the smaller one
for actual goals.

The second algorithm uses background subtraction and checks for circularity of
detected objects. We subtract the average background and this leaves us with
a selection of objects that moved in the last few seconds. As we did with the
goal detection we first do a background subtraction over the average of the last
500 frames and then add some postprocessing (Figure 3.9). Again we use a 5x5
elliptical kernel that is created for morphological operations. The mask is cleaned
of noise using opening, and dilation fills gaps to make the object more cohesive.
We ignore all detected objects with an area to small or to big to be a foosball.
Then we check our remaining possibilities for their cirularity. For that purpose
we used a helper function which calculates the circularity of a contour using
the formula circularity = 4π∗area

perimeter2
(where area is the area of the object and

perimeter is he total length of the boundary of the shape), which measures how
close the shape is to a perfect circle. The function returns True if the circularity
is within the range 0.7 to 1.2, indicating the object is roughly circular.

3. Results 27

Figure 3.9: This is the frame after background subtraction and postprocessing
(5x5 elliptical kernel, opening and dilation). We see all the objects that moved in
the last few seconds. All the foosballplayers and also the foosball(green rectangel)

The third algorithm uses YOLO. YOLO is a state-of-the-art object detection
algorithm that detects and classifies multiple objects in an image or video in
a single forward pass [4, 5]. YOLO divides the image into a grid and predicts
bounding boxes and class probabilities simultaneously for each grid cell, making
it extremely fast and suitable for real-time applications. We used pretrained
models and finetuned them with our own data. We tested the models on fresh and
previously not seen data and it performed way better than the classical computer
vision algorithm which uses backgroung subtraction. When tested on edegcases
(for example partially covered foosballs or foosball on white background) both
the precision and the recall was more than doubled (Table 3.1). Especially it was
more accurate in tracking partially obscured foosballs and in tracking really fast
foosballs (they appear stretched on the video)(Figure 3.10). The downside is the
lower throughput (of only 10 frames per second) while running it on a cpu.

Algorithm True Positives (TP) False Positives (FP) Precision (%) Recall (%)

Opencv 32 14 69.5 33.3
YOLO8n 87 0 100 89.6
YOLO11n 88 2 97.7 91.6

Table 3.1: Results of the more classical computervision algorithm using opencv,
YOLO8n and YOLO11n. Tested on 100 pictures (including three true negatives),
mainly edgecases (foosball partially covered, on white background)

3. Results 28

Figure 3.10: The balldetection with YOLO was more accurate and foosballs were
detected even if they are fast or partially obscured

Chapter 4

Future Work

Currently we have the alogrithms to do the analysis but we are not yet able to
run them at runtime. It should have high priority to find a solution to that
problem. Those problems are related to the analysis phase (phase 3) and the
following things should be worked on.

1. Implement an ffmpeg filter with opencv. Currently, there is a problem
while compiling our own version of ffmpeg(that supports opencv). Because
opencv is written in c++ while ffmpeg is mostly written in c. If we are able
to find a solution that would automatically allow us to use our classical
computer vision alogrithms as well as YOLO.

2. Analysis at runtime (one possibility would be our own ffmpeg filter). The
challenges are certainly the high framerate we have to process. Reducing
the framerate is not really an option because the foosball moves so fast
that we would miss certain scenes/situations if we would for example only
analyze every third frame.

3. Another interesting idea would be to automatically replay (potential) goals
in slow motion. This would give the players and specatators and interesting
insight into the crucial situations of the game.

4. As soon as we are able to perform an analysis at runtime we can collect data
and produce statistics about the current game state. With those statistics
we could maybe even do predictions about the future state of the game.

After finishing phase 3 in the future there is room open for additional phases or
projects. The system is built in a modular way that allows future projects to
integrate well.

29

Chapter 5

Conclusion

As a foosballplayer myself it was really fun to work at that project. To combine
the passion for hardware projects, computer vision and software. The goal was
to develop a visual tracking system for foosball. Such a visual tracking system
for foosball would allow us to collect data and create statistics on the current
state of the game. With the help of all those data one could for example create
an automated virtual assisted referee. Or we could analyze which team has more
ball possession and we could analyze how fast some of the shots are. We first de-
signed and installed a cameramount and all the necessary hardware (Raspberry
Pi and the led strip). This cameramount is built in a way that would allow one
to mount even more hardware and sensors for a future project. We then moved
on to provide a system that reliably records and streams a foosball game with a
latency of less than 10 seconds. In a third step we started developing algorithms
to detect goals and the foosball.
A further step would be to integrate those algorithms into our existing system.
Introduce runtime analysis and do some statistics with data collected. Really
interesting would also be the if we could predict how likely it is that a certain
team scores a goal in the next few seconds.

30

Bibliography

[1] “https://github.com/bluenviron/mediamtx.”

[2] “https://github.com/opencv/opencv.”

[3] “https://www.ffmpeg.org.”

[4] R. Khanam and M. Hassain, “Yolov11: An overview of the key architectural
enhancements,” Oct. 2024.

[5] “https://github.com/ultralytics/ultralytics.”

31

Appendix A

Documentation

A-1

Appendix A

Hardware

For all the parts used and described in this chapter there are CAD-drawings
which can be downloaded from the gitlab repository.

A.1 Camera Mount

The camera mount is an integral part of this project. On the one hand it holds
both cameras on the other hand it also holds the light strip. To construct the
mount, we used a combination of wooden, plastic, and metal parts, which will be
explained in more detail later.

The following difficulties/problems had to be addressed during the construction
of the Mount. One major challenge was to reduce the movement/vibration along
the axis, especially along the y-axis (Figure A.1).

Figure A.1: Schematic Foosball Table

1

https://gitlab.ethz.ch/disco-students/hs24/automated_foosball_tracking

A. Hardware 2

Our general approach to that problem was to increase the stiffness of our con-
struction and, at the same time, to make the connection to the foosball table as
rigid and movementless as possible. The details on how we achieved this will be
explained later when we discuss the specific parts.

Another challenge we had was that our mount has to be designed in a way
that we do not block (or at least minimize the impact on) the field of view or the
movement of the players.

The mount is designed in such a way that it could be modified and upgraded
in the future. As a result of our use of standard aluminum profiles it is very
easy to add further sensors and equipment in the future. The same holds for the
wooden strip (Figure A.2).

Figure A.2: Overview Foosball Table

A.1.1 Aluminium Frame

We decided to use 40mm by 40mm aluminium extrusions (Figure A.3). This
allowed us to use mostly off the shelf components, screws and connectors. Alu-
minium is lightweight, stiff, and offers a bunch of possibilities to add our own
components, therefore this is the optimal choice for a mount like this. For each
side we needed 3 pieces, with the following lengths: 250mm, 500mm, 600mm
(Figure A.4).

A. Hardware 3

Figure A.3: Dimensions Aluminium Extrusion

Figure A.4: Aluminium extrusions overview, and where they are located on the
foosballtable

A.1.2 Connector

This part connects the cameramount to the foosballtable. The foosballtable
already has two existing holes on each side, which we use as mountpoints. The
connector is split into two parts. On the one hand we have a wooden/plastic
plate (wood is prefered, because of the higher strength). This plate is placed
on the inside of the hole. On the outside we have the aluminium extrusion and
in the hole itself we have a plastic spacer, which helps us to reduce movements
along the y-axis (Figure A.5, Figure A.6).

A. Hardware 4

Figure A.5: Wooden Plate and Plastic (PLA) Spacer

Figure A.6: Installation and location of the connector

A.1.3 Angle 35°

To adress the custom angle of our mountpoints on the foosballtable, we used a
plastic 35° angle (Figure A.7). While it would be more rigid and stiff if we would
use metal, it would be also be more difficult to produce. Therefore we settled
here for a plastic part. For additional support of the angled connector we added
side braces (see next subsection) The angle is mounted with T-Nuts and M6
screws to the angled 250mm long extrusions. To allow a screwed connection to
the vertical 500mm long extrusion we threaded an M8 thread into the extrusion
(Figure A.8).

A. Hardware 5

Figure A.7: 35° Angle

Figure A.8: Installation and location of the angle

A.1.4 Side Braces

We have two wooden (plastic would work, but is less effectiv) braces to stabilize
the connection between the aluminium extrusions. It maximises the stiffness and
minimizes vibration and movement along the y-axis (Figure A.9, Figure A.10).

A. Hardware 6

Figure A.9: Side Brace

Figure A.10: Installation and location of the side braces

A.1.5 Wooden Strip

The wooden strip is mounted on top of the aluminium frame. It is screwed to
the extrusions and allows us to not only mount the cameras and the led strip
but also leaves us plenty of space to install further sensors and equipment for a
further project (Figure A.11).

A. Hardware 7

Figure A.11: The wooden strip is mounted on top of the aluminium frame.

A.2 Cameras

As cameras we used IMX219 generic cameras with a fisheyelens. Both cameras
have a field of view of 130° (Figure A.12). Further specs which are relevant for us
are the resolution and fps we can achieve with those cameras. A framerate of 80
fps at 1080x720 allows us to efficently and correctly track the foosball (under the
asumption that a foosball has a velocity of at most 10m/s). In case if those 80fps
should be to slow to create reliable results one could increase the framerate up
to 200fps as long as we are okay with a reduction in the pictureresolution (down
to 640x480)

Those cameras are mounted with screws to a plastic case for protection against
flying foosballs. Those plasticcases are 3d printed and themself screwed to the
wooden strip (Figure A.13. The Camera Serial Interface (CSI) cable which con-
nects the cameras with the raspberry pis is glued to the wooden bar for an
unobtrusive appearance.

As mentioned before, there is the possiblity to add more/different cameras to
the wooden bar to improve the results or get additional data.

Figure A.12: 130° Camera

A. Hardware 8

Figure A.13: Casing

A.3 Elumination

To garantee lighting that is consistent and to minimize shadows, there is a con-
trollable led-strip (glued to the wooden bar). The LED-Strip ist powered by an
external 12V DC powersupply and controlled by one of the pis (Figure A.14).

Figure A.14: Schematic LED Strip

A. Hardware 9

A.4 Control Unit/ Raspberry Pi

We use the Raspberry Pi 5 to fullfill four main duties. First and most important
the act as a server and offer a small but functional API for all the functionality
explained in the next few paragraphs

Secondly to controll the camera, to start and end the recordings and redirect
the recordings to a mediaserver.

Third: As mentioned before the streams get sent to an RTSP-Mediaserver which
is also running on the raspberry pi. This RTSP-Server is responsible that we can
access the footage via the VM as fast as possible

And the fourth thing that is managed by the Raspberry Pi is the lighting.

Below there is a schematic drawing on how erverything is working together and
how it interacts (Figure A.15).

Figure A.15: Schematic Raspberry Pi

Appendix A

Software

When we look at the software we divide it into the VM side and the Rasperry Pi
side. The schematic below gives us a better understanding of the whole system
(Figure A.1).

Figure A.1: Schematic Raspberry Pi and VM

The communnication between the VM and the PI goes bidirectional. On the one
hand we have an API on the PI which we can use to controll it from the VM.
On the other hand we have an RTSP-Server running on the Pis which allows the
VM to access the recordings/streams in an effficent and timely manner.

Additionally we provide an API on the VM. This is used to feed the website
with up to date information and allows external systems and users to take con-
trol over the VM.

All the details on how the API works will be explained in the corresponding
subsections

10

A. Software 11

A.1 Project Structure

project/
|
|-- env/ % python environement (will be automatically
| % created on setup)
|
|-- CAD/ % CAD files for the 3D printed parts
|
|-- HLS/ % Folder where we save all the HLS Files
|
|-- LOGS/ % Folder where we save all the LOG Files
| % created from the API
|
|-- Maintenance/
| |-- move_old_files.sh % Bash script to move files older than 7
| % days to the external HDD
|
|-- Mediamtx/ % All files to run the RTSP/Media-Server
|
|-- PI/
| |-- P1.py % Script for Pi 1 (responsible for the lighting)
| |-- P2.py % Script for Pi 2
|
|-- Recordings/ % Folder where we save alle the Recordings
|
|-- Setup/
| |-- P1_setup_service.py
| |-- P2_setup_service.py
| |-- VM_setup_service.py
| |-- setup_pi.py
| |-- setup_vm.py
| |-- requirements_pi.txt % requirements for the PI
| |-- requirements_vm.txt % requirements for the VM
|
|-- Start/
| |-- reboot_system.sh % reboots the PIs and restarts the service
| % on the VM
|
|-- Status/
| |-- check_service.py % allows to check for the services and
| % their logs
|

A. Software 12

|-- VM/ % all the scripts that run on the VM
| |-- main.py
| |-- app.py
| |-- control.py
| |-- hls.py
| |-- logs.py
| |-- variables.py
|
|-- VM.log % all the logs of the VM
|-- P1.log % all the logs of Pi 1
|-- P2.log % all the logs of Pi 2
|
|-- Tracking/ % Folder with all the tracking algorithms
| |-- gnerate_trainingsdata/ % Folder with all the scripts to generate
| | % the training data
| |-- Predict_Video_Yolo/ % Videoanalysis with YOLO
| |-- Train_Yolov8_Foosball/ % Training of the YOLOv8n and Yolo11n
| | % model
| |-- results_yolo_training % detailed reports of the training
| |-- weights/ % Folder with the weights of the trained
| | % models
| |-- background_subtraction.py
| |-- goal_detection.py

A.2 Raspberry PI

A.2.1 Setup

To setup a new Raspberry Pi (Figure A.15) one can install the newest release of
Raspberry Pi OS onto the Pi. Connect the Pi to the gitlab repo and then first
execute the Setup/setup_pi.py, this script downloads all the necessary pack-
ages and creates a virtual pyhton environment. Secondly one should execute
the Setup/P1_setup_service.py or Setup/P2_setup_service.py to setup all the
services.

A.2.2 Overview

If you execute the Setup/P1_setup_service.py or the Setup/P2_setup_service.py
script you will set up two independent services. First you will install a service
that automatically start the mediamtx server. We will use this server as a rtsp
server. That guarantees us that we are always ready to stream.

A. Software 13

Figure A.2: Each raspberry pi has for main function. Controlling the Camera,
controlling the lighting, providing an API (to be controlled by the VM) and
providing a stream via rtsp server

Secondly it will install a service that automatically pulls the newest version of
the "build" branch from the gitlab repository and then executes the PI/P1.py or
PI/P2.py file.

Those files do the following:

1. We start a flask server. This provides the API.

2. We wait for an API request. As soon as we have a request to start the
Stream we will create a new thread which handles the whole recording and
redirecting to our RTSP server. We then also call a function that activates
the lighting.

3. After that our server continues to wait for more requests. If we receive a
request to stop the stream, then we end the recording and switch of the
lighting.

A.3 API Raspberry Pi

This API allows us to control the Raspberry Pis from the VM. Currently the
functionality is limited to the basics. In the future this could be extended.

A. Software 14

A.3.1 Authentication

Currently there is no authentication necessary.

A.3.2 Endpoints

GET /start

Description: Starts the recording and automatically redirects the stream
to the RTSP server Request:

GET /start HTTP /1.1
Host: IP-Adress of the Raspberry Pi

Response:

if the stream/recording can be started: 200
{

"message": "Stream started"
}
if the stream/recording is already running:

400
{

"message": "Stream is already running"
}
if there is a server side error: 500
{

"error": "Error description"
}

GET /stop

Description: Stop the recording

Request:

GET /stop HTTP /1.1
Host: IP-Adress of the Raspberry Pi

Response:

A. Software 15

if we were able to stop the stream: 200
{

"message": "State set to Streaming stopped"
}
if there is a server side error: 500
{

"error": "Error description"
}

A.3.3 Error Handling

• **404 Not Found**: The requested Endpoint does not exist

• **500 Not Found**: Serverside Error

A.4 VM

Figure A.3: Schematic VM Overview

As soon as that service is running our VM provides 5 different main tasks (Figure
A.3) The functionality is split up into different files and provided by different
threads (Figure A.4).

A. Software 16

Figure A.4: VM Software Threads

A.4.1 Setup

To install all the necessary packages and libraries and to also create a fitting
virtual environement one can execute the following script: Setup/setup_vm.py
If we execute the Setup/VM_setup_service.py we install a service on the VM,
which automatically pulls the newest version of the "build" branch everytime we
restart the VM. Besides pulling the newest version it takes care of automatically
starting/restarting the VM/main.py file.

A.4.2 Camera Control

To control both our Cameras we take advantage of the API on the Raspberry PI.
Because we have two Raspberry Pis we also have two seperate hreads (Thread
2 and Thread 3) which are both responsible to control one of the Pis.

A.4.3 Communication RTSP / Receiving Streams

As soon as we make the API calls to start a stream we call from Thread 2 a
new thread (Thread 5), whose sole purpose is to receive both streams from the
RTSP servers and proccess them. Processing includes the following steps:

1. Save input1 as well as input2 as an individual mp4 file

2. (Analyse both inputs for potential goals and do balltracking)

3. Crop both inputs together and correct the fisheyelens

4. Save the stream which is now cropped together as an HTTP-Livestream
(HLS)

A. Software 17

A.4.4 Processing

All the processing is defined in the following file: VM/hls.py Before we crop the
inputs together to one stream we do the following steps:

1. Correction of the fisheyelens

2. Transpose both inputs

3. Stack them together

A.4.5 Distributing

As soon as we receive and save our files the flask server (Thread 1) running
on our VM (provides the API and the Website) takes over. It distributes the
livestream and on request also allready recorded games. The API is described
down below.

A.5 API VM

This API allows us to control the VM from our (debug)website or from any exter-
nal system. This allows us to integrate the functionality of recording, livestream-
ing, and analyzing at runtime into other projects.

A.5.1 Authentication

Currently there is no authentication necessary.

A.5.2 Endpoints

GET /start

Description: Starts the recording and automatically redirects the stream
to the RTSP server. Request:

GET /start HTTP /1.1
Host: <IP-Address of the Raspberry Pi>

Response:

if the stream/recording can be started: 200
{

A. Software 18

"status": "success",
"message": "Streaming started successfully",
"streaming_status": [true , "filename"]

}
if there is a server -side error: 500
{

"status": "error",
"message": "Failed to start streaming: <

Error description >"
}

GET /stop

Description: Stops the recording.

Request:

GET /stop HTTP /1.1
Host: <IP-Address of the Raspberry Pi>

Response:

if we were able to stop the stream: 200
{

"status": "success",
"message": "Streaming stopped successfully",
"streaming_status": [false , "filename"]

}
if there is a server -side error: 500
{

"status": "error",
"message": "Failed to stop streaming: <Error

description >"
}

GET /check_status

Description: Returns the current streaming status.

Request:

GET /check_status HTTP /1.1
Host: <IP-Address of the Raspberry Pi>

A. Software 19

Response:

Current streaming status: 200
{

"shouldBlink": <true or false >
}

POST /start_stop

Description: Toggles the state of the recording (start/stop).

Request:

POST /start_stop HTTP /1.1
Host: <IP-Address of the Raspberry Pi>

Response: Redirects to the index page.

GET /get_logs

Description: Downloads the latest formatted log file.

Request:

GET /get_logs HTTP /1.1
Host: <IP-Address of the Raspberry Pi>

Response:

If the log file is available: 200
<File download as an attachment >

If the log file is missing: 404
{

"error": "Log file not found"
}

GET /debug

Description: Displays a debug page listing all available HLS (.m3u8) files
in the directory.

Request:

GET /debug HTTP /1.1
Host: <IP-Address of the Raspberry Pi>

Response: Renders an HTML page displaying the list of files.

A. Software 20

GET /livestream

Description: Streams the currently recording video, or a default file if
none is being recorded.

Request:

GET /livestream HTTP /1.1
Host: <IP-Address of the Raspberry Pi>

Response: Streams the appropriate HLS (.m3u8) file.

GET /<filename>

Description: Serves an HLS (.m3u8 or .ts) file from the directory.

Request:

GET /<filename > HTTP /1.1
Host: <IP-Address of the Raspberry Pi>

Response: Sends the requested file.

GET /play/<filename>

Description: Plays a specified video file directly.

Request:

GET /play/<filename > HTTP /1.1
Host: <IP-Address of the Raspberry Pi>

Response: Sends the requested file to be played.

GET /analysis

Description: Toggles or sets the analysis state.

Request:

GET /analysis?analysis=<true|false >
Host: <IP-Address of the Raspberry Pi>

Response: Redirects to the debug page.

A. Software 21

POST /restart

Description: Restarts the system.

Request:

POST /restart HTTP /1.1
Host: <IP-Address of the Raspberry Pi>

Response: Redirects to the index page.

A.5.3 Error Handling

• 404 Not Found: The requested endpoint or file does not exist.

• 500 Internal Server Error: A server-side error occurred.

	Abstract
	1 Introduction
	2 Methodology
	2.1 Phase 1, Hardware Phase:
	2.2 Phase 2, System Phase:
	2.3 Phase 3, Analysis Phase:

	3 Results
	3.1 Phase 1, Hardware Phase:
	3.2 Phase 2, System Phase:
	3.3 Phase 3, Analysis Phase:

	4 Future Work
	5 Conclusion
	Bibliography
	A Documentation
	A Hardware
	A.1 Camera Mount
	A.1.1 Aluminium Frame
	A.1.2 Connector
	A.1.3 Angle 35°
	A.1.4 Side Braces
	A.1.5 Wooden Strip

	A.2 Cameras
	A.3 Elumination
	A.4 Control Unit/ Raspberry Pi

	A Software
	A.1 Project Structure
	A.2 Raspberry PI
	A.2.1 Setup
	A.2.2 Overview

	A.3 API Raspberry Pi
	A.3.1 Authentication
	A.3.2 Endpoints
	A.3.3 Error Handling

	A.4 VM
	A.4.1 Setup
	A.4.2 Camera Control
	A.4.3 Communication RTSP / Receiving Streams
	A.4.4 Processing
	A.4.5 Distributing

	A.5 API VM
	A.5.1 Authentication
	A.5.2 Endpoints
	A.5.3 Error Handling

