
Distributed

 Computing

Expressive GNNs for SAT Solving
through Substructure Counting

Semester Thesis

Jeremy Gleixner

jgleixner@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Saku Peltonen, Joël Mathys
Prof. Dr. Roger Wattenhofer

June 17, 2025

Acknowledgements

I thank my supervisors Saku Peltonen and Joël Mathys for their guidance and
support throughout this thesis, as well as Prof. Dr. Roger Wattenhofer for the
opportunity to conduct this work. Further thanks go to the Computer Engineer-
ing and Networks Laboratory (TIK) for providing the computational resources
used throughout the project.

i

Abstract

Graph Neural Networks (GNNs) have emerged as a promising tool for solving
the Boolean Satisfiability Problem (SAT) with the help of machine learning tech-
niques. To further the performance of GNN based SAT solvers, we propose the
introduction of substructure counts to message passing neural networks. We
implement cycle count node features in the G4SATBench benchmark framework
and analyze their potential to increase the performance of SAT solvers. Our find-
ings indicate that simple cycle counts introduced to initial embeddings of nodes
may not be enough to significantly increase expressivity of GNNs in SAT solving
settings.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Related Work 2

2.1 SAT solvers . 2

2.2 SAT solving with GNNs . 2

3 Preliminaries 4

3.1 SAT Problem . 4

3.1.1 CNF Formula . 4

3.1.2 Graph Representation . 4

3.2 Graph Neural Networks . 5

3.2.1 Limits on expressivity . 5

3.2.2 Substructure Counts . 5

3.2.3 Simple Cycles . 6

3.3 G4SATBench . 6

3.3.1 Prediction Tasks . 6

3.3.2 Models . 6

3.3.3 Loss Functions . 7

3.3.4 Evaluation . 8

4 Implementation 9

4.1 Datasets . 9

4.1.1 Base Datasets . 9

4.1.2 Regular Vertex Cover Dataset 9

4.2 Node Features . 10

iii

Contents iv

4.2.1 Cycle Counts . 10

4.2.2 Edge Modes . 10

4.2.3 Patterns . 11

4.2.4 Merging Feature Data with Embeddings 11

5 Results & Evaluation 13

5.1 G4SATBench Datasets . 13

5.1.1 Satisfiabilty Prediction . 13

5.1.2 Assignment Prediction . 14

5.2 Regular Vertex Cover . 15

5.2.1 Satisfiabilty Prediction . 15

5.2.2 Assignment Prediction . 15

6 Conclusion 19

6.1 Summary . 19

6.2 Future Work . 19

Bibliography 21

Chapter 1

Introduction

The Boolean Satisifablity Problem (SAT) is a fundamental problem of computer
science and logic. It was the first problem to be proven NP-complete [1] and has
a wide range of real-world applications, including hardware and software verifica-
tion, automated planning and scheduling, cryptographic analysis, optimization,
and artificial intelligence, among others. Consequently, there has been significant
interest over the last few decades in solving SAT instances efficiently. However,
modern SAT solvers often rely on heuristics designed by hand, which is both
time-consuming and challenging.

Graph Neural Networks (GNNs) have been proposed as a potential alterna-
tive to advance the performance of SAT solvers. In recent years, they have been
evolving rapidly and have shown promising results in processing complex struc-
tured data. Multiple attempts have been made to leverage GNNs to solve SAT
instances.

Despite their ability to analyze structured data, GNNs are fundamentally
limited in their expressive power. They fail to capture certain structures in the
graph due to the local and iterative nature of message passing. One proposed
mitigation is to enhance the expressive power of these models by reintroducing
certain structural information back into the model. In this work, we analyze
whether cycle counts as node features offer an increase in performance for SAT
solving tasks.

1

Chapter 2

Related Work

In the following sections, we briefly present an overview of the current state of
modern SAT solvers and prior attempts at using GNNs for the problem.

2.1 SAT solvers

Despite the high relevance of the SAT problem, performance increases in modern
SAT solvers remain limited, with a lack of major breakthroughs in recent years
[2]. Solvers have been following established paradigms for multiple decades, with
incremental improvements primarily drawn from sophisticated heuristics to effi-
ciently navigate the vast search space. Prominent modern SAT solvers mainly use
conflict-driven clause learning (CDCL) and local search (LS) methods [3]. Craft-
ing such heuristics is challenging and requires a comprehensive understanding of
SAT solvers. Additionally, these heuristics are often tailored to specific problems
and do not generalize well to other SAT instances, requiring continuous effort for
novel applications.

Considering these challenges, machine learning based approaches offer a sig-
nificantly less labor intensive alternative to traditional methods. Especially deep
learning techniques have been evolving rapidly and advancing into the field of
combinatorial problems, opening up new possibilities for learning based SAT
solvers [4].

2.2 SAT solving with GNNs

In recent years, GNNs have demonstrated strong capabilities in learning from
structured data [5, 6, 7], inspiring a surge of research attempting to leverage
them for SAT solving. GNNs offer an inherent way to process SAT instances,
given that Boolean formulas in CNF can be represented as bipartite graphs.

One influential attempt at SAT solving with GNNs is NeuroSAT [8]. It
demonstrates the ability of a pure GNN architecture to predict the satisfiability

2

2. Related Work 3

of SAT instances and even produce satisfying assignments in some cases. A more
recent example is QuerySAT [9], which introduces a query mechanism instead of
calculating the output from input values alone.

In contrast to these standalone neural solvers, there have been several alterna-
tive approaches which combine GNN architectures with traditional SAT solvers.
These neural-guided solvers introduce learning-directed heuristics, helping in the
search procedure and reducing the need for manual intervention [10, 11, 12, 13].

In an attempt to create a systematic way to quantify the advancement in
the field of GNN based SAT solvers, the benchmark framework G4SATBench
was proposed [14]. G4SATBench provides the ability to evaluate GNN SAT
solvers on a diverse range of datasets related to different areas of SAT problems.
It re-implements popular GNN SAT solver architectures and supports multiple
prediction tasks and training objectives to compare the SAT solving performance
of different models. G4SATBench is the foundation of our work, as we extend
it’s functionality to support substructe counts as node features.

Chapter 3

Preliminaries

3.1 SAT Problem

A Boolean formula consists of Boolean variables, logical operators and parenthe-
ses. The variables can take the value of either true or false. Logical operators such
as AND/conjunction (∧), OR/disjunction (∨), and NOT/negations (¬) connect
these variables together and construct more complex expressions, which again
evaluate to either true or false. A formula is labeled as satisfiable if there exists
an assignment of Boolean values to its variables so that the entire formula eval-
uates to true. If there is no such assignment, the formula is labeled unsatisfiable.
The Boolean Satisfiability (SAT) Problem asks, if a given formula is satisfiable.

3.1.1 CNF Formula

It is common to give Boolean formulas in conjunctive normal form (CNF), where
the formula is written as conjunctions (∧) of clauses. Each clause consists of
disjunctions of literals, where a literal is a Boolean variable or its negation. A
Boolean formula in CNF form is satisfied if at least one literal of each clause
evaluates to true.

The majority of modern SAT solvers operate on CNF inputs, including the
G4SATBench framework and the work we present here.

3.1.2 Graph Representation

In order to utilize GNNs for SAT solving, we need a way to represent CNF
formulas as graphs. G4SATBench provides two implementations for this task:
LCG* and VCG*. Our work is using the VCG* format, which is a variation of
the Variable-Clause Graph (VCG). The VCG* is a bipartite graph with variables
on one side and clauses on the other side. A variable is connected to a clause
with an edge if it appears in the clause of the underlying CNF formula. VCG*
has two types of edges, corresponding to the polarity of the variable in the clause.

4

3. Preliminaries 5

Figure 3.1: VCG* of the CNF formula (x1 ∨ ¬x2) ∧ (x1 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3),
reproduced from [14]

An example of this encoding can be seen in figure 3.1.

3.2 Graph Neural Networks

3.2.1 Limits on expressivity

GNNs based on message passing are fundamentally limited in their expressivity,
in particular in their ability to distinguish certain non-isomorphic graphs. This
is an inherent property of message passing. Nodes aggregate information from
their local neighborhood using permutation-invariant aggregation functions. This
process can be shown to be at most as expressive as the Weisfeiler-Lehman (WL)
test, meaning in cases where the WL-test is unable to distinguish two graphs,
GNNs also fail to do so. This restricts their ability to learn certain structural
patterns in graph data.

3.2.2 Substructure Counts

As GNNs are blind to certain structural patterns, we lose potentially relevant
information encoded in the structure of the graph. One proposed mitigation
to this problem is to explicitly inject structural information directly into the
message passing process. We count substructures in the graph and store this
information as node or graph features, potentially providing useful information
the model would not be able to learn otherwise. This information can then be
propagated through normal message passing iterations. Substructure counts can
be useful in tasks such as community detection, prediction of molecule properties,
and classification of document structures. Simple Cycles are commonly used
substructures for these applications.

3. Preliminaries 6

3.2.3 Simple Cycles

In graph theory, a simple cycle, or just cycle, is a closed path where no node
appears twice. The length of a cycle is the number of nodes on the path.

In the case of an undirected graph, two simple cycles are said to be distinct if
they are 1) not cyclic permutations of each other and 2) not cyclic permutations
of the other’s reversal.

3.3 G4SATBench

In this section, we provide a brief overview of the functionality and implementa-
tion of the used benchmark framework G4SATBench. We cover only parts with
relevance to our modifications.

3.3.1 Prediction Tasks

In the evaluation of our implementation, we used two types of prediction tasks:
satisfiability predictions and satisfying assignment predictions.

Satisfiability

Satisfiability tasks are modeled as binary graph classifications tasks, where the
graph representation of a given SAT instance is either classified as satisfiable or
as unsatisfiable.

Assignment

Assignment tasks predict valid assignments for given SAT instances. This is
implemented as binary node classification task, where the variables of the CNF
formula are either classified as true or as false. Note that we only use satisfiable
SAT instances for assignment tasks.

3.3.2 Models

G4SATBench implements four different GNN architectures for SAT solving: Neu-
roSAT, GCN, GGNN, and GIN. Our modifications are compatible with all models
supporting the VCG* format, meaning all models expect NeuroSAT which only
works with LCG*.

3. Preliminaries 7

3.3.3 Loss Functions

For satisfiability tasks, G4SATBench implements binary cross-entropy loss be-
tween predictions and labels. For assignment tasks, three different training
paradigms are provided: supervised, unsupervised 1 and unsupervised 2. We
only briefly show the actual formulas here and refer to the G4SATBench paper
for a more in-depth explanation [14].

Supervised

Analogously to the satisfiablilty task, supervised training loss for assignment
tasks is implemented as binary cross-entropy loss between predictions and labels.
However, predictions are performed as classifications for variables in this case
and not for the entire graph. This means that the ground truth of the label is a
single valid assignment and may not represent all possible valid assignments.

Unsupervised 1

The first unsupervised loss aims to differentiate and maximize the satisfiability
value of the CNF formula [15]. It introduces smooth max and min functions
given in (3.1) and minimizes the loss according to (3.2).

Smax(x1, x2, . . . , xd) =

∑d
i=1 xi · exi/τ∑d

i=1 e
xi/τ

, Smin(x1, x2, . . . , xd) =

∑d
i=1 xi · e−xi/τ∑d

i=1 e
−xi/τ

,

(3.1)

Lϕ(x) =
(1− S(x))κ

(1− S(x))κ + S(x)κ
(κ ≥ 1 is a predefined constant) (3.2)

Unsupervised 2

The second unsupervised loss is calculated as follows [9]:

Vc(x) = 1−
∏
i∈c+

(1−xi)
∏
i∈c−

xi, Lϕ(x) = − log

∏
c∈ϕ

Vc(x)

 = −
∑
c∈ϕ

log(Vc(x)),

(3.3)

c+ and c− are the sets of variables that appear in clause c with the respective
polarity.

3. Preliminaries 8

Initial Embeddings

G4SATBench supports two ways of initializing the embeddings of nodes in the
GNNs: Random and Learned. Random initializes the embeddings of each node
with random values, whereas with Learned, the initial values are trainable pa-
rameters.

To further test the expressivity of models, we introduce a third initialization
mode Ones which initializes all embeddings to 1.

3.3.4 Evaluation

For Satisfiability, the testing accuracy is the fraction of correctly classified SAT in-
stances. In assignment tasks, the testing accuracy is the fraction of SAT instances
that received a satisfying assignment. We perform all read-outs for the satisfying
assignment using the standard decoding option provided by G4SATBench. All
configurations are run with 3 different seeds.

Chapter 4

Implementation

In the following sections, we provide a detailed explanation of our implementa-
tion.

4.1 Datasets

4.1.1 Base Datasets

We tested our implementation on 6 out of the 7 base datasets provided in
G4SATBench, shown in Figure 4.1. We had to exclude the PS dataset due to
non-functioning generation code. Furthermore, we were unable to evaluate the
Patterns edge mode on the CA dataset due to the inherently high cycle count of
the dataset, rendering the full traversal of each cycle computationally unfeasible.

4.1.2 Regular Vertex Cover Dataset

In addition to the base datasets of G4SATBench, we created a variation of the
k-Vercov dataset termed k-Vercov-reg. In k-Vercov-reg, we generate vertex cover

Figure 4.1: Overview of G4SATBench datasets, reproduced from [14]

9

4. Implementation 10

problems of regular graphs with a set degree. We then find the smallest possible
k for each graph and create vertex cover instances for k−2, k−1, k, k+1. Con-
sequently, two of the resulting SAT instances will be satisfiable, and the other
two will be unsatisfiable. We fixed the degree of regular graphs to 3 for all
experiments.

Our rationale for including this dataset is the relevance of substructure counts
for the problem. Cycle counts of length 6 in the SAT graph encoding should
correlate with the number of triangles a node is part of in the original graph,
which seems relevant to the problem.

4.2 Node Features

In the original G4SATBench implementation, embedding of nodes relied only on
initialization method and aggregated data via message passing. We introduce
individual node features depending on the local structures of the graph.

4.2.1 Cycle Counts

Our used substructure count is cycle counting. Concretely, we get all the simple
cycles of a graph of a specified set of cycle lengths. For each node, we then count
the number of cycles it is a part of and store the information as node features for
each specified length.

4.2.2 Edge Modes

As described in Section 3.1.2, the used VCG* graph representation has positive
and negative edge types, depending on the polarity the variable has in the re-
spective clause. Since that differentiation is highly relevant to the satisfiability
problem, failing to take edge types into account when counting cycles could lead
to the loss of potentially valuable information.

We introduce four different kinds of edge modes, relating to how edge types
are handled in cycle counting:

• Combined

• Positive

• Negative

• Patterns

4. Implementation 11

Combined

Edge mode Combined is the general case where we ignore edge types. For this
mode, the graph is converted to a default bipartite graph with a single edge type
and both positive and negative connections result in a normal edge. Cycles are
then counted on the resulting graph.

Positive and Negative

Similarly to the Combined mode, we convert the graph to a default bipartite
graph with a single edge type. However, in contrast to the previous mode, here
we dismiss edges that are not of the specified type. The resulting graph contains
only a subset of the edges of the original graph. Cycles are then counted on this
new subgraph.

4.2.3 Patterns

In this mode, we evaluate all cycles present in the graph, but we discriminate
based on the edge type pattern of the cycles. This means we count cycles sepa-
rately for every possible combination of positive and negative edges. We achieve
this through the following steps:

Step 1: We calculate all possible combinations of edge types depending on
the relevant cycle length. The resulting combinations are termed Pattern Groups.
Note that we count the reversal of a pattern as the same pattern. This is due to
the undirected nature of the graphs we are working with.

Step 2: We find all cycles of the relevant length as we do in the Combined
mode.

Step 3: We traverse the cycles found and track the type of edges used.

Step 4: For each node in the cycle, we rotate the pattern according to the
position of the node in the cycle. We then check to see which pattern group the
edge pattern belongs to. Note that, as previously mentioned, we also check for
the reversal of the pattern.

Step 5: Finally, we increase the count of the respective pattern group for
that node.

4.2.4 Merging Feature Data with Embeddings

In order to maintain full compatibility with all VCG* models of G4SATBench,
we merge the calculated node features with the initial embeddings before passing
them through the models. To achieve this, we introduce an additional linear
layer projecting the initial embeddings vector and the node features vector to

4. Implementation 12

the dimensionality of the embeddings of the model. We mark the linear layer as
trainable parameter.

Chapter 5

Results & Evaluation

In this chapter, we present and evaluate the results of our experiments. Our eval-
uation is divided into two parts: model performances on the datasets included in
G4SATBench, and model performances on our implemented regular vertex cover
dataset. All configurations are run with 3 different seeds, the standard deviation
is indicated as error bars in the figures. All cycle counts on the G4SATBench
datasets have been run with cycle length of 4. Experiments on our added regular
vertex cover dataset were run with cycle length of 6 due to the explanation given
in Section 4.1.2.

5.1 G4SATBench Datasets

5.1.1 Satisfiabilty Prediction

Table 5.1 contains the results of the satisfiability prediction tasks. We provide a
graphical representation in Figure 5.1. We evaluated three different edge types
for the node features. Combined, Pos, Neg means that each node has 3 features
with substructure counts for the respective edge types. Refer to Section 4.2.2 for
a detailed explanation.

From the data, we can see that the models with node features do not perform
better than the models without. Furthermore, we note that certain datasets are
more prone to random variation in accuracy outcomes between runs.

Table 5.1: Testing accuracy of satisfiability prediction tasks.

Init Emb Node Features Dataset

3-sat k-clique k-domset k-vercov sr

Learned
None 0.83 0.77 0.94 0.98 0.73
Combined/Neg/Pos 0.85 0.72 0.79 0.96 0.68
Patterns 0.86 0.65 0.86 0.97 0.61

Ones
None 0.81 0.73 0.87 0.88 0.59
Combined/Neg/Pos 0.80 0.67 0.89 0.98 0.78
Patterns 0.87 0.62 0.74 0.94 0.81

13

5. Results & Evaluation 14

0.0

0.2

0.4

0.6

0.8

1.0
init_emb=learned

3-sat k-clique k-domset k-vercov sr AVG
0.0

0.2

0.4

0.6

0.8

1.0
init_emb=ones

Dataset

Te
st

 A
cc

ur
ac

y
Node Features

none combined, pos, neg patterns

Figure 5.1: Testing accuracy of satisfiability prediction tasks. Colored bars rep-
resent the different cycle count node features used.

5.1.2 Assignment Prediction

We present the results for the assignment prediction tasks in Table 5.2, a graphical
representation can be seen in Figure 5.2. In addition, we provide a comparison
that includes the CA dataset and in turn excludes the edge mode Patterns in
Figure 5.3. Reasons for the exclusion of the CA dataset can be found in Section
4.1.1.

Again, we did not observe an increase in the test accuracy with the inclusion
of node features of either type. Note that the runs on k-Domset and k-Vercov
dataset fail for the Unsupervised 1 loss and show significant variations for the
Unsupervised 2 loss. This is in line with previous findings of the authors of the
G4SATBench paper [14]. Lastly, we point out the test accuracy on the CA dataset
in the Supervised loss case, presented in Figure 5.3. A possible explanation for
this low accuracy is that the CA dataset by design has many possible valid
assignments. The supervised loss, however, only trains the model on one possible
solution and thus may hinder the ability of the model to generalize well.

5. Results & Evaluation 15

Table 5.2: Testing accuracy of assignment prediction tasks.

Init Emb Loss Node Features Dataset

3-sat k-clique k-domset k-vercov sr

Learned

SUP
None 0.66 0.53 0.46 0.71 0.56
Combined/Neg/Pos 0.59 0.48 0.33 0.65 0.58
Patterns 0.59 0.55 0.41 0.64 0.55

UNSUP 1
None 0.78 0.41 0.00 0.00 0.69
Combined/Neg/Pos 0.77 0.42 0.00 0.00 0.65
Patterns 0.77 0.55 0.00 0.00 0.65

UNSUP 2
None 0.76 0.61 0.32 0.31 0.64
Combined/Neg/Pos 0.73 0.64 0.26 0.52 0.65
Patterns 0.74 0.59 0.00 0.31 0.62

Ones

SUP
None 0.63 0.41 0.29 0.64 0.60
Combined/Neg/Pos 0.57 0.57 0.32 0.68 0.59
Patterns 0.61 0.41 0.35 0.65 0.52

UNSUP 1
None 0.76 0.39 0.00 0.00 0.69
Combined/Neg/Pos 0.76 0.38 0.00 0.00 0.67
Patterns 0.75 0.49 0.00 0.00 0.64

UNSUP 2
None 0.74 0.59 0.62 0.56 0.64
Combined/Neg/Pos 0.73 0.49 0.31 0.52 0.62
Patterns 0.72 0.62 0.60 0.31 0.58

5.2 Regular Vertex Cover

5.2.1 Satisfiabilty Prediction

We present the result of the satisfiability prediction tasks evaluated on the regular
vertex cover dataset in Table 5.3 with a graphical representation in Figure 5.4. In
this case, we only use edge mode Combined for node features since the relevant
information is encoded only with negative literals in k-Vercov-reg. Recall that
we use cycle length of 6 for k-Vercov-reg.

We see no improvement on testing accuracy when using node features on
the regular vertex cover dataset. While there appears to be a trend of features
negatively impacting accuracy, the correlation did not reach significance.

We mention that for all results, the accuracy was either 1, meaning fully
correct classification of all SAT instances, or 0.5, meaning unable to make any
predictions beyond random chance. This indicates that the models evaluated on
the regular vertex cover either correctly learn to classify all instances or none.
We hypothesize that this is due to regular nature of the dataset.

5.2.2 Assignment Prediction

The assignment prediction for the regular vertex cover failed for all attempted
runs, regardless of the configuration. As shown in Table 5.4, the models produced
no valid assignments. We omit the graphic representation of these results.

5. Results & Evaluation 16

0.00

0.25

0.50

0.75

1.00
loss=supervised, init_emb=learned loss=supervised, init_emb=ones

0.00

0.25

0.50

0.75

1.00
loss=unsupervised_1, init_emb=learned loss=unsupervised_1, init_emb=ones

3-sat k-clique k-domset k-vercov sr AVG
0.00

0.25

0.50

0.75

1.00
loss=unsupervised_2, init_emb=learned

3-sat k-clique k-domset k-vercov sr AVG

loss=unsupervised_2, init_emb=ones

Dataset

Te
st

 A
cc

ur
ac

y

Node Features
none combined, pos, neg patterns

Figure 5.2: Testing accuracy of assignment prediction tasks. Colored bars repre-
sent the different cycle count node features used.

Table 5.3: Testing accuracy of satisfiability prediction tasks, evaluated on the
k-Vercov-reg dataset.

Node Features Init Embeddings Accuracy

Mean Std

None
Learned 1.00 0.00
Ones 0.67 0.29
Random 1.00 0.00

Combined
Learned 0.83 0.29
Ones 0.67 0.28
Random 0.67 0.28

5. Results & Evaluation 17

0.00

0.25

0.50

0.75

1.00
loss=supervised, init_emb=learned loss=supervised, init_emb=ones

0.00

0.25

0.50

0.75

1.00
loss=unsupervised_1, init_emb=learned loss=unsupervised_1, init_emb=ones

3-sat ca k-clique k-domset k-vercov sr AVG
0.00

0.25

0.50

0.75

1.00
loss=unsupervised_2, init_emb=learned

3-sat ca k-clique k-domset k-vercov sr AVG

loss=unsupervised_2, init_emb=ones

Dataset

Te
st

 A
cc

ur
ac

y
Node Features

none combined, pos, neg

Figure 5.3: Testing accuracy of assignment prediction tasks. Colored bars rep-
resent the different cycle count node features used. Variant of Figure 5.2 with
dataset CA included and pattern cycle count features excluded.

learned ones random AVG
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Initial Embeddings

Te
st

 A
cc

ur
ac

y

Node Features
none combined

Figure 5.4: Testing accuracy of satisfiability prediction task, evaluated on the
regular vertex cover dataset. The color of the bars indicate whether cycle count
node features were used.

5. Results & Evaluation 18

Table 5.4: Testing accuracy of assignment prediction tasks, evaluated on the
regular vertex cover dataset. All runs were performed using the Learned initial-
ization

Node Features Loss Accuracy

Mean SD

None
Supervised 0.00 0.00
Unsupervised 1 0.00 0.00
Unsupervised 2 0.00 0.00

Combined
Supervised 0.00 0.00
Unsupervised 1 0.00 0.00
Unsupervised 2 0.00 0.00

Chapter 6

Conclusion

6.1 Summary

In this work, we analyze the viability of cycle count node features to increase
the performance of GNN based SAT solvers. We introduce node features to
G4SATBench and provide functionality to count cycles while taking into account
the different kind of edge types of the VCG* representation. We also introduce
a new dataset with regular vertex cover instances of set degree and provide an
additional initialization of node embeddings with ones.

Our findings indicate that providing cycle counts as initial node features alone
is not enough to significantly increase the performance of GNNs in the setting
of SAT solving. We hypothesize that differentiating based on edge type might
not be enough and more advanced substructure counts might be necessary to
achieve an increase in performance. Further, we acknowledge the possibility that
only merging the node features in the initial embeddings of the models might
not be enough, and more aggressive injection of substructure information could
potentially yield better results. Lastly, the datasets implemented in G4SATBench
might not be a good representation of SAT instances where substructure counts
provide useful information.

6.2 Future Work

Although our results did not suggest an increase in performance, we believe that
further exploration of the topic is merited. We propose the following starting
points for future work in this area:

• Expand the parameters of cycle counts to other lengths than the ones we
explored.

• Introduce node features into message passing beyond initialization of em-
beddings.

19

6. Conclusion 20

• Introduce substructure counts beyond counting simple cycles of different
edge patterns.

• Evaluate on datasets with instances where substructure counts are known
to provide crucial information.

Bibliography

[1] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings
of the Third Annual ACM Symposium on Theory of Computing, ser. STOC
’71. New York, NY, USA: Association for Computing Machinery, 1971, p.
151–158. [Online]. Available: https://doi.org/10.1145/800157.805047

[2] W. Guo, H.-L. Zhen, X. Li, W. Luo, M. Yuan, Y. Jin, and J. Yan, “Machine
learning methods in solving the boolean satisfiability problem,” Machine
Intelligence Research, vol. 20, no. 5, p. 640–655, Jun. 2023. [Online].
Available: http://dx.doi.org/10.1007/s11633-022-1396-2

[3] N. Eén and N. Sörensson, “An extensible sat-solver,” in SAT, ser.
Lecture Notes in Computer Science, E. Giunchiglia and A. Tacchella,
Eds., vol. 2919. Springer, 2003, pp. 502–518. [Online]. Available:
http://dblp.uni-trier.de/db/conf/sat/sat2003.html#EenS03

[4] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial
optimization: a methodological tour d’horizon,” 2020. [Online]. Available:
https://arxiv.org/abs/1811.06128

[5] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph sequence
neural networks,” 2017. [Online]. Available: https://arxiv.org/abs/1511.
05493

[6] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2017. [Online]. Available: https://arxiv.org/abs/
1609.02907

[7] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?” 2019. [Online]. Available: https://arxiv.org/abs/1810.00826

[8] D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill,
“Learning a sat solver from single-bit supervision,” 2019. [Online]. Available:
https://arxiv.org/abs/1802.03685

[9] E. Ozolins, K. Freivalds, A. Draguns, E. Gaile, R. Zakovskis, and
S. Kozlovics, “Goal-aware neural sat solver,” in 2022 International Joint
Conference on Neural Networks (IJCNN). IEEE, Jul. 2022, p. 1–8.
[Online]. Available: http://dx.doi.org/10.1109/IJCNN55064.2022.9892733

21

https://doi.org/10.1145/800157.805047
http://dx.doi.org/10.1007/s11633-022-1396-2
http://dblp.uni-trier.de/db/conf/sat/sat2003.html#EenS03
https://arxiv.org/abs/1811.06128
https://arxiv.org/abs/1511.05493
https://arxiv.org/abs/1511.05493
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1802.03685
http://dx.doi.org/10.1109/IJCNN55064.2022.9892733

Bibliography 22

[10] D. Selsam and N. Bjørner, “Guiding high-performance sat solvers with
unsat-core predictions,” 2019. [Online]. Available: https://arxiv.org/abs/
1903.04671

[11] W. Zhang, Z. Sun, Q. Zhu, G. Li, S. Cai, Y. Xiong, and L. Zhang,
“Nlocalsat: Boosting local search with solution prediction,” in Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence,
ser. IJCAI-PRICAI-2020. International Joint Conferences on Artificial
Intelligence Organization, Jul. 2020, p. 1177–1183. [Online]. Available:
http://dx.doi.org/10.24963/ijcai.2020/164

[12] J. M. Han, “Enhancing sat solvers with glue variable predictions,” 2020.
[Online]. Available: https://arxiv.org/abs/2007.02559

[13] Z. Li and X. Si, “Nsnet: A general neural probabilistic framework for
satisfiability problems,” 2022. [Online]. Available: https://arxiv.org/abs/
2211.03880

[14] Z. Li, J. Guo, and X. Si, “G4SATBench: Benchmarking and
advancing SAT solving with graph neural networks,” Transactions
on Machine Learning Research, 2024. [Online]. Available: https:
//openreview.net/forum?id=7VB5db72lr

[15] S. Amizadeh, S. Matusevych, and M. Weimer, “Learning to solve
circuit-sat: An unsupervised differentiable approach,” in International
Conference on Learning Representations, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:53544639

https://arxiv.org/abs/1903.04671
https://arxiv.org/abs/1903.04671
http://dx.doi.org/10.24963/ijcai.2020/164
https://arxiv.org/abs/2007.02559
https://arxiv.org/abs/2211.03880
https://arxiv.org/abs/2211.03880
https://openreview.net/forum?id=7VB5db72lr
https://openreview.net/forum?id=7VB5db72lr
https://api.semanticscholar.org/CorpusID:53544639

	Acknowledgements
	Abstract
	1 Introduction
	2 Related Work
	2.1 SAT solvers
	2.2 SAT solving with GNNs

	3 Preliminaries
	3.1 SAT Problem
	3.1.1 CNF Formula
	3.1.2 Graph Representation

	3.2 Graph Neural Networks
	3.2.1 Limits on expressivity
	3.2.2 Substructure Counts
	3.2.3 Simple Cycles

	3.3 G4SATBench
	3.3.1 Prediction Tasks
	3.3.2 Models
	3.3.3 Loss Functions
	3.3.4 Evaluation

	4 Implementation
	4.1 Datasets
	4.1.1 Base Datasets
	4.1.2 Regular Vertex Cover Dataset

	4.2 Node Features
	4.2.1 Cycle Counts
	4.2.2 Edge Modes
	4.2.3 Patterns
	4.2.4 Merging Feature Data with Embeddings

	5 Results & Evaluation
	5.1 G4SATBench Datasets
	5.1.1 Satisfiabilty Prediction
	5.1.2 Assignment Prediction

	5.2 Regular Vertex Cover
	5.2.1 Satisfiabilty Prediction
	5.2.2 Assignment Prediction

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	Bibliography

