
Distributed

 Computing

GNN-enhanced AlphaZero for
two-player games

Semester Thesis

Andrei-Horia Pacurar

hpacurar@ethz.ch

Distributed Computing Group
Computer Engineering and Networks Laboratory

ETH Zürich

Supervisors:
Peltonen Sakari, Dauncey Sam
Prof. Dr. Roger Wattenhofer

June 29, 2025

Acknowledgements

I would like to express my sincere gratitude to my mentors, Sakari Peltonen and
Sam Dauncey, for offering me the opportunity to pursue this semester project
under their supervision. Their guidance, support, time, and feedback throughout
the process have been invaluable to the contributions of this project.

i

Abstract

Two-player games such as Go and Chess are highly complex and difficult to opti-
mize, yet learning models have steadily improved at mastering them—often sur-
passing human performance. Despite this progress, most models evaluate game
states by simulating sequences and summarizing the outcomes as a single scalar
value, where higher values indicate better positions. This compresses strategic
insight and limits the model’s ability to learn from the structure of the search
process. AlphaZero, one of the most successful frameworks, follows this approach
by combining a deep convolutional neural network with Monte Carlo Tree Search
(MCTS). In this thesis, we enhance AlphaZero by introducing a Graph Neural
Network (GNN) that allows message passing between related game states. We
represent MCTS trees as graphs—with nodes as board positions and edges as
transitions—enabling the model to learn from both individual states and their
structural relationships. We propose two major contributions: (1) during self-
play, we periodically capture search trees at different depths and train the GNN
to predict improved outcomes by comparing shallow and extended searches, and
(2) the system alternates between standard AlphaZero training and GNN refine-
ment, allowing it to gradually integrate relational reasoning. Our experiments
show that the GNN-enhanced model consistently outperforms the standard ver-
sion in direct matches, demonstrating that leveraging search structure improves
both strategic understanding and overall performance.

ii

Contents

Acknowledgements i

Abstract ii

1 GNN-enhanced AlphaZero 1

1.1 Introduction . 1

1.2 Previous Work . 2

1.3 Our Method . 3

1.3.1 Self-Play with Graph Data Collection 4

1.3.2 Dual-Phase Training Pipeline 5

1.4 Results . 7

Bibliography 10

iii

Chapter 1

GNN-enhanced AlphaZero

1.1 Introduction

Two-player games like Chess, Go, and Shogi have long been used to evaluate
progress in artificial intelligence due to their clear rules, strategic depth, and
high complexity. Over the years, models have steadily improved—from early
rule-based programs to deep learning approaches that heavily rely on reinforce-
ment learning tactics. This shift has led to breakthroughs such as AlphaZero,
which learns strong policies and value estimates directly from experience, with
no manual intervention. However, AlphaZero evaluates a sequence of game states
by assigning a scalar value to the final outcome, and propagates that value back-
ward to all states in the sequence. If the outcome is favorable, all preceding states
receive a high value, and vice versa. This compresses nuanced strategic reason-
ing into a single number, preventing the model from understanding why certain
decisions are good or bad. In contrast, a richer representation—one that passes
context between states—could help the model learn more effectively. This idea
is illustrated in Figure 1.1, where one move is rewarded and another penalized,
each for different relational reasons with are explicit. A mechanism like message
passing with Graph Neural Networks (GNNs) enables such reasoning by allowing
game states to communicate through graph-based self-attention. This makes it
possible for the model to learn not just from individual positions, but from their
relationships within the overall structure of the search.

1

1. GNN-enhanced AlphaZero 2

Figure 1.1: An illustration of message passing in a chess scenario. The move Qg5
is penalized due to pressure from the black queen, while Qf2 is rewarded because
it enables a back rank mate. Each explanation reflects relational reasoning across
pieces and positions.

1.2 Previous Work

AlphaZero [1] marked a major advancement in reinforcement learning for two-
player games. It showed that strong performance could be achieved without
any human supervision, domain-specific heuristics, or opening books—using only
the rules of the game and self-play. By applying the same general algorithm
to games as different as Chess, Shogi, and Go, AlphaZero demonstrated that
deep reinforcement learning can master highly complex, strategic environments
through repeated interaction and self-improvement.

At the core of AlphaZero is a deep convolutional neural network combined
with Monte Carlo Tree Search (MCTS). The neural network encodes each board
position into a high-dimensional feature space using a series of residual convolu-
tional layers. From this shared representation, two separate heads are used: a
policy head, which predicts a probability distribution over legal moves, and a
value head, which estimates the expected outcome of the game from the cur-
rent position. During MCTS, these predictions are used to guide exploration by
maintaining statistics at each node—visit count, total and mean value, and prior
probability. Promising moves are chosen based on a combination of exploitation
and exploration, and new nodes are evaluated by the network instead of ran-
dom simulations. This results in a tightly coupled interaction between the neural
model and the search process.

A single iteration proceeds in three main stages. First, AlphaZero generates
training data through self-play, using its current model to play games against
itself via MCTS. For each move, it records the board state, the policy derived

1. GNN-enhanced AlphaZero 3

from visit counts, and the final game result. Second, it updates the neural network
by minimizing a loss that combines policy and value prediction errors using this
data. Finally, in the evaluation phase, the newly trained model is pitted against
the previous best version. The new model is retained only if it consistently wins
more games. This loop—self-play, learning, and evaluation—drives continuous
improvement and allows the system to learn strategies that are both deep and
general across different games.

1.3 Our Method

While AlphaZero’s architecture yields strong performance, it does not explicitly
reason and model the relational structure of game states. Information from one
position is compressed into a scalar value and passed forward, preventing the
model from learning how different search paths relate or contribute to overall
strategy. To address this, we introduce a Graph Neural Network (GNN) between
the CNN backbone and the policy/value heads. After the board is processed
through convolutional layers, we construct a graph in which each spatial location
is a node, and edges represent either learned or predefined relationships. This
allows the model to perform message passing between distant but strategically re-
lated parts of the board. Figure 1.2 illustrates the difference between the original
AlphaZero pipeline and our proposed architecture with an added GNN module.
The GNN receives high-level CNN features and processes them with multiple
layers of graph attention or aggregation. This enables reasoning over broader
spatial contexts before producing the final policy and value outputs.

Board State

CNN Features

Policy Head Value Head

Board State

CNN Features

GNN Layers

Policy Head Value Head

Figure 1.2: Comparison of standard AlphaZero architecture (left) with GNN-
enhanced version (right), showing the placement of GNN layers between CNN
feature extraction and policy/value heads.

1. GNN-enhanced AlphaZero 4

1.3.1 Self-Play with Graph Data Collection

One of our main contributions is an extension to the original self-play stage. To
enable graph-based learning, we extend the standard AlphaZero self-play rou-
tine to periodically extract structural data from the Monte Carlo Tree Search
(MCTS). At regular intervals during gameplay, the agent performs a shallow
search from the current position, producing initial policy and value estimates
(init π, init v). This is followed by a deeper search phase, in which additional
simulations are performed to refine these estimates, yielding a more informed set
of targets, denoted as the expanded policy and value estimates (exp π, exp v).
This two-step procedure exposes how deeper exploration changes the model’s
predictions, and provides a natural learning signal for the graph neural network.
As shown in Figure 1.3, the search tree expands significantly between the shal-
low and deep phases, allowing the GNN model to reason by observing extended
trajectories of game states.

root

(init π, init v)

Initial MCTS tree
(shallow search)

root

(exp π, exp v)

Expanded MCTS tree
(deep search)

Figure 1.3: MCTS tree expansion during self-play, illustrating how the search tree
grows from an initial shallow search (left) to a deeper expanded search (right),
with corresponding changes in policy (π) and value (v) estimates.

Each collected MCTS tree is converted into a graph where nodes correspond
to unique game states and edges represent legal move transitions explored during
search. These edges are stored as index pairs in a 2 × E tensor, where E is the
number of edges. Each training sample contains five key elements: the root board
state, the initial and expanded policy and value predictions, and the full graph
structure derived from search. These graph-structured examples allow the GNN
to learn from both the content of individual positions and their relationships

1. GNN-enhanced AlphaZero 5

in the search space. The parameters that govern when and how these samples
are collected—such as how often to expand the tree and how many additional
simulations to perform—are summarized in Table 1.1.

To promote generalization and dataset diversity, we apply symmetry-based
augmentations to both the board states and the associated graph structures. In
games like Go or Connect Four, for example, mirroring or rotating the board
results in equivalent but distinct inputs. When such transformations are applied,
the graph’s edge connections are adjusted accordingly to preserve the validity of
parent-child relationships. These augmentations increase the number of useful
training examples and help the GNN develop invariance to superficial changes in
board layout. Together, the graph structures and their augmentations allow the
model to learn not only from individual outcomes, but also from the patterns
embedded in the structure of the search itself.

Parameter Default Description
gnn_accumulate True Enables collection of graph-based

training examples during self-play
gnn_collect_interval 5 Number of moves between graph ex-

pansion steps
expand_by 10 Additional MCTS simulations per-

formed during tree expansion
gnn_inference_routing True Routes inference through the graph

neural network pipeline during
gameplay

Table 1.1: Parameters controlling graph data collection during self-play

1.3.2 Dual-Phase Training Pipeline

Our training pipeline now also incorporates a series of GNN layers between the
convolutional backbone and the output heads. Figure 1.4 illustrates how data is
processed in this enhanced architecture, including how node features and edge
indices are passed through the GNN layers. We then distinguish between two
training steps: one dedicated to training the standard AlphaZero architecture
and another focused on improving the graph-based layers. In the first phase, the
core convolutional network is trained using examples collected through standard
self-play. These examples consist of board positions along with corresponding
policy and value targets. During this stage, all graph-based components remain
inactive (frozen), and the network learns to evaluate positions and suggest moves
using only the base structure. As shown on the left side of Figure 1.5, only
the convolutional and output layers are updated, while the graph-related layers
remain fixed.

1. GNN-enhanced AlphaZero 6

The second phase activates the graph-based enhancement path. In this phase,
the convolutional and output layers are frozen, and only the graph-specific layers
are trained. The inputs are still board states, but this time they are sampled
from the periodic expansion steps in MCTS. Features are first extracted using
the frozen convolutional backbone, then projected into a lower-dimensional space,
processed by a stack of graph neural network layers, and expanded back before
being passed to the frozen output heads. The network is trained to match the
improved policy and value targets obtained from deeper search. This stage allows
the graph module to learn how to improve initial predictions by incorporating
structural information gathered from extended exploration, as illustrated on the
right side of Figure 1.5.

Board State
(8×8 grid)

CNN Features
40 residual layers

Feature
Map 1

Feature
Map 2

Feature
Map 3

Edge Index
Computation

Node Features
(h1, h2, h3, ..., hn)

Edge Indices[
i1 i2
j1 j2

]

GNN Layers
(Graph Processing)

Policy Head
(pred π)

Value Head
(pred v)

Figure 1.4: GNN architecture with edge index integration, showing how board
state features are converted to node features while graph connectivity is deter-
mined through edge index computation for message passing in GNN layers.

1. GNN-enhanced AlphaZero 7

Board Input

CNN Features

Input FC

GNN Layers

Output FC

Policy/Value Heads

Loss Computation

Trainable

Trainable

Frozen

(a) AlphaZero NN Training

Graph Input

CNN Features

Input FC

GNN Layers

Output FC

Policy/Value Heads

Loss Computation

Trainable

Trainable

Trainable

Frozen

Frozen

(b) GNN Training

Figure 1.5: Dual-phase training pipeline showing parameter freezing strategies
for standard AlphaZero training (left) versus GNN enhancement training (right).

To support this training scheme, the system uses separate optimizers for each
phase and trains the graph module with a reduced learning rate to ensure stabil-
ity. Graph examples are processed in batches, with multiple search trees merged
into a single graph and indexing managed carefully to preserve connectivity. The
training loop supports mixed-precision computation and applies gradient clipping
to enhance numerical stability. Various aspects of the graph enhancement are
configurable, including the number of GNN layers, the dimensionality of the in-
termediate feature projection, and the frequency of GNN-specific training phases.
It is also possible to train the entire GNN model at the very end, provided that
data has been collected using the accumulation flag discussed in Table 1.1.

1.4 Results

The experimental evaluation demonstrates the effectiveness of our GNN-enhanced
AlphaZero approach across multiple dimensions. Figure 1.6 illustrates the fun-
damental learning dynamics of both approaches through baseline comparisons.
The Normal vs Normal heatmap (left) shows the expected progression inherent in
AlphaZero training, where later iterations consistently outperform earlier ones,
with win rates approaching 0.8–0.9 for the most recent models against initial ver-
sions. This strong diagonal pattern confirms that iterative self-play successfully
strengthens model performance over time. Similarly, the GNN vs GNN heatmap
(right) indicates that the GNN-enhanced models follow a comparable improve-
ment trajectory. Later iterations achieve consistently better results, suggesting
that the integration of graph-based reasoning preserves the underlying learning
behavior of AlphaZero while enhancing it with relational context.

1. GNN-enhanced AlphaZero 8

The comparison between GNN and Normal models (left panel of Figure 1.7)
provides compelling evidence for the added value of graph neural network en-
hancement. GNN models consistently outperform their Normal counterparts,
particularly in the later stages of training. For example, GNN models from itera-
tions 51–56 achieve win rates of 0.6–0.8 against comparably trained Normal mod-
els. This advantage is most pronounced when recent GNN iterations are matched
against early-to-mid Normal models, with win rates exceeding 0.7. These results
demonstrate that the GNN-enhanced models are able to learn deeper strategic
patterns by leveraging the structural information available in MCTS trees. The
performance gap grows over time, indicating that graph-based components be-
come increasingly effective as training progresses.

Perhaps most critically, the comparison between GNN models with and with-
out edge index information (right panel of Figure 1.7) highlights the impor-
tance of explicitly encoding MCTS tree structure. Models that utilize edge in-
dices—allowing message passing over the graph—consistently outperform those
without, achieving win rates of 0.5–0.7 across most matchups. This result con-
firms that modeling the parent-child relationships in the search tree provides
valuable structural context that improves decision-making beyond what is pos-
sible with node features alone. The performance difference persists across all
training iterations, supporting the conclusion that the graph attention mecha-
nism effectively exploits relational patterns in the search process, rather than
simply benefiting from additional network depth.

Figure 1.6: Baseline win-rate heatmaps showing Normal vs Normal models (left)
and GNN vs GNN models (right), demonstrating the learning progression within
each model type across training iterations.

1. GNN-enhanced AlphaZero 9

Figure 1.7: Win-rate heatmaps comparing GNN vs Normal models (left) and
GNN with and without edge index (right). Darker green indicates higher win
rates for the row player, while darker red indicates higher win rates for the column
player.

Bibliography

[1] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
and D. Hassabis, “A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play,” Science, vol. 362, no. 6419, pp. 1140–
1144, 2018.

10

	Acknowledgements
	Abstract
	1 GNN-enhanced AlphaZero
	1.1 Introduction
	1.2 Previous Work
	1.3 Our Method
	1.3.1 Self-Play with Graph Data Collection
	1.3.2 Dual-Phase Training Pipeline

	1.4 Results

	Bibliography

