
Towards Real-time Wireless Cyber-physical Systems
Romain Jacob∗ Marco Zimmerling† Pengcheng Huang∗ Jan Beutel∗ Lothar Thiele∗

∗Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland
†Networked Embedded Systems Group, TU Dresden, Germany

firstname.lastname@tik.ee.ethz.ch marco.zimmerling@tu-dresden.de

Abstract—One big challenge to be overcome before the success-
ful deployment of wireless cyber-physical systems is to provide
hard real-time guarantees, not only within the wireless network,
but in fact between end-to-end application processes. To achieve
this, we design a distributed real-time protocol (DRP) that
considers the complete transmission chain, including application
tasks, peripheral busses, memory accesses, networking interfaces,
and wireless real-time protocol. DRP guarantees that end-to-end
message deadlines are met, while being adaptive to unpredictable
system changes, by establishing at run-time a set of contracts
among the different elements of the transmission chain.

I. INTRODUCTION

Over the past decade, a tremendous amount of work has
been carried out around low-power wireless communication
technologies. Especially, wireless sensor networks (WSNs)
have received much attention. One major challenge yet to be
overcome is to enable reliable and efficient use of low-power
wireless networking Cyber-Physical Systems (CPS), some-
times referred to as wireless sensor and actuator networks.
As many CPS applications are mission-critical and physical
processes evolve as a function of time, the communication
among the sensing, actuating, and computing elements in CPS
is often subject to real-time requirements (e.g., to guarantee
the stability of feedback loops). Such real-time requirements
are key to enable safe CPS, which is arguably one of the most
important features for a successful deployment of CPS [1].

Challenges. These real-time requirements are often specified
from an end-to-end application perspective. For example, a
control engineer may require that sensor readings taken at
time ts are available for computing the control law at ts+D.
Here, the relative end-to-end deadline D is derived from the
activation times of application-level tasks, namely the sensing
and control tasks, which are typically executed on physically
distributed devices. Meeting such hard end-to-end deadlines
is non-trivial, because data transfer between application-level
tasks involves multiple other tasks (e.g., operating system,
networking protocols) and shared resources (e.g., memories,
system busses, wireless medium). Therefore, the entire trans-
mission chain, involving application tasks, peripheral busses,
memory accesses, and wireless networking protocol, must be
taken into account to tackle this challenge. We argue that doing
so requires combining three building blocks:

1) on the node level, a decoupling of application (e.g.,
sensing, actuation, control) and wireless communication
tasks using a dual-processor architecture;

2) on the network level, an efficient wireless real-time proto-
col, which guarantees that messages between source and
destination nodes are delivered reliably in real-time;

3) overall, a distributed real-time protocol that manages
the flows of messages across the network, decouples
responsibilities between components, and ensures that
end-to-end deadlines between application tasks are met.

In this paper, we first briefly present the design of our solution
(Sec. II), then we highlight remaining problems and how we
intend to address them in our ongoing work (Sec. III).

II. OVERVIEW OF THE SOLUTION

We consider that all communications between a source
and destination node are subject to real-time constraints.
We call one such communication a flow. Let F be the set
of all real-time message flows in the system. Each flow
Fi = (si , di , Ti ,Di) is defined by a source node si , that
releases messages with a minimum inter-message interval Ti ,
also called period. Every message released by si should be
delivered to the destination node di within the same relative
end-to-end deadline Di . No message can be sent outside of
a flow, and each flow must be registered (i.e., accepted by
the protocol) before it can start releasing messages. Several
flows, eventually with different period and deadline, may be
registered between the same source and destination nodes.

The wireless network consists of a set of nodes N that
exchange messages via wireless multi-hop communication, as
illustrated in Fig. 1(a). A logically global network manager
arbitrates access to the shared networking resource. Physically,
the network manager may run on one of the nodes. The overall
design is based on three building blocks, as described next.
Dual-processor architecture. When using the traditional sys-
tem architecture shown in Fig. 1(a), application and com-
munication tasks execute concurrently on each node. When
both tasks attempt to simultaneously access shared resources
(e.g., memory, processor, system bus), one of them will be
delayed for an arbitrary time. Such interference hampers
timing predictability, making real-time guarantees difficult to
provide.

To tackle this issue, we propose to replace each node with
a dual-processor platform. One processor (AP) runs only the
application, while the other processor (CP) executes only the
wireless multi-hop communication protocol. Using the Bolt
interconnect [2], AP and CP are decoupled in time, power, and
clock domains, and can asynchronously exchange messages
with bounded delay, with ultra-low-power overhead.



Wireless	Multi-Hop
Communication

Node

Network	Manager

…
Node Node

(a) A set of nodes, each with a sin-
gle processor, execute the application
and exchange messages via wireless
multi-hop communication.

BLINK Real-Time
Wireless	 Protocol

Network	Manager

…CP

BOLT

AP

CP

BOLT

AP

CP

BOLT

AP

Distributed	 Real-Time	 Protocol

(b) Application (AP) and commu-
nication (CP) processors exchange
messages via Bolt, while the CPs run
the Blink real-time wireless protocol.

Figure 1. Traditional (a) and our proposed (b) system architecture. A logically
global network manager arbitrates access to the shared wireless medium.

Wireless real-time protocol. Providing real-time guarantees
across wireless networks is challenging. In particular, to sup-
port real-world CPS applications, one needs a protocol that
delivers packets reliably (i.e., with high reception rate) within
real-time deadlines, while being adaptive to dynamic changes
in the wireless network and traffic demands.

Out of the many solutions that have been proposed over the
years, Blink [3] is the only wireless real-time protocol that
satisfies such requirements. It is built on top of LWB [4] and
leverages fast and highly reliable Glossy floods [5], a proto-
col based on synchronous transmissions, which represents a
paradigm shift away from traditional routing-based protocols.
Distributed real-time protocol. The use of Bolt to decouple
the application (running on the APs) and the Blink wireless
real-time protocol (running on the CPs) brings necessary
benefits, such as flexibility in the operation mode for each
component (e.g., time- versus event-triggered) and interference
mitigation. But at the same time, it also triggers a significant
challenge: while the APs and CPs should execute indepen-
dently to prevent interference, it is their joint operation that
determines whether messages exchanged between the APs
meet their end-to-end deadlines.

To address this challenge, we introduce a distributed real-
time protocol (DRP), which represents the third building block
of our solution. DRP strikes a balance between the decoupling
of AP and CP/Blink on the one hand and the end-to-end
timing predictability of message exchanges between the source
and destination APs of one flow on the other hand. This
trade-off is embodied by mutual contracts. A contract settles
the least required agreement between APs, CPs and Blink
such that all can operate as much as possible independently,
while ensuring that end-to-end message deadlines are met.
DRP establishes contracts at runtime, as flows are dynamically
requested and removed, and scales efficiently to large sets of
real-time message flows.

Using these three building blocks, the overall system archi-
tecture evolves from Fig. 1(a) to Fig. 1(b). In the remainder of
this section, we detail the design of DRP and how contracts
are established when a new flow is requested at runtime.

DRP: Distributed Real-time Protocol
DRP uses contracts that are dynamically established at run-

time to provide end-to-end real-time communication between

the source and destination node’s AP of every flow. This
includes guaranteeing that message buffers along the whole
transmission chain never overflow.

In a nutshell, the overall end-to-end latency of a message
depends on how often APs and CPs read out messages from
Bolt, and the maximal delay for a message to be served by
Blink. This can be formalized by three parameters for each
flow Fi: the flushing periods of the source and destination
nodes, and the network deadline of Fi, denoted by T s

f , T d
f ,

and Di respectively. The network deadline Di is computed on-
line by the source node’s AP when a new flow is requested.
It represents the deadline which is requested to Blink (i.e., if
Blink accepts this new flow, it guarantees that any message is
delivered at the destination node’s CP within Di ).

DRP decides on the distribution of responsibilities among
the source node, Blink, and the destination node of a flow
Fi with regard to meeting its end-to-end deadline Di using
a configuration parameter of DRP, the deadline ratio r,
chosen at design time. The source node and Blink are jointly
responsible for meeting a fraction r of the end-to-end deadline
Di ,

f(T s
f , Di) = r ∗Di (1)

The remaining part of the overall end-to-end deadline deter-
mines the responsibility of the destination node,

g(T d
f ) = (1− r) ∗Di (2)

One can derive concrete expressions for f(·, ·) and g(·) after
a detailed worst-case timing and buffer analysis of the system.

Overall, DRP dynamically establishes two contracts for each
newly admitted flow Fi ∈ F in the system:
Source ↔ Blink Fi’s source node si agrees to write no

more messages than specified by the flow period Ti ,
and prevents overflows of Bolt and CPs ’s local message
buffer. In turn, Blink agrees to serve Fi such that any
received message meets the network deadline Di .

Blink ↔ Destination Blink agrees to deliver no more mes-
sages than specified by Ti . In turn, Fi’s destination node
di agrees to read out all delivered messages such that
overflows of Bolt and CPd ’s local buffer are prevented
and all messages meet the flow’s end-to-end deadline Di .

For any flow, if both contracts are fulfilled, all messages that
are successfully delivered by Blink will meet their end-to-end
deadlines. In practice, the fulfillment of contracts is guaranteed
by a set of admission tests, which are performed in sequence
upon registration of a new flow. The overall mechanism of
contracts (i.e., sharing of responsibility, flow registration, and
admission tests) is illustrated on Fig. 2.

In our ongoing work, we have derived the theoretical
optimal performances that can be provided by DRP, in terms
of responsiveness (i.e., smallest end-to-end deadline) and
bandwidth that can be supported. We also evaluated the
run-time behavior of DRP in simulation, based on values
and parameters from physical implementations of both Bolt
and Blink. Our results show that the end-to-end latency of
messages can be up to 96% of the our analytic worst-case



Figure 2. Steps and components involved when registering a new flow in DRP. Given a request for a new flow Fi = (si , di , Ti ,Di ), the source node’s AP
computes the flow’s network deadline Di . Then, all components successively verify using specific admission tests whether they can admit the new flow. DRP
registers a flow only if all admission tests succeed, which triggers changes in the runtime operation (i.e., schedule) of some components.

bounds. Thus, since our model of DRP’s performance is safe
and tight, it can be leveraged for system design.

III. OPEN QUESTIONS AND FUTURE WORK

As we mention in the introduction, DRP is an initial step,
and requires further investigations before we can claim it
efficiently solves the real-time challenge in wireless CPS. In
particular, we detail thereafter three key open questions that
we intend to investigate in future work.
Physical implementation of DRP. Even though our prelimi-
nary simulation results are encouraging, they are not sufficient
to validate the suitability of the protocol in a real-life setting.
As illustrated in Fig. 1(b), DRP requires specific hardware (i.e.,
a Bolt-enabled wireless network). Our group recently designed
and produced custom-built dual-processor boards where Bolt
interconnects a powerful application processor (TI MSP432)
with a state-of-the-art communication processor (TI CC430).
These have been implemented on the Flocklab testbed [6] and
this new network will be publicly available for testing soon.

Leveraging this experimental setting, we plan to implement
DRP and extensively test it to validate the registration and de-
registration of flows at run-time, experiment with the failure
and recovery of nodes, and verify that end-to-end real-time
guarantees hold in such dynamic scenarios. The accurate time
synchronization of FlockLab will allow us to validate the
analytic worst-case delay analysis in a real system.
Dependability. Blink is built on the state-of-art wireless
protocol LWB which achieves more than 99.9% data yield [4].
However, packet loss may still happen, and the sensitivity of
DRP to these losses must be investigated. While a moderate
loss of data packets can often be tolerated by the application,
loss of schedule packets, that drive the operation of Blink, may
be more critical.

We need now to develop a retransmission and/or depend-
ability scheme for DRP to mitigate such effects and provide (at
least) probabilistic guarantees for a safe behavior of the over-
all protocol, using e.g., probabilistic model-checking. Some
inspiration may be found in [7].
Reaching meaningful performances. Finally, the goal of this
work is to enable practical implementations of wireless CPS.
To this end, DRP must meet relevant latency requirements

(e.g., as mentioned in [1]). This means flow periods and end-
to-end deadlines ranging from tens of milliseconds to half a
second.

The question to investigate is how a given implementation
of DRP can be optimized to meet such requirements. Is this
even possible? If not, where do the main limitations come
from? How can we optimize our design to overcome such
limitations? In our opinion, the main trade-off comes from
the decoupling between the various components. It brings
flexibility and mitigates interference, but at the cost of a larger
minimum end-to-end deadline that can be supported.

IV. CONCLUSIONS

Concealing hard real-time guarantees and wireless com-
munication is very challenging. However, the emergence of
Glossy-based protocols help significantly, as they eliminate
the need for complex routing and enable unparalleled flexi-
bility and adaptability in low-power wireless communications.
Hence, we are striving to bridge this gap and eventually enable
the successful deployment of safe and reliable wireless CPS.
Acknowledgments. This work was supported by Nano-
Tera.ch, with Swiss Confederation financing, and by the Ger-
man Research Foundation (DFG) within the Cluster of Excel-
lence “Center for Advancing Electronics Dresden” (CFAED).

REFERENCES

[1] J. Åkerberg, M. Gidlund, and M. Björkman, “Future research challenges
in wireless sensor and actuator networks targeting industrial automation,”
in Proc. of IEEE INDIN, 2011.

[2] F. Sutton, M. Zimmerling, R. Da Forno, R. Lim, T. Gsell, G. Gi-
annopoulou, F. Ferrari, J. Beutel, and L. Thiele, “Bolt: A stateful
processor interconnect,” in Proc. of ACM SenSys, 2015.

[3] M. Zimmerling, L. Mottola, P. Kumar, F. Ferrari, and L. Thiele, “Adap-
tive real-time communication for wireless cyber-physical systems,” ETH
Zurich, Tech. Rep., 2016.

[4] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Low-power
wireless bus,” in Proc. of ACM SenSys, 2012.

[5] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network
flooding and time synchronization with Glossy,” in Proc. of ACM/IEEE
IPSN, 2011.

[6] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beutel,
“Flocklab: A testbed for distributed, synchronized tracing and profiling
of wireless embedded systems,” in Proc. of ACM/IEEE IPSN, 2013.

[7] M. Zimmerling, F. Ferrari, L. Mottola, and L. Thiele, “On modeling low-
power wireless protocols based on synchronous packet transmissions,” in
Proc. of IEEE MASCOTS, 2013.


