
The Experiment Orchestration Toolkit (ExOT)

Bruno Klopott?§ Philipp Miedl†§ Lothar Thiele‡§

Abstract
Researchers are required to support their claims with

experimental evidence and provide results that are reproducible,
comparable and exhaustive. However, the effort required to
conduct exhaustive experimental analyses, or reproduce and
compare different results, has proven to be high. To tackle
these issues, we present the Experiment Orchestration Toolkit
(ExOT).

In this whitepaper, we give a detailed overview of the design
and implementation strategies used during the development of
the first public version of ExOT. ExOT is designed to be easily
extended and can be used to easily include a variety of different
platforms in a measurement setup. It helps to automate the
process of setting up, executing and analysing measurements.
All components of the ExOT project that were developed at
ETH Zürich are publicly available under the 3-clause BSD
license.

1. Introduction

The Experiment Orchestration Toolkit (ExOT) project
emerged from research conducted at the Computer
Engineering Group at the Computer Engineering and
Networks Laboratory at ETH Zürich. Various versions of
ExOT were used to conduct the experiment for multiple
publications [2], [3], [13], [14], [24], which allowed the
framework to evolve into a flexible measurement toolkit.

The basic design of ExOT assumes a measurement
setup with five components:
• The measurement environment consisting of different

zones.
• The source application which actively interacts with

the measurement environment.
• The sink application which observes the measurement

environment.
• The jammer applications, which tamper with the meas-

urement environment to provide the possibility for
controlled external influences onto the measurement.

• The experiment engine for data processing and
experiment orchestration.

These five components and their relation are illustrated
in Figure 1.

ExOT is designed to be easily extendable, allowing
it to be applied in a broad range of measurement

*bruno.klopott@alumni.ethz.ch
†miedlp@ethz.ch
‡thiele@ethz.ch
§ETH Zurich, Computer Engineering and Networks Laboratory

(TIK), Gloriastrasse 35, Zurich, Switzerland

environment
description file

configuration
file

driver

experiment

zone(s) source app sink app jammer app(s)

experiment engine

experimental
data

Figure 1: Block diagram of Experiment Orchestration
Toolkit (ExOT), illustrating the relation of the different
components.

tasks. The main goals were to reduce the engineering
burden placed on the researchers to conduct extensive
and scalable measurements campaigns, to support the
reproducibility, comparability and expressiveness of
measurement results.

In this paper, we give detailed insights into the
design of the first public version of ExOT, which is
an extensive software package compromised by an
application library, an application compilation suite, and
the experiment engine. The application library and the
compilation suite speed up the implementation of source,
sink and jammer applications for different processor
architectures. The experiment engine mimics the layered
structure of a communications channel, and simplifies
and systematises the information flow and the analyses.

In Section 2 we present implementation details of the
application library and in Section 3 we illustrate how
applications are build and which testing facilities are
included in ExOT. Section 4 gives an overview of the
Android integration of ExOT and in Section 5 we present
the implementation strategy for the experiment engine.
In Section 6 we present small examples of the usage of
ExOT, list possible future extensions in Section 7 and
give some concluding remarks in Section 8.

2. The application library

The Kahn Process Networks model was chosen as the
conceptual underpinning of the application library. The
model allows for great extendability and reusability,
because the individual nodes of the network are self
contained, and communicate only through well defined
interfaces. Any number of nodes can be introduced
without any impact to the existing functionality and
the model is simple yet expressive. Processes in process

network nodes can communicate only via unbounded
first-in, first-out queues, but can perform computation
of any degree of complexity1. The message passing
semantics are rather straightforward, requiring blocking
read accesses and non-blocking writes to the queues. This
means that a process attempting to read from an empty
queue will be suspended until a token is available. Such
a model can describe systems that process streams of
data, which can run sequentially or concurrently. Further
details about the model of computation, its extensions,
and implementation requirements are presented by
Geilen and Basten [38, ch. 2], Allen [32, ch. 3] and Vrba
[35].

2.1. Related work

A number of potential candidates for core process network
support were identified: (i) Computational Process
Networks (CPN) by Allen [32], (ii) RaftLib++ [27],
(iii) FastFlow [30], (iv) Yapi [39], and (v) Threading
Building Blocks (TBB) by Intel [31]. Nornir [35] was
also investigated, but the implementation has not been
made publicly available. Task-based models were also
briefly explored; a survey is given in [34].

After reviewing these related libraries we decided
to implement ExOT from scratch due to limitations of
these libraries or them being outdated or unmaintained.
However, a few observations were influential on the
subsequent design process:
• Templatable input and output ports. CPN, TBB, RaftLib++,

and Yapi use template parameters to indicate which
data type is used by the input and output interfaces. In
TBB, the parameters are passed to node declarations,
e.g., tbb::flow::function_node<int, int>. In RaftLib++
the input/output interfaces contain template member
functions, e.g. output.addPort<int>(/*...*/). In Yapi and
CPN, a separate interface class template is used, e.g.,
Out<int>. Such an approach seems certainly superior to
casting a void* argument, and better than configuring
data types at runtime.

• Using strong types. Some of the libraries seemed to
be using code constructs specific to C in their C++
codebases. Most notably, some used generic pointers
to void for “carrying” data between nodes. Such an
approach provides no type safety, and might result
in unexpected errors at runtime. Stronger typing can
help prevent many errors at compile time and make
software less ambiguous. Moreover, modern C++
provides avenues for polymorphic types and generic
containers.

• Abstracting the creation of queues from the user. The
libraries that did not require the explicit creation of
queues seemed much friendlier. For example, in TBB
1Data-flow graphs “have computational capability equivalent to a

universal Turing machine” [42, p. 32].

. . .input
parser

data nodes

module
generator

module

. . .logger module
meter

module

system

source
schedule

meas.
data

SRC

SNK

token queuedata I/O interaction

Figure 2: Process Networks model applied to the
Experiment Orchestration Toolkit (ExOT) application
design.

the tbb::flow::make_edge(node, node) function is used,
FastFlow uses consecutive calls to pipeline.add_stage(),
and RaftLib++ provides a rather strange operator
overloading (map += producer >> consumer;).

• Function nodes. Another aspect that distinguished
TBB from the rest was the ability to quickly define
nodes with a function_node class template. This feature
makes it particularly useful for quick exploration and
testing.

• Using pointers and references to objects and settings
structures instead of string descriptions for configuring
the process network. The libraries which rely on the latter
required many more steps before the nodes and the
network were usable.

2.2. Application design

Figure 2 shows how the process networks concept could
be applied to realise a measurement. The components of
the channel model can be naturally expressed as process
network nodes and connected with queues that can carry
any data type, including heterogeneous or variable-size
containers. The ellipses in the diagram indicate that other
nodes could be introduced, as long as they conform to
the input data type requirements of the dependent node.

The core of the library aims to provide the building
blocks necessary for using the process network model.
Nodes Initially, the library will only provide support
for single input and single output, which meets the
needs of all existing covert channel applications. Three
complementary classes of nodes are defined: consumers,
producers, and processors. As the names suggest, they
differ in the type of interfaces they provide, the latter
combining both input and output interfaces. Similarly
to GNU Radio and the frameworks listed in Section 2.1,
the nodes contain a single executable process.
Interfaces Since queues are generic data containers,
encapsulating interfaces are required to enforce the
formalism of the process networks. The library will
provide an abstraction of the underlying queues or

2

communication channels, that ensures that only single-
directional access is allowed. To allow for some deadlock
avoidance, the interfaces in the library are extended with
the ability to “time out”. If the attempt to access the
queue is not successful after a specified amount of time,
it will be given up and indicated with a return status. If
unsuccessful, there will be no side effects, i.e., the queue
will not be modified.
Connectors In order to not burden the programmer
with the creation of queues and bootstrapping the
interfaces, the library will provide facilities to connect
nodes together. The task of the connectors will be to verify
the compatibility between nodes, create appropriate
queues, and provide them to the nodes’ interfaces.
Executors Executors will abstract the task of running
the nodes’ processes. These might in the future be used
by bespoke schedulers, but initially will aim to execute
the processes on threads that are scheduled by other
entities, like the operating system.

2.3. Software design

From a software engineering perspective, the chosen
design patterns and programming idioms support
extendability, and provide an easy to use application
programming interface (API).

To achieve reusability and extendability, the library
aims to take the full advantage of the generic
programming capabilities of C++. The language provides
what is known as “templates”, which allow creating
classes and functions that can operate on different data
types. For example, we may declare a function template:

1 template <typename L, typename R>
2 auto function(L arg_l, R arg_r);

An entity with such a declaration does not have any hard-
coded types. Instead, the function template is instantiated
when needed (implicitly or explicitly), and the compiler
generates the actual function [see 19, temp.spec].
For example a call to function(static_cast<int>(1),

static_cast<long>(2))will instantiate a function implicitly
with template parameters L and R being int and long.
With modern C++ we can also place constraints on the
template arguments. For example, the instantiation of the
function template above can be restricted to arithmetic
types with:

1 template <typename L, typename R,
2 typename =

std::enable_if_t<std::is_arithmetic<L>::value↪→

3 &&
4 std::is_arithmetic<R>::value>>
5 auto function(L arg_l, R arg_r);

Templates are even more powerful when applied to
classes and their member functions, and combined with

other language facilities, like inheritance. The following
list provides some of the programming idioms that
guided the development of the library.
Policy-based design This design technique makes use
of templates to allow “assembling a class with complex
behaviour out of many little classes, each of which
takes care of only one behavioural or structural aspect”
[40, p. 45]. The library will strive to make use of this
idiom whenever some orthogonal functionality can be
decomposed into smaller structures.
“Template template parameters” To facilitate using
multiple template parameters, some of which also being
template entities, the library makes use of “template
template parameters”. These constructs also help with
policy-based design [40, p. 76]. Examples can be found
throughout the Standard Template Library (STL); for
example, the std::vector is a class template with a
template parameter for the value type, but also a
parameter for an allocator, which itself is a class template.
“Template template parameters” allow propagating
types, making the API cleaner. In the library, this idiom
will be used to pass value types to containers, which then
will be passed to interfaces operating on them. Since
this idiom is quite difficult to describe, an application
example is given in Section 2.5.1 (for the code sample
shown in Listing 1).
RAII The behaviour known as “resource acquisition is
initialisation” is used throughout the library to ensure
that access to a particular resource is held during an
object’s lifetime. Notably, the library will use reference-
counted smart pointers for managing dynamically
allocated queues. Thanks to that, there will be no risk of
ending up with a “dangling pointer”, since the shared
queue will not be destroyed as long as there is any entity
holding a reference to it.
SFINAE “Substitution failure is not an error” is a rule
that applies to function templates. With so-called “type
traits” and compile-time polymorphism it is possible to
provide conditional overloading of function templates
via std::enable_if (e.g., a single print function that has
different overloads for different types), check for the
existence of specific member functions, or to provide
static checks of matching types. In the library, it will be
used to provide generic functionality while avoiding
unnecessary abstraction through class hierarchy.
Meta-programming & variadic templates Templates
can also be used to “generate” code at compile time, in
a much type-safer manner than using preprocessor
definitions. That also includes function and class
templates that work with variable number of different
types that need not share a common base class. This
idiom can be particularly powerful when combined with
inheritance in class templates, allowing the functionality
of multiple smaller classes to be joined together.

3

2.4. Library structure

The software has been arranged in descriptive
namespaces:
exot::framework Defines the application library core
functionality, including the process network nodes
(consumers, producers, and processors), input and
output interfaces to communication queues/channels,
concurrent single-producer, single-consumer queues,
thread-safe state holder, node and pipeline connectors,
and executors.
exot::utilities Includes a range of general-purpose
and helper functions and classes, including time
keeping facilities, thread attributes, synchronisation
primitives, template meta-programming facilities, file-
system utilities, bit manipulation helpers, command line
parsing, logging, type traits, input and output stream
overloads, and workers.
exot::components Contains reusable complete process
network components, such as load generators, loggers,
and input schedule parsers.
exot::modules Includes modules used for sink meters,
arranged by measured physical quantities (frequency,
power, temperature).
exot::primitives Contains functions and classes that
access low-level subsystems, such as model specific
registers, time stamp counters, and platform-specific
helpers.

2.5. Application library core functionality

In this subsection, we present the application library
core functionality, implemented in the exot::framework
namespace.
2.5.1. Node structure
The most fundamental building blocks of the applications
are the process network nodes. Three classes of nodes
are defined: consumer, producer, and processor. As the
names suggest, the consumer node has the ability to only
read data (consume tokens) from an input interface,
the producer node provides a write-only interface, and
the processor node combines the two. No bidirectional
communication over a single interface is possible.

The nodes are realised using class templates with
“template template parameters”, using the technique
described earlier in Section 2.3. The declaration of such a
class is shown in Listing 1. The Token type is passed on as
a template parameter to the Container, which then both
are passed on to the Reader template parameter.With such
construction, one only needs to write IConsumer<int, queue,
queue_reader> instead of the more verbose IConsumer<int,
queue<int>, queue_reader<int, queue<int>>>. Node classes
derive from virtual, empty base classes (e.g. TConsumer),
which are necessary to make type traits more usable with
the class templates.

1 template <typename Token, template <typename...>
typename Container,↪→

2 template <typename, template <typename...>
typename> typename Reader>↪→

3 class IConsumer : public virtual Node, public virtual
TConsumer {↪→

4 public:
5 using consumer_type = IConsumer<Token, Container,

Reader>;↪→

6 using interface_type = Reader<Token, Container>;
7

8 IConsumer() = default;
9 explicit IConsumer(typename

interface_type::container_pointer input_queue)↪→

10 : in_(input_queue){};
11 virtual ~IConsumer() = default;
12

13 void set_input(typename
interface_type::container_pointer input);↪→

14 typename interface_type::container_pointer
get_input() const;↪→

15

16 protected:
17 interface_type in_;
18 };

Listing 1: Consumer node interface

Each node class template contains an interface object,
which can either be initialised in the constructor,
or configured after instantiation using set_input and
set_output functions. The end user will rarely, if ever,
need to use the non-default constructor. Classes deriving
publicly from the these base node templates can then
access the inherited interface object thanks to the protected
access specifier.

The class template for the processor node has multiple
inheritance from both consumer and producer node classes.
One important feature of processor classes is their ability
to bridge potentially disparate domains; hypothetically
speaking, the consumer side could be connected to a
network interface, and the producer side to a regular
queue.

A UML class diagram which illustrates the rela-
tionships between the various class templates, regular,
abstract and interface classes, is presented in Figure 3.
Such an organisation of software components allows
for easy extendability and reuse. Since their most often
changed and crucial aspects are template parameters, it
is trivial to declare nodes that deal with various token
data types. If a new container or an interface is designed,
to use it with the node, one only needs to pass them as
template parameters. For further convenience template
aliases are provided for default containers and interfaces,
such that the user only needs to supply the token types
used by the node.

The classes above are generic and do not yet define any

4

1 template <typename Token, template <typename...> class
Container> class↪→

2 QueueReader : public IReader<Token>, public
Reader<Token, Container>;↪→

3

4 template <typename Token, template <typename...> class
Container> class↪→

5 QueueWriter : public IWriter<Token>, public
Writer<Token, Container>;↪→

Listing 3: Queue interfaces

executable elements. To implement some functionality,
a user can derive from the IProcess interface class that
defines a process-oriented execution model. The interface
contains a pure virtual member function that needs to
be overwritten by implementing classes. In addition to
the void process() function the interface class adds the
commonly used shared pointer to the global execution
state. This is also the only place where an object, the
GLOBAL_STATE, is declared with the extern specifier for
external linkage.
2.5.2. Interfaces
Communication between process network nodes hap-
pens through interface class templates. They provide
the set of functionality required for satisfying the
requirements of the process network model, that is
blocking reads, and non-blocking writes (as long as queues
are declared unbounded). The two pure virtual interface
class templates shown below define the functions
required for input (Figure 4) and output interfaces
(Listing 2). The interfaces enforce the process network
formalism and allow for different calling styles of the
underlying containers (some use the combination of
front, pop and pushmethods, while others define enqueue
and dequeue). Similar layers of indirection are present
in other process network implementations [35, p. 73, 41,
p. 19].

Additional Reader and Writer base class templates
allow reuse of constructors and provide common
functionality of setting and getting the shared pointers to
containers used as the ‘transmission medium’ between
nodes. The concrete interfaces, the class templates
QueueReader and QueueWriter, implement the reader and
writer virtual interfaces for queue-like objects, and derive
from the base classes above (Listing 3).

The extended queue interfaces additionally implement
alternative semantics and define member function
templates such as try_read_for(token, timeout), as shown
in Listing 4. Analogous functions are provided for the
writer interface. The important distinction from the basic
interface is the addition of a return type (bool instead
of void), which indicates whether the operation was
successful and allows for less conventional, defensive

1 inline bool try_read(Token &token);
2 template <typename Rep, typename Period>
3 inline bool try_read_for(Token &token,
4 const

std::chrono::duration<Rep,
Period> &timeout);

↪→

↪→

5 template <typename Clock, typename Duration>
6 inline bool try_read_until(
7 Token &token, const std::chrono::time_point<Clock,

Duration> &time);↪→

Listing 4: Extended queue interface

code constructs.
2.5.3. Queues
The underlying communication channel has to abide by
the process network formalism. The queue provided
in the C++ standard libraries does not meet the
requirements. First of all, std::queue is non-blocking. An
empty queue can be “popped”, and calls to the front()
method can return data from uninitialised memory
when the queue is empty. Moreover, std::queue is not
thread-safe. Even with the queues having only two users,
concurrent access has to be free of race hazards.

The library provides a concurrent queue suitable for
single producer-consumer scenarios that mirrors the
interface of std::queue, and its more complex extension
that additionally implements the extended semantics.
The queues are provided as class templates, allowing the
use of different token data types and synchronisation
primitives. Moreover, the queues can have bounded
capacity.

The implementation uses two thread synchronisation
constructs: mutual exclusion locks, and condition
variables. Their combination allows efficient locking
and monitoring the status of certain boolean conditions.
A lock protect access to private class variables in each of
the public interface functions. Two condition variables
are used for waiting and notifying on empty and full
queues.

All read operations acquire the lock and wait until the
queue is not empty, typically using the code construct
listed below:

1 std::unique_lock<mutex_type> lock(queue_mutex_);
2 queue_empty_cv_.wait(lock, [this] { return !empty_();

});↪→

An analogous mechanism is provided for write
operations, which will block on a full queue. Waiting
using a condition variable is roughly equivalent to
while(!predicate) lock.lock();.

If the read or pop operation was called on an empty
queue, the calling thread will efficiently wait until
notified by another thread performing a write operation.

5

1 1

Consumer

T, C, I

IConsumer

+ set_input(in : pointer) : void
+ get_input() : pointer

T, C, I

Node TConsumer

�interface�
IProcess

global_state_ : pointer

+ process() : void

Reader

in_ptr_ : pointer

T, C

�interface�
IReader

+ write (token) : void
+ is_writable() : bool

T

Queue

+ front() : T
+ pop() : void
+ push(token : T) : void

T

Figure 3: UML class diagram showing relationships in core framework’s nodes

1 template <typename Token>
2 struct IReader {
3 virtual ~IReader() = default;
4 virtual void read(Token &) = 0;
5 virtual bool is_readable() = 0;
6 };

Figure 4: listing
Reader interface

1 template <typename Token>
2 struct IWriter {
3 virtual ~IWriter() = default;
4 virtual void write(const Token &) = 0;
5 virtual void write(Token &&) = 0;
6 virtual bool is_writable() = 0;
7 };

Listing 2: Writer interface

Notifications are provided by two internal functions
notify_waiting_on_empty_() and notify_waiting_on_full_().

The extended interface provides try_pop and try_push
functions, which do not block if the queue is empty or
full; if the preconditions are not satisfied, the queue will
not be modified and the functions will return false.

The usefulness of the condition variables becomes
apparent in functions that attempt to read or write only

1 template <typename Rep, typename Period>
2 bool try_pop_for(reference value, const duration<Rep,

Period> &timeout) {↪→

3 std::unique_lock<mutex_type> lock(queue_mutex_);
4 if (queue_empty_cv_.wait_for(lock, timeout, [this] {

return !empty_(); })) {↪→

5

6 // ...
7

8 lock.unlock();
9 notify_waiting_on_full_();

10 return true; // if successful
11 } else {
12 return false; // if timed out
13 }
14 }

Listing 5: Accessing the queue with a timeout

for a specified period of time. The Listing 5 shows an
excerpt from the source code, which defines a try_pop_for
function. It’s a function templates, which can be called
with any duration object from the standard library, e.g.
try_pop_for(token, std::chrono::seconds{2}).
2.5.4. State

State objects in the library can be used to track local
and global state. They contain a set of atomic boolean

6

variables and functions to access and manipulate
them, for example start() and is_started(). The ob-
jects are meant to be used through shared pointers,
therefore the State class derives in a CRTP2 fashion
from std::enable_shared_from_this<State> and provides a
member function to get a shared pointer to itself.

The only global variable with static storage duration
used in the project is the pointer to a state object:

1 static State::state_pointer
GLOBAL_STATE{std::make_shared<State>()};↪→

Thanks to the static storage specifier the pointer can be
used in C-style signal handlers. Currently, the library
defines the following global state signal handlers:

1 static void interrupt_handler(int) {
GLOBAL_STATE->stop(); }↪→

2 static void terminate_handler(int) {
GLOBAL_STATE->terminate(); }↪→

3 static void start_handler(int) {
GLOBAL_STATE->start(); }↪→

2.5.5. Connectors
One of the limitations of some of the reviewed process
network implementations was the need to manually
create and connect queues to nodes. To remove this
burden from the users, a method for connecting
compatible nodes together is provided in the library.

A function template details::connect takes two
nodes as arguments, verifies that they have compatible
interfaces and token types, constructs a queue and
passes the shared pointer to neighbouring nodes. The
verification uses custom type traits and happens at
compile time thanks to static_assert.

Using a variadic function template, shown in Listing 6,
any number of nodes can be connected. There is a base
function that takes only two arguments, and a recursive
function that takes any number of arguments. Thanks to
template pack expansion a call to connect(Node1, Node2,
Node3) will produce a sequence of calls connect(Node1,
Node2); connect(Node2, Node3);. Additionally, the library
provides a structure wrapper that allows setting the
desired queue capacity3, and a pipeline function. The
pipeline function uses type traits and a compile-time for-
loop to additionally verify that the first passed node is a
producer, and the last one is a consumer.
2.5.6. Executors
Executors provide a uniform way to execute processes.
The base class provides a function template spawn, which
can be used to execute any callable object, optionally
with arguments. An example is listed below:

2Curiously Recurring Template Pattern, in which the class derives
from a class template, using itself as a template argument.

3With the Connector class one can connect nodes with a queue of
size 10 by calling Connector(10).connect(Node1, Node2, Node3);.

1 template <typename Left, typename Right>
2 void connect(Left &&left, Right &&right) {
3 details::connect(std::forward<Left>(left),

std::forward<Right>(right));↪→

4 }
5

6 template <typename Left, typename Right, typename...
Rest>↪→

7 void connect(Left &&left, Right &&right, Rest &&...
rest) {↪→

8 connect(std::forward<Left>(left), right);
9 connect(std::forward<Right>(right),

std::forward<Rest>(rest)...);↪→

10 };

Listing 6: Variadic function template for connecting nodes

1 template <typename Callable, typename... Args>
2 void spawn(Callable &&callable, Args &&... args);

The concrete executor classes that are provided in the
library at the moment are meant for executing callable
objects on system and user-space threads. For example,
the ThreadExecutor class will spawn each provided
object in a separate system thread, and is well suited
for executing process network nodes. It additionally
provides a way of spawning an object on a specialised
thread, with configurable pinning, scheduling policy and
priority.

The other available executor facilitates the use of user-
space threads, fibers, from the project Boost/fiber, and
provides convenience functions for spawning fibers and
adding fiber pool worker threads. Both executors also
provide functions to query how many worker threads
have been instantiated, and to wait for the completion
of and join spawned system/user-space threads.

2.6. Utilities

A wide range of utility functions and classes are provided
in the exot::utilities namespace of the application library.
These provide both essential functionality, like time
keeping or synchronisation mechanisms, and auxiliary
helpers, like string formatting and type traits. We describe
the most important of those utilities in the remainder of
this subsection.
2.6.1. Timing
Sleeping and estimating time offsets has been extracted
into a TimeKeeper class template. The class gives a
straightforward interface, with member functions begin(),
sleep(chrono::duration), and update_offset() providing the
bulk of the functionality. Additionally, the class has a
run_every function, which can invoke a callable object
with arguments periodically until some predicate is false.
For example, to perform and output some measurement
every 10 milliseconds until the global state is terminated,
one can run:

7

1 tk.run_every(std::chrono::milliseconds{10},
2 [&]() { return

!GLOBAL_STATE.is_terminated(); },↪→

3 [&]() { std::cout << meter.measure(); })

The time keeper can use different clock sources,
different sleep functions, and also provides mean
and standard deviation of intervals and offset. The
<exot/utilities/timing.h> header also provides a
std::chrono-like interface to the POSIX nanosleep

function.
The library provides different timing primitives

from literature, the ability to introduce serialisation to
any clock type via a fenced_clock Curiously Recurring
Template Pattern (CRTP) class template, and ExOT
clock sources based on system’s monotonic clock
and performance counters. Moreover, it significantly
simplifies the timing of any callable type with the help of
a timeit function template. To support faster operation,
the TimeKeeper utility has been provided the ability to use
busy-loop sleeping.
2.6.2. Barrier synchronisation primitive
The barrier implements a rendezvous point for a
configurable thread count. Threads arrive at the barrier
and are allowed to pass it only once the specified number
threads have reached it. The threads wait on the barrier
efficiently, i.e. there is no busy waiting, and threads are
idle. To allow for greater usability and portability, the
older barrier primitive from the POSIX thread library has
been replaced with a solution inspired by Boost libraries
and C++ standard proposals [10], and uses just the C++
standard library. The advantage of the ExOT barrier is
that it can be reused multiple times and can be used on
the Android system with API support below level 244.

The ExOT barriers are implemented with a combina-
tion of locks and condition variables, both of which are
template parameters, allowing for the use of different
primitives. The barrier is initialised with a desired thread
count. As threads arrive at the barrier, they increment
an internal current thread count. If the count is less then
the desired one, the entering thread waits on a condition
variable. If the entering thread is the last to enter the
barrier (incremented current count is equal to the desired
count), it uses the condition variable to notify all waiting
threads.
2.6.3. JSON interface
The application library has introduced generic support
for JavaScript Object Notation (JSON)-based configura-
tion. The format was chosen due to the simplicity of the
markup language and very good software support with
a library by Lohmann [6] that awaits standardisation.

4The functions pthread_barrier_init and
pthread_barrier_wait are marked __INTRODUCED_IN(24) in
the <pthread.h> header file in the Android’s system root. API level 24
is not yet publicly available.

1 struct MyConfigurableClass :
configurable<MyConfigurableClass> {↪→

2 std::vector<std::string> MyStrings; //! A vector
of strings↪→

3 std::map<std::string, double> MyMap; //! A map of
pairs string->double↪→

4 const char* name() const { return
"MyConfigurableClass"; }↪→

5 void configure() {
6 bind_json_to_data("MyStrings", MyStrings);
7 bind_json_to_data("MyMap", MyMap);
8 }
9 };

10

11 /* Later used as... */
12 MyConfigurableClass instance;
13 instance.set_json(the_json); instance.configure();
14 /* Or using a helper function... */
15 configure(the_json, instance);

Listing 7: Demonstration of configurable classes

It features strongly-typed support for all fundamental
types and most data structures from the STL, as well as
ease of providing overloads for functions performing
serialisation and de-serialisation of user-defined types.

The support for JSON-configurable classes has been
provided using the programming paradigm of CRTP. In
a more common class hierarchy, we would use a base
class with virtual or pure virtual functions, which are
then implemented in derived classes. With this paradigm,
however, the base class is a class template that takes the
deriving class as a template argument, and inherits from
it. Such structure allows a base class to access the derived
class and simplifies multiple inheritance from other
configurable classes. The simplicity of this solution is
demonstrated in Listing 7. The bind_json_to_data instructs
which key is to be mapped to which member variable.
2.6.4. Command line parsing

The command line interfaces in the library rely heavily
on the very idiomatic header-only library clipp by
‘muellan/clipp’ [16]. One of the most helpful features of
that library is the automatic generation of help messages,
allowing for good extendability of applications and
reducing the programmer’s burden.

A separate class CLI builds upon the parsing facilities
provided in the clipp library, and allows easily adding
individual components configurations to a master
configuration, adding description and example sections
to the printed help message5, and takes care of parsing
the command line arguments and notifying about
parsing errors. Applications using the JSON interface
for configuration will provide a command line interface
based on clipp as outlined in 8.

5Additional sections are automatically wrapped to 80 columns.

8

1 $./generator_utilisation_mt
2 Parsing error: 4 missing/incorrect, 0 blocked, 0 conflicts
3

4 SYNOPSIS
5 ./x86_64/generator_utilisation_mt ((--json_file <json file>) | (--json_string <json
6 string>))
7

8 ./x86_64/generator_utilisation_mt -h
9

10 OPTIONS
11 (--json_file <json file>) | (--json_string <json string>)
12 JSON-based configuration
13

14 -h, --help print help message
15

16 CONFIGURATION
17 [logging]
18 | provide_platform_identification should provide platform info? |bool|
19 | debug_log_filename the debug log filename |str|, optional
20 | app_log_filename the app log filename |str|, optional
21 | log_level the log level |str|, one of "trace", "debug", "info", "warn",

"err", "critical", "off"↪→

22 | async_size async logger buffer size |uint|, power of 2
23 | async use the async logger? |bool|
24 | async_thread_count async logger thread count |uint|
25 | timestamp_files should timestamp the log files? |bool|
26 | rotating_logs should rotate the logs? |bool|
27 | append_governor_to_files should append the frequency governor to filenames? |bool|
28 | rotating_logs_size the size of rotating logs in MiB |uint|
29 | rotating_logs_count the maximum number of rotating logs to keep |uint|
30 [schedule_reader]
31 | input_file the input schedule file |string|, e.g. "input.sched"
32 | reading_from_file reading from file? |bool|, reads from stdin if false
33 | read_as_hex read hexadecimal values? |bool|
34 | cpu_to_pin schedule reader pinning |uint|, e.g. 7
35 [generator]
36 | cores cores to pin workers to |uint[]|, e.g. [0, 2]
37 | should_pin_workers should pin the workers? |bool|, default 'true'
38 | worker_policy scheduling policy of the workers |str, policy_type|, e.g.

"round_robin"↪→

39 | worker_priority scheduling priority of the workers |uint|, in range [0, 99], e.g.
99↪→

40 | host_pinning generator host core pinning |uint|, e.g. 5
41 | should_pin_host should pin the host? |bool|, default 'true'
42 | host_policy scheduling policy of the host |str, policy_type|, e.g.

"round_robin"↪→

43 | host_priority scheduling priority of the host |uint|, in range [0, 99], e.g.
99↪→

44 | start_check_period state change detection update period |uint, µs|, e.g. 100
45 | use_busy_sleep should use busy sleep loop? |bool|
46 | busy_sleep_yield should yield thread in busy sleep loop? |bool|
47 [generator]
48 | cores cores to run workers on |uint[]|, e.g. [1, 2, 3]

Listing 8: Example for the command line interface of an application generated with the application library. Only a
JSON file or a JSON string can be provided via the commandline. The help text lists all possible JSON configuration
parameters of the application.

9

2.6.5. File system utilities

Since many of the application components access
various pseudo-files provided by procfs, devfs and
sysfs, the library provides functions for listing
directories and for searching directories using
regular expressions. Both recursive and non-recursive
methods are given. For example, to search for
all thermal_zone temperature access pseudo-files,
the user needs only a single function invocation,
grep_directory_r("/sys/devices/virtual/thermal",

".*zone\\d+/temp$"), which will return a vector of
paths to the files (e.g., “. . . /thermal_zone0/temp”).
2.6.6. Meta-programming helpers and type traits

The library provides several compile-time helpers, which
are used in other parts of the library. These include
a compile-time for-loop, which can also be used as a
replacement for code generation preprocessor directives,
and functions to apply functions to heterogeneous
std::tuple containers. For example, to create 256 in-
vocations of a callable object with signature void(size_t),
one can use const_for<0, 256>([](auto I) { fun(I); }). The
template will be instantiated at compile time and expand
to a sequence of calls fun(0); fun(1); ...; fun(255);.

Another functionality that does not have any direct
application, but is used throughout the library are custom
type traits. Type traits, which provide information about
types and evaluate predicates at compile time, are heavily
used in the C++ standard library. In the case of this work,
they are used to check if a type is iterable or const-
iterable, if a type is a tuple, or if a node has an input or
output interface. These can later be used in static_assert
statements, or to conditionally enable certain templates.
2.6.7. Formatting and logging support

To facilitate the process of formatting readings for
logging, the library provides overrides for formatting any
iterable or tuple-like objects to basic_ostream objects. An
example of a signature of a function that overloads the <<
operator is show in Listing 9. What this achieves is that all
types T, which return true for is_iterable<T>::value, will
be allowed to use this overloaded function. In practical
terms, the user no longer has to write loops to output
vectors. For example, this becomes a valid statement with
the overload above: std::cout << std::vector<int>{1, 2, 3,
4};. Possibly the greatest utility comes from an overload
for tuples, since iterating over tuples is not possible.
The overload uses the const_for loop above to access
tuple elements, allowing for printing of heterogeneous
containers. All individual elements are comma separated
in the output.

Similar overloads are provided for reading tuples
and chrono::duration objects from basic_istream objects.
This functionality is used in the schedule reader described
later (Page 10).

2.6.8. Logging

Since logging is used universally across the whole
library and in all applications, it has been extracted
into a separate class, which has a uniform configuration
interface. The Logging class is responsible for creating log
files, setting log levels (e.g., critical, debug), and makes
sure that the log files are readable. The functionality relies
on the spdlog library [12], which provides a modern and
highly configurable interface, and is also compatible
with Android logging facilities. The logging library is
also thread-safe and very fast: 4,328,228 messages per
second can be logged to a file in a single-threaded mode
on an Intel i7-4770 processor [12]. For convenience, most
components and modules try using loggers defined in
the global logger registry, both for application and debug
logging.
2.6.9. Thread parameters

The library also features a ThreadTraits class which
provides a portable way of setting the affinity and
scheduling of threads. Most notably, a solution has been
found for setting affinity on the Android platform, which
was not possible in the legacy codebase. The Android-
compatible way of pinning threads relies on the sys-call
to SYS_gettid and using the POSIX sched_setaffinity
function from the <sched.h> header.
2.6.10. Workers

Several worker classes are available in the library.
A worker can wrap some callable object in a loop
that checks the global execution state. Most notably,
a worker using policy-based design principles is
provided, which can take different synchronisation
and threading policy/mixin classes, allowing easy
extendability. For example, Worker<BarrierSynchronisation,
SpecialisedThreads> declares a worker that will be pinned
to a CPU and will invoke the callable object between two
barriers.

2.7. Components

In this section, we present the reusable complete
process network components, implemented in the
exot::components namespace.
2.7.1. Schedule reader

The schedule reader is a producer class template that
parses values line-by-line either from a file, or from the
standard input (in contrast to standard input only in the
legacy framework). For ease of use and reusability, the
schedule reader forms a token from each line of input, as
long as proper overloads were provided. At the moment
any tuple type can be formed into a valid token. Thanks
to such design, the schedule reader can be adapted to
different components on the receiving end, with only
minimal involvement of the user:

10

1 late <typename T, typename CharT, typename CharTraitsT>
2 name std::enable_if<exot::utilities::is_iterable<T>::value && !exot::utilities::is_const_iterable<T>::value,

std::basic_ostream<CharT, CharTraitsT> &>::type & operator<<(std::basic_ostream<CharT, CharTraitsT> &ostream,
const T &range);

↪→

↪→

Listing 9: Output stream operator overload

1 using loadgen = components::loadgen_mt;
2 using reader = components::schedule_reader<typename

loadgen::token_type>;↪→

As this example demonstrates, the developer does not
even need to explicitly declare the token type, and can just
use the internal types of other components. In addition,
the schedul reader support reading tokens that contain
iterable types (such as vectors) and fixed-size arrays.
2.7.2. Logger
The logger node is a very simple, but universal addition
to the library. It is a class template that takes a token type
as a template parameter. Thanks to the provided output
stream overloads, it will format the token as a string
and write it to the application log, separating individual
values with commas.
2.7.3. Function nodes
The library also provides nodes that take a callable
object as an argument to the constructor. These can
be conveniently used for simpler operations and testing,
and wrap the invocations of the callable in loop
that monitors the global state. Three class templates
are provided: FunctionConsumer, FunctionProducer, and
FunctionProcessor, which take callable objects with
signatures void(token), token(void), and token(token)
respectively. Unlike C-like function pointers, the callable
types can be more complex capturing and/or mutable
lambdas. For example, to produce a sequence of 10 tokens
the user of the library can write:

1 using token_type = std::tuple<int, std::string>;
2 int counter{0};
3

4 FunctionProducer<token_type> node([&]() mutable ->
token_type {↪→

5 if (++counter > 10) GLOBAL_STATE->stop();
6 return token_type{counter, std::string{"Token #"} +

counter};↪→

7 });
8

9 node.process();

2.7.4. Platform identification
In order to keep track of important platform charac-
teristics alongside measurement log files the library
implements a large number of identification functions.
Among others, they are responsible for obtaining
processor details, processor package topologies and
frequency scaling settings.

2.7.5. Adapter nodes
The last type of components in the library allows bridging
domains using different concurrency primitives: system
and user-space threads. These nodes simply forward
tokens, in a way that does not cause race issues.
2.7.6. Meter host
The host allows combining individual meter modules
into a readily usable process network component. First,
the MeterHost is class template, where meter modules are
provided as variadic template parameters. The MeterHost
then inherits publicly from each module, thanks to
template pack expansion, as shown below:

1 template <typename Duration, typename... Meters>
2 class meter_host
3 : public Meters...,
4 public framework::IProcess,
5 public

framework::Producer<meter_token_type<Duration,
Meters...>>

↪→

↪→

It’s token type is also determined automatically
from the inherited modules, using an alias template
meter_token_type:

Secondly, all module configuration structures are
combined and appended with host-specific settings, also
using multiple inheritance and template pack expansion.
The host has its own settings class, struct settings :
Meters::settings...;, and own configure function, which
incorporates module-specific equivalents. The host’s
settings class is then passed to modules’ constructors;
each module only accesses its relevant part of the
structure.

The host also combines all meter module measurement
functions, and the results of their reported variables’
names and units. Thanks to that the meter host’s process
is very compact:

1 auto until = [this]() { return
!global_state_->is_stopped(); };↪→

2 auto action = [this]() { out_.write(measure()); };
3 timer_.run_every(conf_.period, until, action);

2.7.7. Meter modules
To facilitate the declaration and use of metering facilities,
the module class type has been introduced. The UML
class diagram in Figure 5 shows the relationship between
the meter host and the modules. A meter module has
only a few requirements:

11

• It must have a settings structure, struct settings, which
can provide defaults and can be empty;

• It must have a constructor that takes the settings
structure by reference;

• It must have a measure() function;
• It should provide a vector<string> names_and_units()

function if the user wants to facilitate the process
of adding headers to log files;

• The meter module should follow the Resource
Acquisition Is Initialisation (RAII) idiom, and should
be perfectly usable after instantiation.
There are no hard requirements imposed on the what

kind of values a meter module can return via the measure()
function. It is perfectly valid to have one meter return
a std::tuple<std::string, int, double> and another return
std::vector<long>. Although the meter function can return
variable length arrays, it might be a better idea to keep the
size constant after initialisation to obtain a well formed
output.

The use of meter modules is enabled by the meter
host component, described on Page 11. The modules can
also be used independently of the host, for example in a
reactive load generator.
2.7.8. Generator host component and module base classes

The generator host and the generator modules are
built in a similar fashion to the meter host and meter
modules. The generator host works in conjunction with
generator modules, which define an interface composed
of decompose_subtoken, validate_subtoken, and generate_load.
The structure of both relies on type traits rather than class
hierarchies, therefore generator modules can choose the
types of each of the member types at their discretion.
Moreover, to further simplify the creation of many similar
generator and metering modules the library introduces
base classes for those that require shared memory or
interpret their input as bitsets.

2.8. Primitives

In addition to generic utilities, the library also provides
more platform-specific utilities, arranged in the separate
exot::primitives namespace. At the moment, these mostly
include functionality specific to Intel-based platforms.
2.8.1. Model specific register access

The library provides a class for reading and writing
model specific registers (MSR), which provides some
improvements over the methods used in legacy code. In
line with the overall aim of making most of the classes
conform to the RAII idiom, the class initialises access
to MSRs upon instantiation. A number of checks are
performed to make sure that the arguments supplied
in the constructor are sensible and that all registers
can be accessed. Moreover, in addition to read and
write functions, the class provides methods read_first,

read_any, and read_all, the latter returning a vector of
readings. These functions, which have their write access
counterparts, are mostly meant for users who use the
default constructor of the class.
2.8.2. Time stamp counter clock

Quite an interesting addition to the library is a clock that
explicitly uses the time stamp counter (TSC) on Intel
processors as the time source. The class provides the
same interface like the clocks found in the header of the
C++ standard libraries. Thanks to that all the facilities in
the library (operations on and between time point and
duration objects), handling of timing measurement with
any clock implementing, that implements the standard
interface, is very simple, as shown below:

1 auto begin = tsc_clock::now();
2 // ...
3 auto elapsed =
4 duration_cast<microseconds>(
5 begin - tsc_clock::now());

Using the TSC as the clock source can be quite beneficial,
but there is always the need to estimate the frequency of
the monotonic counter. To maintain a clean and usable
interface, in tsc_clock the estimation happens upon the
first invocation of the tsc_clock::now() function. Every
subsequent invocation can use the estimate immediately,
because the relevant function-local variables have have
static storage duration and are initialised the first time
the control flow passes their declarations.
2.8.3. Memory mapping support

On the Linux Operating System (OS) and other unix-
based systems shared memory is enabled by, among
others, mmap. A ExOT MMap class implements a safe and
convenient wrapper that follows the programming idiom
of RAII. It allows mapping file-backed and anonymous
memory into the virtual address space of the calling
process, including anonymous and shared huge pages
allocations. The support for huge pages is necessary
in situations that require contiguous physical memory
that is aligned on the huge page size supported by the
processor. For example, with 2 MB contiguous memory
one can very easily find addresses that map to the same
cache set without the need for allocating a large memory
buffer.
2.8.4. Cache parameters discovery

The library provides a CacheInfo class, which performs
automatic detection of specific cache’s properties (such
as ways of associativity or cache line size). A CPUCacheInfo
class discovers all caches of a particular processor
core. Moreover, both can be manually configured with
any iterable type holding unordered maps of cache
properties.

12

1..n

1

1

1..n

Host

+ settings : struct

+ Host(conf : settings &)
+ configure(conf : settings &) : cligroup
+ process() : void
+ names_and_units() : vector<string>

Duration, Meters. . .

Host::settings

Module

+ settings : struct

+ Module(conf : settings &)
+ configure(conf : settings &) : cligroup
+ measure() : auto
+ names_and_units() : vector<string>

Module::settings

Figure 5: UML diagram showing relationship between meter host and modules

2.8.5. Virtual-to-physical address translation
The library features an AddressTranslator functor class
that translates a virtual address into a physical one using
the pagemap exposed for each process in Linux’es procfs.
The pagemap is the Linux kernel’s interface that allows
programs running in the user space to find out the
mapping between virtual memory pages and physical
frames.
2.8.6. Custom allocators and alignment helpers
To benefit from the ease-of-use of STL containers while
being able to control their memory allocation, the library
provides an array of custom allocators. For example,
the AlignedAllocator can be used to align a container
on a specific boundary and the HugePagesAllocator will
allocate anonymous huge page memory to store the data.
The allocators are passed as the second template argu-
ment to many containers, for example: std::vector<int,
HugePagesAllocator<int>. Additionally, the library provides
a type wrapper that makes it easier to make types with
explicit alignment. The aligned_t<T, A> class template can
be used to produce a type T that has the desired alignment
A, for example via make_aligned<64>(1ull). In this example
the resulting type would have an alignment of 64 bytes,
and array of such types would have each element located
in a different cache lines on most platforms. Silarly, one
could define a type that is aligned at virtual memory
page size boundaries of 4 KB.
2.8.7. Cache slice hash function
The library also provides the cache slice selection hash
function as reverse engineered by Maurice, Le Scouarnec,
Neumann et al. [28] for older Intel architectures.

3. Compilation suite and testing

The development criteria for ExOT included readability,
support for cross-compilation, the Android platform, and
testing, reproducibility of builds, ease of instrumentation
with analysis tools. The tools that were considered
were the Python-based SCons and Waf, Meson, Bazel,
Buck, and CMake. CMake, Bazel and Meson were given
particular attention because they allow creating toolchain
descriptions, useful when compiling for different targets
from different host machines. Although Bazel and Meson
seem to have a more consistent and friendlier syntax,
CMake was chosen as the build system for the project.
The primary motivations were more robust support for
C and C++ projects, longer history, and official support
in the Android build system. Moreover, CMake does not
build the software itself, but rather generates other build
systems’ files, including Unix Makefiles, which can be
used on different operating systems and in Integrated
Development Environment (IDE). Compared with GNU
Make, CMake provides better convenience, superior
correctness and easier scalability [33, p. 146, p. 262].

The library is structured into four directories:
include/exot, src, vendor and test. The include/exot directory
contains folders with header files, which reflect the
namespace organisation described earlier. To use or add
a piece of library code, a developer can include the files in
a meaningful way, without caring about the relative path,
e.g. <exot/utilities/barrier.h>, because the include
directories are exported with the library target. The
src folder contains all source files used for building
object code. Vendor contains the external third-party

13

https://www.scons.org
https://waf.io
http://mesonbuild.com
http://mesonbuild.com
https://buckbuild.com
https://cmake.org

dependencies of the library. The need for the vendor folder
unfortunately arises from the difficulty of importing
external CMake-enabled code. The dependencies do not
have to be committed into the repository; they are set up
as git submodules, and a call to git submodule init will
pull the repositories and point to specific commits. This
ensures that only stable features of vendor libraries are
used.

The library build targets are governed by the top-level
CMakeLists.txt file. It defines the project exot-library
and the main build target, exot, which a static library
libexot.a.The target is configured with a range of
compile features and options, depending on the build
configuration type: Release, or Debug. The third-party
libraries, most of which include are CMake projects, are
included in the top-level configuration. Thanks to that,
all dependant targets will inherit the compiler and build
settings from the main project. This avoids the situation
in which an imported library, possibly from system paths,
has been compiled using a different compiler, standard
library or ABI. Having an application linked to different
standard libraries is strongly discouraged.

Moreover, there are custom targets to auto-format
code to achieve uniform style, and to enable static
analysis checks using clang-tidy. When enabled, the
static analyser will be invoked during each build, and
a tidy-all target will be created, which lints all library
code. In the Debug configuration custom targets are also
provided with LLVM sanitisers enabled; for example,
to compile the target exto with the memory sanitiser,
one can use an auto-generated target exot-san-memory,
or exot-san-thread for the thread sanitiser. Moreover,
a Developer can use the provided CMake function
target_enable_sanitiser(target sanitiser) to enable
those for any target. To improve the library user’s
experience, some helpful messages are printed during
configuration. For example, the linked libraries and
compile flags are printed out in the console.

To use the library, a developer can use the library repos-
itory in their sources, and importing the library target via
the add_subdirectory CMake function. The submodule
mechanism described above can be used to import a
specific version of the library to produce applications.
The developer can create separate configurations which
do not ‘pollute’ the codebase, by running:

1 cmake -DCMAKE_TOOLCHAIN_FILE=path/to/toolchain.cmake \
2 -DCMAKE_BUILD_TYPE=Release -B build/Release -H.
3 cmake -DCMAKE_TOOLCHAIN_FILE=path/to/toolchain.cmake \
4 -DCMAKE_BUILD_TYPE=Debug -B build/Debug -H.

All necessary build files and all build artefacts are
contained in the directories specified with the -B flag.
Then, to build separate binaries for a target exot-target,
the user can navigate to those folders and use the make
program, or from the project’s root run:

1 cmake --build build/Release --target exot-target
2 cmake --build build/Debug --target exot-target

An important feature of the ExOT build process
is the addition of toolchain files, which describe
the essentials required for compilation. For example,
x86_64-linux-clang-libcxx.cmake could define a Clang
compiler and use libc++ instead of stdlibc++ as the
standard library. The android.toolchain.cmake from the
Android’s Native Development Kit can also be used
as a toolchain. Most of the executables produced using
the compilation suite use the LLVM’s Clang compiler.
It seems superior to GCC in terms of ease of cross-
compilation [43, 17]6. To make the builds reproducible,
the compilation suite and the application library use the
Nix package manager to isolate the build process from
the system. Recently the Nix package manager has also
been recognised in the scientific community as a tool to
facilitate the reproducibility of experimental software
[18].

For testing purposes the modern and fast testing suite
doctest is used in this project [8]. The build file also
provides an executable target exot-test, which creates a
test runner and combines all individual test suites and
test cases from the test directory. The executable has a
rich calling interface, which allows listing available tests
and running specific cases. The creation of unit tests is
still an ongoing process.

3.1. Cross-compilation and build reproducibility

The Docker-based compilation suite encapsulates all the
required software and toolchains necessary for compiling
and cross-compiling the library and the applications built
on top of it in a docker container. Regardless of which
host machine is used the same compiled binaries will
be produced. The container can be used very easily by
anyone familiar with a command line driven workflow.
A special script is used to spawn the container, which
mounts the current directory on the host inside it and
sets file permissions to the same user and group ID as
the calling user. This approach solves the common issue
with container-based workflows, where all commands
run as the root user, resulting in produced files being
inaccessible on the host computer due to insufficient
permissions. Preliminary support has been provided
for using the environment via an Secure Shell (SSH)
connection, for example in an IDE.

4. Android applications

As ExOT is designed to allow the integration of many
different devices into the measurement environment, we
provide utilities for Android devices. In this section, we

6The Android project also relies on LLVM’s Clang by default.

14

https://git-scm.com/docs/git-submodule

outline the different applications and wrappers that are
implemented as part of ExOT.

4.1. Intent proxy

We provide the intent proxy service, which acts as an
interface between the ExOT experiment engine and any
Android app. The intent proxy will scan the extras of
each received intent it for keywords such as component
or action and will assemble a new intent based on
this information, which is forwarded to the application
defined in the received intent. The intent proxy also
allows us to control the type and keyword of the extras,
appended to the forwarded intent. Detailed information
on the intent structure can be found in the exot wiki.

As the adb intent interface is limited, the intent proxy
allows us to sent all kinds of data to any application
running on a smartphone. Therefore, ExOT allows to
integrate any application into a measurement setup,
and control it via the intent interface of the respective
application.

4.2. Application wrapper

Based on an Android NDK7 wrapper, we provide an
Android service that allows to encapsulate functionality
implemented in the ExOT application library to allow
for a fast measurement application development, see
Figure 6. In addition, this base service defines an intent
interface which allows it to be controlled by the ExOT
experiment engine out-of-the-box. The base service can
also be integrated into applications with a user interface,
to allow interactive measurement campaigns.

4.3. Example apps

We provide two example applications, thermalsc and
thermalscui to illustrate the functionality of the Android
integration of ExOT. Both applications measure the
utilisation, operating frequency, temperature and current
foreground application of the device. thermalsc is
a background service that can be integrated into a
measurement setup using the ExOT experiment engine,
while thermalscui provides a simple user interface for
an interactive measurement campaign.

5. The experiment engine

In this section we present the experiment engine of ExOT,
used for data processing and experiment orchestration.
We base our data processing design on a layered
information flow model, illustrated in Figure 7. Similar
to the well known OSI model, information travels from
the highest layer to the lowest, and then up to the highest
again.

7https://developer.android.com/ndk/

Figure 6: Android integration workspace of ExOT. The
C++ application library is integrated as a submodule in
the directory “exot-c++”.

3 - Raw Data Processing
4 - Line Coding
5 - Source Coding
6 - Generate/Verify

2 - I/O Module
1 - Applications
0 - System

output formatting
symbol to trace
bits to symbols
generate input

write schedule files
system interaction

raw data to trace
trace to symbols
symbols to bits

calculate metrics

read meas. files
system observation

system interaction

Layer Name Layer Functions

Figure 7: Complete information flow model. Information
travels from the highest to the lowest layer, is used to
interact with the system and travels up to the highest
layer.

Layer 6 describes how input data is generated and how
metrics are calculated from the measurement data. In
layer 5 and 4, the source and line coding is defined, which
is used to compress and shape the data stream depending
on the channel specifications. Layer 3 describes the data
format required by the applications, while layer 2 defines
file I/O. The two bottom layers describe the source
(generator) and sink (meter or observer) applications
and the system.

Layers 2 to 6 are implemented as Python packages in
experiment engine, which has the following advantages:
(i) there is no need for recompilation when a new data

15

https://gitlab.ethz.ch/tec/public/exot/wiki/-/wikis/home
https://developer.android.com/ndk/

processing scheme is tested, (ii) the implementation
is platform-independent, and (iii) data checks and
debugging are easy to perform. The different layers can
be combined arbitrarily, increasing the code reusability
among different evaluations. Furthermore, experiments
can use pass-through layers to skip processing steps
or do not use the complete information flow stack. For
example, an experiment may only use the stack up to
layer 2 by taking static data and convert it to source and
the sink application input and configuration files.

5.1. Overview of the experiment engine

The simplified Unified Modelling Language (UML)
class diagram in Figure 8 shows some of the major
relationships in the experiment engine and hints at the
functionality enabled in the major components. As before,
an instance of an Experiment class is responsible for the
generation of experiments, data and path management,
and instantiation of processing layers.

It is driven by a configuration file, described in
Section 5.2. The experiment instance can define multiple
experimental phases. Each phase holds a number of
runs. For example, a phase might include experimental
runs for a range of symbol rates. An experimental run
is the building block of experiments, and encapsulates
a number of parameters that remain invariant. These
runs are instances of a Run class, which is responsible
for ingesting (processing the input bit stream through
the encode parts of each of the layers) and digesting
(processing the measurements from the target platforms
through the decode parts of each of the layers) the data.
They also define how the execution has to be carried out
on a target platform.

The experiment engine is typically used as shown
in Listing 10. First a config is loaded from a file of the
Tom’s Obvious, Minimal Language (TOML) format (line
1). The PerformanceExperiment instance is created using
that configuration (line 2). All required Run instances
are instantiated by calling the generate method (line 3).
The run objects are arranged in a dictionary with a tree-
like structure with experimental phases as first level
children. The tree is accessed via the phases property. To
perform the encode path processing, the digestmethod
is called on all runs—leaves in the hierarchy accessed
via phases (lines 4-5). The experiment is serialised to disk
with the write method (line 6). Once it is available as
files, it can be executed on a target platform of choice
(line 7). The execution involves sending and fetching
data as well as orchestrating the execution for each
run. Once it completes, the data produced on the target
platform is available locally. To read and analyse the data,
we perform the decode path processing with the same
technique as the encoding (lines 26-27). Ingesting the
data requires providing run-time configuration, stored

1 configuration = toml.load("./My\ config.toml")
2 experiment =

PerformanceExperiment(config=configuration)↪→

3 experiment.generate()
4 for run in

datapro.util.misc.leaves(experiment.phases):↪→

5 experiment.digest()
6 experiment.write()
7 experiment.execute_in_environment("My Environment")
8 ingest_arguments = dict(
9 lne={

10 "decision_device":
sklearn.pipeline.make_pipeline(↪→

11 sklearn.preprocessing.StandardScaler(),
12 sklearn.svm.LinearSVC(),
13)
14 },
15 io={
16 "env": "My Environment",
17 "rep": 0,
18 "matcher": datapro.util.wrangle.Matcher(
19 "medium",
20 "type",
21 ["variable"],
22 list(range(0, 8)),
23),
24 },
25)
26 for run in

datapro.util.misc.leaves(experiment.phases):↪→

27 experiment.ingest(**ingest_arguments)
28 experiment.write()
29 experiment.backup()

Listing 10: Typical workflow with the experimental
experiment engine.

in the ingest_arguments variable in this example. Finally,
we can serialise the results of our analysis with another
call to write and upload an archived copy to a backup
server.

An instance of the experiment class might also contain
ready to use analysis procedures, which are implemented
in the channel class. Besides simple local data processing,
such analysis procedures might include data processing
with machine learning libraries on computing clusters.

5.2. Configuration and interoperability

Configuration files for the experiment engine are written
in TOML, as it has good support for the required key–
value structure, understands a number of well-defined
data types (such as arrays, which before required complex
structures or fault-prone string splitting), and has good
readability. Listing 11 shows how the TOML-based
configuration looks like. The structure can be effortlessly
converted into other mapping or dictionary-like types,
such as JSON or Python’s built-in dict.

16

Figure 8: UML diagram of some of the relationships between software components of the data processing and
experimental orchestration framework. 17

1 name = "Report demo"
2 save_path = "data"
3 backup_path = "data/_backup"
4 experiment_exists_action = "move"
5

6 [EXPERIMENT]
7 type = "PerformanceExperiment"
8 channel = "Cache"
9

10 [EXPERIMENT.PHASES]
11 train = {bit_count = 10000, symbol_rates = [1000,

10000], repetitions = 5}↪→

12 eval = {bit_count = 10000, symbol_rates = [1000,
10000], repetitions = 5}↪→

13

14 [EXPERIMENT.LAYERS]
15 src = {name = "Huffman", params = { length = 4 }}
16 lne = {name = "GenericLineCoding", params = {

saturated = false, demean = false }}↪→

17 rdp = {name = "DirectActivation", params = {
sync_pulse_duration = 0.5, sync_pulse_detection =
"falling" }}

↪→

↪→

18 io = {name = "TimeValue", params =
{output_timing_multiplier = 1e9,
input_timing_multiplier = 1e9}}

↪→

↪→

19

20 [EXPERIMENT.GENERAL]
21 latency = 10
22 fan = true
23 governors = "userspace"
24 frequencies = "max"
25 sampling_period = 3e-6
26

27 [APPS]
28 snk = {executable = "meter_cache_fr", zone =

"insecure"}↪→

29 src = {executable = "generator_cache_read_st", zone =
"insecure"}↪→

Listing 11: An excerpt of a the experiment engine
configuration file.

5.2.1. Interface to applications

Listing 12 shows an example of an actual source
application configuration. We can clearly see that passing
this number of parameters via command line arguments
would be inconvenient and prone to errors. Each
configurable component accesses its options in the
JSON object specified by its name (as defined on line
4 in Listing 7). In the experiment engine these JSON
configuration objects are generated directly from values
specified in the experiment configuration file, as shown in
Listings 13 and 14. This allows the master configuration
file to encompass all necessary settings in a single file.

1 {
2 "generator": {
3 "cores": [0], "worker_policy": "round_robin",

"self_policy": "round_robin",↪→

4 "worker_priority": 98, "self_priority": 97,
"use_busy_sleep": true,↪→

5 "busy_sleep_yield": true, "shm_file":
"/dev/hugepages/8",↪→

6 "set_count": 2, "set_increment": 64
7 },
8 "schedule_reader": {
9 "input_file": null, "read_as_hex": false,

"reading_from_file": false↪→

10 },
11 "logging": {
12 "append_governor_to_files": false, "async": false,

"async_size": 8192,↪→

13 "log_level": "trace",
"provide_platform_identification": false,↪→

14 "debug_log_filename": null, "app_log_filename":
null,↪→

15 "timestamp_files": true
16 }
17 }

Listing 12: New JSON-based configuration format

[ENVIRONMENTS."Environment name".src]
generator.host_pinning = 3
generator.should_pin_host = true
generator.cores = [0]
generator.should_pin_workers = true
generator.host_policy = "round_robin"
generator.host_priority = 97
generator.worker_policy = "round_robin"
generator.worker_priority = 98
generator.use_busy_sleep = true
generator.busy_sleep_yield = false
generator.use_huge_pages = true
generator.shm_file = "/dev/hugepages/8"
generator.set_count = 64
generator.set_increment = 64

logging.debug_log_filename = ""
logging.app_log_filename = ""
logging.log_level = "info"
logging.provide_platform_identification = false
logging.async = false

schedule_reader.input_file = ""
schedule_reader.reading_from_file = true
schedule_reader.cpu_to_pin = 1

Listing 13: Source application config

5.3. Experiment engine implementation

In this subsection, we briefly explain the implementation
strategies applied to the experiment engine of ExOT.
5.3.1. Python modularity, documentation and typing support
This allows the experiment engine to be used in a more
consistent manner and makes it easier to import and use

18

[ENVIRONMENTS."Environment name".snk]
logging.append_governor_to_files = false
logging.async = true
logging.async_size = 4096
logging.log_level = "debug"
logging.provide_platform_identification = true
logging.timestamp_files = false
logging.rotating_logs = false
logging.rotating_logs_count = 10
logging.rotating_logs_size = 104857600

meter.host_policy = "round_robin"
meter.host_pinning = 7
meter.should_pin_host = true
meter.host_priority = 95
meter.log_header = true
meter.start_immediately = false
meter.use_busy_sleep = true
meter.busy_sleep_yield = false

cache.use_huge_pages = true
cache.shm_file = "/dev/hugepages/8"
cache.set_count = 64
cache.set_increment = 64

Listing 14: Sink application config

in an IDE or an interactive environment. ?? and shows an
example of the suggestions displayed by a text editor or
an IDE when one tries to import a namespace or module
from the top-level datapro package.

Modern Python adds the support for type annotations,
which provides well-defined function signatures and
allows static type checkers, such as mypy8, to be used.
Thanks to the type hints the intent of each function is
much clearer to the user.

Supplements typing with documentation in the
standard “docstring” format conforming to Python
Enhancement Proposal (PEP) 2579. This style of
documentation is much easier to parse by tools such
as text editors, as shown in Figure 9 and Figure 10.

5.3.2. Defensive programming

Multiple value and type checks are used throughout
the experiment engine, preventing the misuse of the
provided software and helps to ensure the correctness of
the execution. If wrong values or types are supplied, the
user is notified in a quick and informative manner.

5.3.3. Mix-in classes

These classes are are lightweight classes that are meant to
be inherited from, but which provide limited and generic
functionality. These improve universality, contain certain
generic functionality in a single unit, and help reduce
code duplication.

8http://mypy-lang.org
9https://www.python.org/dev/peps/pep-0257/

5.3.4. Config-driven class instantiation

The experiment engine takes advantage of abstract base
classes and provides a subclass tracker mix-in and a
generic object factory. The mix-ins are enabled by the
simpler customisation of class creation introduced in
PEP 48710, and define custom __init_subclass__ class
methods. The subclass tracker traverses the method
resolution order and allows a base class to keep track
of derived classes. The generic object factory uses
the information provided by the subclass tracker and
provides an interface for creation of non-abstract subclass
instances. The code example below shows how little effor
is required to provide a factory for a user-defined class
hierarchy:

1 class Base(SubclassTracker,
track="customisation_point",
metaclass=abc.ABCMeta): pass

↪→

↪→

2 class Derived(Base,
customisation_point=SomeEnum.SomeValue): pass↪→

3 class Factory(GenericFactory, klass=Base): pass
4

5 instance = Factory()("Derived")

In this example, a base class inherits from SubclassTracker.
The GenericFactory is provided the base class in its klass
parameter. The derived class is readily available in the
factory, and can be created using its name. These factories
are used in conjunction with the experiment config file.
5.3.5. Dependency management

The experiment engine uses the pyproject.toml file that has
been proposed in PEP 51811, which is increasingly used
to specify build system requirements for Python projects.
The control over the dependencies is achieved using the
Poetry packaging and dependency manager12. Using a
simple syntax (e.g. numpy = "^1.16") one can declare which
version of a dependency needs to be installed. A lock
file, which contains all dependencies and their versions,
is created and can be easily versioned. The control over
the Python version is exercised with the popular pyenv
project13.
5.3.6. Enhances the inspection and control of platform

parameters

The experiment engine makes it possible to both inspect
and set the state of the target platform. Thanks to the
ability to read platform settings, the experiment engine
also validates whether the provided values are available
or suitable. Moreover, the experiment engine has better
knowledge of the original state and can more easily
restore it after the experiment is completed.

10https://www.python.org/dev/peps/pep-0487/
11https://www.python.org/dev/peps/pep-0518/
12https://poetry.eustace.io
13https://github.com/pyenv/pyenv

19

http://mypy-lang.org
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0487/
https://www.python.org/dev/peps/pep-0518/
https://poetry.eustace.io
https://github.com/pyenv/pyenv

Figure 9: Module importing suggestions

Figure 10: Function signature and documentation hints

6. Showcase

In this section, we present small examples of the
usage of different ExOT components, that illustrate the
capabilities of the toolkit. For more extensive usage see
Miedl [1].

6.1. Application library

Before presenting an example for using the application
library, let us look at how an actual application is
composed using the library. The applications are written
in quite a declarative style, as the example in Listing 15
shows. The typical order is as follows:

(2) Declare type aliases for the sake of convenience,
with the help of the using statement. Aliases
are indispensable for class templates, variadic in
particular. In the shown example, one meter modules
is provided to the meter host component. Using a
subtype contained in the alias meter_type, we then
provide the right template parameter (time) to the
logger.

(4) Instantiate the command line wrapper which will in
itself instantiate the executor and spawn component
processes.
A number of concrete applications were created

using the application library. They all share the same
structure as the one shown in Listing 15, and include a

1 #include <chrono>
2 #include <exot/components/meter_host_logger.h>
3 #include <exot/meters/thermal_msr.h>
4 #include <exot/utilities/main.h>
5

6 using namespace exot;
7 using meter_t = components::meter_host_logger< (2)
8 std::chrono::nanoseconds,

modules::thermal_msr>; (2.2)↪→

9

10 int main(int argc, char** argv) {
11 return utilities::cli_wrapper<meter_t>(argc, argv);

(4.0)↪→

12 }

Listing 15: A sample application

source application, and various meter configurations14.
An experimental data set was produced using the
multithreaded utilisation generator, which was pinned
to cores 1, 3, 5, and 7 of a Lenovo T440p Laptop, based
on an Intel i7-4700MQ core.

Two examples of logged data are visualised in
Figures 11 and 12. The former presents an excerpt
produced with a meter that combines thermal and power
information accessed via model specific registers, and the
latter shows a combination of multiple available meter
modules in a single log output. The red dashed vertical
lines are produced from the load generator’s application
log, and indicate the onset and end of high utilisation
states, respectively. The presented graphs have been
post-processed with a 5-sample moving average filter, to
improve the clarity of the output15. As the graphs show,
the change in measured states coincides with the changes
in the input state trace. Moreover, Figure 12 shows how
the meter host (Section 2.7.6) could be used for a more
exploratory analysis, where individual modules can be
cross-referenced.

6.2. Experimental flow

As an example for the use of the experimental flow,
we show a simple experiment with the thermal covert
channel shown by Bartolini, Miedl and Thiele [24].

Figure 13 shows examples of temperature traces
gathered from “Haswell” (Lenovo T440p) and “ARM”
(Raspberry Pi 3) platforms, produced by execution traces
to transmit data with bit rates of 50 and 5 bits per second,
respectively. The dotted lines show boundaries between
the line-coded symbols. Each contains a transition from
either lower to higher or higher to lower temperature (for
message bits 0 and 1, respectively). Depending on the
symbol rate, each line-coded symbol can be represented

14In the future, a meter factory class may be provided to set up meter
modules at runtime.

15In particular, the averaging was performed to alleviate the issue
with MSR access as described by Jón Thoroddsen [21].

20

Figure 11: Showcase of a typical experimental run

by a number of samples. The decoding of the input trace
follows the strategy described by the authors [24, sec. 7.1].
A Gaussian naive-Bayes classifier operates on slices of the
input trace transformed into complex plane. The complex
plane representation is produced with the help of a
0°and 90°phase-shifted carrier signals. The slices are de-
meaned to remove long-term temperature variations. The
corresponding symbol spaces with annotated classifier’s
decision boundaries are shown in Figure 14 for the two
platforms.

7. Future work

The following sections describe the possible future work
classified into functional enhancements, extensions and
improvements, and software engineering refinements.
Future directions for the application library development
include:
Exploration Since a large part of the research work
involves informal exploration of the side-effects of
execution of programs, it might be helpful to provide
a more direct, perceptible indication of acquired meter
measurements. A pipeline component or a script could
be provided to visualise the accumulating readings,
using graphical or terminal-based output. Moreover,
exploratory visualisation could be provided for the
Android platform, possibly taking advantage of existing
example code which plots sensor data using OpenGL
primitives.
New paradigms Implementing the task-based model
of execution would allow for a broader variety of
programming styles and allow for greater sharing of
resources among asynchronous components, which

Figure 12: A meter using multiple meter modules
From top to bottom, the displayed variables are: core
temperatures for cores 0, 2, 4, and 6; power in RAPL
domains PKG and PP0; scaling frequencies of cores 0 to
7; thermal information from sysfs thermal zones 0 and
1.

could be executed by a thread pool and avoid expensive
thread context switches.
Executors The executors in the current implementation
are quite basic, and provide only a thin layer of
abstraction over lower-level system or user-space threads.
Further possibilities exist, including loop executors and
thread pool executors [see 29].
Communication between components At the moment
the queues used for communication are concurrent,
but there is likely room for improvement in terms of
performance. Additional focus could be given to zero-copy
mechanisms in order to verify that the implemented move
operations (or copy elision/return value optimisation)
actually prevent copies being created. It also might be the
case that there are leaner synchronisation mechanisms
than the currently used combination of locks and
condition variables. Moreover, using a more hand-crafted
storage method (e.g., using a circular buffer) rather than

21

0 16 32 48 64 80 96 112
Sample #

42

44

46

48

50

Co
re

 te
m

pe
ra

tu
re

 (℃
)

0 16 32 48 64 80 96 112
Sample #

44

46

48

50

52

Co
re

 te
m

pe
ra

tu
re

 (℃
)

Figure 13: Example transmissions with the thermal channel for Haswell at 50bps (left) and ARM at 5bps (right).

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
Re

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

Im

0.500

Symbol
Symbol 1
Symbol 0
Misclassified?
False

−2 −1 0 1 2
Re

−2

−1

0

1

2

Im

0.5
00

Symbol
Symbol 0
Symbol 1
Misclassified?
False
True

Figure 14: Example symbol spaces of the decoded thermal channel transmissions for Haswell at 50bps (left) and
ARM at 5bps (right).

wrapping a queue class from the STL could deliver better
performance, or provide bulk/stride access to queue
elements.
Implementing a control flow in addition to data flow
might also allow for better collaboration between
components; for example, in the GNU Radio project
the ability to exchange control messages between nodes
allows the use of push/pull message passing semantics
(instead of the push-only model of classical process
networks).
Deadlocks Currently deadlocks may only arise from
improper ordering of functional code and state changes
inside the process network nodes. In the case of a
pipeline arrangement of nodes there is little chance for
deadlocks, both global and local (due to insufficient
queue capacities). If the library was to be extended
with multiple inputs and outputs, a proper deadlock
detection and resolution mechanism would need to be
provided. An observer could monitor and resize the
queues, but the process nodes might also need to be

instrumented with an execution state and thread-safe
access to it. Successful mechanisms have been developed
by Allen, Zucknick and Evans [36] and Geilen and
Basten [38]. At the moment, the extended semantics
of try_{read,write}_{for,until} allow for handling of
local deadlocks without any impact to token ordering,
and may even prove sufficient for more complex use
cases.
Extended read/write interface The interface to
queues/channels that allows the “try” semantics should
ideally exist as an interface class, such that a user can
extend the core framework by deriving from it and
implementing the member functions. However, the
functions are template member functions, which cannot
be made virtual.16 Using a different mechanism than
inheritance might be necessary.
Duplicated MSR access objects Each meter that needs

16“Member template functions cannot be declared virtual. Current
compiler technology expects to be able to determine the size of a class’s
virtual function table when the class is parsed.”[37, p. 242]

22

Figure 15: Left: Experiment Orchestration Toolkit
(ExOT) logo; Right: QR-Code linking to the Experiment
Orchestration Toolkit (ExOT) website

access to model specific registers has its own instance of
the MSR class, resulting in duplication of functionality and
increased count of file descriptors opened by the process.
It might be a good idea to make the MSR a singleton class,
and allow users to limit which registers they want to
access.
State semantics Improving the state management se-
mantics, and holding the state in an enumeration instead
of atomic boolean variables.

Future directions for the extension of the experiment
engine might include:
Plotting and data visualisation The plotting and data
visualisation module of the experiment engine is
very rudimentary. Therefore, an extension of this
functionality using modern python plotting libraries
would be recommendable to improve the usability of the
experiment engine.
Automated data backup and restore While an auto-
mated backup and restore mechanism for experimental
data was already foreseen in the initial design, it was
never implemented. This mechanism should allow to
backup and restore experimental data to a (remote)
location defined in the experiment configuration file.

8. Concluding Remarks

In this paper we presented the implementation details
and underlying design decision for the Experiment
Orchestration Toolkit (ExOT). We gave a detailed
overview of the design patterns of the application library,
the Android integration and the experiment engine of
ExOT.

For further information, consult the ExOT website
(exot.ethz.ch) or the ExOT wiki (https://gitlab.ethz.ch/tec
/public/exot/wiki/-/wikis/home). ExOT was developed
in the Computer Engineering Group, which is part of
the Computer Engineering and Networks Laboratory
at ETH Zürich. All components of the ExOT project are
publicly available under the 3-clause BSD license.

Acknowledgements

Thanks to all students and colleagues at the Computer
Engineering Laboratory, which have used Experiment
Orchestration Toolkit (ExOT) in their projects and helped
to improve it by providing feedback. Moreover, thanks to

Lukas Sigrist and the RocketLogger Team for providing
the website template and giving advice during the
process of open sourcing.

Last but not least, we also want to thank Azra Gradinčić
the design of the ExOT logo shown in Figure 15.

References
[1] P. Miedl, ‘Threat potential assessment of power

management related data leaks’, PhD thesis, ETH Zurich,
2020.

[2] P. Miedl, R. Ahmed and L. Thiele, ‘We know what you’re
doing! Application detection using thermal data’, Leibniz
Transactions on Embedded Systems, vol. Special Issue on
Embedded System Security, no. 1, 2020, Under review.

[3] P. Miedl, B. Klopott and L. Thiele, ‘Increased repro-
ducibility and comparability of data leak evaluations
using ExOT’, in 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE), IEEE, 2020. doi: 10.3929/
ethz-b-000377986. [Online]. Available: https://doi.org/10.
3929/ethz-b-000377986.

[4] A. Fitsios, ‘Towards Task Inference on Mobile Systems
based on Thermal Traces’, ETH Zürich, Gloriastrasse
35, 8092 Zürich, Switzerland, Tech. Rep. 1, Mar. 2019,
Semester Thesis; Supervisors: Philipp Miedl, Rehan
Ahmed and Lothar Thiele.

[5] B. Klopott, ‘How bad are data leaks really?’, Supervisors:
Philipp Miedl and Lothar Thiele, Master’s thesis, ETH
Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland, Jun.
2019.

[6] N. Lohmann. (2019). nlohmann/json, [Online]. Available:
https://github.com/nlohmann/json.

[7] C. Barth, ‘Come again? Towards repeatable security
experiments’, ETH Zürich, Gloriastrasse 35, 8092 Zürich,
Switzerland, Tech. Rep. 1, Aug. 2018, Semester Thesis;
Supervisors: Philipp Miedl and Lothar Thiele.

[8] V. Kirilov, ‘onqtam/doctest’, 2018. [Online]. Available:
https://github.com/onqtam/doctest.

[9] B. Klopott, ‘You also want to explore other security
leaks? Building an easily extendable application library
for security leak research’, ETH Zürich, Gloriastrasse
35, 8092 Zürich, Switzerland, Tech. Rep. 1, Aug. 2018,
Semester Thesis; Supervisors: Philipp Miedl and Lothar
Thiele.

[10] A. Mackintosh, C++ Latches and Barriers, ISO/IEC JTC1
SC22 WG21, May 2018.

[11] M. Meier, ‘Feature Extraction from Thermal Traces
for the Thermal Fingerprinting Attack’, ETH Zürich,
Gloriastrasse 35, 8092 Zürich, Switzerland, Tech. Rep. 1,
May 2018, Semester Thesis; Supervisors: Philipp Miedl,
Rehan Ahmed and Lothar Thiele.

23

https://www.exot.ethz.ch
https://www.exot.ethz.ch
exot.ethz.ch
https://gitlab.ethz.ch/tec/public/exot/wiki/-/wikis/home
https://gitlab.ethz.ch/tec/public/exot/wiki/-/wikis/home
https://doi.org/10.3929/ethz-b-000377986
https://doi.org/10.3929/ethz-b-000377986
https://doi.org/10.3929/ethz-b-000377986
https://doi.org/10.3929/ethz-b-000377986
https://github.com/nlohmann/json
https://github.com/onqtam/doctest

[12] G. Melman, ‘spdlog’, 2018. [Online]. Available: https:
//github.com/gabime/spdlog.

[13] P. Miedl, X. He, M. Meyer, D. B. Bartolini and L. Thiele,
‘Frequency Scaling as a Security Threat on Multicore
Systems’, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 11, pp. 2497–
2508, Nov. 2018, issn: 1937-4151. doi: 10.1109/TCAD.
2018.2857038. [Online]. Available: https://doi.org/10.
1109/TCAD.2018.2857038.

[14] P. Miedl and L. Thiele, ‘The Security Risks of Power
Measurements in Multicores’, in Proceedings of the 33rd
Annual ACM Symposium on Applied Computing, ser. SAC
’18, Pau, France: Association for Computing Machinery,
2018, pp. 1585–1592, isbn: 978-1-45035-191-1. doi: 10 .
1145/3167132.3167301. [Online]. Available: https://doi.
org/10.1145/3167132.3167301.

[15] M. Millen, ‘Analysis and Optimization of Frequency
Governors’, Supervisors: Rehan Ahmed, Philipp Miedl
and Lothar Thiele, Master’s thesis, ETH Zürich,
Gloriastrasse 35, 8092 Zürich, Switzerland, Apr. 2018.

[16] ‘muellan/clipp’, 2018. [Online]. Available: https://github.
com/muellan/clipp.

[17] P. Smith, ‘How to cross compile with LLVM based tools’,
in FOSDEM’18, Linaro, Feb. 2018, pp. 1–28. [Online].
Available: https : / / fosdem.org /2018 / schedule /event /
crosscompile/.

[18] B. Bzeznik, O. Henriot, V. Reis, O. Richard and L. Tavard,
‘Nix as HPC package management system’, in HUST
2017, Nov. 2017, pp. 1–24.

[19] C++ Technical Committee, ISO/IEC 14882:2017, 2017.
[Online]. Available: http://www.eel.is/c++draft/.

[20] X. He, ‘A Smart Attack using the Frequency Covert
Channel’, Supervisors: Philipp Miedl, Matthias Meyer
and Lothar Thiele, Master’s thesis, ETH Zürich,
Gloriastrasse 35, 8092 Zürich, Switzerland, Oct. 2017.

[21] Ólafur Jón Thoroddsen, ‘UnCovert 4: The Power Covert
Channel’, ETH Zürich, Gloriastrasse 35, 8092 Zürich,
Switzerland, Tech. Rep. 1, Jun. 2017, Semester Thesis;
Supervisors: Philipp Miedl and Lothar Thiele.

[22] M. Selber, ‘UnCovert3: Covert Channel Attacks on
Commerical Multicore Systems’, Supervisors: Philipp
Miedl and Lothar Thiele, Master’s thesis, ETH Zürich,
Gloriastrasse 35, 8092 Zürich, Switzerland, Apr. 2017.

[23] R. Strebel, ‘What is my Thermal Fingerprint?’, ETH
Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland, Tech.
Rep. 1, Jul. 2017, Semester Thesis; Supervisors: Philipp
Miedl, Rehan Ahmed and Lothar Thiele.

[24] D. B. Bartolini, P. Miedl and L. Thiele, ‘On the Capacity of
Thermal Covert Channels in Multicores’, in Proceedings
of the Eleventh European Conference on Computer Systems,
ser. EuroSys ’16, London, United Kingdom: ACM, 2016,
24:1–24:16, isbn: 978-1-45034-240-7. doi: 10.1145/2901318.
2901322. [Online]. Available: http://doi.acm.org/10.1145/
2901318.2901322.

[25] M. Selber, ‘UnCovert: Operating Frequency, a Security
Leak?’, ETH Zürich, Gloriastrasse 35, 8092 Zürich,
Switzerland, Tech. Rep. 1, Feb. 2016, Semester Thesis;
Supervisors: Philipp Miedl and Lothar Thiele.

[26] P. Wild, ‘UnCovert: Evaluating thermal covert channels
on Android systems’, ETH Zürich, Gloriastrasse 35, 8092
Zürich, Switzerland, Tech. Rep. 1, Aug. 2016, Semester
Thesis; Supervisors: Philipp Miedl and Lothar Thiele.

[27] J. C. Beard, P. Li and R. D. Chamberlain, ‘RaftLib’, in
the Sixth International Workshop, New York, New York,
USA: ACM Press, 2015, pp. 96–105, isbn: 978-1-45033-
404-4. doi: 10.1145/2712386.2712400. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2712386.2712400.

[28] C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen
and A. Francillon, ‘Reverse Engineering Intel Last-
Level Cache Complex Addressing Using Performance
Counters.’, English, RAID, vol. 9404, no. Chapter 3,
pp. 48–65, 2015. doi: 10 .1007 /978- 3- 319- 26362- 5_3.
[Online]. Available: http://link.springer.com/10.1007/978-
3-319-26362-5_3.

[29] C. Mysen, Executors and schedulers, ISO/IEC JTC1 SC22
WG21, Apr. 2015.

[30] M. Torquati, Parallel Programming Using FastFlow,
September 2015, University of Pisa, Sep. 2015.

[31] A. Kukanov, V. Polin and M. J. Voss, ‘Flow Graphs,
Speculative Locks, and Task Arenas in Intel® Threading
Building Blocks’, Intel Corporation, Tech. Rep., Jun. 2014.

[32] G. E. Allen, ‘Computational process networks’, English,
PhD thesis, University of Texas at Austin, Austin, May
2011. [Online]. Available: https://repositories.lib.utexas.
edu/handle/2152/ETD-UT-2011-05-2987.

[33] P. Smith, Software Build Systems, ser. Principles and
Experience. Addison-Wesley, 2011.

[34] A. Podobas, M. Brorsson and K.-F. Faxén, ‘A Comparison
of some recent Task-based Parallel Programming
Models’, English, in 3rd Workshop on Programmability
Issues for Multi-Core Computers, 2010. [Online]. Available:
http://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-23671.

[35] Z. Vrba, ‘Implementation and performance aspects of
Kahn process networks’, PhD thesis, Jul. 2009. [Online].
Available: https://dblp.org/rec/phd/basesearch/Vrba09.

[36] G. E. Allen, P. E. Zucknick and B. L. Evans, ‘A Distributed
Deadlock Detection and Resolution Algorithm for
Process Networks’, in 2007 IEEE International Conference
on Acoustics, Speech, and Signal Processing, IEEE, 2007,
pp. II–33–II–36, isbn: XXX-1-4244-0727-3. doi: 10.1109/
ICASSP . 2007 . 366165. [Online]. Available: http : / /
ieeexplore.ieee.org/document/4217338/.

[37] B. Eckel and C. D. Allison, Thinking in C++, English,
ser. Practical Programming. Prentice Hall, Dec. 2003,
vol. 2, isbn: XXX-0-13-035313-2. [Online]. Available: http:
//www.cs.ust.hk/~dekai/library/ECKEL_Bruce/.

24

https://github.com/gabime/spdlog
https://github.com/gabime/spdlog
https://doi.org/10.1109/TCAD.2018.2857038
https://doi.org/10.1109/TCAD.2018.2857038
https://doi.org/10.1109/TCAD.2018.2857038
https://doi.org/10.1109/TCAD.2018.2857038
https://doi.org/10.1145/3167132.3167301
https://doi.org/10.1145/3167132.3167301
https://doi.org/10.1145/3167132.3167301
https://doi.org/10.1145/3167132.3167301
https://github.com/muellan/clipp
https://github.com/muellan/clipp
https://fosdem.org/2018/schedule/event/crosscompile/
https://fosdem.org/2018/schedule/event/crosscompile/
http://www.eel.is/c++draft/
https://doi.org/10.1145/2901318.2901322
https://doi.org/10.1145/2901318.2901322
http://doi.acm.org/10.1145/2901318.2901322
http://doi.acm.org/10.1145/2901318.2901322
https://doi.org/10.1145/2712386.2712400
http://dl.acm.org/citation.cfm?doid=2712386.2712400
https://doi.org/10.1007/978-3-319-26362-5_3
http://link.springer.com/10.1007/978-3-319-26362-5_3
http://link.springer.com/10.1007/978-3-319-26362-5_3
https://repositories.lib.utexas.edu/handle/2152/ETD-UT-2011-05-2987
https://repositories.lib.utexas.edu/handle/2152/ETD-UT-2011-05-2987
http://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-23671
https://dblp.org/rec/phd/basesearch/Vrba09
https://doi.org/10.1109/ICASSP.2007.366165
https://doi.org/10.1109/ICASSP.2007.366165
http://ieeexplore.ieee.org/document/4217338/
http://ieeexplore.ieee.org/document/4217338/
http://www.cs.ust.hk/~dekai/library/ECKEL_Bruce/
http://www.cs.ust.hk/~dekai/library/ECKEL_Bruce/

[38] M. Geilen and T. Basten, ‘Requirements on the Execution
of Kahn Process Networks.’, ESOP, vol. 2618, 2003. doi:
10.1007/3- 540- 36575- 3_22. [Online]. Available: http:
//link.springer.com/10.1007/3-540-36575-3_22.

[39] H. Van Der Linden, ‘Scheduling distributed Kahn process
networks in Yapi’, PhD thesis, Technische Universiteit
Eindhoven, 2003.

[40] A. Alexandrescu, Modern C++ Design, ser. Generic
Programming and Design Patterns Applied. Addison
Wesley, Feb. 2001, isbn: 978-0-20170-431-5. [Online].
Available: http://www.worldcat.org/title/c- in-depth/
oclc/316330731.

[41] M. Goel, ‘Process Networks in Ptolemy II’, PhD thesis,
Berkeley, CA, Dec. 1998.

[42] T. M. Parks, ‘Bounded Scheduling of Process Networks’,
PhD thesis, Dec. 1995. [Online]. Available: http://ptolemy.
eecs.berkeley.edu/papers/parksThesis.

[43] J. Roelofs, ‘Which targets does Clang support?’, in
EuroLLVM 2014, pp. 1–15. [Online]. Available: https :
//llvm.org/devmtg/2014-04/.

25

https://doi.org/10.1007/3-540-36575-3_22
http://link.springer.com/10.1007/3-540-36575-3_22
http://link.springer.com/10.1007/3-540-36575-3_22
http://www.worldcat.org/title/c-in-depth/oclc/316330731
http://www.worldcat.org/title/c-in-depth/oclc/316330731
http://ptolemy.eecs.berkeley.edu/papers/parksThesis
http://ptolemy.eecs.berkeley.edu/papers/parksThesis
https://llvm.org/devmtg/2014-04/
https://llvm.org/devmtg/2014-04/

	Introduction
	The application library
	Compilation suite and testing
	Android applications
	The experiment engine
	Showcase
	Future work
	Concluding Remarks

