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Abstract—This paper introduces TRACELAB, a new testbed
architecture that allows for fine-grained tracing of time sensitive
behavior of low-power wireless embedded systems. Such traces
help to systematically analyze code execution to find software
errors, measure bounds for execution times, or to verify func-
tional program properties. TRACELAB builds on the idea of
GPIO tracing: by including short GPIO instructions into node
applications, the program behavior can be traced in a minimally
invasive manner, simultaneously on all observed nodes. TRACE-
LAB enables fine-grained distributed tracing by overcoming the
limits of existing testbed architectures with respect to timing
accuracy and peak event rates. For that purpose, an existing
testbed design is extended with a new data acquisition system that
includes an FPGA chip for fast and deterministic data handling.
To faithfully align distributed trace measurements, TRACELAB
integrates a highly accurate wireless time distribution network.
We build 31 TRACELAB observers and deploy them in an office
environment and outdoors. Measurements using GPS precision
timing show that TRACELAB (i) is able to trace events at rates of
up to 108 events/s and (ii) aligns traces from different locations
within 1µs with an empirical probability of 99.9 %.

I. INTRODUCTION

Testbeds have become a fundamental part in the develop-
ment cycle of wireless embedded systems. Testing a system in
a real distributed environment exposes it to external factors like
multi-path signal propagation, signal attenuation, temperature
changes, or hardware variations. As it is difficult to accurately
model and simulate these influencing factors, testing on real
hardware is needed for proper evaluation and validation.
Testbeds provide engineers and researchers the services to fa-
cilitate testing for wireless embedded systems. Typical services
are programming, logging of serial port output, and power
profiling.
Motivation. While the currently available testbed services
already cover many areas beyond the basic needs of wire-
less embedded application engineers, support still lacks for
network-wide, fine-grained cycle-accurate tracing of time sen-
sitive system behavior. To illustrate this, we consider two
examples:

1) Low-power MAC protocols require exact and coordinated
timing of actions to ensure efficient operation, e.g., Glossy
relies on constructive interference of concurrently transmitted
packets, which requires transmissions of neighboring nodes
to be aligned within 0.5µs [1]. To observe and validate
the interaction between different nodes in such a network, a
distributed tracing mechanism must be minimally invasive and

deliver the recorded trace of each individual node tightly time-
synchronized with all other concurrent traces.

2) Control-flow tracing of programs allows for efficient
debugging and to find potential failure causes [2]. In this case,
every branch instruction in a program needs to be traced. The
resulting enormous volume of tracing points necessitates an
efficient and minimally intrusive trace recording system.

Existing approaches are either too intrusive (e.g., using
printf), or not general enough to meet the diversity of
available node platforms (in system debugging [3],[4]). More
crucially, none of the available approaches is able to align
traces with the required accuracy and cope with high peak
event rates.
Contributions. To overcome the limitations of current
testbeds, we introduce TRACELAB, a new distributed data
acquisition system that is capable of tracing mote application
behavior at a high time resolution in a minimally invasive
manner, tightly synchronized throughout a network of 31
nodes. The basis of our new system is the FlockLab testbed
architecture [5], which provides a distributed network of
observer platforms that are used to stimulate and monitor
the attached devices under test, the targets. We build on the
idea of the existing GPIO tracing and actuation services, and
extend their capabilities with respect to sampling resolution,
peak sampling rate, and time alignment of traces by several
orders of magnitude. By including short GPIO instructions
into node applications, the program behavior can be traced
in a minimally invasive manner. The design of the new data
acquisition system consists of a field-programmable gate array
(FPGA) and a CC430 SoC with RF core. The FPGA chip
handles the timing sensitive data acquisition part, while the
SoC is running a wireless time synchronization protocol to
keep the system time of the FPGA chip on each observer syn-
chronized. TRACELAB requires synchronization accuracy that
rules out the commonly used network time protocol NTP [6].
For local networks, the precision time protocol PTP [7] is a
more accurate alternative, while GPS receivers provide accu-
rate synchronization on a global scale. PTP requires special
hardware support within the network infrastructure, while GPS
receivers only provide accurate synchronization in places with
good satellite reception. As we want to support both, indoor
locations with possibly bad GPS satellite reception as well
as outdoor locations with limited infrastructure support, we
identify synchronization using a low-power wireless multi-



hop network as viable solution. We integrate a synchronization
algorithm based on Glossy [1] into TRACELAB’s data acqui-
sition system, and show that the synchronization performance
can be considerably improved by applying a jitter reduction
filter.
Challenges. Depending on the node application, tracing an
execution path with many conditional branches within a short
time window requires an efficient data handling mechanism
that can manage high peak data rates. To faithfully cap-
ture the interaction between different nodes in the network,
measurements need to be accurately time-synchronized. The
required combination of high peak sampling rate and accurate
time synchronization makes designing such a data acquisition
system a challenging task.
Findings. Our system is designed to capture GPIO events
with a time resolution of 0.5µs. According to the evaluation
in Sec. VI, our prototype sustains a peak event rate of
108 events/s, while the maximal average event rate the system
can handle is 2.85 × 105 events/s. Expressed in numbers of
the widely used TelosB node platform, this event rate allows
to continuously trace a program of which one third of the
instructions change GPIO states.1 Typical low-power appli-
cations exhibit even less events to trace due to energy saving
strategies that put the CPU to a sleep mode. Measurements in a
31-node network assisted by GPS precision timing show that
TRACELAB aligns concurrently recorded traces within 1µs
with an empirical probability of 99.9 %.

In the following, we discuss related work in Sec. II and
derive the requirements for a fine-grained, distributed trace
recording system in Sec. III. In Sec. IV, we give an overview
of the system design and discuss the data acquisition system
and the time synchronization mechanism in detail. We explain
implementation specific details in Sec. V, evaluate key prop-
erties of TRACELAB in Sec. VI, and conclude the paper in
Sec. VII.

II. RELATED WORK

Related to this paper are hardware and software solutions
that allow to trace embedded system behavior, both on a single
entity and at network scale. We further discuss work related
to techniques applied in our system design, which revolves
around time synchronization using a 1-pulse-per-second (1-
PPS) signal and time synchronization protocols for low-power
wireless embedded systems.

Tracing system behavior can be realized either on the target
device itself, or using external hardware. Software solutions
instrument program code at branch instructions and use effi-
cient encoding to log control flow traces to flash memory [2].
Another instrumentation approach is pursued by Tardis [8],
which rather logs non-deterministic program inputs as a trace
for later replaying using a simulator. While software solutions
are easily applicable and can provide very accurate information
about the state of a node, the required resources on the target
for processing and storing the traces render such an approach

1Assuming a clock speed of 4 MHz.

unsuitable to trace time sensitive behavior. Indeed, experiments
with Tardis reveal that the CPU duty cycle of standard node
applications can almost double with tracing enabled [8].

Additional hardware offloads data processing from the target
to an external observer platform, providing an out-of-band
communication channel in addition. Two different data ex-
traction methods are commonly applied in this context: On-
chip debug interfaces or simple GPIO pins for binary state
information. Aveksha [4] uses a debug board extension to
trace events of interest on a single target using the on-chip
debug module of the MSP430 microcontroller. A low-cost and
networked solution is provided by Minerva [3]. Tracing using
on-chip debug interfaces is non-intrusive and expressive, but
not easily portable between different microcontroller architec-
tures. Monitoring GPIO pins is a more generic approach, at
the expense of slightly higher intrusiveness caused by short
GPIO instructions. GPIO pins can be traced at relatively high
speeds, as shown in a FPGA-based logic analyzer design that
is able to sample 8 GPIO pins on a single embedded system
at a rate of 200 events/s [9]. GPIO tracing in a distributed
fashion is also a key element of FlockLab [5]. Different
to TRACELAB, the aforementioned single node monitoring
solutions don’t provide a consistent global view of a network.
Available networked solutions are only conditionally suited for
fine-grained distributed trace recordings due to their limited
tracing rates and time synchronization accuracy, e.g., FlockLab
traces exhibit a maximal pairwise timing error of 255µs and
contain events at a maximal rate of 3.5 kHz for lossless traces.
TRACELAB is a distributed tracing solution that overcomes
these limitations.

TRACELAB implements a digital loop control algorithm
to lock the FPGA-internal system clock to a 1-PPS signal.
Similar controllers have been used in the past, e.g., to reduce
the jitter of a GPS 1-PPS signal [10].

As further detailed in Sec. III, observers in TRACELAB have
to be time-synchronized within 1µs, which we achieve using
a multi-hop time synchronization protocol. A popular time
synchronization algorithm is employed by the flooding time
synchronization protocol FTSP [11]. However, the achieved
maximal synchronization error of less than 14µs in a 6-hop
network does not meet our requirements. Schmid et al. im-
prove on the achieved accuracy of FTSP by introducing a
high resolution clock [12]. Glossy, a flooding architecture for
wireless sensor networks that exploits constructive interference
for fast network flooding, implicitly provides time synchro-
nization [1]. On a TelosB, the reported average error over 8
hops is as low as 0.4µs, with a standard deviation of 4.8µs. In
TRACELAB, we port Glossy to a node platform that has two
distinct properties that improve time synchronization: (i) as in
[12], a high resolution system clock, and (ii) a radio chip with
automatic RX/TX transceiver mode switching. Additionally to
the baseline Glossy, we improve on the time synchronization
variance by adding a jitter reduction filter.



III. ENABLING FINE-GRAINED TRACING

In this section, we sketch the idea of tracing system behavior
using GPIO pins as monitoring interface, and we derive the
requirements needed to actually enable fine-grained tracing of
system behavior of low-power wireless sensor networks.

In this context, we specify the system behavior of interest as
the control path taken during a program execution on a set of
nodes, annotated with time information. This information can
be used in several ways to analyze code execution. Examples
are (i) the quantification of code coverage for test applications,
(ii) empirical determination of bounds for execution times
of certain program parts, or (iii) the verification of system
behavior against a given specification using exhaustive testing.

To get execution traces of programs, we instrument the
program code using short marker instructions to emit pin state
changes (events) at branches in the program flow. As these
instructions are very short, we assume that these additional
instructions only minimally affect the system behavior. We
then reconstruct the taken program flow from the emitted
sequence of pin level changes. This is feasible if the emitted
GPIO trace is ordered by time and unambiguously mappable
to a sequence of program executions. Ensuring unambiguous
mapping by means of a limited number of pins possibly
requires to encode individual markers using a sequence of pin
changes.

Table I
PEAK EVENT RATES FOR DIFFERENT TARGET PLATFORMS.

Node Peak event Cycles Pin change
platform rate ( events/s) time
TelosB 0.8× 106 5 1,250 ns
Tinynode 184 2.4× 106 5 417 ns
IRIS 1.6× 106 2 250 ns
Opal 19.2× 106 5 52 ns

What are the requirements for a trace recording system?
The rate of the emitted GPIO level changes is limited by the
maximal pin setting rate of a target, which in turn depends on
the target’s MCU clock speed and the number of instructions
needed to change a pin state as summarized in Table I. This
rate might be reached if programs have several conditional
branches in a row, or if markers in the program code are
encoded using sequences of pin changes. On the other hand,
low-power wireless embedded systems are usually duty-cycled
to save energy. There is no code execution during sleep
states, and therefore the expected average tracing rate can be
significantly lower than the peak event rate. These observations
lead to the first requirement:
Requirement 1. A trace recorder needs to sustain for short
periods of time a peak sampling rate that is able to capture
the maximal pin level change rate of a target.

The time resolution of a trace should be sufficiently high
to allow meaningful execution time measurements, thus our
second requirement is:
Requirement 2. The trace of a single target must be ordered
by time and exhibit a sub-microsecond time resolution.

To observe interactions between several nodes in a network,
and to properly order these interactions relative to each other,
time annotations within a trace must allow to sufficiently align
it with traces of neighboring nodes. For instance, to measure
and properly adjust timing properties like wake-up guard times
of low-power MAC protocols, an alignment error in the range
of the smallest controllable time quantity on a node would be
preferable. Behavior is typically controlled by timers running
from 32 kHz oscillators or the main system clock, which
allows control at a resolution of a few microseconds. We
therefore phrase the last requirement as follows:
Requirement 3. The time synchronization error between
observers of neighboring nodes should be in the lower mi-
crosecond range.

Next, we describe the architecture of TRACELAB, and we
explain how we address the given requirements.

IV. ARCHITECTURE

A. Overview

UART
FPGA (Spartan-6 LX9)

SRAM
1 MB

Gumstix

U
SB

Target

ADC SPI

tracing pins

actuation 
pins

SP
I

combine synchronized time

SoC with RF core (CC430)
1-PPS

LAN

U
SB

PO
W

ER
G

PI
O

SPI

Figure 1. Overview of a single TRACELAB observer.

Fig. 1 provides an overview on the system architecture
of TRACELAB. The newly designed system fits into the
existing FlockLab architecture and replaces the existing data
acquisition part, which is originally running entirely on a
Gumstix embedded computer.

The Gumstix features a 624 MHz Marvell XScale PXA270
microprocessor that runs OpenEmbedded Linux and is
equipped with 128 MB SDRAM, 32 MB flash memory and
an 8 GB SD card. All observers in TRACELAB are connected
over Ethernet or Wi-Fi (outdoor) to a backend infrastructure.

We trace a target in TRACELAB by means of two different
tracing interfaces, GPIO lines and an ADC, the former for
digital state information, the later for power measurements.
The GPIO interface is used in two directions, either controlled
by the target or by the observer. The state of these interfaces
are traced by the TRACELAB board. Traces are annotated
with a timestamp and forwarded to the Gumstix computer. We
handle all time critical tasks on the TRACELAB board, while
test management and communications tasks are allocated to
the Gumstix computer.

The TRACELAB data acquisition architecture consists of
a Spartan-6 FPGA chip, a static random-access memory
(SRAM) and a CC430 SoC that combines an MSP430 micro-
controller and a CC1101 radio transceiver chip. Functionally,



the system has to process three different types of data streams:
(i) GPIO actuation commands to control 3 GPIO pins, (ii)
GPIO tracing on 5 pins and (iii) power profiling data. In
total, 9 individual streams need to be processed in parallel
and with low time jitter. We employ an FPGA chip for this
task, because the parallel nature of such a chip allows to
map the processing of each stream type to dedicated hardware
modules, and therefore greatly facilitates a deterministic, low
jitter processing. In contrast to this paradigm, many existing
testbed architectures, including FlockLab, rely on sequential
processing on a single processor.

We tackle the high peak sampling rate requirement by
employing a hierarchical memory structure. Fast on-chip FIFO
queues within the FPGA handle short bandwidth spikes, while
the SRAM memory is used to buffer larger amounts of
sampled data, before we finally write the acquired traces to
the serial peripheral interface (SPI) bus for further storage on
an SD card on the Gumstix.

To put the measured information into a global time context,
we need to keep the time on each observer synchronized with
all the other observers. For this purpose, the internal time of
the FPGA is disciplined by applying a 1-PPS signal. The edge
of such a pulse indicates the start of a new second. Typically,
GPS receivers provide this kind of pulse for synchronization
purposes. However, relying on GPS timing restricts the range
of use to locations with good satellite reception, which rules
out most indoor locations. To distribute a time pulse to all
observers in the testbed, our design relies on a wireless time
synchronization protocol based on Glossy [1], running on the
SoC of the TRACELAB board.

Next, we describe in Sec. IV-B the clock control algorithm
that keeps the internal FPGA-time locked to a 1-PPS signal
time. Sec. IV-C details the FPGA-design of our data acqui-
sition system, Sec. IV-D explains the configuration interface,
and Sec. IV-E describes how we accurately synchronize time
on all observers in the testbed to a common reference.

B. Disciplined System Clock

In the following, we discuss time and clock related details
of the FPGA design. The FPGA chip runs at a clock speed
of 100 MHz. At the same time, this is also the maximally
achievable sampling rate of GPIO states. To facilitate digital
control, we derive a system time counter, running at a nominal
frequency of 2 MHz, that is a clock period of 500 ns. The speed
of the system is adjustable by varying the number of FPGA
clock cycles per system time clock tick.

To keep the system time in line with the external reference
1-PPS signal, we employ a clock control algorithm that com-
bines an open-loop controller with a feedback control loop,
as illustrated in Fig. 2. The open-loop controller determines
the local clock rate by averaging the number of FPGA clock
cycles within N 1-PPS periods, where N = 8 in our design.
We denote the difference between this measured clock rate and
the nominal clock rate as er(t). The feedback control loop
implements a P-controller, which corrects the offset of the
system time relative to the external 1-PPS signal. The offset

eo(t) is measured using the offset detector in Fig. 2. The sum
of er(t) and eo(t), expressed in system clock cycles, is given
as input to a variable clock divider that generates the 2 MHz
system time clock based on the 100 MHz FPGA system clock.
The clock divider samples the system clock down by a variable
factor β ∈ {49, 50, 51}. The factor is applied in a way, such
that the total error is corrected evenly spread over the period
of one second.

system clock
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N period
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Figure 2. The clock control algorithm is a combination of an open-loop
controller and a feedback control loop. The speed of the system time clock
is controlled by a variable divider.

We evaluate this design in Sec. VI-B and show that our
controller keeps the internal system clock tightly synchronized
to the 1-PPS signal.

C. Data Acquisition

The data acquisition part of the FPGA-design captures the
data generated by the target, that is state changes of the target’s
GPIO lines and the power dissipation of the target, measured
by the ADC. Each captured element has to be annotated with
a precise timestamp and forwarded to the Gumstix computer.

The two data streams that need to be handled have different
properties. GPIO state changes, which are triggered by single
instructions on the target platform, occur at irregular time
intervals and possibly exhibit high peak rates, e.g., an Opal
node could potentially emit 19.2 × 106 state changes per
second. Power measurements on the other hand follow a strict
sampling interval and occupy less bandwidth, in our case up to
56 ksps. Our design takes these differences into consideration
by applying different internal data representations. To maxi-
mize throughput, each acquired data element should occupy as
little memory as possible. Space can be saved by not including
the complete timestamp into each data element, but rather
stripping the most significant bits from the time value. As
depicted in Fig. 3, we introduce marker elements (b) and (d)
into the data stream to mark the change of the significant bits
in the stream. The complete time can be reconstructed in a later
step, e.g., on a back-end server. For power profiling samples,
the knowledge of the sampling rate even eliminates the need
for storing the lower part of the timestamp, i.e., the essential
data consists of an ADC sample and a header, as in (e) in
Fig. 3. Packet format (c) is needed to indicate the start and
end of a power profiling trace, which can happen at arbitrary
time instants. While our approach generates a low-rate base
stream of metadata, it also greatly reduces the data volume for
event bursts and power profiling.

The memory structure matches the input data stream (i.e.,
GPIO events and the power profiling), to the output, in our
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Figure 3. Data format of GPIO tracing and power profiling packets. All
packets have a width of 32 bits and include a header of 3 bits. Marker packets
(b) and (d) contain the upper 17 bits of the timestamp.

case an SPI bus running at a clock frequency of 12 MHz.
As illustrated in Fig. 4, the output has a significantly lower
peak bandwidth than the input. Therefore we resort to a
hierarchical memory structure that provides both, high short
term bandwidth on the input and enough buffer space to shape
the data stream to match the slower output. Small and fast
FIFO queues can handle new data packets with every clock
cycle, while the access time to the SRAM amounts to 16
cycles, i.e., a maximal packet rate of 6.25× 106 packets/s.

The two input streams are merged before writing to the
SRAM chip. To avoid starvation, power profiling data is
prioritized because there is a tight and not saturating upper
bound to the maximal data rate of this stream, which is less
than 1 % of the SRAM memory bus bandwidth.

We empirically evaluate the throughput of the data acquisi-
tion with the help of an event generator in Sec. VI-A.

SRAM
1 MB

FIFO
4 kB

SD card
(SPI)

108 packets/s 6.25 × 106 packets/s 2.85 × 105 packets/s

GPIO

power FIFO
4 kB

Figure 4. Data flow and memory structure of the data acquisition system.
The SRAM serves as buffer for the SPI bus. The two data streams are merged
when writing to the SRAM.

D. Configuration and Test Management

The TRACELAB board can be configured over a UART
interface, which is connected to the USB port of the Gumstix
using a USB-to-serial converter. The choice of a dedicated
configuration interface (in addition to the SPI bus) facilitates
the software implementation on the Gumstix, as data acqui-
sition and configuration can be handled independently. To
configure the FPGA, commands are provided to start or stop
a test, to set a mask for target pins to be traced, and to control
power profiling. During a test, commands can be sent to set or
clear 3 actuation pins on the target. These commands are kept
in a FIFO queue on the FPGA and processed at the specified
time instant. In order to ensure proper actuation timing, an
actuation command has to be sent at least 70µs in advance.

E. Time Synchronization for Distributed 1-PPS

As described in Sec. IV-B, the internal system time on
the FPGA is steered by applying an external 1-PPS sig-
nal. In TRACELAB, we leverage the fact that observers are
placed within communication range of low-power wireless
transceivers. Therefore we can employ a wireless mesh net-
work built of such transceiver nodes to generate a synchro-
nized 1-PPS signal on all observers. In TRACELAB, we use
the CC1101 transceiver of the CC430 SoC for that purpose.
A 1-PPS signal of a single GPS receiver serves as reference
for the initiator node in the network. The remaining nodes
synchronize to the initiator by means of a time synchronization
protocol.2

Glossy [1] is a flooding architecture for wireless sensor
networks that exploits constructive interference for fast net-
work flooding and implicit time synchronization. On a TelosB
node it achieves an average time synchronization error below
one microsecond and is therefore suitable for our purpose. In
Glossy, every node estimates the start time of a flood, based on
timestamps made from several packets within the flood. This
estimate serves as a reference time. Due to redundant use of
links and retransmissions, Glossy achieves a high reliability.

Figure 5. Generation of a synchronized 1-PPS signal. An external GPS pulse
triggers the start of a flood at the initiator. The 1-PPS pulse is then emitted
on all the nodes in the network based on the calculated reference time Tref .
This process is repeated every second.

Time synchronization in TRACELAB is illustrated in Fig. 5.
The initiator starts a flood with every GPS pulse, i.e., there is
flood happening every second. We configure the GPS receiver
to emit the pulse slightly before the start of a new second in
order to align the node generated pulses with the start of a
second.

Due to different influences like measurement uncertainties
or different propagation paths, the calculated reference time
is affected by jitter. To reduce this jitter, we apply a heuristic
that exploits the fact that the local clock, running from a quartz
oscillator, is relatively stable during shorter periods of time.
The intuition is to combine every new reference time Tref ,i
with the measurement T̂ref ,i−1 from the previous flood and
weight them according to some smoothing factor α:

T̂ref ,i = αTref ,i + (1− α)(T̂ref ,i−1 + T̄ ) (1)

T̄ is the average interval between the last recent M reference
times.

2Potential in-band interference with target nodes can be avoided by black-
listing the frequency band/channel of the time synchronization protocol.



We evaluate the performance of the distributed synchro-
nization pulse in Sec. VI-B and quantify the impact of our
heuristic.

V. IMPLEMENTATION

The hardware implementation of a TRACELAB board is
shown in Fig. 6. It fits between a FlockLab board and a
Gumstix and therefore extends an existing FlockLab observer
in a modular fashion.

Figure 6. The TRACELAB board fits between the FlockLab board and the
Gumstix. Visible on the lower right part is the CC430 with a chip antenna.
The FPGA and the SRAM chip are on the bottom layer.

We implement the data acquisition part on an FPGA of the
Xilinx Spartan-6 series. The design fits into a Spartan-6 LX9,
which is second smallest member of that family, featuring
120 user I/Os, 9152 logic cells and a price of about 15$
per piece. The network time synchronization protocol runs
on a Texas Instrument CC430F5137 SoC, featuring 32 kB of
program memory and 4 kB of RAM. The chip integrates a sub-
1 GHz radio with configurable bit rate and radio modulation. A
26 MHz quartz oscillator provides the basis of a stable 13 MHz
system and timer clock. A 4-port USB-to-serial converter
connects the debug and programming ports of the FPGA and
the CC430 with the Gumstix computer.

On the CC430, we run Glossy on top of the Contiki
OS [13]. As suggested by [1], we exploit the automatic
RX/TX-transceiver mode switch of the CC430 for accurate
timing of concurrent transmissions in Glossy. Packets are
sent using 250 kbit/s GFSK radio modulation in the 868 MHz
frequency band.

VI. EVALUATION

In a first part of the evaluation, we focus on a single observer
node of TRACELAB. We measure peak and average throughput
of the data acquisition system and assess the performance of
the 1-PPS-tracking algorithm on the FPGA. Next, we quantify
the time synchronization error of the distributed time pulse for
a setup of 31 observers in an office environment, using GPS

receivers as ground truth. By running experiments with and
without our jitter reduction algorithm, we show the beneficial
impact of the algorithm. Finally, we assess the overall timing
accuracy of TRACELAB by using the wirelessly distributed
time pulse as input to the 1-PPS port of the FPGA.

A. Throughput

In this section, we quantify the throughput of the data
acquisition system and compare it to the requirements given
in Sec. III.

As described in Sec. IV-C, the internal data path on the
FPGA consists of several stages with different bandwidths.
Here, we characterize the two maximal event rates that lead to
a saturation of the first and second stage shown in Fig. 4, that
is the FIFO queues and the SRAM. We empirically measure
the number of events that can be processed without loss at
event rates of 108 events/s and 6.25×106 events/s respectively.
For this purpose, we connect an event generator to the tracing
inputs of the FPGA and let the pin levels change at a constant
rate. To detect the first lost packet, we compare received
packets at the Gumstix with the generated events.

The results of this experiment are summarized in Table II.
The FIFO queue, which can store up to 1024 event packets,
is saturated after 1070 events at a constant event rate of
108 events/s. While filling the FIFO, data packets are continu-
ously removed and written to the SRAM. For the second stage,
the SRAM, we generate events at a rate of 6.25×106 events/s.
270,000 data packets can be stored until the first packet
is dropped. The SRAM is full within 40 ms. The maximal
average data rate that the data acquisition system can handle
is determined by the SPI bus, which is the slowest interface
in the data path.

With a continuous throughput of 285,000 packets per sec-
ond, TRACELAB is able to trace programs with 1.48 % tracing
instructions on all target platforms in FlockLab (see Table I).
The peak processing throughput of 108 events/s is high enough
to meet the requirements of all target platforms.

Table II
MEASURED THROUGHPUT BURST SIZES AND MAXIMUM CONTINUOUS

RATE

Cycles between two events Max. event burst size
1 (10 ns) 1070

16 (160 ns) 270000
350 (3.5µs) continuous

B. Timing

In this section, we first assess the performance of the
clock control algorithm on the FPGA. Then, we proceed to
the evaluation of the distributed 1-PPS signal in a network
of 31 observers and finally, we quantify the overall system
performance of TRACELAB in terms of time synchronization
error between observers. In the experiments, we use one or
several u-blox LEA-6T GPS receivers that provide an accurate
1-PPS signal (RMS of 30 ns) [14], either as a reference signal
for the root node, or as ground truth.



Timing on the Single Observer. As described in Sec. IV-B,
the implemented clock control algorithm on the FPGA seeks
to correct the offset between the internal and the external 1-
PPS signal. The external signal is provided by a GPS receiver.
To evaluate the performance of the algorithm, we measure the
time difference between those two signals in system ticks (i.e.,
10 ns) on a single TRACELAB observer for a period of 5.5 h.

The cumulative distribution function over all measurements
is shown in Fig. 7. In total, 19,713 offset measurements are
made, with a 99th percentile of 40 ns, which corresponds to
4 FPGA clock ticks. Therefore, we conclude that our control
algorithm keeps the system time on the FPGA within tight
bounds if a proper external 1-PPS signal is applied.
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Figure 7. Cumulative distribution function of the absolute offset error
between the internal and external 1-PPS signal. The clock tracking algorithm
keeps the offset error within ±40 ns for 99 % of the time.

Network-Wide Time Synchronization. Next, we assess the
accuracy of the distributed time pulse in a network setting of
31 nodes. This section focuses solely on the implementation
on the CC430 SoC. The experiment is carried out on Olimex’s
commercially available MSP430-CCRF development board.
In total, we distribute 31 nodes as shown on the floor plan
in Fig. 8. 4 nodes are located outdoors while the remaining
27 are placed indoors in an office environment. We select a
central node next to a window as initiator to keep hop distances
short and to ensure good satellite signal for the reference
GPS receiver. On the nodes, we run two different versions
of Glossy: a baseline implementation without jitter reduction,
and a version with jitter reduction, as described in Sec. IV-E.
We set the smoothing factor α to 0.1.

To assess the synchronization error, we equip 5 nodes
with additional GPS receivers. On these nodes, the GPS
1-PPS signal serves as ground truth. On every node, we
locally measure for every Glossy flood the offset between
the calculated reference time and the edge of the externally
applied 1-PPS signal. We then compare all offsets relative to
the initiator node to get the synchronization error. To ensure
a broad coverage of environmental conditions, such as closed
office doors, working people and temperature variations, we
combine measurements originating from various daytimes and
weekdays into a total measurement duration of 6 h. The results,
summarized in Table III, show that we are able to keep the
standard deviation of the synchronization error below 5 clock

Observer node

Observer node (GPS)

Root observer node (GPS)
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Figure 8. Layout of the network during evaluation of time synchronization.

ticks (385 ns) in the baseline implementation. Nodes that have
a higher hop distance to the initiator exhibit a larger error.
The outdoor node 3 has mostly a direct connection to the
initiator and therefore the smallest error. The experimental data
also shows a clear benefit of the jitter reduction heuristic. The
maximal error as well as the standard deviation is considerably
lower when jitter reduction is enabled. This effect is more
prominent for nodes that are farther away from the initiator
node. The error distributions for both implementations are
exemplary illustrated for node 4 in Fig. 9.

Based on our results, we conclude that our wireless 1-
PPS distribution infrastructure is well suited to synchronize
observers in TRACELAB with sub-microsecond timing error.

Table III
STANDARD DEVIATION AND RANGE OF THE ERROR, MEASURED IN CLOCK

TICKS (13 MHZ), FOR ALL NODES, WITHOUT AND WITH JITTER
REDUCTION HEURISTIC.

Node Glossy Glossy with jitter reduction Hop distance
1 4.05, [-25,82] 1.88, [-6,14] 4
2 2.15, [-11,17] 2.01, [-7,8] 2
3 1.94, [-7,7] 1.71, [-8,8] 1
4 3.25, [-23,23] 1.82, [-6,9] 2
5 3.62, [-22,32] 2.02, [-8,9] 4

Overall Timing Accuracy of TRACELAB. In the last exper-
iment, we combine both the FPGA-design and the distributed
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Figure 9. Distribution of synchronization error on node 4. The error
distribution for the baseline implementation (top) is significantly broader than
for the jitter reduced version (bottom).

time pulse to accurately trace GPIO events. The observers
are placed in the same layout as in Sec. VI-B. Again, we
equip the root observer and 5 other observers with a GPS
receiver. The CC430 SoC on the root observer uses the 1-PPS
signal of the GPS as reference and distributes the pulse to all
other observers using Glossy with jitter reduction. On all the
GPS-equipped observers, we connect the 1-PPS signal of the
GPS to one of the tracing inputs of the TRACELAB board.
Then, we configure the data acquisition system to trace this
pin for a duration of 1 h. The data acquisition on the FPGA
annotates every state change on the input pin using a globally
synchronized timestamp. The difference between timestamps
of different observers directly reflects the synchronization
error. To evaluate the synchronization accuracy, we calculate
for every pulse the maximal absolute error relative to the root
observer. Fig. 10 shows a histogram of the error. 99.9 % of
the errors are smaller or equal to 1µs; the maximal error is
1.5µs.
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Figure 10. Absolute time synchronization error of TRACELAB. The his-
togram shows the maximal error of 5 out of 31 observers, relative to the root
observer.

The reported error reflects the synchronization error be-
tween nodes on the edge of the network and the central root
node. As the synchronization error in Glossy depends on hop
distances [1], we expect synchronization between neighboring

nodes to be even better. Overall, TRACELAB provides dis-
tributed event tracing services with tightly synchronized time
information.

VII. CONCLUSIONS

We have presented TRACELAB, a testbed that allows to
trace time sensitive system behavior of low-power wireless
embedded systems in a fine-grained manner. By extending
the existing FlockLab architecture with an accelerated data
acquisition system based on an FPGA chip, TRACELAB is
able to capture state changes at the maximal rate emitted by
any of the currently attached target platforms. TRACELAB
synchronizes traced data using a highly accurate wireless time
synchronization protocol, thus enabling accurate monitoring
of network interaction between all target nodes of the testbed,
down to microsecond granularity.
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