
Time-of-Flight Aware Time Synchronization
for Wireless Embedded Systems

Roman Lim, Balz Maag, Lothar Thiele
Computer Engineering and Networks Laboratory

ETH Zurich, Switzerland

{lim, bmaag, thiele}@tik.ee.ethz.ch

Abstract
Accurate time synchronization is an important prerequi-

site for many applications. Synchronization down to sub-
microsecond precision, as required by distributed control in
automation or network event analysis, is prevalently a do-
main of wired or expensive GPS-enabled systems. Existing
time synchronization protocols for wireless embedded sys-
tems exhibit errors that are orders of magnitude higher. We
identify propagation delay compensation as a key require-
ment to achieve sub-microsecond precision in typical de-
ployments. As a result, we present the Time-of-Flight Aware
Time Synchronization Protocol (TATS), a new protocol that
combines fast multi-hop flooding and message delay com-
pensation at similar message cost as existing delay-unaware
protocols. Experiments conducted in a public testbed of 31
nodes show that TATS achieves sub-microsecond synchro-
nization error over 22 hops, while outperforming state-of-
the-art protocols by a factor of up to 6.9.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-

work Architecture and Design—wireless communication;
C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms
Design, Experimentation, Measurement, Algorithms

Keywords
Propagation delay compensation, time Synchronization,

wireless embedded systems

1 Introduction
Time synchronization is an important primitive for dis-

tributed systems. Such systems have different requirements
on the accuracy of time synchronization. For many applica-
tions an accuracy in the millisecond range is sufficient [4].

Other applications like distributed control in automation or
distributed measurements, e.g., for network event analy-
sis [24, 17] or data acquisition during flight tests [18], require
a higher degree of time synchronization in order to guarantee
failure-free operation.

Distributed systems that require sub-microsecond time
synchronization are generally synchronized either using
satellite communication, such as the Global Positioning Sys-
tem (GPS), or wired infrastructure. Using GPS, it is possi-
ble to acquire very accurate timing, i.e., average timing er-
ror of 60ns on standard commodity L1-GPS receivers [29].
For small and spatially limited deployments, or for locations
without satellite reception, wired approaches are an alterna-
tive. A prominent example is the precision time protocol [3],
which can leverage existing Ethernet infrastructure. How-
ever, the cost for integrating a GPS receiver is high, both
economically and power-wise, and wired solutions for places
without exiting infrastructure have high initial cabling cost.

Wireless time synchronization protocols for embedded
systems achieve synchronization errors in the millisecond
to microsecond range using inexpensive hardware, e.g.,
PulseSync has a worst case synchronization error of 19µs
in a 30-hop line topology [15], which is two orders of mag-
nitude away from sub-microsecond accuracy. In addition,
experimental evaluation of protocols is mostly conducted in
a setting that does not resemble real deployments well, i.e.,
nodes are arranged within close proximity and in radio range
of a single reference broadcaster [15, 19]. This leads to small
distances between nodes, and hence propagation delays are
not considered in the evaluation of these protocols. It’s there-
fore unclear how well these results apply for network struc-
tures with longer and more diverse distances between indi-
vidual nodes.

Emerging embedded platforms for cyber-physical sys-
tems are more sophisticated than first generation wireless
sensor network platforms, thereby providing higher clock
rates and radio transceivers integrated into computation
units. Examples of such integrated chips are the Texas In-
struments CC430 or CC2538 series, combining an MSP430
microcontroller core with a sub-1GHz radio transceiver or an
ARM Cortex-M3 and an IEEE 802.15.4 compliant 2.4GHz
radio. Existing wireless time synchronization protocols can
profit from this development in several ways. Faster system
clocks result in higher time resolution of packet timestamps,
while integration of MCU and radio core on one chip facili-

tates tighter control of the radio core.
In light of these developments, we revisit existing con-

cepts with the aim to narrow the gap between wireless multi-
hop time synchronization and its wired and GPS counter-
parts, and therefore bringing flexible and lower cost time
synchronization to a wide set of applications that require sub-
microsecond timing accuracy.
Challenges. To increase the coverage of a wireless network,
nodes use intermittent hops to forward information to re-
ceivers that are not in communication range. When target-
ing sub-microsecond time accuracy, propagation delays are
not negligible and need to be appropriately considered when
exchanging time information. In addition, it has been shown
that fast propagation of time information is essential, as er-
ror accumulation is proportional to the time spent in the net-
work [14, 30]. Bringing both objectives together is a non-
trivial task.
Contributions and road-map. We identify differing prop-
agation delays as an important aspect to further increase the
accuracy of current time synchronization protocols. Based
on the obtained insight, we propose the Time-of-Flight
Aware Time Synchronization Protocol (TATS), a new proto-
col that compensates propagation delays on communication
paths. TATS builds on existing flooding based synchroniza-
tion approaches and introduces propagation delay measure-
ments without sending additional packets.

In summary, this paper makes the following contribu-
tions:
• In Sec. 3, we assess the impact of propagation delays

on two recently proposed synchronization protocols,
namely Glossy [6] and PulseSync [14]. We reveal a de-
pendency between the minimal achievable global syn-
chronization error and network topology, and thus mo-
tivate the need for propagation delay compensation.

• In Sec. 4, we design TATS, a multi-hop time-
synchronization protocol that compensates the propa-
gation delay experienced on communication paths with
no additional packet complexity.

• We discuss implementation details of TATS on a recent
hardware platform in Sec. 5.

• We evaluate TATS in Sec. 6 and compare its perfor-
mance against Glossy and PulseSync on a public testbed
with 31 nodes. To show the impact of network topology
on the global synchronization error, we use three differ-
ent topologies: a short and a long 22-hop line topol-
ogy, and a dynamically built distribution tree. Over-
all, TATS achieves an average synchronization error of
0.24µs and a maximal synchronization error of 0.54µs,
which is up to a factor of 6.9 better than its competition.

To the best of our knowledge, we are the first to report of
a sub-microsecond synchronization error over tens of hops
using off-the-shelf wireless embedded nodes.

2 Related Work
This section summarizes publications closely related to

the proposed TATS protocol. For an exhaustive survey on
time synchronization protocols, the reader is referred to [27].
Wireless sensor networks. Table 1 gives an overview on

synchronization accuracies reported for time synchroniza-
tion protocols running on typical sensor node platforms. Di-
rect comparison by numbers is not possible because evalu-
ations are conducted under different circumstances. In ad-
dition, accuracies are sometimes reported as mean absolute
error, i.e., the unsigned deviation, and sometimes as mean
signed deviation. The latter generally results in lower val-
ues.

TPSN [7] employs a two-way message exchange to mea-
sure the delay introduced by the communication stack. Al-
though such measurements include physical propagation de-
lays of electromagnetic waves, other delays, e.g., jitter in ra-
dio interrupts, dominate the measurements. Different to our
approach, TPSN creates a fixed hierarchical network struc-
ture and two messages are exchanged per link for a two-way
delay measurement and time synchronization. In contrast,
TATS builds on a dynamically built flooding tree and only
one broadcast message per node to perform the same mea-
surements.

By employing more sophisticated MAC-layer timestamp-
ing [19] or capture-registers, the measured delay between
sending and receiving a packet has a significantly nar-
rower distribution and can be approximated by a constant
value. This enables time synchronization using only uni-
directional communication, e.g., FTSP [19] RATS [12] and
PulseSync [15] synchronize a network by flooding time in-
formation using broadcast messages. Communication pat-
terns are less complex because flooding does not need a so-
phisticated routing tree. Different to TATS, performance of
these protocols depends on the choice of a message delay
calibration and on the distribution of propagation delays be-
tween individual nodes.

Glossy [6], a flooding architecture for wireless sensor net-
works based on concurrent transmissions implicitly provides
network-wide synchronization. As such, common reference
times can be computed on every node of the network. In
contrast to TATS, Glossy does not foresee propagation delay
compensation or drift compensation.

TATS builds on various concepts introduced by other time
synchronization protocols. We use linear regression, as in-
troduced by RBS [5], to compute the offset and the speed
of the local clock relative to a reference clock. Same as
RATS [12] and PulseSync [15], TATS coordinates packet
transmissions in order to achieve fast information propaga-
tion over several hops. By doing so, clock drift on forward-
ing nodes have a lower impact on time synchronization er-
ror. In [25], the idea of high resolution, low-power clocks
is introduced, which reduces the synchronization error. To
accurately timestamp radio packets, TATS relies on a high
frequency clock.

In summary, propagation delay has been treated as a neg-
ligible source of synchronization error in wireless sensor net-
works. In contrast to the mentioned work, we show that
propagation delay plays a major role for sub-microsecond
time synchronization accuracy and we propose TATS, a
new time synchronization protocol that compensates for dif-
ferent propagation delays per link. TATS brings together
the simplicity of unidirectional network flooding and the
propagation delay awareness of two-way message exchange

Table 1. Reported synchronization errors. If not men-
tioned otherwise, error values are reported as magnitudes.

Hops Synch. Avg Max Platform
Interval

TPSN 1 -b 16.9µs 44µs Mica
FTSP 6 30s 2.3µs 14µs Mica2
FTSPa 1 10s 0.13µs c n/a Epic
RATS 11 30s 2.7µs 26µs Mica2
PulseSync 30 10s 2.06µs 19µs Opal
Glossy 8 -b 0.4µsc n/a TelosB

ausing virtual high resolution timer [25]
b single measurements, no linear regression
cmean signed deviation, not mean absolute error

schemes.
High latency acoustic networks. While the need for com-
pensation of propagation delays in air has been mostly ne-
glected, it is more prominent in underwater networks [8]. In
water, acoustic waves are used for communication. Com-
pared to RF communication, the speed of acoustic waves
is five orders of magnitudes slower. Due to different en-
vironmental influences such as multi-path effects or time
dependent propagation characteristics, it is unclear whether
such synchronization protocols can be directly applied to
RF based communication. In addition, complex messaging
hinders fast dissemination of time information over several
hops. TSHL [28] employs a two-phase approach to first es-
timate the local speed of the clock and then use a two-way
message exchange to measure the propagation delay.
3 Impact of Propagation Delay

In this section we motivate that it is important to take
propagation delay into account when designing a time syn-
chronization protocol. We use the term propagation delay
to refer to the duration a signal travels between the anten-
nas of two communication partners. First, we quantify the
propagation delay in wireless embedded systems and com-
pare it against other errors present when synchronizing time
in multi-hop networks. Then, we analyze the impact on
PulseSync and Glossy, two state-of-the-art time synchroniza-
tion protocols that treat propagation delay as a negligible
quantity.
3.1 Time-of-Flight vs. Other Sources of Error

In order to assess the impact of propagation delays in
wireless embedded systems, we put the error into per-
spective. Radio communication, based on electromagnetic
waves, propagates at the speed of light, i.e., approximately
3× 108 m/s. The indoor communication range of a typical
wireless sensor node is 20−30m [20]. Accordingly, a mes-
sage traveling between two nodes can experience a propaga-
tion delay of up to 100ns.

To put this value into perspective, we consider time syn-
chronization accuracies reported in literature as listed in Ta-
ble 1. Although one can not directly compare the protocols,
as they are evaluated on different hardware platforms and
using different settings and algorithms, we get a good pic-
ture of accuracies currently attained. As stated by [14], syn-

chronization error in a multi-hop network is a function of the
network diameter. The more hops involved, the worse the
accuracy. Depending on the algorithm, the error grows expo-
nentially, linearly, or sub-linearly (

√
diameter) with the net-

work diameter [14]. To approximate the error introduced by
each hop, we divide the average error by the number of hops.
The lowest value for protocols in Table 1 results from the
PulseSync protocol: 2.06µs/30 = 67ns. Except for TPSN,
all the listed protocols treat propagation delay as being con-
stant.

We conclude that the impact of varying propagation de-
lays is comparable to the error introduced by other effects
like jitter when timestamping a packet or clock drifts be-
tween nodes. For outdoor deployments, the effect of propa-
gation might be even more severe, as communication ranges
are larger. Some deployments exhibit node distances of sev-
eral hundreds to thousands of meters, e.g., on bridges [11] or
in alpine environments [2].

3.2 Existing Multi-hop Time Synchronization
Protocols

To assess the potential of propagation delay compensa-
tion, we investigate two recent protocols that are representa-
tive for the current state-of-the-art for time synchronization
in wireless sensor networks. We identify shortcomings that
prevent better accuracy just by increasing the frequency with
which nodes re-synchronize. In the following, we use the
term message delay to refer to the time between timestamp-
ing a message on the sender and the receiver. This delay also
includes the propagation delay.

PulseSync [15] builds on the insight that it is beneficial
to forward time information as fast as possible through the
network. To do that, the protocol floods pulses through the
network. Each node sends exactly one message within each
pulse after having received the message from its predecessor.
The initiating reference node embeds its current clock value
into the message. All forwarding nodes update the time value
by adding the message delay and the dwell time of the mes-
sage. Here, the dwell time is the difference of the local clock
values taken at receive-time and at send-time. The message
delay for all pair-wise links is assumed to have the same nor-
mal distribution with a known mean value, i.e., the “differ-
ences in radio propagation times can be neglected in sensor
networks” [14]. The message delay is determined during a
calibration phase.

Every message received serves as a sample point that re-
lates the reference time to a local clock value. The slope and
the offset of each node’s local clock is then calculated using
least squares linear regression over the last k sample points.
PulseSync implements an optional drift compensation to re-
duce the error that is added by updating the time information
in the packet on each node. This error stems from measur-
ing the dwell time using local clocks that run at a slightly
different speeds than other nodes.

To estimate the impact of calibrating the protocol with a
single propagation delay parameter τc, we assume in the fol-
lowing a network where packets are perfectly timestamped
(no jitter) with an arbitrarily accurate time resolution. Nodes
have perfect clocks without drift and the message delay is

equal to the propagation delay. Let us denote the number of
hops a packet in a pulse travels from the reference node to
node v as hv, and the real accumulated propagation delay on
this path from the reference node to v as τv. The error that
results from imperfect knowledge of the propagation delay at
this node is hvτc− τv. The resulting global synchronization
error G , i.e., the maximal pairwise error across all nodes in
the network is

G = max
v

(hvτc− τv)−min
v
(hvτc− τv). (1)

We see that the resulting global synchronization error
heavily depends on the network topology, i.e., hv and τv. An
optimal parameter τc that minimizes G can be found using
linear programming. In general, it is difficult to find the opti-
mal τc as this requires knowledge of all possible paths of the
flood and the respective path delays. In addition, network
structures change over time, e.g., due to mobility or changes
in the environment, necessitating an adaption of τc. A nec-
essary condition for the error to vanish completely is that all
path delays τv are multiples of τc, which is very unlikely to
be the case in a real wireless sensor network deployment.

Glossy [6] is a flooding mechanism based on concurrent
transmissions that allows to disseminate messages in a multi-
hop network as fast as possible. To synchronize time, an ini-
tiator node starts a flood and embeds its clock value into the
first packet. Every node that receives a packet immediately
retransmits it, thereby effectively synchronizing packets sent
in the same slot. With every transmission, a counter value
c contained in the packet is incremented by one. With this
information it is possible to calculate an estimate of the start
time of the flood as

ˆtref = Tc0 − c0tslot, (2)

where Tc0 is the local time of the first received packet and c0
the counter value contained in this packet. The propagation
delay is contained in the tslot value, as this is the interval be-
tween the start of a packet transmission with relay counter c
and the start of the following packet transmission with relay
counter c+1. Nodes estimate tslot locally using packet times-
tamps. In [6], the authors assume that “tslot is a network-wide
constant, since during a flood nodes never alter the packet
length”.

There are two aspects where propagation delay plays a
role: (i) the timestamp Tc0 is affected by different propaga-
tion delays, leading to a similar effect as for PulseSync if
a constant propagation delay is assumed for the whole net-
work; (ii) the slot time tslot is strictly speaking not a network-
wide constant, but rather depends on the immediate neigh-
borhood of a node. To show this, we conducted following
experiment. We let Glossy run in a setup as shown in Fig. 1:
three nodes are directly connected using wires and a signal
splitter to enforce fixed communication channels. Commu-
nication channel (I)-(F) experiences a longer delay channel
than (I)-(N). Node (I) starts a flood, while (F) and (N) partic-
ipate in the flood. After receiving (I)’s message, (F) and (N)
are transmitting the message concurrently. As (N)’s signal is
received stronger at (I), due to capture effect [13], the packet
sent by (F) has no impact on the timing at (I). After a while,

Table 2. Slot times estimated during Glossy floods.
Initiator (I) Node (F) Node (N)

All nodes 516.78 µs 516.78 µs 516.78 µs
Without (N) 516.93 µs 516.95 µs -

we turn off (N). The acquired slot estimates on individual
nodes are shown in Table 2. When all nodes are participat-
ing in the flood, the estimates are similar. However, as we
turn off the closer node (N), slot estimates become larger by
approximately 150ns. Such variations in tslot have a large
impact on the calculated reference time (2) because they are
multiplied by the number of hops c0.

I

N

F

Signal
splitter

0.2m

10m

50m

Figure 1. Experimental setup to show the influence of the
capture effect on slot length measurements. The antenna
connectors of three nodes are wired to a signal splitter, re-
sulting in different signal delays due to differences in cable
length.

3.3 The Need For Propagation Delay Com-
pensation

Varying propagation delays can introduce per-hop errors
as high as 100ns for indoor deployments and are therefore
relevant when aiming for sub-microsecond synchronization
accuracy. State-of-the-art time synchronization protocols
handle errors well that stem from clock drift and message
delay jitter, by providing a fast flooding mechanism or com-
bining several measurement points using linear regression,
but lack the awareness for propagation delays.
4 Time-of-Flight Aware Time Synchroniza-

tion
In this section, we describe TATS, our new protocol that

combines per-link message delay compensation and fast
flooding for highly accurate time synchronization. As seen
in Sec. 3, synchronization accuracy suffers from unknown
propagation delay between nodes. Therefore we want to
compensate for varying propagation delays between nodes
in a network, while keeping the advantages of state-of-the-
art protocols, namely high synchronization accuracy due to
fast dissemination, and low overhead due to flooding. Fur-
thermore, the number of additional messages needed should
be minimal.

We decompose propagation delay compensation on a link
into two steps: (i) estimating the delay on a link, and (ii)
updating the time value contained in a message by adding the
delay estimate. The message delay on a link can be estimated
using two-way delay measurements, as depicted in Fig. 2,
also applied by TPSN [7]. Two messages are exchanged per
link: node 0 sends a packet to node 1 and remembers the
timestamp T0. Upon reception, node 1 replies with a packet
that contains the dwell time ω1, which is then used by node

0 to compute the two-way delay as R1→0−T0−ω1, where
R1→0 is the reception time of the packet at node 0. The one-
way delay is computed by dividing the two-way delay by
two.

Adding low overhead message delay compensation to ex-
isting flooding based protocols is challenging for three rea-
sons:

1. In contrast to flooding, where every node sends just one
broadcast packet, the two-way delay measurement in-
volves two packets per link and adds therefore consid-
erable overhead.

2. After a message exchange, only the initiating node
(node 0 in Fig. 2) knows the delay. As floods are based
on broadcasts and it is therefore unknown who will re-
ceive the packet, the delay estimate has to be compen-
sated by the receiving node(s), hence the propagation
delay knowledge is needed at the receiving node 1.

3. Two-way delay measurements are only feasible if links
are bidirectional. Flooding does not have this restriction
and therefore might use links for which message delays
are not obtainable. Unidirectional links are very com-
mon in real deployments, e.g., [22] reports of a testbed
where 46% of the links are unidirectional.

0

1

T0 R1→0

ω1ω1

Figure 2. Two-way round-trip measurement.

Next, in Sec. 4.1, we give an overview of our approach. In
Sec. 4.2, we describe our method to measure message delays
using broadcast packets, and finally, we introduce a heuris-
tic that makes our protocol more resilient to non-symmetric
links in Sec. 4.3.
4.1 Overview

The aim of TATS is to establish a global time that is syn-
chronized to a reference node on all nodes in the network.
The network is assumed to be short term stable, i.e., the
mean propagation delay between nodes only changes slowly
over time. This assumption is reasonable for static net-
works. We use PulseSync [15] as a starting point and ex-
tend it with a propagation delay compensation: Similar as in
PulseSync, messages containing the reference time are peri-
odically flooded to all nodes, initiated by the reference node.
Each node participates in the flood by (i) reading the refer-
ence time (ii) adding the message delay to it and, (iii) on
transmission, adding the dwell time to the reference time.
All communications are broadcasts and nodes transmit once
for every flood, after a random and short timeout after re-
ceiving a packet. Each flood implicitly creates a routing tree,
thereby defining a parent-child relation between nodes.

Received delay-compensated reference times are stored in
a table together with the corresponding local reception times
of packets. A node then performs a least squares linear re-
gression on these value pairs to calculate the time offset and

clock drift of the local clock relative to the reference clock.
Different to PulseSync, TATS applies individual message

delays for each link in step (ii). Two-way message delays are
measured by piggy-backing additional information onto reg-
ular synchronization packets. In this way, we add propaga-
tion delay compensation to PulseSync without sending addi-
tional packets. Next, we detail our approach for propagation
delay measurements.

4.2 Propagation Delay Estimation
Let’s consider Fig. 3, which depicts a small part of a net-

work consisting of three nodes. All links are bi-directional,
i.e., communication is possible in both directions. Node 0
starts a flood by sending a broadcast packet containing the
reference time. This packet is received by nodes 1 and 2.
After a random timeout, each receiver updates and forwards
the packet. As all transmissions are broadcasts, node 0 over-
hears the forwarded packets. This chain of actions resembles
the same information flow as is needed to carry out a round-
trip time measurement, as shown in Fig. 2. To use this infor-
mation flow for two-way measurements, messages need to
contain the dwell time ω and the identifier of the parent. The
latter is needed because communication is based on broad-
cast packets. Without that information, node 0 could not dis-
tinguish between messages of its child nodes and messages
of other nodes. The one-way message delay between nodes
v and w after flood k is computed as

δ
k
v↔w =

Rw→v−Tv−ωw

2
. (3)

Tv and Rw→v are the timestamps taken at node v when
node v sent its message and when it received a message from
node w. The dwell time on w is denoted as ωw. Because
propagation delays are short term stable, a more accurate de-
lay estimate δ̄k

v↔w can be obtained by averaging N consecu-
tive measurements:

δ̄
k
v↔w =

1
N

k

∑
i=k−N+1

δ
i
v↔w (4)

In this way, parents can obtain message delay estimates
for all links towards all their children. Every node keeps a
number of most recent delay measurements in a table. As
stated in Sec. 3, the estimates are needed on child nodes to
compensate for propagation delays. To inform child nodes
about message delays, parents embed the obtained average
message delay into the time synchronization packet. The re-
sulting packet format of TATS is shown in Table 3. A parent
needs to forward estimates to potentially many children. As
only a limited number of estimates fit into a synchronization
message, parents select estimates to send in a round-robin
fashion.

For every received time synchronization message in a
flood, a child node w compensates the message delay by
looking up the value belonging to the link v→ w and adds
that to the received reference time Gv→w to obtain the com-
pensated reference time Gw:

Table 3. Structure of synchronization packets.
Name Description

Sequence numbera Sequence number of flood
Reference time Ga Global time

Node ID of parent Parent ID in this flood
Dwell time ω Elapsed time between receiv-

ing and sending

Node ID of measurement Identifies the link of the
measurement

Message delay δ̄ Average message delay
measured by this node

aSame as in PulseSync

Gw = Gv→w + δ̄v↔w (5)

The proposed mechanism does not prevent collisions,
e.g., node 1 and node 2 in Fig. 3 could potentially send their
packets at the same time during a flood, therefore render it
impossible to perform a delay measurement. As timeouts are
random, eventually, in a consecutive flood, a measurement
will be possible. Because message delays are short term sta-
ble, a certain delay in measuring and distributing estimates
is permitted and does not hamper the performance.

0

1

2

T0 R1→0 R2→0

ω1ω1

ω2ω2

Figure 3. Round-trip measurements are based on time
information embedded into time synchronization pack-
ets. A parent node 0 can acquire several measurements by
listening to the packets that are transmitted by its children 1
and 2.

4.3 Avoiding Unidirectional Links

A

B

C

m1 m2

m1

Figure 4. Unidirectional links prevent round-trip mea-
surements. By introducing a short delay, intermediate nodes
get the chance to forward the time information over bidirec-
tional links.

The proposed mechanism for round-trip measurements
requires that links can be used in both ways, otherwise mes-
sage delay measurements are not possible. Unidirectional
links manifest when the received signal power is close to the
receiver’s sensitivity threshold. In the situation illustrated in
Fig. 4, node C can hear node A, but communication in the
opposite direction is impossible. Therefore, the propagation
delay between A and C can’t be estimated. If there is an
additional node B with bidirectional links to both A and C,
route A→B→C would allow for round-trip measurements
and consequently propagation delay compensation could be
applied. We observe that in Fig. 4, node C will eventually
receive a message directly from A (m1) and another one re-
layed over B (m2). By ignoring the earlier message m1, we
establish the desired route.

TATS exploits this observation to reduce the number of
unidirectional links used in a flood. Every time a packet is
received over a link with unknown message delay, an ad-
ditional waiting period is introduced before forwarding the
message. If a messages from a neighbor with known mes-
sage delay arrives during this period, the earlier message is
ignored.

Our evaluation in Sec. 6.2 shows that this heuristic results
in more round-trip measurements and less missing delay es-
timates.

5 Implementation
We implement TATS in Contiki OS [1] on a CC430 de-

veloper board to show its feasibility and to benchmark the
performance.
Hardware platform. We use the Olimex MSP430-CCRF
developer board (16.16e per piece) [21] as hardware
platform for our implementation. This board features a
low-power Texas Instruments CC430F5137 SoC, providing
32kB of program memory and 4kB of RAM. The chip inte-
grates an MSP430 core and a CC1101 sub-1GHz radio with
configurable bit rate and radio modulation. The on-board
printed PCB-antenna is used. A 26MHz quartz oscillator
provides the basis of a stable 13MHz system and timer clock.
The quartz has a nominal frequency deviation of ±10ppm
and a temperature dependent deviation of ±10ppm over the
specified range from -25 to 75◦C. System time is stored in
a 16-bit counter value and extended, on overflow, by incre-
menting an additional integer variable to a 64-bit timestamp.
Message timestamps. For propagation delay measurements,
timestamps are taken on the sending and on the receiving
nodes. Packet based radios like the CC1101 generate inter-
rupts when a synchronization symbol is detected. These in-
terrupts occur both on the sender and on the receiver. The
chain of events involved in message timestamping is shown
in Fig. 5. As soon as the sender has transmitted the syn-
chronization symbol, an interrupt signal is generated. At the
next rising edge of the sender’s clock, the value of the timer
register is stored as the timestamp T . On reception of the
synchronization symbol, the receiver stores its timestamp R
in a similar way.

Message timestamps are affected by jitter, which is
caused by asynchronously running digital clocks and con-
version between digital and analog domain when generating

TX radio

TX IRQ

TX µC clock

RX radio

RX processing delay

RX IRQ

RX µC clock

preamble sync payload

preamble sync payload

sync sent packet sent

sync received packet received

T

R

Figure 5. Timestamps for one message transmission.
Timestamps T and R are inaccurate due to asynchronous
clocks and uncertainties introduced with radio modulation.

or decoding the radio signal. The smaller the jitter, the more
accurate the resulting time synchronization. Therefore a fast
clock is beneficial for synchronization.

We configure the radio to use GFSK modulation and a
data rate of 250kbit/s. The distribution of the message de-
lay over a short distance, experimentally measured using two
nodes on a desk and an external logic analyzer, is shown in
Fig. 6. The delay is normally distributed with a mean value
of 13.68µs and a standard deviation of 107ns. Compared to
other hardware platforms, this is a relatively low value (see
Table 4). Lower jitter should potentially lead to lower syn-
chronization error, provided the clock resolution for times-
tamps is sufficiently high. In our case, we can rely on a
77ns clock resolution. We use the capability of the MSP430
to capture time values with dedicated capture registers, thus
avoiding software interrupt delays when taking timestamps.

13.3 13.4 13.5 13.6 13.7 13.8 13.9 14 14.1
0

2

4

6

Message Delay [µs]

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

Figure 6. Distribution of message delay for the CC430
radio on a single link. The dashed curve is a fitted normal
distribution with a mean value of 13.68µs and a standard
deviation of 107ns.

Table 4. Standard deviations for message delays on dif-
ferent platforms.

Platform Standard deviation

TelosB [23] 41ns [25]
Opal (AT86RF231) [10] 180ns [15]
Mica2 [9] 1.95µs [26]
RF230 radio 370ns [25]
MSP430-CCRF 107ns

6 Evaluation
In this section we evaluate TATS in a public testbed with

31 nodes. As TATS does not employ explicit two-way round-
trip measurements, we will evaluate how quickly delays are
measured by parents and forwarded to child nodes. In a sec-
ond experiment, we do a head-to-head comparison of TATS
against PulseSync and Glossy in different network structures.
Our experiments reveal the following key findings:
• TATS quickly acquires message delay estimates solely

based on network flooding.

• Despite unidirectional links, the acquired delay esti-
mates allow to compensate propagation delay on 95%
of all involved links.

• In a 22-hop line topology TATS performs up to 6.9×
better than PulseSync with respect to the average max-
imal synchronization error and 3× better than Glossy
and PulseSync on a shorter dynamic topology.

• In all settings, TATS’s maximal synchronization error is
clearly below 1 microsecond.

6.1 Experimental Setup
A common method to evaluate the synchronization accu-

racy of a protocol on real hardware is to put all the sensor
nodes into a single broadcast domain and enforce a logical
topology in software, i.e., only certain links are allowed to
be used for communication. The accuracy is then measured
by letting all nodes capture the time of a commonly received
packet [15, 19]. Using a message as common reference is not
possible in our case as this message is also affected by prop-
agation delays and would therefore reach different nodes at
different time instances. Moreover, the setting does not re-
semble well a real deployment, where nodes are scattered
over a large area.

Therefore we choose a more realistic approach by letting
nodes actually form a real multi-hop network. We run our
tests on FlockLab [16], a public testbed where 31 nodes are
spread over an area of 75× 35 meters in an office environ-
ment and also outdoors. The detailed layout of the testbed
is shown in Fig. 7. We have 6 nodes equipped with GPS re-
ceivers that generate an accurate reference pulse, i.e., a dig-
ital signal that has a low-high transition every second. This
pulse is then connected to a GPIO pin of a node and time-
stamped using capture registers. The computed global time-
stamp of this event is then used to calculate the synchroniza-
tion error. The employed LEA-6T GPS receivers provide
timing accuracy with a root-mean-square error of 30ns [29].

For all experiments, we use a transmission power of
10dBm and a radio frequency of 870MHz.
6.2 Propagation of Message Delay Estimates

This experiment evaluates the feasibility of message de-
lay measurements without additional packets, only based on
flooding. In TATS, two-way delays are measured by parent
nodes and then forwarded to child nodes. As described in
Sec. 4.3, unidirectional links prevent two-way delay mea-
surements, therefore TATS introduces a strategy to circum-
vent unidirectional links. If a synchronization packet is re-
ceived over a link with unknown propagation delay, nodes
wait for an additional waiting period for a synchronization

0 10 20 30m

node
node (GPS)

short
long

Figure 7. Testbed layout and software enforced path
for the short and long line topology. Nodes in bold are
equipped with a high precision GPS receiver that generates
a synchronized reference pulse. In the dynamic topology, all
nodes participate.

packet on a link with known propagation delay. In this exper-
iment, we quantify the impact of this strategy. We run TATS
once without additional timeout (immediate forwarding) and
once with a waiting period of 10ms (delayed forwarding).
Setup. For each configuration, we let the synchronization
protocol run for one hour on all nodes in the testbed. The
GPS node in the upper left corner in Fig. 7 is used as ref-
erence node. We configure TATS to have a synchronization
period of 1s. For every synchronization round, nodes report
the number of message delays measured (as parent) and the
number of delay measurements received (as child node). In
addition, we count the number of unknown message delays
when updating the global time in forwarded messages. From
a regular link measurement on FlockLab [16], we extract the
number of available communication links to put our experi-
ment into perspective. On average, we see 101 links between
31 nodes, 29.8% are mostly unidirectional.
Results. Fig. 8 shows the average number of estimated link
delays per node, while Fig. 9 presents the ratio of links that
are compensated when running TATS. The latter uses a sub-
set of all estimated link delays, i.e., those links that are part of
the flooding tree. For both variants, measurements propagate
quickly from parents to child nodes, which results in a very
small difference in available delay estimates between parents

0 500 1000 1500 2000 2500 3000 3500
0

1

2

3

4

5

6

7

A
v
a
ila

b
le

 d
e
la

y
 e

s
ti
m

a
te

s
 [
lin

k
s
 /
 n

o
d
e
]

Synchronization round

 upper limit, based on link measurements

parents (delayed)

children (delayed)

parents (immediate)

children (immediate)

Figure 8. Available link delay estimates, on parents and
on child nodes for TATS using immediate and delayed
forwarding. Measurements propagate quickly from parents
to child nodes. Delayed forwarding achieves 37% more
measurements and covers 85.5% of all possible links.

0 100 200 300 400 500
50

60

70

80

90

100

C
o

m
p

e
n

s
a

te
d

 l
in

k
s
 [

%
]

Synchronization round

delayed forwarding

immediate forwarding

Figure 9. Compensated links during floods. Both proto-
col variants quickly acquire delay measurements for relevant
links, while delayed forwarding has more coverage and sta-
bilizes at a level of 95%.

and children. We find that delayed forwarding is beneficial
and achieves 37% more estimated links than immediate for-
warding. Delayed forwarding leads to an increased coverage
of links and also to less missing estimates while forwarding
packets.

This experiment confirms the usefulness of delayed for-
warding and shows that it is feasible to perform two-way de-
lay measurements based on network flooding, even in the
presence of unidirectional links.

6.3 Comparison against PulseSync and Glossy
In this experiment, we compare TATS against PulseSync

and Glossy. To assess the synchronization accuracy, the
global synchronization error is an important metric, i.e.,
the maximal pairwise difference between clock values of all
node in the network. Technically this is not possible with
our setup, as we would need a GPS receiver next to every
node. A representative coverage of the network is attained
by placing the GPS receivers evenly distributed. Instead of
the global synchronization error, we measure the synchro-
nization error relative to the reference node

Gr = max
v∈V

(|tr− tv|). (6)

Here, the set V contains all GPS nodes except the reference
node r. The clock values tr and tv are the locally calculated
times when the GPS pulses arrived at the respective nodes.
For each test run, we report the average and the maximum
synchronization error Gr over the duration of the test.
Setup. We measure the accuracy in three different settings:
a dynamically formed network and two different 22-hop line
topologies. The dynamic network has a diameter of approx-
imately 6 hops. Line topologies are enforced in software as
shown in Fig. 7: line topology short has a length of 182m,
while line topology long has a length of 283m. This way,
we evaluate the impact of different propagation delays and
different network structures on TATS’s synchronization ac-
curacy.

PulseSync is calibrated using a single message delay pa-
rameter [15]. We averaged a total of 2014 measurements be-
tween two nodes to estimate this parameter. As we forward
packets as fast as possible, we implement both PulseSync
and TATS without drift compensation, as the effect of drift
would be marginal. In case of larger clock drifts between
nodes, caused e.g., by large temperature differences or vary-
ing manufacturing processes, drift could be compensated as
described in [15].

For a fair comparison, we perform the same linear regres-
sion as in TATS also on Glossy nodes. As enforcing a real
22-hop line topology is not possible for concurrent transmis-
sions, we compare Glossy only on the dynamic topology.

We configure all three protocols to use a synchronization
interval of 1s and a regression table of 80 samples. In total,
seven different test runs are performed, each possible com-
bination of protocol and topology once for a duration of one
hour.

0 0.5 1 1.5 2
0

20

40

60

80

100

Maximal error to reference [µs]

F
ra

c
ti
o
n

PulseSync long

PulseSync short

PulseSync dynamic

Glossy dynamic

TATS long

TATS short

TATS dynamic

Figure 10. Cumulative distribution of synchronization
errors, measured relative to the reference node. While
PulseSync performs different on the three topologies, TATS
can adapt and compensate for different propagation delays.

Results. Fig. 10 shows the distribution of the maximal abso-
lute time difference to the reference node over all synchro-
nization rounds. The error distribution is stable for TATS on
all three topologies, while PulseSync exhibits very differing
performance. In addition, the error is significantly higher
than the one of TATS. Both effects can be attributed to the
fact that a single point calibration of message delay can’t
sufficiently represent the conditions in the whole network.
Glossy exhibits a similar performance as PulseSync on the

0 100 200 300 400 500
0

0.5

1

1.5

2

Synchronization rounds

M
a
x
im

a
l
e
rr

o
r

to
 r

e
fe

re
n
c
e
 [

µ
s
]

PulseSync long

PulseSync short

PulseSync dynamic

Glossy dynamic

TATS long

TATS short

TATS dynamic

Figure 11. Maximal synchronization error over time. For
better visibility, only the first 500 rounds are shown.

Table 5. Accuracies measured for different protocols.
Setting avg error max error PRR

TATS long 0.21µs 0.54µs [0.96..1.00]
TATS short 0.23µs 0.46µs [0.99..1.00]
TATS dynamic 0.24µs 0.54µs [0.90..1.00]
PulseSync long 1.43µs 1.85µs [0.98..1.00]
PulseSync short 0.93µs 1.31µs [0.99..1.00]
PulseSync dynamic 0.75µs 1.23µs [0.96..1.00]
Glossy dynamic 0.72µs 1.46µs [1.00..1.00]

5 7 10 11 16 22
0

0.5

1

1.5

C
lo

c
k
 s

k
e
w

 [
µ

s
]

Distance [hops]

(a) TATS long

5 7 10 11 16 22
0

0.5

1

1.5

C
lo

c
k
 s

k
e

w
 [
µ

s
]

Distance [hops]

(b) PulseSync long

5 9 14 16 22
0

0.5

1

1.5

C
lo

c
k
 s

k
e
w

 [
µ

s
]

Distance [hops]

(c) TATS short

5 9 14 16 22
0

0.5

1

1.5

C
lo

c
k
 s

k
e
w

 [
µ

s
]

Distance [hops]

(d) PulseSync short

3 3 5 5 6 6
0

0.5

1

1.5

C
lo

c
k
 s

k
e
w

 [
µ

s
]

Avg. distance [hops]

(e) TATS dynamic

2 3 4 5 5 6
0

0.5

1

1.5

C
lo

c
k
 s

k
e
w

 [
µ

s
]

Avg. distance [hops]

(f) PulseSync dynamic

1 2 3 4 4 5
0

0.5

1

1.5

C
lo

c
k
 s

k
e

w
 [
µ

s
]

Avg. distance [hops]

(g) Glossy dynamic

Figure 12. Average synchronization errors over time per
node. Bars indicate standard deviation.

dynamic topology. Fig. 11 shows the evolution over time.
The error settles for all protocols after only a few synchro-
nization rounds.

If we consider the average error of individual nodes in
Fig. 12, we see that the error is evenly distributed for TATS
on all topologies (a), (c), (e), while nodes running PulseSync
are affected by more variance (b), (d), (f). The distribution
for Glossy (g) is similar to PulseSync (f).

Key figures for all test runs are summarized in Table 5.
TATS performs up to 6.9× better than PulseSync with respect
to average maximal synchronization error and 3× better than

Glossy and PulseSync on a shorter dynamic topology. In
all settings, TATS’s maximal synchronization error is below
1 microsecond. The lowest packet reception rate (PRR), i.e.,
the ratio between sent and received synchronization packets,
is 0.9 over all test runs. Missing synchronization packets po-
tentially lead to reduced accuracy, as less sampling points for
the linear regression are available.
7 Conclusion

We have presented TATS, a new and highly precise time
synchronization protocol for wireless embedded systems.
TATS combines fast flooding and message delay compen-
sation at similar message cost as existing protocols without
delay compensation. Experiments on a testbed that resem-
bles real deployment scenarios well with respect to node dis-
tances show that (i) TATS achieves up to 6.9× better accu-
racy than state-of-the-art protocols, and (ii) can synchronize
even networks with large diameters of up to 22 hops within
sub-microsecond accuracy. This makes time synchroniza-
tion using wireless sensor networks a viable option to wired
or GPS-based high precision systems.
Acknowledgements

We thank Marco Zimmerling, Olga Saukh, and Jan Beutel
for their valuable input. The work presented in this paper
was scientifically evaluated by the SNSF, and financed by
the Swiss Confederation and by nano-tera.ch.
8 References

[1] The Contiki operating system. http://www.sics.se/contiki/.
[2] The Permasense project. http://www.permasense.ch.
[3] IEEE standard for a precision clock synchronization protocol for net-

worked measurement and control systems. IEEE Std 1588-2008 (Re-
vision of IEEE Std 1588-2002), pages c1–269, July 2008.

[4] K. Chebrolu, B. Raman, N. Mishra, P. K. Valiveti, and R. Kumar.
Brimon: A sensor network system for railway bridge monitoring. In
Proceedings of the 6th International Conference on Mobile Systems,
Applications, and Services (MobiSys), 2008.

[5] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchro-
nization using reference broadcasts. In Proceedings of the 5th Sympo-
sium on Operating Systems Design and Implementation (OSDI), 2002.

[6] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient network
flooding and time synchronization with Glossy. In Proceedings of the
10th International Conference on Information Processing in Sensor
Networks (IPSN), 2011.

[7] S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol
for sensor networks. In Proceedings of the 1st International Confer-
ence on Embedded Networked Sensor Systems (SenSys), 2003.

[8] J. Heidemann, W. Ye, J. Wills, A. Syed, and Y. Li. Research challenges
and applications for underwater sensor networking. In Wireless Com-
munications and Networking Conference (WCNC). IEEE, volume 1,
2006.

[9] J. L. Hill and D. Culler. Mica: A wireless platform for deeply embed-
ded networks. IEEE Micro, 22(6), 2002.

[10] R. Jurdak et al. Opal: A multiradio platform for high throughput wire-
less sensor networks. IEEE Embedded Systems Letters, 3, 2011.

[11] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and
M. Turon. Health monitoring of civil infrastructures using wireless

sensor networks. In Proceedings of the 6th International Conference
on Information Processing in Sensor Networks (IPSN), 2007.

[12] B. Kusy, P. Dutta, P. Levis, M. Maroti, A. Ledeczi, and D. Culler.
Elapsed time on arrival: A simple and versatile primitive for canonical
time synchronisation services. Int. J. Ad Hoc Ubiquitous Comput.,
1(4):239–251, July 2006.

[13] K. Leentvaar and J. Flint. The capture effect in FM receivers. Com-
munications, IEEE Transactions on, 24(5):531–539, May 1976.

[14] C. Lenzen, P. Sommer, and R. Wattenhofer. Optimal clock synchro-
nization in networks. In Proceedings of the 7th ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2009.

[15] C. Lenzen, P. Sommer, and R. Wattenhofer. PulseSync: An efficient
and scalable clock synchronization protocol. ACM/IEEE Transactions
on Networking (TON), Mar 2014.

[16] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beu-
tel. FlockLab: A testbed for distributed, synchronized tracing and
profiling of wireless embedded systems. In Proceedings of the 12th
International Conference on Information Processing in Sensor Net-
works (IPSN), 2013.

[17] R. Lim, B. Maag, B. Dissler, J. Beutel, and L. Thiele. A testbed for
fine-grained tracing of time sensitive behavior in wireless sensor net-
works. In Proceedings of the 40th Conference on Local Computer
Networks Workshops (LCN Workshops), 2015.

[18] H. Mach, E. Grim, O. Holmeide, and C. Calley. PTP enabled net-
work for flight test data acquisition and recording. In IEEE Interna-
tional Symposium on Precision Clock Synchronization for Measure-
ment, Control and Communication (ISPCS), 2007.

[19] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding time
synchronization protocol. In Proceedings of the 2nd ACM Conference
on Embedded Networked Sensor Systems (SenSys), 2004.

[20] MEMSIC. TelosB Mote Platform, 2011. Rev A.
[21] OLIMEX Ltd. MSP430-CCRF development board: User’s manual,

2013. Revision C.
[22] J. Ortiz and D. Culler. Multichannel reliability assessment in real

world WSNs. In Proceedings of the 9th International Conference on
Information Processing in Sensor Networks (IPSN), 2010.

[23] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-low
power wireless research. In Proceedings of the 4th International Con-
ference on Information Processing in Sensor Networks (IPSN), 2005.

[24] J. Robert, J.-P. Georges, T. Divoux, P. Miramont, and B. Rmili. On the
observability in switched Ethernet networks in the next generation of
space launchers: Problem, challenges and recommendations. In Pro-
ceedings of the 7th International Conference on Advances in Satellite
and Space Communications (SPACOMM), 2015.

[25] T. Schmid, P. Dutta, and M. B. Srivastava. High-resolution, low-power
time synchronization an oxymoron no more. In Proceedings of the 9th
International Conference on Information Processing in Sensor Net-
works (IPSN), 2010.

[26] P. Sommer and R. Wattenhofer. Gradient clock synchronization in
wireless sensor networks. In Proceedings of the 8th International
Conference on Information Processing in Sensor Networks (IPSN),
2009.

[27] A. R. Swain and R. Hansdah. A model for the classification and
survey of clock synchronization protocols in WSNs. Ad Hoc Netw.,
27(C):219–241, Apr. 2015.

[28] A. A. Syed, J. S. Heidemann, et al. Time synchronization for high
latency acoustic networks. In Proceedings of the 25th Conference on
Computer Communications (INFOCOM), 2006.

[29] u-blox. LEA-6 data sheet, 2014. R10.
[30] Z. Zhong, P. Chen, and T. He. On-demand time synchronization with

predictable accuracy. In Proceedings of the 30th International Con-
ference on Computer Communications (INFOCOM), 2011.

http://www.sics.se/contiki/
http://www.permasense.ch

	Introduction
	Related Work
	Impact of Propagation Delay
	Time-of-Flight vs. Other Sources of Error
	Existing Multi-hop Time Synchronization Protocols
	The Need For Propagation Delay Compensation

	Time-of-Flight Aware Time Synchronization
	Overview
	Propagation Delay Estimation
	Avoiding Unidirectional Links

	Implementation
	Evaluation
	Experimental Setup
	Propagation of Message Delay Estimates
	Comparison against PulseSync and Glossy

	Conclusion
	References

