
Comparison of Centralized

(Client-Server) and

Decentralized (Peer-to-Peer) Networking

Semester Thesis

presented by

Robin Jan Maly

ETH Zurich, Switzerland

Supervisor:

Jan Mischke,

Pascal Kurtansky,

Prof. Dr. Burkhard Stiller

of the

Computer Engineering and Networks Laboratory

March 2003

Semester Thesis Abstract

Abstract

Der Trend der Anwendung von Peer-to-Peer Applikationen in vielen Bereichen der
Informations- und Kommunikationstechnologie ist in den letzten Jahren verstärkt worden.
Speziell im Bereich des “File sharing” haben Anbieter wie Napster, Gnutella oder Kazaa
grosse Bekanntheit erlangt. Allgemein wird behauptet, dass Peer-to-Peer Systeme Client-
Server Systemen speziell in Bezug auf ihre Kosten überlegen sind. Daher hat die folgende
Arbeit mehrere Ziele.

Zum einen soll sie Unterschiede zwischen Peer-to-Peer und traditionellen Client-Server
Systemen aufzeigen und anhand eines generischen Ansatzes feststellen, ob es möglich ist,
alle Client-Server Systeme komplett durch Peer-to-Peer Systeme zu ersetzen.

In einem zweiten Schritt soll ein Modell entwickelt werden, welches eine Aussage zulässt,
ob Client-Server Systeme sich besser zur Anwendung eignen oder Peer-to-Peer Systeme.
Das Modell soll dabei speziell auf ökonomische Gesichtspunkte, welche verschiedene
Perspektiven umfassen, Rücksicht nehmen.

Peer-to-Peer Systeme haben in vielen Bereichen Verwendung gefunden. Der Schwerpunkt
für die Erstellung eines ökonomischen Modells wird in dieser Arbeit jedoch aufgrund ihrer
weiten Verbreitung und Nutzung auf “File sharing” Systeme gelegt.

Dabei werden typische Vertreter von “File sharing” Systemen untersucht. Die untersuchten
Systeme sind Gnutella, als Vertreter eines puren Peer-to-Peer Ansatzes, Napster als
Vertreter eines hybriden Ansatzes und FTP als Vertreter des Client-Server Ansatzes.

Die Schlussfolgerungen, welche aus den Untersuchungen gezogen werden konnten,
sagen aus, dass Peer-to-Peer aus einer Gesamtkostensicht in den meisten Fällen
traditionellen Client-Server Systemen tatsächlich überlegen ist. Es konnte festgestellt
werden, dass besonders hybride Peer-to-Peer Systeme aus Kostensicht sehr effektiv sind.
Allerdings muss diese Tatsache mit Nachteilen in Bezug auf Datenverfügbarkeit,
Konsistenz der Daten und Übertragungsleistung (Bandbreite) wieder relativiert werden. Es
konnte desweiteren ein “Spannungsfeld” zwischen den verschiedenen Interessensgruppen
identifiziert werden. Das “Spannungsfeld” sagt aus, dass quasi jede Interessensgruppe,
seien es Clients, ISPs oder Server Betreiber aus Kostengründen einer anderen Architektur
den Vorzug geben würden.

Daher wurde der Schluss gezogen, dass wenn man darüber nachdenkt Client-Server
Systeme im Gebiet des “File Sharing” mit Peer-to-Peer Systemen zu ersetzen oder auch
umgekehrt, im Vordergrund ein ökonomischer Vergleich der Systeme aus verschiedenen
Perspektiven stehen muss, anhand von dem dann eventuelle Kostenvorteile eines
Systems mit eventuellen Nachteilen z.B. in Bezug auf dessen Qualität abgewogen werden.
Deswegen muss es im Moment den Benutzern und Anbietern solcher Systeme überlassen
werden, ob sie eventuelle Qualitätsnachteile aufgrund von billigeren Kosten in Kauf
nehmen wollen.

Abstract Semester Thesis

Abstract

The trend to a higher usage of Peer-to-Peer applications within several areas of the
information and communication industry has increased. Especially in the area of file sharing
several providers of such solutions have gained publicity, e.g., Napster, Gnutella or Kazaa.
Generally it is stated that Peer-to-Peer systems have costs advantages compared to
traditional Client-Server systems. Therefore, this work has the following goals.

In a first step the key differences of Client-Server systems and Peer-to-Peer systems are
pointed out. On the basis of a generic approach it is figured out, if it is possible to replace all
Client-Server systems with Peer-to-Peer systems.

In a second step a model is developed which allows a statement whether Client-Server
systems are more suited for an application or Peer-to-Peer systems. This model especially
focuses on economical aspects while considering different perspectives.

Peer-to-Peer systems are several in number and are used in many different areas today,
therefore, the development of the economic model will only consider file sharing
applications.

Typical representatives of such file sharing systems are analyzed, e.g., Gnutella as a pure
Peer-to-Peer system, Napster as a hybrid Peer-to-Peer system and FTP as a Client-Server
system.

The conclusions which this work found out, state that Peer-to-Peer is superior from an
overall costs perspective compared to Client-Server in most of the cases. It could be
assessed that especially hybrid Peer-to-Peer systems like Napster are very cost effective.
But this fact has to be put into perspective regarding disadvantages in data availability, data
consistency and bandwidth performance. In addition, an area of conflict between the
participating stakeholders in such systems could be identified. The area of conflict includes
the fact that basically each stakeholder group, e.g., clients/peers, ISPs or server operators,
prefer another architecture regarding costs issues.

Therefore, the conclusion has been drawn, that when considering to replace Client-Server
with Peer-to-Peer in the area of file sharing or vice versa, an economic evaluation of the
different systems must come first including the different stakeholder perspectives. Based
on such an evaluation cost advantages of a system can be compared with possible
disadvantages regarding quality, e.g., data consistency. That’s why today users and
providers of such systems have to decide whether they can accept shortcomings in quality
in order to benefit from lower costs or not.

Semester Thesis Contents

Contents

1 Introduction ...1

1.1 Outline of work .. 1

2 Peer-to-Peer vs. Client-Server Paradigm ... 2

2.1 Internet Architectures .. 2
2.1.1 Classification of Computer Systems .. 2

2.2 Peer-to-Peer Architecture ... 3
2.2.1 Definitions .. 3
2.2.2 Pure Peer-to-Peer Architecture ... 4
2.2.3 Hybrid Peer-to-Peer Architecture ... 4
2.2.4 Advantages and Disadvantages ..5

2.3 Client-Server Architecture ... 6
2.3.1 Definitions .. 6
2.3.2 Architecture .. 6
2.3.3 Advantages and Disadvantages ..7

2.4 A Generic Approach - Replace all C/S Systems with pure P2P Systems 8
2.4.1 Hardware changes ... 8
2.4.2 Software changes ..10
2.4.3 Conclusions ...12

3 System Classification and Focus ... 14

3.1 General Approach to evaluate Costs ..15
3.2 Compared Applications in the Area of File Sharing .. 16

3.2.1 Gnutella ... 16
3.2.2 Napster ..19
3.2.3 File Transfer Protocol (FTP) .. 22
3.2.4 A Qualitative Comparison .. 25

3.3 Criteria to evaluate File Sharing Applications ... 26

4 File Sharing - Economic Modeling .. 28

4.1 System Definition .. 28
4.1.1 Clients/Peers ...30
4.1.2 ISPs ... 31
4.1.3 Servers ..31
4.1.4 Internet ... 32

4.2 Gnutella Application Simulation Model ... 33
4.3 FTP Application Simulation Model .. 36
4.4 Napster Application Simulation Model .. 38
4.5 Cost Distribution Analysis ... 40

4.5.1 Gnutella ... 40
4.5.2 FTP .. 41
4.5.3 Napster ..41

4.6 Costs Models ..41
4.6.1 Gnutella Cost Model ..42
4.6.2 FTP Cost Model ... 42

Contents Semester Thesis

4.6.3 Napster Cost Model ... 43
4.6.4 Cost Perspectives ..43

4.7 Limitations of the Models ..44
4.8 Cost Scenarios (simulations) .. 45

5 Stakeholder Analysis ... 46

5.1 Peer/Client .. 46
5.1.1 Cost for the next 4 years .. 46
5.1.2 Costs without Investment ...48
5.1.3 Performance .. 48

5.2 Server ...49
5.2.1 Cost for the next 4 years .. 49
5.2.2 Costs without Investment ...50
5.2.3 Performance .. 50

5.3 ISP .. 52
5.3.1 Costs .. 52

5.4 Overall ...52
5.4.1 Cost for the next 4 years .. 52
5.4.2 Costs without Investment ...55

5.5 Economic Summary .. 55
5.6 Qualitative Evaluation ... 55

6 Conclusions, Recommendations and Outlook .. 57

6.1 Conclusions and Recommendations ..57
6.2 Outlook .. 58

7 Appendix ... 60

7.1 Additional Figures ...60
7.1.1 FTP Log Files .. 60
7.1.2 Gnutella Model: Maple Code and Additional Figures 61
7.1.3 FTP Model: Maple Code and Additional Figures ...64
7.1.4 Napster Model: Maple Code and Additional Figures 68

7.2 Stakeholder Analysis .. 73
7.2.1 Peer/Client Cost Perspective without Investment .. 73
7.2.2 Peer/Client Load Performance ..74
7.2.3 Server Cost Perspective without Investment ... 74
7.2.4 ISP Cost Perspective ... 75
7.2.5 Overall Cost Perspective without Investment .. 76

7.3 Application Parameters ... 77

8 References .. 79

9 List of Figures ...81

10 List of Tables .. 83

Semester Thesis Introduction

Page 1

1 Introduction
Peer-to-Peer is a topic which is often discussed in the public. Peer-to-Peer applications
especially in the area of file sharing, like Gnutella or Kazaa have a significant users base
[17]. Also in areas like distributed computing or communication and collaboration Peer-to-
Peer has contributed applications, e.g., SETI@home in the area of distributed computing.

Key characteristics of Peer-to-Peer are the usage of resources (storage, cpu cycles or
bandwidth) at the edges of the Internet instead using a central server [5]. The edge means
desktop computers which are normally located at home or at offices and could be
connected to the Internet with dialup-, cable modem-, ADSL connections etc. Generally by
using such untapped resources at the edge of the Internet, without using an expensive
central server, costs can be saved at first sight. Client-Server systems have a well known
history and users and developers have gained a lot of experiences with these systems.
Peer-to-Peer systems instead are confronted with several deficiencies, e.g., that peers
which participate in file sharing applications do not have sufficient available bandwidth to
serve other peers as well as a Client-Server system would or that developed Peer-to-Peer
applications creates high network traffic due to their implementation [1].

Therefore this work intends to analyze the Peer-to-Peer and Client-Server paradigm and
will focus especially on economical aspects in order to compare both architectures. The
following section will describe the procedure within this work.

1.1 Outline of work

In this work the Peer-to-Peer paradigm is described and compared to the Client-Server
paradigm. Thereby key differences as well as advantages and disadvantages are pointed
out in section 2.2 and 2.3. In section 2.4 a qualitative assessment is made whether it is
possible to replace all centralized (Client-Server) systems through decentralized (Peer-to-
Peer) systems. Limits and problems of such an approach are figured out. Subsequent to
this assessment in chapter 3 a general classification of current Peer-to-Peer systems is
presented whereas the main focus is put on the class of file sharing applications. In section
3.1 a general approach of how the costs of file sharing applications could be calculated is
presented. Subsequently a simulation model is developed, which is able to compare typical
Peer-to-Peer and Client-Server systems in the class of file sharing. Therefore in section 3.2
three typical representatives of applications that are used for file sharing are analyzed. The
analyzed applications are Gnutella as pure Peer-to-Peer representative, Napster as hybrid
Peer-to-Peer representative and FTP as Client-Server representative. In chapter 4 the
economic model is presented, including a system definition (section 4.1), the simulation
models for the three compared applications (from section 4.2 until 4.4), followed by a cost
distribution analysis (section 4.5) and the economic models (section 4.6). In section 4.7
limitations of the cost models are discussed. In section 4.8 three different scenarios are
defined in order to draw conclusions. In chapter 5 the results of the three scenarios are
presented and commented as well. Based on the economic model and the results, in
section 5.5, 5.6 and chapter 6 conclusions and recommendations are presented, where to
apply a (pure) Peer-to-Peer solution or a Client-Server solution. This analysis considers
different perspectives like ISPs, server operators and clients or peers. In section 6.2 an
outlook is given, which provides proposals for further research topics and further
improvements regarding the presented cost model. Finally it is discussed whether Peer-to-
Peer is likely to evolve further in the class of file sharing or not.

Peer-to-Peer vs. Client-Server Paradigm Semester Thesis

Page 2

2 Peer-to-Peer vs. Client-Server Paradigm
Today we encounter two main types of network paradigms based on the:
• Client-Server Architecture and the
• Peer-to-Peer Architecture

Definitions of both architectures are given in section 2.2 and 2.3. In section 2.1.1 a
classification of Peer-to-Peer and Client-Server-Systems is done. Both Client-Server and
Peer-to-Peer architectures are widely used and each has unique advantages and
disadvantages which will be discussed in section 2.2.4 and 2.3.3. In section 2.4 a generic
attempt is made to replace all Client-Server systems with Peer-to-Peer systems.

2.1 Internet Architectures

2.1.1 Classification of Computer Systems

All computer systems can be classified into centralized and distributed, see Figure 1.
Distributed systems can be further classified into the Client-Server model and the Peer-to-
Peer model. The Client-Server model can be flat where all clients only communicate with a
single server (possibly replicated for improved reliability), or it can be hierarchical for
improved scalability. In a hierarchal model, the servers of one level are acting as clients to
higher level servers.

The Peer-to-Peer architecture is split into pure and hybrid architectures. The pure
architecture works without a central server, whereas the hybrid architecture first contacts a
server to obtain meta-information, such as the identity of the peer, on which some
information is stored, or to verify security credentials. From then on, the Peer-to-Peer
communication is performed. Examples of a hybrid model include Napster1 and iMesh2.
There are also intermediate solutions with SuperPeers, such as Kazaa3. SuperPeers
contain some of the information that others may not have. Other peers typically lookup
information at SuperPeers, if they cannot find it otherwise [7].

Figure 1: Classification of Computer Systems

1.http://opennap.sourceforge.net/
2.http://www.imesh.com/
3.http://www.kazaa.com/

Computer SystemsComputer Systems

Centralized systemsCentralized systems Distributed systemsDistributed systems

ClientClient --ServerServer PeerPeer--toto--PeerPeer

PurePure HybridHybridFlatFlat HierarchicalHierarchical

(e.g. mainframes,SMPs,workstations)(e.g. mainframes,SMPs,workstations)

Semester Thesis Peer-to-Peer vs. Client-Server Paradigm

Page 3

2.2 Peer-to-Peer Architecture

Purpose of the following section is to get a first feel, what Peer-to-Peer in particular means.
The following extracts shall give an overview about Peer-to-Peer definitions given in the
literature and the basic Peer-to-Peer architectures used today.

2.2.1 Definitions

Peer-to-Peer architecture:
1 “P2P is a class of applications that takes advantage of resources -- storage, cycles,

content, human presence -- available at the edges of the Internet. Because accessing
these decentralized resources means operating in an environment of unstable
connectivity and unpredictable IP addresses, P2P nodes must operate outside the DNS
system and have significant or total autonomy from central servers.” [5]

2 “A distributed network architecture may be called a Peer-to-Peer (P-to-P, P2P,…)
network, if the participants share a part of their own hardware resources (processing
power, storage capacity, network link capacity, printers,…). These shared resources are
necessary to provide the Service and content offered by the network (e.g. file sharing or
shared workspaces for collaboration). They are accessible by other peers directly,
without passing intermediary entities. The participants of such a network are thus
resource (Service and content) providers as well as resource (Service and content)
requestors (Servent-concept).” [6]

3 “Peer-to-Peer computing is the sharing of computer resources and services by direct
exchange between systems. These resources and services include the exchange of
information, processing cycles, cache storage, and disk storage for files. Peer-to-Peer
computing takes advantage of existing desktop computing power and networking
connectivity, allowing economical clients to leverage their collective power to benefit the
entire enterprise. In a Peer-to-Peer architecture, computers that have traditionally been
used solely as clients communicate directly among themselves and can act as both
clients and servers, assuming whatever role is most efficient for the network. This
reduces the load on servers and allows them to perform specialized services (such as
mail-list generation, billing, etc.) more effectively. At the same time, Peer-to-Peer
computing can reduce the need for IT organizations to grow parts of its infrastructure in
order to support certain services, such as backup storage.” [9]

Peer:
4 “A peer is a network node that can act as a client or a server, with or without centralized

control, and with or without continuous connectivity. The term “peer” can apply to a wide
range of device types, including small handheld and powerful server-class machines
that are closely managed.” [11]

Node:
5 A node is a computing device residing on a network. Nodes may be general-purpose

computers, or they may be specialized to provide particular services or capabilities (e.g.
a storage node or control node). Note the term computing device is used in the most
generic sense in that a node can range from a multi processor server to embedded
systems.” [11]

As it is stated above, there are two different approaches for Peer-to-Peer architecture: pure
and hybrid. Both architectures will be described in more detail below.

Peer-to-Peer vs. Client-Server Paradigm Semester Thesis

Page 4

2.2.2 Pure Peer-to-Peer Architecture

“A distributed network architecture has to be classified as a “Pure” Peer-to-Peer network, if
it is firstly a Peer-to-Peer network according to definition 1,see section 2.2.1, and secondly,
if any single, arbitrary chosen terminal entity can be removed from the network without
having the network suffering any loss of network service.” [5]

In this architecture each peer is an equal participant. There is no peer with special or
administrative roles. According to the definition, no central server is needed to control and
coordinate the connections between the peers, see Figure2. Therefore nodes have to self-
organize themselves, based on whatever local information is available and interacting with
locally reachable nodes (neighbors). Normally the data within such systems is distributed
across multiple peers. Today pure Peer-to-Peer architecture does mostly exist in the area
of file sharing (e.g. Gnutella).

Figure 2: Pure Peer-to-Peer Architecture

2.2.3 Hybrid Peer-to-Peer Architecture

Unlike the pure Peer-to-Peer model, hybrid Peer-to-Peer models, such as Napster,
incorporate some traces of the Client-Server relationship. Hybrid in the case of Peer-to-
Peer means, that there is a central server in the system, but it takes only an intermediary
role in the system. Central servers within the network fulfill two primary functions. First, they
act as central directories where either connected users or indexed content can be mapped
to the current IP address. Second, the servers direct traffic among the peers. Normally the
initial communication of a peer is done with a server (1), e.g., to obtain the location/identity
of a peer, followed by (2) direct communication with that peer, see Figure3.

Figure 3: Hybrid Peer-to-Peer Architecture

Peer

Peer

Peer

Peer

Peer

Peer

Server

1

2

Semester Thesis Peer-to-Peer vs. Client-Server Paradigm

Page 5

2.2.4 Advantages and Disadvantages

Below advantages and disadvantages are presented, which are often stated in technical
reviews and books concerning Peer-to-Peer architecture.

Advantages
• In a pure Peer-to-Peer architecture there is no single point of failure, that means, if one

peer breaks down, the rest of the peers are still able to communicate.
• Peer-to-Peer provides the opportunity to take advantage of unused resources such as

processing power for computations and storage capacity. In Client-Server architectures,
the centralized system bears the majority of the cost of the system. In Peer-to-Peer, all
peers help spread the cost, e.g. Napster used the file storage space of participating
peers to store all the files.

• Peer-to-Peer allows to prevent bottleneck such as traffic overload using a central server
architecture, because Peer-to-Peer can distribute data and balance request across the
net without using a central server.

• There is better scalability due to a lack of centralized control and because most peers
interact with each other.

Disadvantages
• Today many applications need a high security standard, which is not satisfied by current

Peer-to-Peer solutions.
• The connections between the peers are normally not designed for high throughput

rates, even if the coverage of ADSL and Cable modem connections is increasing.
• A centralized system or a Client-Server system will work as long as the service provider

keeps it up and running. If peers start to abandon a Peer-to-Peer system, services will
not be available to anyone.

• Most search engines work best when they can search a central database rather than
launch a meta search of peers [2]. This problem is circumvented by the hybrid Peer-to-
Peer architecture.

Peer-to-Peer vs. Client-Server Paradigm Semester Thesis

Page 6

2.3 Client-Server Architecture

Just as in section 2.2 the purpose of the following section is to get a first feel, what Client-
Server means and which definitions are mentioned in the literature and how the basic
Client-Server architecture looks like.

2.3.1 Definitions

1 “A Client-Server network is a distributed network which consists of one higher
performance system, the server, and several mostly lower performance systems, the
clients. The server is the central registering unit as well as the only provider of content
and service. A client only requests content or the execution of services, without sharing
any of its own resources.” [6]

2 “A Client-Server architecture is a network architecture in which each computer or
process on the network is either a client or a server. Servers are powerful computers or
processes dedicated to managing disk drives (file servers), printers (print servers), or
network traffic (network servers). Clients are PCs or workstations on which users run
applications. Clients rely on servers for resources, such as files, devices, and even
processing power.” [8]

2.3.2 Architecture

The most commonly used paradigm in constructing distributed systems is the Client-Server
model. In this scheme clients request services or content from a server. The client and
server require a known set of conventions before the can communicate. This set of
conventions contains a protocol, which must be implemented at both ends of a connection.
Examples of protocols are the TELNET protocol used in the Internet for remote terminal
emulation, the Internet file transfer protocol, FTP and the most widely used hypertext
transfer protocol, http.

Server

As a provider of services the server must compute requests and has to return the results
with an appropriate protocol. A server as a provider of services can be running on the same
device as the client is running on, or on a different device, which is reachable over the
network. The decision to outsource a service from an application in form of a server can
have different reasons.
• Performance: In certain circumstances the clients are inefficient devices, which have

interfaces to high performance demanding applications. In this case the computation is
done on a high-performance server. Today this approach is less used, but has still its
area of application, e.g., virtual reality computations for film scenes.

• Central data management: This aspect of the Client-Server model does have the most
impact today. Data is stored on a server, which can be used or manipulated from
different clients. Typical examples of services provided by a server are:
♦ File server: One server provides multiple clients with a file system. Tasks of this

server include access control and transaction control (only one client may access a
file with write permissions at a time).

♦ Web server: The Web server provides multiple clients (Web browser on different
devices) with information. The information can be static on a Web server or dynamic,
generated by different service applications.

Semester Thesis Peer-to-Peer vs. Client-Server Paradigm

Page 7

Client

A client is typically a device or a process which uses the service of one or more servers.
Since clients are often the interface between server-information and people, clients are
designed for information input and visualization of information. Although clients had only
few resources and functionality in the past, today most clients are PCs with more
performance regarding resources and functionality. Early clients had only the task to
display the application, that was running on the server and to forward inputs of the user to
the server. All computations are done on the server. In this case one speaks of a thin client.
A thin client has limited local resources in terms of hardware and software. It functionally
requires processing time, applications and services to be provided from a centralized
server. Network computers are examples of the development of thin clients.

A thick client is functionally rich in terms of hardware and software. Thick clients are
capable of storing and executing their own applications as well as network centric ones.
Thick client typically refers to a personal computer [10].

As it is stated in section 2.1.1, Client-Server architectures can be classified into flat and
hierarchical. If the Client-Server model is flat, all clients communicate only with a single
server, see Figure4. If the Client-Server model is hierarchical the servers of one level are
acting as clients to higher level servers. A pretty good example is a request of a certain web
page. The user enters a URL into the web browser (client). The client establishes a
connection to his nearest name server to ask for the address. If that server does not know
the name, it delegates the query to the authority for that namespace. That query, in turn,
may be delegated to a higher authority, all the way up to the root name servers for the
Internet as a whole. Name servers operate both as clients and as servers, see Figure4.

Figure 4: Flat architecture (left); Hierarchical architecture (right)

2.3.3 Advantages and Disadvantages

The following advantages and disadvantages of the Client-Server architecture are
extracted from several technical reports and books concerning Client-Server architecture.
The following points should not be regarded as a complete listing, but rather as key
advantages and disadvantages which are comparable to list presented in section 2.2.4.

Advantages
• Data management is much easier because the files are in one location. This allows fast

backups and efficient error management. There are multiple levels of permissions,
which can prevent users from doing damage to files.

Client 5

Server

Client 4

Client 1

Client 2

Client 3

Client Client Client Client

Root name server

Client Client Client Client

Name server Name server

Peer-to-Peer vs. Client-Server Paradigm Semester Thesis

Page 8

• The server hardware is designed to serve requests from clients quickly. All the data are
processed on the server, and only the results are returned to the client. This reduces the
amount of network traffic between the server and the client machine, improving network
performance.

• Thin client architectures allow a quick replacement of defect clients, because all data
and applications are on the server.

Disadvantages
• Client-Server-Systems are very expensive and need a lot of maintenance.
• The server constitutes a single point of failure. If failures on the server occur, it is

possible that the system suffers heavy delay or completely breaks down, which can
potentially block hundreds of clients from working with their data or their applications.
Within companies high costs could accumulate due to server downtime.

2.4 A Generic Approach - Replace all C/S Systems with pure P2P
Systems

In this chapter a generic approach should be made, if it is possible to replace all Client-
Server systems with pure Peer-to-Peer systems. Therefore it is attempted to point out,
which changes regarding resources have to be done and which advantages and
disadvantages this would implicate. The proceeding is as follows: First it is considered how
to map the hardware, which is used for Client-Server architecture, onto an environment
based on Peer-to-Peer architecture. The focus of this “mapping” is set on processing
power, storage and bandwidth. Secondly the impact of such a “mapping” on the different
classes of application is discussed. Especially the problems and limits which could occur by
such a “mapping” are analyzed. Out of this analysis, conclusions for the different classes of
applications are drawn.

Figure 5: Generic Approach: Procedure

2.4.1 Hardware changes

Peer-to-Peer computing is about sharing of computing resources and using these
resources more efficiently, like the peers’ processing power and storage (cf. section 2.2.1).
In order for the peers to be able to take advantage of these resources a network connection
must be available to connect the peers. Since the sharing of these resources depends
strongly on the class of application the hardware changes are discussed very
pragmatically.

Distributed Systems

Resources

2. Software1. Hardware

Processing
Power

Storage Bandwidth Different Classes of Application

3. Conclusions

Distributed Systems

Resources

2. Software1. Hardware

Processing
Power

Storage BandwidthProcessing
Power

Storage Bandwidth Different Classes of Application

3. Conclusions

Semester Thesis Peer-to-Peer vs. Client-Server Paradigm

Page 9

Processing Power

In Client-Server systems the servers provide processing power and services to the clients.
If it is a thin-client and after the calculations are done, the result is sent back to the client. In
pure Peer-to-Peer systems there is no central server. The sharing of processing power
must be done on the peers. Since the processing power of peers is normally lower than on
strong servers the goal is to parallelize large tasks into smaller pieces that can execute in
parallel over a number of independent peer nodes. There are problems, which are not
parallizable by nature. This leads to Amdahl's Law [3], which is a law governing the
speedup4 of using parallel processors on a problem, versus using only one processor. With
this law it is possible to calculate applicability of a centralized computing approach vs. a
decentralized approach provided that peer nodes exist, which want to share their
processing power.

If a Client-Server system requires more processing power for its calculation the server
resources can be extended, so that the desired performance is available. In a pure Peer-to-
Peer system, where peers are more or less autonomous and distributed over the net, the
possibility for administration is low because responsibility lies with the owner of the peer.
Therefore if a Peer-to-Peer system needs more processing power there are two ways how
this extension can be done. First, the amount of peers, which share their processing power,
must increase or, secondly, the peers themselves have to upgrade their processing power.

Storage (memory)

In a Client-Server system most of the data is normally stored on a central server. The data
is accessible from there by the clients if they have the appropriate access permissions. The
server provides a specific storage capacity, which can be used by the clients. In a Peer-to-
Peer system the peers have to provide the storage function. Therefore, if it is intended to
store the same amount of information, the aggregated storage capacity of the peers, that
means only the storage, which is dedicated for Peer-to-Peer storage, should be at least
equal to that on a central server.

Administration is as well an important issue for storage. Client-Server systems have to be
maintained and repaired or resources - in this case storage - have to be extended. If a
Peer-to-Peer systems is implemented, it is difficult to maintain due to autonomy of the
peers and their distribution across the net. Analogously to an extension of processing
power, there are two approaches to increase the amount of storage capacity, either by
adding more peers or letting the peers upgrade their storage by themselves.

Bandwidth

By decentralizing data and therefore redirecting users so that they can download data
directly from other users’ computers instead of a central server the load on the central
server can be taken away. If the Client-Server system is replaced by Peer-to-Peer it has to
be taken into account, that the connections between the peers should have an equivalent
provided bandwidth as they had in the Client-Server system to satisfy the users
expectations. In case of a file server: If ten clients want to download the same file from the
server, they have to share the bandwidth, with which the server is connected to the net. In a
Peer-to-Peer system the peers are at the edge of the Internet and often only have dialup or
asymmetrical connections like cable modems. So if a file is stored on a peer and 10 other

4.The speedup of a parallel program is defined to be the ratio of the rate at which work is done when
a job is run on N processors to the rate at which it is done by just one.

Peer-to-Peer vs. Client-Server Paradigm Semester Thesis

Page 10

peers want to download this file at the same time, they have to share the upload-bandwidth
from this peer to its ISP. For this reason, when implementing a Peer-to-Peer system, an
upgrade of the peers’ bandwidth capacity has to be done in order to prevent an overload of
some peers.

Another issue concerning bandwidth is to keep distributed systems together. In a Client-
Server system, a client normally knows how to contact the server (e.g., via its IP-address)
and therefore the client does not have to stay connected with the server all the time. For
this reason the consumption of bandwidth is minimized. In a Peer-to-Peer system where
peers may come and go and IP-addresses are changing constantly, it is important that the
peers know where to find the other peers. So they have to send information to the other
peers in order to let them know how they can be found on the net. Therefore, it is important
that the algorithms, which are required to maintain such a system and which often carry a
lot of overhead, e.g., ping pong messages in the Gnutella network, are optimized. The
overhead should not overload the network, if the network grows. Otherwise the system will
not scale well.

2.4.2 Software changes

The goal of computer systems is to support applications that satisfy the needs of users.
Therefore approaches of computer systems are driven by several goals like cost reduction,
improved performance and reliability, etc. Each application has different needs regarding
hardware, e.g., for a compute intensive application it could be more important to have
enough processing power than a large hard disk. For an online flight reservation system it is
important that enough storage capacity is available and all files are accessible, so that the
application can search the database for available seats. To evaluate the impact of the
hardware changes in case of a pure Peer-to-Peer system a set of three Client-Server
application classes is defined and assessed. The three classes of applications are compute
intensive applications, storage demanding applications and bandwidth demanding
applications. It is not the intention that applications will fit exactly in one of these categories,
but rather that each application is a mix of these three classes. It will be analyzed what
characteristics each class of application in a Client-Server systems has and how an
implementation in a Peer-to-Peer system could look like and which limits could occur.

Compute Intensive Applications

Client-Server computing gives clients the opportunity to work on desktop workstations,
while compute intensive applications remain on high performance servers. If the Client-
Server system is replaced by Peer-to-Peer the compute intensive applications have to rely
on desktop PCs to provide the processing power. As it is stated above, within such an
architecture it is intended to split up large tasks in smaller pieces (parallelization), which
then are sent to the peer. But if a problem contains many non parallizable parts in a pure
Peer-to-Peer system, there still have to be high performance desktop computers, which can
solve these parts in an appropriate amount of time.

Since the peers are distributed over the net, a mechanism has to be implemented which
manages the task distribution between the different peers and looks for unused processing
power. Due to the fact that Peer-to-Peer computing contains unpredictable connectivity
regarding its peers, the performance of compute intensive calculations implemented by
Peer-to-Peer is difficult to ensure. If a peer disconnects from the network without having
sent the results to the requesting peer time losses can occur, if the calculations are not re-
sent to another peer for calculation.

Semester Thesis Peer-to-Peer vs. Client-Server Paradigm

Page 11

Another point which has to be solved within Peer-to-Peer systems is the insurance of the
result quality. In a Client-Server architecture the client normally trusts the server, where the
computations are done. In a Peer-to-Peer architecture, where peers come together, which
want to share their processing power, the danger of data manipulation of “bad” peers have
to be solved. This can be done by sending the same calculations to different peers in order
to compare their results afterwards. This procedure implies a higher resource consumption
and therefore a lower performance.

In a Peer-to-Peer system there are peers, which are unknown and which should not take
advantage of the calculation’s content or the result. Therefore security options have to be
implemented.

Storage Demanding Applications

Within a network a server may provide storage capacity to its clients and their applications.
Traditional LAN computing allows users to share resources, such as data files, by moving
them from desktop PCs onto a network file server. Client-Server systems normally have
constantly-updated directories. So if a client requests a file the server knows where to look
for it and can return the result to the client. If the Client-Server system is replaced by a
Peer-to-Peer system there is neither a centralized directory nor any precise control over the
network topology or file placement. Gnutella is an example of such a design. The network is
formed by nodes joining the network following some loose rules (for example, those
described in [1]). To find a file, a node queries its neighbors. The most typical query method
is flooding, where the query is propagated to all neighbors within a certain radius. These
designs are extremely resilient to nodes entering and leaving the system. However, the
current search mechanisms are not at all scalable, generating large loads (bandwidth) on
the network participants [14]. Therefore, it is important to analyze if the network can cope
with the additional load a Peer-to-Peer system would imply and if latency of replies or
unsuccessful queries due to missing data availability or ineffective search algorithms are
justifiable for the application. Another approach to deal with search efficiency is to bring in
more structure as it is described in [14]: “Structure” means that the Peer-to-Peer network
topology (that is, the set of connections between Peer-to-Peer members) is tightly
controlled and that files are placed not at random nodes but at specified locations that will
make subsequent queries easier to satisfy. In highly structured systems both the Peer-to-
Peer network topology and the placement of files are precisely determined. This tightly
controlled structure enables the system to satisfy queries very efficiently.

The consistency of data is an important issue. In a Client-Server system this is addressed
with a central data management, where a file is accessible (read/write) for only one client at
the same time. In Peer-to-Peer systems copies of the same data are available on different
peers. This leads to a higher availability of the data on the one hand, but on the other hand
problems with the consistency of the data come up. If a file on one peer is changed all the
other copies of this file in the system have to be synchronized as well to ensure
consistency.

In a Client-Server system administrators are responsible for the data stored on their
servers. They search for harmful files, e.g., viruses on their servers to protect the clients. So
if a client requests a file from a specific server and if the client trusts this server, the client
can rely on the file quality. In pure Peer-to-Peer networks the authenticity of search results
is a security problem. If a peer enters a search term this request is forwarded to multiple
other peers, not to a central server, which would search its index. Each peer searches in its
public files for the corresponding term and replies the results to the searching peer. A “bad”

Peer-to-Peer vs. Client-Server Paradigm Semester Thesis

Page 12

peer could, e.g., rename viruses to common search terms so that they are downloaded by
other peers and maybe executed by unexperienced users. To solve these issues in Peer-
to-Peer networks trust, scoring, and reputation models have to be developed.

If the server is available in a Client-Server-System and the clients are connected, data is
accessible for the clients. “Peer-to-Peer systems on the other hand seem to contain an
inherent fuzziness. Gnutella, for instance, doesn't promise you'll find a file that's hosted on
its system; it has a horizon beyond which you can't see what's there. [...] Most computers
come and go on the Internet, so that the host for a particular resource may be there one
minute and gone the next.” [12] In theory, when increasing the number of nodes in a pure
Peer-to-Peer system, aggregated storage space and file availability should grow linearly
[13]. If data availability has to be guaranteed in a pure Peer-to-Peer system the peers have
to be either forced to stay connected or the data has to be replicated on other nodes, which
would also lead to a need for more storage capacity. The replication implies that
consistency problems have to be addressed again.

Administration is also an important issue for storage demanding applications. In Client-
Server systems applications have to be installed or updated and access permissions for the
clients have to be defined. If a Peer-to-Peer systems is implemented it is difficult to
administrate issues like access permissions due to autonomy of the peers. That means
each peer has normally the same rights as all the others. Therefore it is important to
develop at least a function for file access control, so that the peers can define access
permission for their files.

Bandwidth Demanding Applications

In a Client-Server system the clients are connected directly with the server over a network
link, which provides a certain bandwidth. Depending on the implementation of the Client-
Server system (cp. thin-or thick-clients in section 2.3.2) applications can cause more or less
network traffic and therewith a higher bandwidth consumption, e.g., if an application runs on
a client but needs large files, which are stored on the server, the bandwidth consumption
will be higher than if the application ran on the server as well and only the visualization of
the results were done on the client. So if a Peer-to-Peer system is implemented, it depends
on the application how much bandwidth between the peers is consumed. If one considers a
possible video conference application for two peers the bandwidth demand for the network
link between those two peers is higher than it would be for a text chat. So if the Client-
Server system is replaced by Peer-to-Peer, it has to be taken into account, that the
connections between the peers should have an equivalent guaranteed bandwidth as they
had in the Client-Server system to satisfy user expectations.

2.4.3 Conclusions

Bearing in mind the considerations above and the advantages and disadvantages
mentioned in section 2.2.4 and 2.3.3, it could be possible to replace Client-Server systems
through Peer-to-Peer versions, but associated with severe disadvantages and concessions
in some classes of application.

Both systems offer a number of advantages. Peer-to-Peer provides the opportunity to make
use of untapped resources. These resources include processing power for computations
and storage potential. Peer-to-Peer allows the elimination of bottlenecks at the server and
can be used to distribute data and control load across the Internet. The Peer-to-Peer
mechanism also may be used to eliminate the risk of a single point of failure. Nevertheless

Semester Thesis Peer-to-Peer vs. Client-Server Paradigm

Page 13

as it was stated at the beginning of section 2.4.2 the applicability of the pure Peer-to-Peer
paradigm is strongly dependent on the area of application.

A main limitation seems to be the availability and consistency of data in the class of storage
demanding applications. In the class of compute intensive applications not parallizable
problems, the availability of peers and the result quality seem to be the main limitations in
the class. Whereas in the class of bandwidth demanding applications the main burden
seems to be the bandwidth between the peers causing scalability problems. Another
problem is the extensibility of hardware resources in all three classes of application.

Therefore applications, which have to provide high data availability, consistency etc.,
should better be built on the Client-Server paradigm. As Andy Oram says analogously in
[2], Peer-to-Peer will not replace the Client-Server model entirely. Client-Server remains
extremely useful for many purposes, particularly where one site is recognized as the
authoritative source of information and wants to maintain some control over that
information.

Above severe disadvantages and concessions in some classes of application were
mentioned regarding a possible replacement of Client-Server with Peer-to-Peer. This could
be, e.g., time loss in the area of compute intensive applications, if a task is not parallizable
and no high performance computer is available within the network. Another example could
be a flight reservation system, which has mainly storage demanding characteristics and
where availability and consistency of the data is very important unless a passenger wants
to share his seat with other passengers due to data which is not topical and not consistent
while a reservation was made.

These may be some reasons why today there are only few pure Peer-to-Peer applications
like Gnutella or Freenet. Hence users and developers of applications have to find an
optimal trade-off for each class of application between Client-Server architecture and pure
Peer-to-Peer architecture. The trade-offs must consider issues like the ones pointed out
above and economic considerations.

System Classification and Focus Semester Thesis

Page 14

3 System Classification and Focus
In [7] a taxonomy of Peer-to-Peer system is provided. It classifies Peer-to-Peer systems
into four classes, namely into distributed computing (e.g., SETI@home), file sharing (e.g.,
Gnutella, Napster, Freenet), communication and collaboration (e.g., Jabber, MSN
Messenger) and platforms (e.g., JXTA, .NET), see also Figure 6.

Figure 6: Peer-to-Peer taxonomy: Sample systems/applications

Since file sharing is the most known and may be the most widely used Peer-to-Peer class
and also the most criticized class due to, e.g., copyright infringements, the focus of the
following work is led on this class in order to compare, if it is beneficial to replace a file
sharing system that is based on a Client-Server architecture with a Peer-to-Peer
architecture. The further goal of this work will be to build a model which allows to compare
file sharing applications on the basis of economical and performance related aspects.

Therefore in section 3.2, three file sharing applications will be analyzed regarding their
history and functionality. Each application is a typical representative of the Client-Server,
the hybrid and pure Peer-to-Peer architecture. In section 3.3 some qualitative criteria are
established to benchmark file sharing applications in order to find out if it is worth to replace
a Client-Server system with Peer-to-Peer.

File Sharing

Communication and Collaboration

Distributed Computing

Platforms Gnutella
Napster
Freenet

SETI@home

Jabber
MSN Messenger

.NET

JXTA

Semester Thesis System Classification and Focus

Page 15

3.1 General Approach to evaluate Costs

Within this section a general approach should be described of how one could evaluate the
costs of file sharing applications like Gnutella, Napster or FTP.

First step

In section 2.4 it is stated that applications could be classified roughly into storage
demanding, bandwidth demanding and compute intensive applications, whereby an
application will typically be a mix of these classes. Therefore the first step must comprise an
analysis of the application (see section 3.2), which infrastructure it needs and which
communication protocols the application is using and is built on.

Second step

Before the model is built the system’s scope (see section 4.1) should be defined regarding
system constants, variables and assumptions. Within this system definition the values for
constants (e.g. harddisk price), assumptions and variables have to be specified.

Third step

When applications’ protocols are understood, models (e.g., see section 4.2) must be built,
which can simulate the behavior of the application under different values. The simulation
model should include “checkpoints”, which allow to prove the plausibility of the model and
may show limits to the systems’ components (e.g. the application traffic exceeds the client’s
available bandwidth). After the application model has been built, a cost distribution analysis
(e.g., see section 4.5) should be done, which clarifies who pays for what when using a
certain file sharing application.

Fourth step

Since in the second step the costs for “system equipment” has been defined, these costs
have to be combined with the simulation model and the cost distribution analysis (third
step). See, e.g., section 4.6.1.

Fifth step

This step includes the setup for the simulation, that means to define which variable values
(e.g. number of clients) will be used as input for the simulation in order to draw conclusions
regarding the costs. See section 4.8.

Sixth step

After the simulations, a stakeholder analysis should be done, in order to evaluate the
application regarding their cost impact to the different stakeholders. See chapter 5.

System Classification and Focus Semester Thesis

Page 16

3.2 Compared Applications in the Area of File Sharing

Within this subsection an overview of the compared file sharing applications, namely
Gnutella, FTP and Napster, will be provided. The overview contains a brief history about
the application, and its design including protocol specifications. The protocol specification
are discussed quite deeply so as to allow a detailed cost analysis later on.

3.2.1 Gnutella

History

Gnutella is a file sharing protocol, which allows applications that use this protocol as a client
software to search and download files of other users using Gnutella. The protocol was
developed by Justin Frankel and Tom Pepper employees of AOL as open-source in 2000.
They published the Gnutella client software on a web site, describing it as “a software tool
to file-sharing, that can be more powerful than Napster”. This software was immediately
taken offline after one day, due to merger talks between AOL and Warner Music and EMI.
But many copies of this software have been downloaded, so that Gnutella clients were
communicating soon after, building a network for file searching and file sharing. Today
many companies implemented clone software and try to overcome the shortcomings of the
original protocol. Such clone software is e.g. “Limewire”, “BearShare”, or “Nucleus”. The
actual number of Gnutella hosts accepting incoming connections on the 20th of March 2003
is 14000 hosts and the number of unique hosts is ~80000 as stated in [17].

General Design

The goal of Gnutella is to provide a file sharing solution, which follows the pure Peer-to-
Peer architecture as described in section 2.2.2, whereas Gnutella allows all types of files to
be shared. Users that run applications, which have implemented the Gnutella protocol can
share specified files, can accept queries of other clients and match them with their local
files in order to deliver results. At the same time, the client can search for new files.
Therefore every client is a server and also a client, see “servent-concept” [6]. Below the
word servent will be used to describe a Gnutella client. Since the peers do not have to
provide any personal information, Gnutella provides anonymity for it’s users.

The Gnutella protocol specifies how the servents communicate over the network. In [1], a
set of descriptors is defined, which are used to communicate and to transmit data between
servents. In Figure7 these descriptors are presented.

Figure 7: Gnutella descriptors

Descriptor Description
Ping Used to actively discover hosts on the network. A servent receiving a Ping

descriptor is expected to respond with one or more Pong descriptors.
Pong The response to a Ping. Includes the address of a connected Gnutella servent and

information regarding the amount of data it is making available to the network.
Query The primary mechanism for searching the distributed network. A servent receiving

a Query descriptor will respond with a QueryHit if a match is found against its local
data set.

QueryHit The response to a Query. This descriptor provides the recipient with enough
information to acquire the data matching the corresponding Query.

Push A mechanism that allows a firewalled servent to contribute file-based data to the
network.

Semester Thesis System Classification and Focus

Page 17

A servent can connect to the network by establishing a connection with another servent
currently on the network. Therefore, the servent must know the IP address of another
servent in the Gnutella network to log in. Most of the applications today have implemented
a set of well known IP addresses of other servents, which can be contacted first. When the
servent has a valid IP address a TCP/IP connection to the servent is tried to create. After a
successful “handshake” between the servents, the communication between the servents
runs by sending and receiving Gnutella protocol descriptors.5 Each descriptor is preceded
by a byte structure shown in Figure 8 and is transported on TCP. All fields in the following
descriptors are in little-endian byte6 order unless otherwise stated.

Figure 8: Gnutella descriptor header

• The Gnode ID is a 16-byte string, which is uniquely generated for each new descriptor.
• The Payload Descriptor defines which descriptor, see Figure7 is sent.
• Time to live (TTL) defines the times the descriptor will be forwarded by Gnutella

servents before they delete this descriptor. Each servent receiving a descriptor
decrements its TTL by 1. If the value of TTL reaches 0 the descriptor will not be
forwarded.

• Hops define the number of times a descriptor has been forwarded. As described in [1],
the TTL and Hops fields of the header have to satisfy the following equation, where
TTL(i) and Hops(i) are the actual values of the descriptor at hop i:

Equation 1

• Payload length defines the byte length of the following descriptor.

The TTL is the only mechanism for expiring descriptors on the network. TTL and Hops is
the way Gnutella defines the scope of servents’ queries and network knowledge; the higher
the value of TTL, the bigger the scope.

The value of the Payload length is the only way to identify the next descriptor in the data
input stream. Therefore, if a servent gets out of synchronization with its input stream the
servent should drop the connection. After the descriptor header follows the payload,
consisting of one of the descriptors mentioned in Figure 7. Below these descriptors are
described more detailed, except the Push descriptor, since it is only used to overcome
problems with servents behind firewalls, which is not relevant for this work.

5.By obtaining more IP addresses of other servents, a servent can try to open up more than one TCP/
IP connection. Depending on the application the servent can define the minimum and maximum
number of direct connections to other servents.

6.Endianness is the attribute of a system that indicates whether integers are represented from left to
right or right to left. Little endian means that the least significant byte of any multibyte data field is
stored at the lowest memory address, which is also the address of the larger field. Big endian means
that the most significant byte of any multibyte data field is stored at the lowest memory address,
which is also the address of the larger field.

Gnode ID Payload Descriptor TTL Hops Payload length
16 Bytes 1 Byte 1 Byte 1 Byte 4 Bytes

TTL 0() TTL i() Hops i()+=

System Classification and Focus Semester Thesis

Page 18

Ping descriptors have no payload. They only consist of a descriptor header with payload
zero. In the Gnutella protocol specifications [1] no recommendations are given about the
frequency at which a servent should send a ping descriptor, although it is stated that
implementors should make any effort to minimize the amount of ping traffic on the network.

Pong descriptors are sent in response to a ping descriptor. It is valid to send more than
one pong descriptor as reply for a single ping descriptor. This enables a servent to submit
his cached addresses of other servents in response to a ping. The pong descriptor payload
consists of the host IP address (in big-endian format) and port number, the number of files
and the number of kilobytes shared. A pong descriptor has a 14 byte length.

Figure 9: Pong descriptor

Query descriptors are search messages containing a query string and the minimum
speed. The minimum speed field forces servents to only reply, if they can communicate at
the specified minimum speed. A query descriptor has a 2+n byte length depending on the
search criteria.

Figure 10: Query descriptor

Queryhit descriptors are only sent in response to an incoming query descriptor. The
servent should only reply with a queryhit descriptor, if it contains data that matches the
search criteria. A queryhit descriptor contains the IP address, the port number and speed
(Kb/second) of the responding host, followed by a result set and a servent identifier.The
result set contains names and sizes of files matching to the search criteria. The size of the
result set is limited by the size of the payload length in the descriptor header. A queryhit
descriptor has a 27+n byte length, whereby the result set has a 4+n byte length:

Figure 11: Queryhit descriptor

Descriptor Routing

Due to its distributed nature, a network servent that implements the Gnutella protocol must
have the ability to route incoming descriptors (ping, pong, query, queryhit) through its open
connections. Therefore a Gnutella servent should follow the rules explained below:
• Servents will forward incoming pings and queries to all its directly connected servents

except the one which delivered the ping or query descriptor.

Port IP Adress Number of Files shared Number of Kbytes shared
2 Bytes 4 Bytes 4 Bytes 4 Bytes

Minimum Speed Search criteria
2 Bytes n Bytes

Number of Hits Port IP Address Speed Result Set Servent Identifier
1 Byte 2 Bytes 4 Bytes 4 Bytes n Bytes 16 Bytes

File Index File Size File Name
4 Bytes 4 Bytes n Bytes

Semester Thesis System Classification and Focus

Page 19

• Pong and queryhit descriptors may only be routed back on the same path by which the
corresponding ping or query descriptor was routed. This is possible since servents run
tables in which they can review the way a certain ping or a query came from.

• A servent will decrement the descriptor header’s value of TTL and increment the value
of hops by one, before a descriptor is forwarded to directly connected servents. If the
value of TTL is zero the descriptor may not be forwarded to any of the directly
connected servents.

• If a servent receives a descriptor with the same payload descriptor and descriptor ID as
it has received anytime before, it should not forward this descriptor to any of it’s directly
connected servents, since they have probably already received the same descriptor.

File download

If a servent receives a queryhit descriptor, it can initiate a direct download of one of the files
listed up in the descriptor’s result set. Files are not downloaded over the Gnutella network.
Instead, the download runs over HTTP protocol. The servent sends a download request
that contains <File Index> and <File Name>, which correspond to one of the files in the
result set field of the queryhit descriptor. When the other servent receives this request, it will
respond and the data transfer follows.

3.2.2 Napster

History

The idea of Napster came from its creator Shawn Fanning in 1998. Shawn created
programs where one could locate and transfer files in real time. This particular notion was
unlike other computer or traditional search engines. A system was created where users
could log on and update their current files. By May 1999 Shawn's idea developed into full
operation, which later became known as Napster Incorporated. Napsters popularity
continued to grow and its size exceeded the amount of 60 million users. The demise fell
earlier than anticipated by Napster fans, when the music industry took the company to court
in 2000 and 2001. The Court appealed rules that Napster must prevent its subscribers from
gaining access to content on its search index, that could potentially infringe copyrights.
Today Napster itself is not longer present as an “open” file sharing solution, however there
are many “open” clones available which can connect to OpenNap servers.

General Design

The goal of Napster was to provide a file sharing solution which follows the hybrid Peer-to-
Peer architecture as described in section 2.2.3, whereas, compared to Gnutella, Napster
restricts the file types to be shared to mp3 files. Napster works with a central server, which
contains an index of all mp3 files shared by clients7. The clients run the Napster software
on their computers. By launching Napster, the index of the central server will be updated
with the client’s shared file names. If a peer wants to download a specific file, it sends a
query to the central server, which replies with port number and IP address of a client, which
is sharing this file. Since Napster is not open source the following protocol analysis relies on
the napster protocol specification [18], which was done by reverse engineering. Compared
to Gnutella, the Napster protocol defines a large number of message types. Basically every
activity of a client concerning Napster is related to the central Napster server. This makes

7.Even Napster is widely regarded as an hybrid Peer-to-Peer system the peers are called clients in
most of the essays concerning Napster.

System Classification and Focus Semester Thesis

Page 20

anonymity of the clients impossible but provides additional services like instant messaging
or creating hotlists. Since Gnutella, FTP and Napster are analyzed regarding their function
of “file sharing”, the following protocol analysis of Napster will limit the scope on the
essential messages to provide a file sharing solution. These messages are login, client
notification of shared files, client search request, search response, download request,
download ack, download complete and upload complete, see Figure 12:

Figure 12: Napster messages

Napster uses TCP for client to server communication and typically runs on port 8888 or
7777. Each Napster message is preceded by a byte structure shown in Figure13, where
<length> and <byte> are in little-endian format, whereas the <data> portion of the message
is a plain ASCII string.

Figure 13: Napster message header

• Length specifies the length in bytes of the <data> portion of the message.
• Type defines the message type, which follows in <data>.
• Data contains a plain ASCII string.

Within the Napster protocol each block of header and <data> is separated by a single
space character (1 byte), which allows to identify single blocks of an incoming bit stream.

Login messages are sent by the client to the server in order to get connected to the
Napster network, so that a client can share and download files. A login message contains
fields for the client’s nickname, its password, its port number, information about the client’s
software version and the link type, which specifies the client’s bandwidth. The client’s IP
address has not to be added, since the server can extract it out of the TCP packet.

Message Message receiver Description
Login Server A registered Napster client sends a login message to the

server in order to share and download files.
Client notification of
shared files

Server This message is sent by a Napster client at the beginning of a
session to update the index on the central server with all the
files it want to share.

Client search request Server This message is sent by a napster client searching for files.
Search response Client Response to a client search request message.
Download request Server Client request to download a file from another Napster client.
Download ack Client Server sends this message in response to a download

request message.
Downloading file Server Client sends this message to the server to indicate that it is in

the process of downloading a file.
Uploading file Server Client sends this message to the server to indicate that it is in

the process of uploading a file.
Download complete Server Client sends this message to the server to indicate that the

process of downloading a file is completed.
Upload complete Server Client sends this message to the server to indicate that the

process of uploading a file is completed.

Length Type Data
2 Bytes 2 Byte n Byte

Semester Thesis System Classification and Focus

Page 21

Figure 14: Login message

Client notification of shared files messages are sent by the client to the server in order
to submit the client’s actual shared files. For each file a client wants to share such a
message is generated. The message contains field for the shared filename, a hash value of
the shared file8, the size in [bytes], the bit rate in [kbps], frequency in [Hz] and the length in
[seconds] of the shared music file.

Figure 15: Client notification of shared files message

Client search request messages are sent by clients searching for files. A search
message contains fields for the artist, for the maximum number of search results, the song
name, the demanded linespeed for possible download candidates, the desired bit rate in
[kbps] and the frequency in [Hz] of the music file the client is searching for. The <compare>
condition can be “AT LEAST”, “AT BEST” and “EQUAL TO”.

Figure 16: Client search request message

Search response messages are sent by the server upon client search request messages.
A search message contains fields for the filename matching to a search request, the hash
value, the size, the bit rate, the frequency and the length of the returned file. Additionally the
nickname, the IP address and the link-type of the client, which is sharing this file is
submitted. For each match on the server’s index list such a message is sent to the client.9

Figure 17: Search response message

8.For more detailed information about the hash value contact: http://www.faqs.org/rfcs/rfc1321.html
9.If the client has not limited the number of results being returned within the client search message,

the server will return up to 100 matching filenames.

Nick Password Port "Client-Info" Link-Type
1 Byte/Char 1 Byte/Char 1 Byte/Char 2 Bytes+1 Byte/Char 1 Byte/Char

Filename MD5 Size Bitrate Frequency Time
1 Byte/Char 32 Byte 1 Byte/Char 1 Byte/Char 1 Byte/Char 1 Byte/Char

[FILENAME CONTAINS "artist name"] [MAX-RESULT <max>]
20 Bytes+1 Byte/Char 11 Bytes+1 Byte/Char

[FILENAME CONTAINS "song"] [LINESPEED CONTAINS <compare> <link-type>]
20 Bytes+1 Byte/Char 20 Bytes+7 to 8 Bytes+1 Byte/Char

[BITRATE <compare> "
"] [FREQ <compare> "<freq>"]
11 Bytes+7 to 8 Bytes+1 Byte/Char 8 Bytes+7 to 8 Bytes+1 Byte/Char

"Filename" MD5 Size Bitrate
2 Bytes+1 Byte/Char 32 Bytes 1 Byte/Char 1 Byte/Char

Frequency Length Nick IP
1 Byte/Char 1 Byte/Char 1 Byte/Char 10 Bytes
Link-type

1 Byte/Char

System Classification and Focus Semester Thesis

Page 22

Download request messages are sent by the client to the server. The client requests to
download a certain file. Thereby the client submits the filename and nickname of the file’s
owner.

Figure 18: Download request message

Download ack messages are acknowledge messages from the server, which contain
specific information about the desired file. This information includes nickname, IP address,
port number, filename, the hash value of the file and the link-type of the client sharing this
file.

Figure 19: Download ack message

Normal downloading - after the client has received a download ack message the client,
which is requesting a file, makes a TCP connection to the data port, which is specified in
the download ack knowledge message received from the server. To request the file the
client sends a HTTP GET message to the client containing nickname, requested filename
and offset. Offset is the byte offset in the file to start the download at. It is useful to resume
earlier downloads.

Figure 20: Normal downloading message

When the downloading process is initiated the downloading client sends a downloading
file message and the uploading client sends a uploading file message to the server.
When the download is completed, the downloading peer sends a download complete
message and the uploading peer sends a upload complete message to the server. All
four messages only consist of the header with 0 bytes data load.

3.2.3 File Transfer Protocol (FTP)

History

FTP is one of the oldest protocols on the Internet. The first proposals for a first file transfer
mechanism came from M.I.T in 1971.10 There have been several changes and updates to
the protocol during the years, but in 1980 motivated by the transition from the NCP to the

10.See RFC 114 at http://rfc.sunsite.dk

Nick "Filename"
1 Byte/Char 2 Bytes+1 Byte/Char

Nick IP
1 Byte/Char 10 Bytes

Port "Filename"
1 Byte/Char 2 Bytes+1 Byte/Char

MD5 Link-Type
32 Bytes 1 Byte/Char

Nick "Filename" Offset
1 Byte/Char 2 Bytes+ 1 Byte/Char 1 Byte/Char

Semester Thesis System Classification and Focus

Page 23

TCP as the underlying protocol, new FTP specifications were proposed in RFC 765 for use
on TCP. The latest FTP specifications are described in RFC 959 in 1985.

Today FTP is commonly used to transfer web page files from their creator to the computer
that acts as their server for everyone on the Internet. It's also commonly used to download
programs and other files to the computer from other servers.

General Design

As described in [19] the “objectives of FTP are to promote sharing of files (computer
programs and/or data), to encourage indirect or implicit (via programs) use of remote
computers, to shield a user from variations in file storage systems among hosts, and to
transfer data reliably and efficiently. FTP, though usable directly by a user at a terminal, is
designed mainly for use by programs.” Today FTP can be seen as a typical Client-Server
solution as described in section 2.3.2. The server’s service is mainly to provide the file
system to the clients.

Figure 21: FTP model11

In Figure21 the FTP model is shown as it is provided in [19]. If a user wants to download a
file from a server, a control connection must be initiated by the user-protocol interpreter
(User PI). The control connection follows the Telnet protocol specifications. At the initiation,
standard commands are sent to the server by the user protocol interpreter over the control
connection. Standard replies are sent back from the server protocol interpreter to the user
protocol interpreter over the control connection. The communication channel from the user
protocol interpreter to the server protocol interpreter is established as a TCP connection
from the client to the server. FTP commands specify the parameter for the data connection,
that means (transfer mode, data port etc.) and also which operations on the file system
should be done (store, delete etc.). The user data transfer process (User DTP) should listen
on the specified data port, while the server initiates the data connection and data transfer
according to the parameters.12 Files and information of folders and files are transferred only
via the data connection. The control connection is used for the transfer of commands,

11.Source: J. Postel, J. Reynolds: File Transfer Protocol (FTP), RFC 959, October 1985.

System Classification and Focus Semester Thesis

Page 24

which describe the functions to be performed, and the replies to these commands. ASCII is
the default data representation type.

In FTP there are three different modes to transfer data. These are the stream mode, the
block mode and compressed mode. For this analysis only the stream mode is considered.
Over this mode data is transmitted as a stream of bytes.

Since it is important for this work to figure out, how FTP can provide a certain service to the
client, the analysis will focus on the client’s side about the effort to get connected, to search
for files, to share files and to download files. Normally after a client has logged into a server,
it will see the standard directory with some folders and eventually some files. If the standard
directory only consists of folders the client has to send a command (e.g. CWD <new
folder>) to change the directory. The server will then submit the content of the new directory
over the data connection.

Below typical log files of the control connection of a FTP server is shown. This is important
to evaluate how many bytes are being transferred over the control connection for a typical
command. The log files show a login of a client into an FTP server, see Figure22. For log
files of a directory change, a download of a file and an upload of a file see section 7.1.1 on
page60.

Figure 22: FTP login log file

Figure22 shows the control connection communication of a client trying to login on a FTP
server. Text preceded by a numbers like 220 are server replies to the client, whereas
commands in capital letters are client commands submitted to the server. For a login 18
commands and replies are sent over the control connection in total, whereas the home
directory information, see Figure23, is transferred over the data connection.

drwxr-xr-x 1 ftp ftp 0 Mar 24 07:54 new folder
-rw-r--r-- 1 ftp ftp 121385 Mar 23 12:25 rfc959 -ftp.pdf

Figure 23: FTP directory information

12.The server will only initiate the data connection in active mode. If the User PI wants to establish a
connection in passive mode, the server will reply which port is listening for a data connection. Then
the client can initiate the data connection from its data port to the specified server data port.

Login

(not logged in) > 220 Robin's FTP Server

(not logged in) > USER rmaly_up

(not logged in) > 331 Password required for rmaly_up.

(not logged in) > PASS ********

rmaly_up > 230 User rmaly_up logged in.

rmaly_up > SYST

rmaly_up > 215 UNIX Type: L8

rmaly_up > FEAT

rmaly_up > 500 Unknown command.

rmaly_up > PWD

rmaly_up > 257 "/" is current directory.

rmaly_up > TYPE A

rmaly_up > 200 Type set to A.

rmaly_up > PASV

rmaly_up > 227 Entering Passive Mode (192,168,0,144,41,152).

rmaly_up > LIST

rmaly_up > 150 Data connection accepted from 192.168.0.144:2040; transfer starting.

rmaly_up > 226 Transfer ok

Semester Thesis System Classification and Focus

Page 25

Since the directory information is submitted in ASCII the representation for directory
information demand 57 bytes as overhead (date, file size etc.) per folder or file and 1 byte
per char for the folder or file name.

In case of a change folder command of the client, 9 messages are sent from or to the
server. To initiate a file download over the data connections it needs 9 commands and
replies on the control connection. For the file upload it takes 14 messages (cf. section 7.1.1
on page 60).

In Figure24 the communication overhead in bytes for login, change folder, file down and
upload commands is shown. The amount of bytes being transmitted between client and
server, e.g. within the login process, includes all 18 commands and replies which are sent
within this process. The used byte size can vary, since usernames, passwords, FTP server
names, folder names, file names and file sizes can be different.

Figure 24: FTP communication overhead

3.2.4 A Qualitative Comparison

In Figure25 a qualitative comparison of Gnutella, Napster and FTP is provided, which
covers characteristics, that can be applied on all of the three applications. These
characteristics are data availability, data consistency, extensibility of hardware, robustness
of the system and an estimation of the download performance. These characteristics can
vary depending on the user and its requirements for a file sharing application. Therefore
these characteristics are not meant to be cut in stone. They more resemble important
characteristics in the eyes of the author of this work.

As it is stated in section 2.4.2 data availability means, that if a peer or a client needs a file
for usage, the file must be available. In Gnutella, queries are propagated to only a certain
number of peers, therefore not all available peers can be included into a query. So if a file is
stored on one of the peers, that has not received the query, a peer will not get the file.
Therefore the data availability is low. Napster maintains an index list to which all queries
from clients are sent, so if a client needs a specific file, assuming that the file is stored
anywhere on an active client, the client will receive a message with the location of the file.
Therefore the data availability is high. In the case of FTP assuming that the server is online
the data availability is high, since all files are stored there and can be accessed by the
clients.

Data consistency is a characteristic, which covers the topicality of files. That means, if
copies of the same file are available and in case that one of them is changed, that all copies
are changed as well. Neither Napster nor Gnutella has implemented such functions. In FTP
this problem is addressed with central data management. A client could upload a file, which
is already stored on the server, but FTP server operator can filter out such duplicates.

Login Overhead
311 Bytes+3*<username>*1Byte/char+<password>*1Byte/char+<FTP server name>*1Byte/char

Change Folder Overhead
236 Bytes+3*<foldername>*1Byte/char

File Download Overhead
284 Bytes+2*<username>*1Byte/char+<password>*1Byte/char+<filesize in bytes>*1Byte/char

File Upload Overhead
352 Bytes+2*<filename>*1Byte/char

System Classification and Focus Semester Thesis

Page 26

The characteristic extensibility of hardware, means the ability to extend hardware resources
namely storage or extra bandwidth to enhance the application deliberately. The extensibility
of hardware resources, which concern clients or peers, is low. This means, when e.g., an
application developer wants to extend resources of the system, the developer will not be
able to extend the storage or the bandwidth of peers located anywhere on the world, since
peers are autonomous and can do what they want. In case of Napster and FTP, which are
using a server, the extensibility of server hardware is high, since it is centrally located and
administrated by an authority. But since file sharing applications mainly have to rely on
storage capacity and the storage capacity at Napster and Gnutella is provided by the peers
their extensibility of hardware is low, whereas the extensibility of FTP is high because of the
ability to extend the FTP server with additional hardware and bandwidth and therewith to
extend the system.

Figure 25: Qualitative comparison13

Robustness is a characteristic, that expresses the ability of a system to deliver the service
of file sharing, while parts of the system are not working properly. Gnutella is pure a Peer-
to-Peer application, therefore if, e.g. one peer does not work properly the whole system is
only affected in that files on this peer are not accessible. The rest of the system remains
working, so the robustness of Gnutella is high. Both Napster and FTP have a single point of
failure, since both applications rely on a server. But since it can be assumed that servers
today run very stable the robustness for both applications is assumed to be medium.

The download performance resembles the performance, if a client or a peer wants to
download a file. In case of FTP the server will normally be connected to the Internet over a
company, which is directly connected to the Internet backbone and therewith the server will
have a higher bandwidth than a normal peer has. In case of Napster and Gnutella files are
downloaded from other peers. Since today most peers are connected over asymmetric
connections (see [4]) and therefore often have higher download bandwidth capacities
[Kbps] than upload, the download performance for Napster and Gnutella is therefore lower
than when using FTP.

3.3 Criteria to evaluate File Sharing Applications

If it is considered to replace a Client-Server system with Peer-to-Peer in section 2.4.3, it is
stated, that a corresponding Peer-to-Peer application can have severe disadvantages and
concessions. Therefore users of such applications have to find an optimal trade-off. The
goal would be a quantifiable model, which would allow to evaluate each application. In the
following, it is assumed that an economic evaluation of the compared applications must be
the core to find a trade-off. It is intended that after applications have been evaluated
economically, they will then be compared by qualitative characteristics, like the ones

13.For net sizes of ~50000 users

Characteristics Gnutella Napster FTP
Data availability low high high
Data consistency low low high
Extensibility of hardware low low high
Robustness high medium medium
Download performance low low high

Semester Thesis System Classification and Focus

Page 27

mentioned in section 3.2.4. That means, each user has to identify characteristics which are
important to him. If these characteristics are not included in the economic evaluation, the
user has to decide - e.g. in case that application A has a big disadvantage regarding its
data availability, which application B does not have, but application B is 20 times more
expensive than application A - if he wants to accept the shortcomings of application A in
order to save a lot of money. Therefore the further work will concentrate on economic
measurable characteristics. In section 2.4.2 applications have been classified into
bandwidth demanding, storage demanding and compute intensive applications. Bandwidth,
storage and processing cycles are characteristics, which can be economically evaluated.
Storage capacity for example can be measured by evaluating the price of a harddisk for a
certain storage capacity. According to section 2.4.2 and the protocol specifications from
above, file sharing applications seem to fit more in the categories of storage demanding
and bandwidth demanding applications, since no large computations are done in order to
share files. Due to this fact the economic evaluation of an application will focus mainly on
bandwidth and storage costs. Additionally, administration costs like maintenance or
installation costs will also be taken into account where possible.

File Sharing - Economic Modeling Semester Thesis

Page 28

4 File Sharing - Economic Modeling
In this chapter economic models will be developed, which allow to compare the three in
section 3.2 discussed file sharing applications. In section 4.1 a system definition will be
done, in order to clearly specify the scope of the models. In section 4.2, 4.3 and 4.4
simulation models for each application will be built upon the system definition. In section 4.6
the cost models which should calculate the costs of the applications are developed. In
section 4.7 limitations of the economic models will be discussed. In section 4.8 different
scenarios will be defined, in order to compare the three file sharing applications
economically for different settings.

4.1 System Definition

The system definition should provide a basis on which an economic model can be built and
the three different applications of file sharing can be compared. Since the internet is a very
heterogeneous system, assumptions are made in order to limit the complexity to a certain
manageable degree. In Figure26 the system is illustrated as it is used for the economic
model. In the following sections (from 4.1.1 until 4.1.4) the system and its boarders will be
explained in more detail. Especially the system variables and constants with their
corresponding values are described which are also listed in Table 1 on page29.

Figure 26: System

ISP Network

Internet

Other ISP Networks

Napster
Index Server

FTP ServerPeer Peer

Cable ModemCable Modem

Peer Peer

Cable ModemCable Modem

Server Hosting
Companies

PoP offering
Companies

Napster
Index Server

FTP Server

Semester Thesis File Sharing - Economic Modeling

Page 29

Table 1: System variables and constants

No. Variable name Value Unit Explanation Source
1 hardisk_size 80 [GB] Size of client's or peer's harddisk Assumption
2 harddisk_price 179 [CHF] Price of a client's or peer's harddisk www.arp-datacon.ch
3 avg_files_size 3.5 [MB] Average size of files, which are shared www.centerspan.com/technology/

cscc_p2pwhitepaper.pdf
4 file_length_in_bytes 7 [chars] Number of chars needed for file size

information
see avg_files_size

5 avg_files_per_peer 340 [1/peer] Average number of files shared per
client or peer

www-
db.stanford.edu/~byang/pubs/p2p
search.pdf

6 replicates 4 [files] Average number of replicas a shared file
has

Assumption

7 avg_unique_files_in_system derived [files] Number of files stored on the server see avg_files_per_peer, replicates

8 dialup_speed 512 [Kbit/s] Downstream connection from the peer
or the client to the ISP

Assumption

9 dialup_price 80 [CHF/month] Price for the connection to the the ISP
per month

www.cablecom.ch

10 no 10-1000000 [peers] Number of active peers or clients Variable
11 queries_per_day 412 [queries] Number of queries of a client or a peer

per day
www-
2.cs.cmu.edu/~kunwadee/researc
h/p2p/gnutella.html

12 queryrate derived [1/minute] Average number of queries per minute
and peer

see queries_per_day

13 peer_downupload_rate 100-10000 [MB/month] Effective file transfer of a client or a peer Variable

14 download_request_rate derived [] Average number of downloads per
month and peer

see peer_downupload_rate,
avg_file_size

15 avg_words_per_query 2.4 [words/query] Average words per query in Gnutella and
Napster

www-
db.stanford.edu/~byang/pubs/hybr
idp2p_med.pdf

16 avg_char_per_word 5 [chars/word] Average chars per query in Gnutella and
Napster

www-
db.stanford.edu/~byang/pubs/hybr
idp2p_med.pdf

17 avg_chars_per_file 17 [chars] Average chars per file inluding file
extension

Assumption

18 username 10 [chars] Average chars for a username www-
db.stanford.edu/~byang/pubs/p2p
search.pdf

19 password 10 [chars] Average chars for a password www-
db.stanford.edu/~byang/pubs/p2p
search.pdf

20 peer_network_size 1000 [peers] Number of active peers or clients per
Internet service provider

Assumption

21 isp_profit_margin 7 [%] Profit margin of the ISP Assumption

22 monthly_payment 278 [CHF] Monthly standard server costs www.metanet.ch
23 monthly_traffic 50 [GB] Monthly traffic www.metanet.ch
24 monthly_traffic_add 100 [CHF] Additional 100GB traffic per month www.metanet.ch
25 storage_capacity_hosting 80 [GB] Storage capacity of the server www.metanet.ch
26 installation_costs_hosting 149 [CHF] Server installation costs (single

payment)
www.metanet.ch

27 inhouse_storage_capacity 876 [GB] Storage capacity of the server www.dell.ch
28 inhouse_costs 19119 [CHF] Price of one server www.dell.ch
29 inhouse_monthly provided traffic 1.544 [Mbit/s] Bandwidth provided by the local loop

from the server to the PoP
Assumption

30 monthly_line_lease 1500 [CHF] Monthly costs for a local loop www.broadbandbuyer.com/chartb
usiness.htm

31 MTU 1000 [byte] Maximum transfer unit ipinspace.gsfc.nasa.gov/flatsat/do
cs/IP-Performance.doc

32 overhead_per_packet 40 [byte] Overhead per IP packet www.sans.org/resources/tcpip.pdf

Internet

Inhouse Solution

Client/Peer

ISP

Server
Outsourced Solution

File Sharing - Economic Modeling Semester Thesis

Page 30

4.1.1 Clients/Peers

In this work clients or peers are regarded as desktop computers, which are able to run the
three file sharing applications explained above. The variables of clients and peers are
classified into different sections.

Storage

In the case of Gnutella and Napster the clients and peers provide a certain amount of their
harddisk storage capacity in terms of files to the public. In case of FTP the clients do not
provide their harddisk storage to the public. If a client wants to share a file, it can upload the
file on the FTP server, where other clients can access it. If a client wants a specific file, it
can search the FTP server and if the search is successful, the client can download the file.
In order to compare the three applications it is assumed that Gnutella peers and Napster
clients have to buy one or more additional harddisks depending on the amount of files
offered. The size of the harddisk is assumed to be 80 GB at a price of 179 CHF.

As it is stated above, peers and clients share files. According to [20] files have an average
file size of 3.5 MB. In [21] the average number of files a user shares is specified as 340
files, so that the average number of unique files is calculated as number of client or peers
multiplied with the average number of files a user shares, divided by the number of
(replicas+1). Since files are shared and downloaded by other peers, files have replicas. It is
assumed that a file has an average of four replicas distributed on other peers. The average
number of chars per file name is assumed to be 17 including the file type extension. If an
application needs a user name and a password their length in chars is 10 as estimated in
[23].

Bandwidth

In order that clients and peers can perform functions as downloading files, they need a
connection to the Internet. Today there are several ways how a desktop computer can get
access to the Internet (e.g. dialup users, cable modem users, DSL users, T1 users etc.). In
this work every client and peer is assumed to be connected to the Internet over a cable
modem connection offered by an Internet service provider. It is assumed that every peer or
client has a downstream connection of 512 kbps and an upstream connection of 128 kbps.
The provided download traffic is unlimited and the price per month is 80 CHF including
cable modem rental.

The monthly down and upload rate of a client or a peer is a variable and can have different
values. This rate resembles the effective file transfer of a client or a peer. It is assumed that
a peer or a client has the same download rate as upload rate, that means, that a client
downloads as much files per month as it uploads. To calculate the number of down and
upload requests the monthly average down and upload rate is divided by the average file
size of 3.5 MB.

Queries

In [22] the query rate for a Gnutella peer is measured and is estimated to be around 412
queries per day. Therefore the query rate for Napster and FTP is also defined to be at 412
queries per day.

In [23] the average query length is assumed to be 2.4 words per query and 5 chars per
word. This value is only used for queries in Napster and Gnutella, since in FTP it is not
possible to search for terms.

Semester Thesis File Sharing - Economic Modeling

Page 31

4.1.2 ISPs

The Internet service providers are assumed to be gateways for the clients and peers to the
Internet. The traffic, that is routed over an ISP network is assumed to be the cumulated
traffic of peers and clients that are customer of this ISP. There will be no statement, which
proportion of this traffic is internal traffic between peers of a special ISP network and which
proportion has to be routed out of the network.14 In this work, it is assumed that an ISP
harbors 1000 active peers or clients. The price an ISP has to pay for Internet exchange
carriers and its own network is not explicitly regarded. It is assumed that the monthly fee
clients or peers are paying for their connection covers the expenditures of the ISP.

4.1.3 Servers

FTP and Napster need a server to offer a service to their clients. In case of FTP files are
stored on a server, whereas Napster only uses the server to coordinate the file sharing
activities of its clients. In order to evaluate the costs, below two different approaches for the
server allocation are assumed - an outsourced solution and an inhouse solution.

Outsourced Solution

In this solution the server with its connection to the Internet and with a certain storage
capacity is provided by a hosting company. Stakeholders who want to offer a service like
FTP or Napster have to compensate the hosting company for their service.

For this work a typical offer of a hosting company15 is used for the outsourced solution. This
standard offer includes a server with 50 GB traffic per month16, 80 GB harddisk, IP
address, DNS service, service level agreements with guaranteed net availability and
guaranteed support for a monthly price of 278 CHF. The initial installation costs are at 149
CHF. Additional 100 GB traffic can be bought at 290 CHF per month. If the demand of
storage capacity is more than 80 GB an additional server has to be obtained.

Inhouse Solution

The inhouse solution assumes, that stakeholders who want to offer a service like FTP or
Napster buy their own server and lease their own connection to the Internet. For the server
solution a typical server offering company17 has been chosen. The chosen server has the
following main specifications. The total storage capacity is 876 GB. The network interface is
equipped with an embedded Gigabit NIC. The server package includes 24x7 fully-
integrated service, providing problem prevention and rapid resolution services to maximize
system uptime on mission critical systems and the installation costs as well. This server
solution has a price of 19119 CHF. If the demand of storage capacity is more than 876 GB,
an additional server has to be bought.

For the Internet connection the stakeholders normally have to lease a local loop from an
ISP with a specified offered bandwidth. This local loop is directly connected to the next
Point of Presence (PoP), which then is connected to the ISP backbone. Since symmetric
connections like a T1 connection18 are strongly dependent on the distance to the next PoP,
it is assumed that the server is co-located directly at the ISP’s PoP. A T1 Internet

14.In [13] it is stated that only 2-5% of Gnutella peers have direct link connections within their ISP
network.

15.METANET GmbH, see www.metanet.ch
16.50 GB per month traffic equals an offered bandwidth of ~162 Kbps
17.Dell Ltd., see www.dell.ch
18.If the T1 connection is not fractional, the offered bandwidth is 1.544 Mbps

File Sharing - Economic Modeling Semester Thesis

Page 32

connection is chosen. Since most of the ISPs do not have standard offers for a T1
connection the price for a monthly connection to the PoP is approximately 1500 CHF19. For
additional bandwidth it is assumed, that stakeholders can lease more T1 connections for
1500 CHF per month and T1 connection.

If more than one server is needed for a FTP or a Napster solution the problems that may
occur, e.g. to synchronize the Napster index files on all servers or to distribute files onto
different servers in case of FTP, are not part of this work. For both solutions the servers’
CPU performance is not taken into account since it would enhance complexity of the model
extremely. In case of Napster it is assumed, that one server of the above specification can
handle the CPU instructions up to 1 million clients.

4.1.4 Internet

The analysis abstracts from the topological details of the Internet. There are no
assumptions on how packets are routed from one peer or client to another or to a server.
But since all of the three applications are built on top of TCP and the costs as well as
performance issues of the different applications should be compared, the usage of TCP
and IP is taken into account. To limit complexity, protocols used in the Data Link layer are
not regarded, but it is assumed that an IP packet should not exceed the maximum transfer
unit (MTU) of 1000 bytes as stated in [24]. The overhead of a TCP packet as well as the
overhead of an IP packet is 20 bytes, which makes a total overhead per IP packet of 40
bytes (cp. [25]).

19.cf. BroadBandbuyer, see www.broadbandbuyer.com/chartbusiness.htm

Semester Thesis File Sharing - Economic Modeling

Page 33

4.2 Gnutella Application Simulation Model

As described in the Gnutella protocol specification [1], the Gnutella communication utilizes
5 different descriptors which are routed in a network of peers. Therefore, it is important to
model this network first. The protocol says that a peer is connected directly with nc
neighbors and propagates the pings to all its neighbors except the one the ping came from.
That makes nc-1 connections. If nc is assumed to be constant the cumulated number of
pings created by an initial ping can be calculated as in equation (2).

Equation 2

This formula assumes that each ping will never hit the same peer more than once and that
the network is infinite. Otherwise depending on the network size a ping message will have
hit all peers after some hops and will be dropped by that peer, where it has been twice.
That’s why Schollmeier proposes in [26] to use a tree structure as shown in Figure27 to
describe the Gnutella network.

Figure 27: Gnutella tree structure

He considers the decreasing probability that a ping in a finite network can find a peer, which
has never propagated this ping. For these calculations the following parameters are used:
• No, is the total number of active peers.
• nc, is the number of direct connections to other peers.
• h, is the maximum number of hops.
• nsearch(h), is the number of peers that will receive a propagated ping at hop (h).

Equation 3

ncumpings nc

nc-1()TTL -1
nc-2

------------------------------⋅=

Nsearch(h-1)Nocc(h)

 h=0 h=1 h=2

Nfree(h)

nsearch h() nsearch h-1() nc-1()⋅ nc nc -1()h-1⋅= =

File Sharing - Economic Modeling Semester Thesis

Page 34

• nocc(h), is the total number of peers that have already been hit by a ping at hop(h).

Equation 4

• nfree(h), is the number of network peers that have not yet been hit by a ping at hop(h).

Equation 5

• pfree(h), is the probability to find a peer, which has not yet been hit by a ping at hop(h).
The first part of the equation is the probability to find a free peer, whereas the second
part of the equation calculates the probability that the same peer is not contacted by the
remaining nsearch-1 peers.

Equation 6

Based on the parameter the cumulated number of pings as well as the total number of
pongs can be calculated recursively20, whereas the initial condition is:

>n_ping[h=1]:=n_c;
>p_free[h=1]:=1;
>n_search[h=1]:=n_c;
>n_free[h=1]:=no;
>n_search_pong[h=1]:=n_c;
>n_pong[h=1]:=n_c;
>con:=n_ping[h];

The cumulative number of pings and pongs is calculated as follows:

>for h from 2 to TTL while con < no do
n_free[h]:=evalf(n_free[h-1]-n_search[h-1]);
n_search[h]:=evalf(n_search[h-1]*p_free[h-1]*(n_c-1));
n_ping[h]:=evalf(n_ping[h-1]+n_search[h-1]*(n_c-1));
p_free[h]:=evalf(((n_free[h])/(no))*(1-(1/n_free[h]))^(n_search[h]-1));

20.Calculated in Maple.

nocc h() 1 nc

1- nc-1()h

2-nc
-----------------------⋅+=

nfree h() nall-nocc h()=

pfree

nfree- 0.5 nsearch⋅()
nall

-- 1-
1

nfree

n search -1
⋅=

Semester Thesis File Sharing - Economic Modeling

Page 35

n_search_pong[h]:=evalf(n_search[h-1]);
n_pong[h]:=evalf(n_pong[h-1]+n_search[h]*h);
con:=n_ping[h];

These calculations are only true, if the number of peers in the network is larger than the
cumulated number of pings. To adjust this shortcoming an additional condition is inserted,
since in a network of No peers the maximum number of cumulated pings can only be No-1
pings. For the sake of complexity reduction the number of pongs is calculated with linear
approximation. For further details see section on page61.

The Gnutella protocol specification states that a peer only creates a ping during the login to
probe the network, but since peers may come and leave the network and direct
connections to neighbors can be lost and pings have to be sent to reconnect, the ping rate
is difficult to estimate. In this work it is assumed, that every peer creates a ping every 15
minutes. The number of directly connected neighbors is 3.4 and the TTL value is 7 as
mentioned in [13]. TTL is 7 for all of the descriptor types. The query rate, that means a peer
makes x queries per minute, is a derived variable and has the value 0.286 [1/min] or 412
queries per day. Since queryhit messages are sent upon a query, which matches the
defined conditions, query rate and queryhit rate are dependent. In [16] the proportion of
measured query descriptors to queryhit descriptors is 12%. For further details see
Appendix, Figure 49 on page61 and Table5 on page77.

With these equations, the knowledge of the protocol analysis and the system definition (see
Table 1 on page 29 for system values and section 7.1.2 on page61 for a detailed view on
the calculations) it is possible to calculate how many bytes per month are being transferred
over the peer’s Internet connection to or from the ISP in a worst case scenario, in which
each packet is transmitted in an IP packet. It is assumed that the load of the network is
distributed equally over all active peer connections. The byte volumina in [byte/month] for
the different descriptors is generally calculated as follows:

Equation 7

• ndescr , is the cumulated number of created descriptors messages. This can be ping,
pong or query messages.

• descriptorrate, is the descriptors’ creation rate in [1/min], that can be query rate or ping
rate.

• TCP/IPoverhead, is 40 bytes for each message.
• Gnutellamessage, is the Gnutella’s message size in [bytes], which is dependent on the

descriptor’s type.
• The last term of the equation considers the period of one month.

The formula for the direct download or upload volumina in [byte/month] is:

voluminadescr descriptorrate ndescr Gnutellamessage TCP/IPoverhead+() 60 24 30⋅ ⋅ ⋅ ⋅ ⋅=

voluminadownload peer_downupload_rate ceil
peer_downupload_rate

MTU

 
  TCPIPoverhead⋅+=

File Sharing - Economic Modeling Semester Thesis

Page 36

Equation 8

To measure a peer’s bandwidth performance, that means the load of a peer’s connection to
its ISP, the volumina of all descriptors plus download traffic is calculated in Kbps. In order to
to evaluate limits of the peer’s connection the bandwidth usage in percentage is measured.
It is assumed that half of the traffic is incoming traffic and the other half is outgoing traffic.
For details see Appendix, Figure51 on page62.

Since in [16] a traffic breakdown by message type is provided, see Appendix, Figure 52 on
page62, a crosscheck is implemented in the simulation model, which calculates the
proportion of message types. The proportion of the created message types are close to the
measured values, see Appendix, Figure 53 on page62.

4.3 FTP Application Simulation Model

In section 3.2.3 the functionality of FTP has been described. In contrast to Gnutella, FTP
has not implemented a search function itself. In order to find a file, a client has to browse
through the folders, that means that the folder information has to be transferred to the client
first. One could assume that all files are located in the home directory, but since directory
information has to be transmitted to the clients and assuming that the home directory
contains a few ten thousand files, too many (mega)bytes have to be transferred to the
clients only to login. Therefore it is assumed that the home directory contains 6 folders each
7 chars long, see Figure28. The second folder level consist of 26 folders with the length of
1 char, which should represent the alphabet. The third folder level consists of 100 folder
with the length of 15 chars. It is assumed that all the files are distributed equally over the
third folder level. The intention of this design is, if it concerns music files, that the home
directory contains information about the music style, whereas the second folder level sorts
the artist by name and the third folder level contains the artists. See Appendix Table 6 on
page77.

So if a client logs into the server only the home directory with its 6 folders is submitted.
Since FTP should be compared with Gnutella and Napster a query in FTP is defined as a
“walk” from the home directory to the file level.

Folder1
Folder2
Folder3
Folder4
Folder5
Folder6

a
b
c
d
e
f
g
h
I
j
k
l

m
n
o
p
q
r
s
t
u
v
w
x
y
z

Folderone15char
Foldertwo15char

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Folder10015char

Filew17chars1.mp3
Filew17chars2.mp3
Filew17chars3.mp3
Filew17chars4.mp3
Filew17chars5.mp3
Filew17chars6.mp3
Filew17chars7.mp3
.
.
.
.
Filew17charsn.mp3

Home 2. Folder 3. Folder File
Directory Level Level Level

Semester Thesis File Sharing - Economic Modeling

Page 37

Figure 28: FTP folder structure

The query rate of FTP clients is a assumed to be the same as in Gnutella - 412 queries per
day. Since most of the FTP client applications and also the FTP servers have implemented
connection time-outs it is assumed, that an average client makes three server logins per
day. It is not assumed, that clients cache the home directory information locally. Each time
when they log in the information has to be resubmitted. Within the simulation model both
control connection and data connection communication are taken into account. See
Appendix, Figure 56 on page64 for details.

With this information it is possible to calculate how many bytes per month are being
transferred over the client’s Internet connection to or from its ISP in order to reach the FTP
server. The byte volumina is calculated for three operations - login, search and download.
The login volumina is calculated as:

Equation 9

• ftp_connect, is the amount of transferred bytes, when a client logs into the server. This
includes byte transfers on the data and the control connection.

• ftp_client_login_avg, is the number of client logins into the server (3 per day).
• 30, considers the period of one month.

The search volumina, caused by “walks” through folders is calculated as:

Equation 10

• queries_per_day, is the number of client queries (412 per day).
• ftp_query_folder, is the amount of bytes transferred to make a query. This includes

byte transfers on the data and the control connection.
• 30, considers the period of one month.

The volumina, caused by down and uploads can be calculated as follows:

Equation 11

• overhead_control_connection, resembles the amount of bytes, which are necessary
to initiate x down and uploads per month over the control connection.

• file_transfer, is the amount of bytes needed per month on the data connection to
transfer files.

For further details see Appendix, Figure 56 on page64.

To measure a client’s bandwidth performance, that means the load of a client’s connection
to its ISP, all three volumina are calculated in Kbps. In order to evaluate limits of the peer’s

volumina inlog ftp_connect ftp_client_login_avg 30⋅ ⋅=

voluminasearch queries_per_day ftp_query_folder 30⋅ ⋅=

volumina download overhead_control_connection file_transfer+=

File Sharing - Economic Modeling Semester Thesis

Page 38

connection the bandwidth usage in percentage is measured. For details, see Appendix,
Figure57 on page 65.

Since FTP is a solution, where data is stored centrally on a server, it has to be calculated
how many servers are necessary to provide the same storage capacity as a Gnutella
network does. Therefore in section 4.1.1 the average number of unique files was calculated
in order to consider, that a Gnutella network contains many file duplicates, which are not
necessary on a FTP server. With the total needed storage capacity for the server and the
traffic that is being transferred from the clients to the server per month, it is possible to
calculate how many outsourced server packages, each with 80GB of storage capacity, and
how many extra bandwidth packages have to be bought. Therefore the traffic load of the
server has to be known. The load is calculated as the product of the client’s volumina in
Kbps and the number of active clients. For details see Appendix, Figure58 on page 65.
Analogically the number of inhouse servers and the number of additional T1 connections is
calculated. Each server contains harddisk capacity of 876 GB and has a Gigabit NIC. For
details see Appendix, Figure 59 on page66.

4.4 Napster Application Simulation Model

As it is stated in section 3.2.2 Napster works with different types of messages, which are
exchanged between clients and server. Therefore the simulation model considers the
message types, that has been described in section 3.2.2. Most of the message types,
which are explained, contain a variable part regarding used bytes. In Appendix, Figure62
on page 68 an overview of the used values is given for each message type. In Appendix,
Figure63 on page69, the different formulas for the message type costs, which are the
costs to perform an action like to login or search for a file are listed in detail. This actions
are measured in bytes and consider TCP/IP as well. The only Napster specific constants
used in the simulation model, are the number of servers, the maximum number of search
results and the number of client logins per day. The number of servers is limited to one
server. The maximum number of search results is assumed to be 20. The number of logins
per day is assumed to be the same as in FTP, what makes 3 logins per day. See Appendix
Table 7 on page77.

With these formulas and the system definition it is possible to calculate how many bytes per
month are being transferred over the client’s Internet connection to or from the ISP as well
as the traffic to the server. It is assumed that the load of the network is distributed equally
over all active client connections. The byte volumina is calculated with regard to perform
the three operations - login, search and download. Therefore the following calculations
have been implemented in the simulation model:

The byte volumina per month for client search request and search response messages is
calculated as follows:

Equation 12

• messagerate, is the messages’ creation rate per minute, this can be, e.g. the query rate.
• message_type_costs, these are the costs measured in bytes to send one client search

request and one search response message.
• The last term of the equation considers the period of one month.

volumina message messagerate message_type_costs_in_bytes 60 24 30⋅ ⋅ ⋅ ⋅=

Semester Thesis File Sharing - Economic Modeling

Page 39

The byte volumina per month for download request, download ack, down and uploading file
and down and uploading complete messages can be generally calculated as:

Equation 13

• downloadnumber, is the number of file downloads a client initiates per month.
• message_type_costs, these are the costs measured in bytes, which are needed to

setup a file download.

The byte volumina per month for the login procedure can be calculated as follows:

Equation 14

• logins_per_day, is the number of client’s logins per day.
• message_type_costs, are the costs to send login information to the server and the

costs to submit information about shared files.
• The last term of the equation considers the period of one month.

The formula for the direct download or upload volumina is:

Equation 15

The byte volumina for the server per month can be expressed as the sum of all clients
volumina minus the volumina for direct download, since it does not bother the server
connection. This result is multiplied with the number of active clients:

Equation 16

• total_client_volumina, is the sum of all clients volumina.
• voluminadownload , is the volumina for direct downloads between clients.
• no, is the number of active clients.

For calculation details regarding the volumina, see Appendix, Figure 64 on page69.

To measure a client’s bandwidth performance, that means the load of a client’s connection
to its ISP, all client volumina are calculated in Kbps. In order to evaluate limits of the client’s
connection the bandwidth usage in percentage is measured. Since Napster is a solution,
where a server takes an intermediary part in the system, it has to be calculated how many
extra bandwidth packages in case of an outsourced solution have to be bought to deliver a
good service to the clients. Therefore the traffic load of the server has to be known. The
load of the server is calculated as the server’s volumina (see above), but in Kbps as unit.

voluminadownload setup downloadnumber message_type_costs_in_bytes⋅=

volumina inlog logins_per_day message_type_costs_in_bytes 30⋅ ⋅=

voluminadownload client_downupload_rate ceil
client_downupload_rate

MTU
--

 
  TCPIPoverh⋅+=

server_volumina total_client_volumina-voluminadownload() no⋅=

File Sharing - Economic Modeling Semester Thesis

Page 40

The number of extra bandwidth packages then can be calculated as server volumina minus
the standard bandwidth package divided by the extra bandwidth package size. Analogically
the number of additional T1 connections in case of an inhouse solution is calculated.

For calculation details about the bandwidth performance see Appendix, Figure65 on
page70.

4.5 Cost Distribution Analysis

In this section it is analyzed which stakeholders have to pay for what within the three
compared file sharing applications. This analysis is done in order to distribute the costs
truthfully on the stakeholders afterwards. Figure29 is provided as reference to illustrate
which stakeholders are involved in the different systems.

Figure 29: Costs distribution

4.5.1 Gnutella

Regarding Figure 29 one can point out three parties, which are normally involved when
using Gnutella. These are the peers, which are in expectation to stand to benefit from
running Gnutella, the ISPs, which are offering a network access to the peers and others.
Others are meant to be Internet backbone companies. The Internet cloud is not fully
covered by these companies since some ISPs maintain their own backbones.

In this work it is assumed, that the peers have to pay for their connection to their ISP and for
storage capacity (see section 4.1.1). Since the ISPs only route traffic that is caused by the
peers, the ISPs have to provide the infrastructure. In the case of traffic that has to be routed
over a network of Internet backbone companies, the ISPs have to pay for their services. It is
assumed that the monthly connection price of the peers covers the ISPs’ expenses
regarding own infrastructure and the use of Internet backbone services.

Due to the fact, that peers share files and allow other peers to download these files, they
both have to pay for it, since both have to use their connection to the ISP to transfer a file.

ot
he

rs

ISP Network Other ISP Networks

Client/Peer Client/Peer

Cable ModemCable Modem

Client/Peer Client/Peer

Cable ModemCable Modem

C
lie

n
ts

/P
ee

rs
IS

P
s

S
erver H

osting or
P

oP
 offering C

om
panies

Server

Network

S
erver

O
perators

Internet

Semester Thesis File Sharing - Economic Modeling

Page 41

All kind of messages (pings, pongs, queries) in the Gnutella network mean costs regarding
bandwidth for peers that are sending/receiving such messages.

4.5.2 FTP

When using FTP as a file sharing solution there are five parties, which are normally
involved, see also Figure 29:

The clients, which are using an FTP server for file sharing. The ISPs, which are offering a
network access to the clients. FTP server operators, which offer a platform (file system) for
file sharing to its clients and Server Hosting or PoP (Point of Presence) offering companies,
which provide in the case of a hosting company the complete infrastructure (server,
storage, connection, maintenance etc.). In the case of a PoP offering company, they
provide only the connection from a server to the Internet. Others are again the Internet
backbone companies.

As for Gnutella, it is assumed that the monthly connection price of the peers covers the
ISPs’ expenses regarding own infrastructure and the use of Internet backbone services.

FTP server operators have to pay either a monthly fee to a server hosting company or the
operator has to invest in one or more servers, which then are connected to the Internet via
a PoP offering company for a performance (bandwidth) depending fee. Different from
Gnutella is, that clients only have to pay for their own actions, since other clients do not
communicate directly with each other. In return the FTP server operators have to pay for
each client action.

4.5.3 Napster

Regarding the usage of Napster one can say, that basically the same (five) parties are
involved as when using FTP. The only difference are the Napster server operators, which
offer a platform (index list) for file sharing to its clients, whereas a FTP server operator
offers a file system.

The difference to Gnutella and FTP is, that clients only have to pay for their own action
except, if a client has been selected as a download candidate. Then, if a download between
clients has been initiated, both the client which is uploading as well as the client which is
downloading have to pay for this action. Although the load regarding effective file transfer
has been taken away from the server, the Napster operators have to pay for the rest of the
traffic that basically consists of messages.

4.6 Costs Models

In this section the cost models for the three different applications are described. Basically
the costs drivers focus on bandwidth and storage costs, which have to be paid by the
stakeholders. Cost elements, which are applicable for all three applications are described
right now:

In order to calculate the clients’ or peers’ bandwidth costs it is necessary to calculate the
costs to transfer one byte of information from the peer to its ISP or vice versa. This can be
done by applying the following equation, in which the dialup price per month is in [CHF] and
the dialup speed in [Kbps].

File Sharing - Economic Modeling Semester Thesis

Page 42

Equation 17

As described in the system definition, see section 4.1, every peer (in the case of Gnutella
and Napster) has to buy its own harddisk to participate in the network. This calculation is
done to evaluate how much money a peer has to pay for sharing and storing files. It is
assumed that the harddisk is depreciated (linearly) over a period of 4 years. This results in
3.72 CHF per harddisk, month and peer as “operating expenses”.

4.6.1 Gnutella Cost Model

In order to evaluate the costs for a peer, which is running Gnutella two cost elements are
considered:
1 Bandwidth costs
2 Storage costs

With the knowledge of the byte costs as defined above, it is possible to evaluate the
bandwidth costs per month and peer as the sum of ping-, pong-, query-, queryhit- and file
transfer volumina multiplied with the byte costs. For calculation details, see Appendix,
Figure54 on page page 63. The monthly storage costs for one peer are 3.72 CHF as
described above.

4.6.2 FTP Cost Model

In order to evaluate the costs for a client, which is using FTP only one cost element is
considered:
1 Bandwidth costs

The bandwidth costs consist of the sum of the byte volumina calculated in section 4.3,
multiplied with the byte costs.

In order to evaluate the costs for a FTP service operator, which is running a FTP server two
cost elements are considered:
1 Bandwidth costs
2 Storage costs

In section 4.3 it is described how the necessary server storage or the necessary server
number is calculated for the outsourced and the inhouse solution. For the outsourced
solution the standard package is as defined in section 4.1.3. The inhouse specifications are
also described in section 4.1.3. In the case of the inhouse solution the investment into the
server hardware is depreciated (linearly) over a period of four years. In section 4.3 it is
explained how the server traffic load can be calculated and how many extra bandwidth
packages in the case of an outsourced solution or how many extra T1 connections have to
be leased in the case of an inhouse solution. With this knowledge it is possible to calculate
the costs a FTP server operator has to pay for a certain number of active clients.

byte tcos
dialupprice

dialupspeed kilo 60 60 24 30⋅ ⋅ ⋅()⋅ ⋅()
8

--
---=

Semester Thesis File Sharing - Economic Modeling

Page 43

4.6.3 Napster Cost Model

In order to evaluate the costs for a client, which is using Napster two cost elements are
considered:
1 Bandwidth costs
2 Storage costs

The bandwidth costs consist of the sum of the byte volumina, calculated in section 4.4,
multiplied with the byte costs. The monthly storage costs for one peer are 3.72 CHF, just as
for Gnutella.

In order to evaluate the costs for a Napster server operator, which is running a Napster
server two cost elements are considered:
1 Bandwidth costs
2 Storage costs

Above it is stated that the Napster network gets along with only one server, therefore the
storage costs have to be calculated for this server. In section 4.4 it is explained, how the
server traffic load can be calculated and how many extra bandwidth packages in the case
of an outsourced solution or how many extra T1 connections have to be leased in the case
of an inhouse solution. With this knowledge it is possible to calculate the costs a Napster
service provider has to pay for a certain number of active clients.

4.6.4 Cost Perspectives

The costs of Napster and FTP are broken down into clients’ or peers’, ISPs’, server
operators’ and overall perspective. The Gnutella perspectives are the same except without
the server operators’ perspective, since Gnutella does not need a server.

The peers’ or clients’ total costs include the bandwidth and/or storage costs that they have
to pay. With the assumption that an ISP routes the cumulated amount of traffic of the clients
or the peers, which are directly connected to it and the assumption that the monthly
connection fees cover the ISP’s expenses, the total costs of an ISP could be calculated as
the clients’ or peers’ bandwidth costs multiplied by the number of directly connected clients
or peers minus a profit margin. The server operators’ costs are calculated in case of an
inhouse solution as the sum of monthly costs for all bought servers plus the costs for the
local loop fee. In case of an outsourced solution the monthly costs consist of a basic fee for
a certain storage capacity, a certain bandwidth and if necessary, more server or additional
bandwidth packages. The overall costs are calculated as the peers’ or clients’ total costs,
which can include bandwidth and/or storage costs, multiplied with the number of all active
peers plus possible server operator costs. All three cost perspectives are calculated in a
second step without considering the initial investment in hardware. This state is reached
after 4 years, when all investments are depreciated. For the calculations of the cost
perspectives, see Appendix, from section 7.1.2 until 7.1.4.

File Sharing - Economic Modeling Semester Thesis

Page 44

4.7 Limitations of the Models

Within the above sections three different cost models have been defined. Although the
system definition has clearly set the scope of the models, the limits of the modeled
application compared to the real life applications have to be assessed.

According to the measurements done in [4] the largest part of Napster clients are using a
cable modem to participate in the network, approximately 33%. See Appendix, Figure68
on page73. No actual figures could be found for Gnutella, but it is assumed that the
distribution would not differ very much. So the assumption within the system definition, that
only cable modem users are included into the model is very optimistic, since at least 20% of
connected Napster clients have reported bandwidths lower than 64 Kbps. This could
negatively influence the real life behavior of an application like Napster or Gnutella, since
direct downloads from such peers would be terribly slow and it is very likely that such peers
will quit their connection before the download is finished.

Within the simulation models above, latencies, e.g. of replies, are not considered. It is also
assumed that all generated traffic is distributed equally over a month. But in real life at
certain times traffic peaks may occur at certain periods during the day. So bandwidth
performance measurements, which are done above, have to be regarded carefully. From a
cost perspective such performance problems in real life could cause additional costs, when
a client is not able to find a file because of overloaded peers, the client will resend queries,
which then create additional costs. In case of the Gnutella model, the number of created
pings and pongs is a real theoretical value, since today there are several different
applications on the market, which have implemented the Gnutella protocol. Some of them
have made modifications, e.g. ping caching or the implementation of superpeers. Therefore
the Gnutella simulation model must be regarded as a model, which has been strictly
aligned to the protocol specification mentioned in [1].

It is also assumed that the monthly down and upload rate is equal per peer and client.
Although in a real life closed system the overall download rates and upload rates per month
must be equal, since data cannot be destroyed or leave the system. But the assumption
that each peer or client downloads as much as it uploads cannot be verified in real life
applications like in Napster or Gnutella, since many users of such systems participate in the
network but do not allow other users to download files. This fact is also known as
“freeloading”.

Although these are quite notable limitations, it is assumed that the cost models developed
above resemble pretty well the costs, created by such applications under the defined
assumptions.

Semester Thesis File Sharing - Economic Modeling

Page 45

4.8 Cost Scenarios (simulations)

Within this section cost scenarios are specified. In the system definition there are two
variables defined: The number of active clients and peers and the monthly down and
upload rate of clients and peers. Since these two variables seem to have large impact to
the economics. Therefore two scenarios will be done, considering these variables.

Due to the fact that Napster and FTP are applications, that offer their clients access to all
files at best, while Gnutella is restricted due to its TTL settings21 an additional scenario will
be performed, which should evaluate what happens, if Gnutella extended its “horizon” to
compete with the other two applications.

First Scenario

The first scenario assumes a monthly down and upload rate of 100 MB. While this value is
constant, the net size, that means the number of active peers and clients will run from 10 to
10^n while n<=6.

Second Scenario

The second scenario assumes a monthly down and upload rate of 10000 MB. While this
value is constant, the net size will run from 10 to 10^n while n<=6.

Third Scenario

The third scenario should prove what happens, if Gnutella clients would increase their TTL
setting from default 7 to 12. Twelve is chosen, since in [13] the longest Peer-to-Peer path is
found to be 12. The monthly down and upload rate is assumed to be 100 MB. While this
value is constant the net size will run from 10 to 10^n while n<=6.

21.Depending on the net size only parts of the whole network are reachable.

Stakeholder Analysis Semester Thesis

Page 46

5 Stakeholder Analysis
Within this chapter a cost and a performance analysis for each application cost model is
done. The analysis will contain the peer/client perspective as well as the ISP, server and
overall cost perspective. In order to figure out, if there are any performance limitations
regarding bandwidth, the uplink load [%] of clients/peers22 and the server load [Mbps]
compared with the server number is considered. The evaluation includes the analysis
which application is the cheapest for which net size. It also considers, why the costs of an
application are higher than of those of another application and which are the influencing
factors.

5.1 Peer/Client

5.1.1 Cost for the next 4 years

The following figures represent the monthly costs a peer or a client has to pay for the usage
of the regarded applications. Since from a costs perspective, clients and peers are not
affected by a server operator’s choice of inhouse or outsourced solution, the costs are
equal from their perspective.

Figure 30: Scenario 1: Client/Peer cost perspective < 4 years

From a client cost perspective FTP as a solution for file sharing seems to be the cheapest
application for all network sizes. This can be explained with the fact, that Gnutella and
Napster participants have to invest in a new harddisk. This investment is not necessary in
the case of FTP.

For scenario one, which has a low down and upload rate per month, it is interesting to
observe that the costs for Gnutella resemble an s-curve. This can be explained with the
TTL settings. TTL is responsible for the number of created pings and pongs as well as
queries. The more descriptors are sent into the network, the more a peer has to pay. For a
TTL of 7 the upper bound of created pings is around 1111. That means, that a TTL of 7
takes stronger influence to the costs up to a network size of 1111 peers. From there on the
costs converge to an upper bound.

22.Since it is defined that a client/peer downloads as much as it uploads its’ limiting factor is the upload
bandwidth.

0

1

2

3

4

5

6

10 100 1000 10000 100000 1000000

Number of clients or peers

C
H

F
pe

r
m

on
th

Gnutella

Napster Outsourced

Napster Inhouse

FTP Outsourced

FTP Inhouse

Semester Thesis Stakeholder Analysis

Page 47

FTP has a steep curve for larger network sizes. This can be explained with the definition of
the folder structure of the FTP server. Since every additional peer means additional files,
these files have to be distributed equally over the folders. Every FTP query consists of a
walk through the directories, so the more files are stored on the file level, the more file
information (bytes) have to be submitted for each query. In the case of Napster clients can
calculate with constant costs for every net size.

In Figure 31 a monthly down and upload rate of 10000 MB is considered. Basically the cost
curves are like the ones in Figure30, except that they are shifted upwards. This can be
explained with the additional traffic caused by the higher down and upload rate.

Figure 31: Scenario 2: Client/Peer cost perspective < 4 years

In Figure32 a monthly down and upload rate of 100 MB is assumed but the TTL setting of
Gnutella is set to 12. The cost curves for Napster and FTP remain the same as in scenario
one, see Figure30. The s-curve of Gnutella gets steeper compared to the other scenarios,
but it also has a boundary value for higher net sizes. So peers have to pay a large amount
of extra money to increase their network knowledge.

Figure 32: Scenario 3: Client/Peer cost perspective < 4 years

0

1

2

3

4

5

6

7

8

9

10

10 100 1000 10000 100000 1000000

Number of clients or peers

C
H

F
pe

r
m

on
th

Gnutella

Napster Outsourced

Napster Inhouse

FTP Outsourced

FTP Inhouse

0.01

0.1

1

10

100

1000

10 100 1000 10000 100000 1000000

Number of clients or peers

C
H

F
pe

r
m

on
th

Gnutella

Napster Outsourced

Napster Inhouse

FTP Outsourced

FTP Inhouse

Stakeholder Analysis Semester Thesis

Page 48

5.1.2 Costs without Investment

Regarding today’s usage of Napster and Gnutella costs, without regarding the investment
into infrastructure, represent the costs clients and peers pay, since they already have the
proper infrastructure. Basically these costs only include the clients’ and peers’ bandwidth
costs. As in Figure33 is visible for a monthly down and upload rate of 100 MB, all three
applications have approximately equal costs for network sizes <100. Gnutella costs
increase very steep until network sizes < 1111. From there on the costs remain the same.
In contrast to the Gnutella curve, FTP has a flat slope at the beginning but due to the folder
structure the costs of FTP will exceed the ones of Gnutella for large network sizes. Napster
has again a constant cost distribution for different network sizes.

Figure 33: Scenario 1: Client/Peer cost perspective > 4 years

Figures for scenario two and three are available in the Appendix, section 7.2.1 on page73.

As conclusion for scenario two it can be said that the cost curves are basically alike the
ones in Figure33, except that they are shifted upwards. This can be explained with the
additional traffic caused by the higher monthly down and upload rate. For scenario three,
where the TTL setting of Gnutella is set to 12 the same considerations mentioned in the
explanations for Figure 32 can be applied here as well. The extra amount of network
knowledge in the case of Gnutella makes this application the most expensive for the
regarded network sizes.

5.1.3 Performance

The performance is measured in order to find out limits regarding the clients’/peers’
bandwidth capacity. Therefore the uplink load is measured for different network sizes.
Since the uplink statistic curves for scenario one and two show alike curves than the cost
curves and do not show any concerns, that a client or peer cannot handle the amount of
uplink traffic, these figures are shown in the Appendix, Figure 71 on page74 and Figure72
on page74. For scenario three, where the TTL setting of Gnutella is 12, it can be seen in
Figure34, that from network sizes larger than 50000, the uplink capacity of the peers is
exceeded. That means, regarding the system definition, that Gnutella peers would be
totally overloaded with uplink traffic.

0.01

0.1

1

10

10 100 1000 10000 100000 1000000

Number of clients or peers

C
H

F
pe

r
m

on
th

Gnutella

Napster Outsourced

Napster Inhouse

FTP Outsourced

FTP Inhouse

Semester Thesis Stakeholder Analysis

Page 49

Figure 34: Scenario 3: Uplink load performance

5.2 Server

5.2.1 Cost for the next 4 years

The following figures represent the monthly costs a server operator has to pay, to offer a
service like Napster or FTP. For both application the costs for an outsourced as well as for
an inhouse solution are considered. Since Gnutella operates with no server the server
costs for Gnutella are zero. Therefore the third scenario has no impact on the server costs.

Regarding Figure 35 it can be stated that a server operator would be less charged when
using Napster as file sharing application. Up to a network size to ~1000 the costs for either
the outsourced variants or the inhouse variants are constant. The constant costs can be
explained with the over capacity of the specified server packages. In case of the FTP
inhouse solution no additional server have to be bought until more than 876 GB of storage
is needed. Also the standard bandwidth connection is sufficient up to 1000 clients. In case
of the Napster inhouse solution only one server is needed. Therefore the break in the curve
can be reduced to additional bought bandwidth (see section 5.2.3). Both outsourced
solutions are cheaper for small networks but get more expensive than the inhouse solutions
for larger networks, although the curves seem to converge slowly. The gap between
outsourced and inhouse solution for larger network sizes could be explained with a profit
margin, which a web hosting company normally has.

Figure 35: Scenario 1: Server cost perspective < 4 years

0.1

1

10

100

1000

10 100 1000 10000 100000 1000000

Number of clients or peers

U
pl

in
k

lo
ad

 [%
]

Gnutella

Napster

FTP

1

10

100

1000

10000

100000

1000000

10000000

100000000

10 100 1000 10000 100000 1000000

Number of clients or peers

C
H

F
pe

r
m

on
th

Gnutella

Napster Outsourced

Napster Inhouse

FTP Outsourced

FTP Inhouse

Stakeholder Analysis Semester Thesis

Page 50

For higher down and upload rates, which are used in scenario 2, it can be generally stated,
that Napster is the cheaper solution for a server operator, except the network size is smaller
than ~60 clients. For this size, a FTP outsourced solution would be cheaper than a Napster
inhouse solution. However, compared to Figure 35, it can be concluded, that the larger the
down and upload rate is the bigger the cost gap between Napster and FTP from a server
operator’s perspective.

Figure 36: Scenario 2: Server cost perspective < 4 years

5.2.2 Costs without Investment

In case that server operators operate their system longer than four years, without buying
new ones and without spending money into maintenance in case of an inhouse solutions,
the costs that occur for the three scenarios can be seen in section 7.2.3 on page 74. It can
be stated that a Napster server operator pays much less than a FTP server operator. When
only regarding the inhouse solution, it is visible for both applications, that for larger net sizes
the (bandwidth) costs will increase due to more traffic to the servers.

5.2.3 Performance

In Table2 the total server traffic23 for scenario 1 and scenario 2 is listed in [Mbps]. The
Napster traffic is basically the same in both scenarios. The little gap is caused by client
messages, that are signalling the download status to the server. The FTP traffic differs in
scenario 1 and scenario 2, since the server has 9900 MB of additional traffic per month and
peer.

Table 2: Total server load

In Table 3 the total number of used servers, for both solutions is presented. It can be
concluded that in case of the outsourced solution the number of servers increase more

23.This is the traffic, which has to bought from a server hosting company or a PoP offering company.

1

10

100

1000

10000

100000

1000000

10000000

100000000

10 100 1000 10000 100000 1000000

Number of clients or peers

C
H

F
pe

r
m

on
th

Gnutella

Napster Outsourced

Napster Inhouse

FTP Outsourced

FTP Inhouse

Scenario 1
10 100 1000 10000 100000 1000000

Napster [Mbps] 0.00097656 0.00947266 0.09472656 0.95605469 9.56738281 95.6767578
FTP [Mbps] 0.00476563 0.04780273 0.48828125 5.98535156 169.698242 12680.6611

Scenario 2
10 100 1000 10000 100000 1000000

Napster [Mbps] 0.00097656 0.00966797 0.09667969 0.97265625 9.7265625 97.2666016
FTP [Mbps] 0.32226563 3.22558594 32.2734375 323.838867 3348.22656 44465.9502

Network size

Network size

Semester Thesis Stakeholder Analysis

Page 51

steep, due to the fact, that the servers do have less storage capacity, than the inhouse
servers.

Table 3: Number of servers

Since in Table2 the total server load and in Table3 the number of used servers is
presented Figure 37 and Figure38 show the total server load distributed over the number
of used servers. This is done, to check, if a server is overloaded. Since the inhouse servers
contain Gigabit NICs and the outsourced servers should contain at least 100 Megabit NICs,
both scenario infrastructures can handle the traffic up to a network size of one million.

Figure 37: Scenario 1: Server load per used server

Figure 38: Scenario 2: Server load per used server

Number of servers
10 100 1000 10000 100000 1000000

Gnutella 0 0 0 0 0 0
Napster Outsourced 1 1 1 1 1 1
Napster Inhouse 1 1 1 1 1 1
FTP Outsourced 1 1 3 30 291 2906
FTP Inhouse 1 1 1 3 27 266

Network size

0.0001

0.001

0.01

0.1

1

10

100

10 100 1000 10000 100000 1000000

Number of clients or peers

Lo
ad

 in
 [M

bp
s]

 p
er

 s
er

ve
r

Gnutella

Napster Outsourced

Napster Inhouse

FTP Outsourced

FTP Inhouse

0.0001

0.001

0.01

0.1

1

10

100

1000

10 100 1000 10000 100000 1000000

Number of clients or peers

Lo
ad

 in
 [M

bp
s]

 p
er

 s
er

ve
r

Gnutella

Napster Outsourced

Napster Inhouse

FTP Outsourced

FTP Inhouse

Stakeholder Analysis Semester Thesis

Page 52

5.3 ISP

Within the system definition the number of active peers and clients in an ISP’s network has
been defined as 1000. The ISP costs therefore resemble the costs, an ISP has to pay, so
that its’ clients can use Gnutella, Napster or FTP. Since the ISP does not have to invest in
storage, the costs basically include bandwidth costs.

5.3.1 Costs

It can be concluded out of the ISPs’ cost figures, that for net sizes larger than ~100,
Gnutella causes significant costs. This can be explained with the traffic caused by pings,
pongs, queries and queryhit. This takes negative influence on the cost performance of an
ISP. So for higher TTL values the ISP costs will increase significantly. The FTP traffic
increases extremely in large net sizes and exceeds the Gnutella costs, but this can be
traced back to the folder structure on the FTP server. Napster again shows a constant cost
performance. Exemplarily of this behavior the results of scenario 1 are shown below.
Results of scenario 2 and 3 can be found in the Appendix, Figure76 on page75 and
Figure77 on page 76.

Figure 39: Scenario 1: ISP cost perspective

5.4 Overall

The overall costs resemble the costs which incurred by clients/peers and server operators,
if a server is used. The overall costs are therefore interesting, to evaluate, which of the
three compared applications is the cheapest due to its implementation. These costs are
also interesting, in case a “closed” stakeholder group wants to implement a system like
Napster, Gnutella or FTP and wants to know, which is the cheapest one for their needs.

5.4.1 Cost for the next 4 years

Regarding Figure 40 it can be concluded, that Gnutella seems to be the cheapest overall
solution for network sizes up to ~200 and a monthly down and upload rate of 100 MB. From
100 until ~10000 clients both the outsourced and the inhouse FTP solution should be the
preferred applications regarding their costs. When having higher network sizes Napster
have cost advantages. The lower costs for Gnutella for small network sizes can be
explained with the lower investment price of peers’ harddisks compared to the investment
into a central server. This advantage of the FTP architecture gets weaker with an

0

200

400

600

800

1000

1200

1400

1600

10 100 1000 10000 100000 1000000

Number of clients or peers

C
H

F
pe

r
m

on
th

Gnutella

Napster Outsourced

Napster Inhouse

FTP Outsourced

FTP Inhouse

Semester Thesis Stakeholder Analysis

Page 53

increasing net size due to the traffic load of the server, which is mainly caused by effective
file transfers and queries. The Napster architecture with its implementation takes the load
for effective file transfers away from the server. This and the more efficient query function,
seem to be the reasons, why Napster competes better regarding large network sizes.

Figure 40: Scenario 1: Overall cost perspective < 4 years

In Figure41 the overall costs for scenario 2 are presented. For network sizes up to 1000
peers Gnutella is again the cheapest overall solution. For larger network sizes Napster has
cost advantages regardless which solution (inhouse or outsourced) is used. Nevertheless
the cost gap between Napster and Gnutella is only a fractional amount. FTP creates high
costs, when the monthly down and upload rate is high. This is mainly caused by additional
bandwidth, that has to be bought from hosting companies or PoP offering companies.

Figure 41: Scenario 2: Overall cost perspective < 4 years

In Figure42 the cost results of the third scenario are shown. The costs for Napster and
Gnutella are the same as for scenario 1, whereas the costs for Gnutella are different. The
third scenario has been defined to figure out what happens, if a Gnutella peer at least in
theory could reach all other peers. Gnutella remains its’ cost leadership for network sizes
up to ~200. Then again FTP is the cheaper solution. Compared to scenario 1 the costs for
Gnutella do not converge with the Napster costs. This can be explained with the TTL
setting, which leads to a higher number of cumulated pings as well as queries descriptors
and therewith to a higher number of pongs and queryhits.

1

10

100

1000

10000

100000

1000000

10000000

100000000

10 100 1000 10000 100000 1000000

Number of clients or peers

C
H

F
pe

r
m

on
th

Gnutella

Napster Outsourced

Napster Inhouse

FTP Outsourced

FTP Inhouse

1

10

100

1000

10000

100000

1000000

10000000

100000000

10 100 1000 10000 100000 1000000

Number of clients or peers

C
H

F
pe

r
m

on
th

Gnutella

Napster Outsourced

Napster Inhouse

FTP Outsourced

FTP Inhouse

Stakeholder Analysis Semester Thesis

Page 54

Figure 42: Scenario 3: Overall cost perspective < 4 years

Since the cost differences in some of the overall cost figures are not exactly visible the
exact overall costs are listed in Figure 43 for all three scenarios. The costs are listed in
[CHF/month].

Figure 43: Overall cost perspective: Accurate data

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

10 100 1000 10000 100000 1000000

Number of clients or peers

C
H

F
pe

r
m

on
th

Gnutella

Napster Outsourced

Napster Inhouse

FTP Outsourced

FTP Inhouse

Scenario 1
10 100 1000 10000 100000 1000000

Gnutella 37 384 4560 48570 489674 4900836
Napster Outsourced 318 659 4063 39556 395641 3957940
Napster Inhouse 1936 2276 5680 39723 387648 3874398
FTP Outsourced 571 577 905 11229 330302 24868033
FTP Inhouse 1898 1904 1960 6461 195975 14047075

Scenario 2
10 100 1000 10000 100000 1000000

Gnutella 78 790 8627 89246 896429 8968391
Napster Outsourced 359 1066 8131 80233 802706 8028599
Napster Inhouse 1976 2683 9748 80400 794424 7943657
FTP Outsourced 612 6204 63264 635394 6570504 87267730
FTP Inhouse 1939 3811 34529 356146 3691327 48996092

Scenario 3
10 100 1000 10000 100000 1000000

Gnutella 37 384 4629 139434 9480342 126385622
Napster Outsourced 318 659 4063 39556 395641 3957940
Napster Inhouse 1936 2276 5680 39723 387648 3874398
FTP Outsourced 571 577 905 11229 330302 24868033
FTP Inhouse 1898 1904 1960 6461 195975 14047075

Net size

Net size

Net size

Semester Thesis Stakeholder Analysis

Page 55

5.4.2 Costs without Investment

For the overall costs after all investments have been depreciated (after 4 years) and no
more money is invested into server maintenance, in case of an inhouse solution, see
Appendix, section 7.2.5 on page76. As bottom line from these figures it can be said, that
Napster and Gnutella are the cheapest solutions for scenario one and two basically for all
net sizes. This can be explained with the fact, that the traffic is distributed over the net,
while the server operators still have to pay for additional bandwidth which is mostly used for
effective file transfers. In scenario three it can be seen that the costs for a higher network
knowledge of Gnutella peers exceed the costs of Napster and FTP. This can be reduced to
the additional traffic caused by the higher TTL setting.

5.5 Economic Summary

Within the following tables only scenario one and two are considered. In Table 4 the result
of the stakeholder analysis are summarized in order to propose the implementation of the
cheapest application for a certain net size and monthly down and upload rate depending on
the perspective. This summary considers the investment into hardware. As one can see,
each perspective favors another application regarding costs, which could represent an area
of conflict.

Table 4: Proposed implementation regarding costs and net size (< 4 years)24

5.6 Qualitative Evaluation

Regarding the qualitative characteristics mentioned in section 3.2.4 the choice from a client
perspective is clear - FTP. Although the comparison is a little bit unfair due to the fact that
the cost gap between FTP and Napster, which would be the second choice, is mainly
caused by the investment of a peer in the new harddisk. In case of FTP these costs have
been burdened on the FTP service operator, which has to pay for the storage. But if the
clients do not have to pay for the usage of an FTP server this is the best choice also for
high down and upload rates. When regarding the costs without investment a client would be
generally better served from a cost perspective with Napster for low and high monthly down
and upload rates. But since the cost gap between Napster and FTP is not that significant,
the client should figure out, if the shortcomings of Napster like low data consistency or a
worse download performance can be accepted or if it is willing to pay more in order to be
better served.

24.Why is Gnutella the proposed architecture from a server perspective? Since server operators do
not want to spend much money in order to provide a file sharing solution, their best choice would be
Gnutella, where they wouldn’t have to pay for a server.

Net size 100 MB/month Net size 10000 MB/month
Client/Peer perspective < 4 years 0-10^6 FTP 0-10^6 FTP
Server perspective < 4 years 0-10^6 Gnutella 0-10^6 Gnutella
ISP perspective 0-10^6 Napster 0-10^6 Napster

< 100 Gnutella < 900 Gnutella
100-50000 FTP Outsourced 900-10000 Napster outsourced

50000-300000 FTP Inhouse 10000-10^6 Napster Inhouse
300000-10^6 Napster Inhouse

Scenario One Scenario two

Overall perspective < 4 years

Stakeholder Analysis Semester Thesis

Page 56

From an ISP perspective the choice should be Napster. The results show that Napster is
the application that creates much less traffic than the other applications. For the ISP
perspective qualitative characteristics are not taken into account, since its main task is to
provide an Internet connection to the clients and peers.

For the overall perspective Gnutella seems to be the cheapest solution for small net sizes.
And for small networks, e.g., for up to 900 peers with a monthly down and upload rate of
10000 MB, Gnutella with a TTL of 7 will reach every peer with its queries. Therefore, it has
to be discussed if the shortcomings of data consistency and extensibility of hardware and
the download performance can be accepted in order that money can be saved compared to
Napster and FTP.

From ~100 until 300000 users and low down and upload rates (100MB), FTP is the
proposed architecture. For higher down and upload rates FTP is much more expensive and
therefore the usage of Gnutella or Napster should be discussed regardless of both
applications’ shortcomings, since the costs gap could be over a couple of 100000 CHF per
month on an overall perspective.

Semester Thesis Conclusions, Recommendations and Outlook

Page 57

6 Conclusions, Recommendations and Outlook
In this chapter conclusions, recommendations and an outlook on possible future works
regarding file sharing applications based on economical measurements are presented.

6.1 Conclusions and Recommendations

The initial question of this work was whether it is possible to replace all Client-Server
systems with Peer-to-Peer system. In section 2.4.3 it was stated that it could be possible
but associated with disadvantages and concessions in some classes of application. Since
the focus of this work has been led on file sharing, simulation models for the different file
sharing applications have been developed in order to quantify, if current Peer-to-Peer
application perform better than comparable Client-Server applications. These simulation
models have been made economically measurable, so that different file sharing
applications could be judged by their created costs. It has been found out, that from an
overall perspective pure Peer-to-Peer applications like Gnutella are economically
interesting for small networks. Client-Server solutions like FTP have been identified as
solutions, which deliver a high quality of service to its clients regarding data availability,
consistency etc. The compared Peer-to-Peer applications could not achieve this level of
quality, but hybrid Peer-to-Peer applications like Napster have been identified as highly
cost effective systems, which beat the Client-Server (FTP) basically in all perspectives.

In section 5.5 an area of conflict was described, when regarding the proposed applications
from the different perspectives. The client would prefer a FTP solution, since this is the
cheapest one. Server operators would like to chose Gnutella, since then, they wouldn’t
have to invest into a server and could save money. ISPs favor Napster as a file sharing
solution, since this is an application causes fewest traffic on the ISPs’ networks, in contrast
to Gnutella. Therefore ISPs should think about to subsidize their users, if the do not use
Gnutella. If one assumes that an ISP has hosted 1000 clients in its network and these
clients would participate in file sharing application like Gnutella, Napster and FTP with a
total community of 10000 peers/clients, an ISP would have monthly costs of about 1048
CHF for Gnutella, 49 CHF for Napster and 71 CHF for FTP, see Figure44. So if all 1000
Gnutella peers which are hosted in the ISP’s network, switch to the Napster solution, the
ISP could subsidize the peers with 999 CHF per month at best.

Figure 44: Resolve “Area of Conflict”

„Scenario One“

0.56-
0.977

0.17-
0.99

977 999

FTP Server Napster Index ServerISP

Client/Peer

FTP: 5694 Napster: 1731

Gnutella: 1048
Napster: 49
FTP: 71

Gnutella: 4.85
Napster: 3.78 + (-0.82) = 2.96
FTP: 0.076 + (-0.417) = -0.341

Conclusions, Recommendations and Outlook Semester Thesis

Page 58

This would make 0.99 CHF per peer and month. Server operators have the problem that
they offer a service to their clients/peers but have to carry the costs. Therefore, server
operators should consider to pass their expenses to their clients/peers. In this specific
example the Napster server operator has monthly costs of 1731 CHF. He could distribute
these costs over the 10000 clients, which benefit from the server. This would make 0.17
CHF per month and peer. As one can see on Figure44. The same considerations can be
done for FTP. Finally the client will decide which application will be the best for him,
regarding cost issues as well as quality issues. In the example here, a client would benefit
from using FTP, since he would even get paid for the usage.

But, if a scenario with higher down and upload rates like scenario two is considered, see
section 4.8, server operator costs increase extremely, so that the costs passed by the
operator to its clients for using this service, exceed the costs that clients would have to pay
for a Napster solution, even if the Napster server operator passes the costs to its clients.
Therefore a client will consider, if the advantages of a Client-Server system can be dropped
in order to benefit from the cost advantage of a hybrid Peer-to-Peer architecture.

As bottom line of this work the following recommendation can be given, when thinking
about to replace a Client-Server solution with Peer-to-Peer or vice versa in the class of file
sharing:

Both architectures should be compared on an economical basis first, which then allows to
compare cost advantages of one architecture against possible shortcomings regarding
quality issues like data availability etc. Then stakeholders can decide which architecture
they want to use. Normally the clients/peers will be the crucial factor when deciding which
file sharing architecture will be used, since they benefit directly from the usage. But if, e.g.,
an ISP has a high traffic load (high costs) on its network due to Gnutella peers and this
would lead to bandwidth capacity problems on its network an ISP should consider or should
try to subsidize its Gnutella peers for using another file sharing solution in order to prevent
an network extension.

6.2 Outlook

This work has proved, that it is possible to quantify Client-Server and Peer-to-Peer system
economically, at least in the class of file sharing. The costs were mainly based on storage
and bandwidth costs, but characteristics like security, data availability and data consistency
were not included into the economic model.

As described in section 4.7, the cost models which were used to compare the three file
sharing applications have a couple of limitations and assumption, like the assumption, that
all peers are connected to the Internet via a cable modem, as well as it is assumed that all
peers download as much per month as they upload. Therefore, future economic related
works in the class of file sharing applications should first try to make the application models
more accurate. This especially means, that the topology of such systems have to be taken
into account, e.g., models should include the different peer connection types, as well as the
number of “freeloaders”. A very important point for further works should focus on the ISPs.
Since peers are spread all over the world data has to be routed over backbones to other
ISP networks. Since interconnection traffic is normally more expensive for an ISP than
traffic on its own network the worldwide topology of the peers must be included in further
economic models. In [13] it is stated that only 2-5% of Gnutella peers have direct link
connections within their ISP networks, therefore further research should focus on solutions

Semester Thesis Conclusions, Recommendations and Outlook

Page 59

for minimizing the interconnection traffic between ISPs while delivering the same quality to
their users.

Another improvement proposal for the models presented in this work concerns FTP. FTP is
an old protocol and it does not deliver a high functionality, e.g., missing search function. For
a future economic comparison it should be considered to replace the FTP solution with a
web server. On such a server a client can search, e.g., over a Google interface, for files. If
there are files available, they could be downloaded over http. The author believes, that this
action would have significant impact on the costs of such a Client-Server system.

As a second step, characteristics like data availability should be made quantifiable in order
to include them into the economic model. In case of data availability different aspects
should be made measurable, e.g., “what happens if a user cannot find a file or cannot
download it?”. Which additional actions will occur from this user? And which costs arise?

By including such characteristics into an economic model, a comparison between Client-
Server systems and Peer-to-Peer systems will become more objective and more powerful.

Appendix Semester Thesis

Page 60

7 Appendix

7.1 Additional Figures

7.1.1 FTP Log Files

Figure 45: FTP change folder log file

Figure 46: FTP download log file

Figure 47: FTP upload log file

Change Folder

rmaly_up > CWD new folder
rmaly_up > 250 CWD command successful. "/new folder" is current directory.
rmaly_up > PWD
rmaly_up > 257 "/ new folder" is current directory .
rmaly_up > PASV
rmaly_up > 227 Entering Passive Mode (192,168,0,144,224,84).
rmaly_up > LIST
rmaly_up > 150 Data connection accepted from 192.168.0.144:2041; transfer starting.
rmaly_up > 226 Transfer ok

Download file

rmaly_up > REST 1024
rmaly_up > 350 REST supported. Ready to resume at byte offset 1024.
rmaly_up > REST 0
rmaly_up > 350 REST supported. Ready to resume at byte offset 0.
rmaly_up > PASV
rmaly_up > 227 Entering Passive Mode (192,168,0,144,76,101).
rmaly_up > RETR new.txt
rmaly_up > 150 Data connection accepted from 192.168.0.144:2043; transfer starting for new.txt (0 bytes).
rmaly_up > 226 Transfer ok

Upload file

rmaly_up > TYPE I
rmaly_up > 200 Type set to I.
rmaly_up > PASV
rmaly_up > 227 Entering Passive Mode (192,168,0,144,198,187).
rmaly_up > STOR wsftpsi.dll
rmaly_up > 150 Data connection accepted from 192.168.0.144:2045; transfer starting for wsftpsi.dll.
rmaly_up > 226 File received ok.
rmaly_up > TYPE A
rmaly_up > 200 Type set to A.
rmaly_up > PASV
rmaly_up > 227 Entering Passive Mode (192,168,0,144,250,16).
rmaly_up > LIST
rmaly_up > 150 Data connection accepted from 192.168.0.144:2046; transfer starting.
rmaly_up > 226 Transfer ok

Semester Thesis Appendix

Page 61

7.1.2 Gnutella Model: Maple Code and Additional Figures

Figure 48: Cumulated pings and pongs

Figure 49: Gnutella constants and derived variables

> n_ping[h=1]:=n_c;
> p_free[h=1]:=1;
> n_search[h=1]:=n_c;
> n_free[h=1]:=no;
> n_search_pong[h=1]:=n_c;
> n_pong[h=1]:=n_c;
> con:=n_ping[h];
> for h from 2 to TTL while con < no do

n_free[h]:=evalf(n_free[h-1]-n_search[h-1]);
n_search[h]:=evalf(n_search[h-1]*p_free[h-1]*(n_c-1));
n_ping[h]:=evalf(n_ping[h-1]+n_search[h-1]*(n_c-1));
p_free[h]:=evalf(((n_free[h])/(no))*(1-(1/n_free[h]))^(n_search[h]-1));
n_search_pong[h]:=evalf(n_search[h-1]);
n_pong[h]:=evalf(n_pong[h-1]+n_search[h]*h);
con:=n_ping[h];
TTL_max:=h;
od;

> a_ping:=n_ping[TTL_max-1];
> b_ping:=n_ping[TTL_max];
> a_pong:=n_pong[TTL_max-1];
> b_pong:=n_pong[TTL_max];
> if (n_ping[TTL_max] > no)

then
n_ping[TTL_max]:=evalf(a_ping+(no-(a_ping+1)));
n_pong[TTL_max]:=evalf((a_pong-b_pong)*((n_ping[TTL_max]-b_ping)/(a_ping-
b_ping))+b_pong);
else
n_ping[TTL_max]:=n_ping[TTL_max];
n_pong[TTL_max]:=n_pong[TTL_max];
end if;

> TTL:=7;
> n_c:=3.4;
> pingrate_eval:=15;
> queries_per_day:=412;
> query_proportion:=12;
> queryrate:=evalf(queries_per_day/(24*60));
> pingrate:=1/(pingrate_eval);
> download_request_rate:=evalf(ceil((peer_downupload_rate*mega)/(2*avg_files_size*mega))/

(30*24*60));

Appendix Semester Thesis

Page 62

Figure 50: Gnutella monthly byte volumina

Figure 51: Gnutella connection performance

Figure 52: Measured Gnutella Traffic Breakdown

Figure 53: Simulated Gnutella Traffic Breakdown

> ping:=evalf(n_ping[TTL_max]*(overhead_per_packet+23)*pingrate*(60*24*30));
> pong:=evalf(n_pong[TTL_max]*(overhead_per_packet+37)*pingrate*(60*24*30));
> query:=evalf((n_ping[TTL_max]*(overhead_per_packet+25+

avg_words_per_query*avg_char_per_word)*queryrate*(60*24*30)));
> queryhit:=evalf((n_ping[TTL_max]*(query_proportion/

100)*(overhead_per_packet+58+avg_chars_per_file)*queryrate*(60*24*30)));
> download:=evalf((peer_downupload_rate*mega)+

(ceil((peer_downupload_rate*mega)/MTU)*(overhead_per_packet)));

> peer_overhead:=evalf((ping+pong+query+queryhit);
> connectionload:=evalf((peer_overhead+((peer_downupload_rate)+(

ceil((peer_downupload_rate*mega)/MTU)*(overhead_per_packet))/mega))*mega*8/
((60*60*24*30)*kilo));

> bandwidth_usage_128kbps:=evalf(((connectionload/2)/128)*100);
> bandwidth_usage_512kbps:=evalf(((connectionload/2)/512)*100);

Measured Gnutella Traffic Breakdown

Ping and Pong
63%

Query
33%

QueryHit
4%

Ping and Pong

Query

QueryHit

Simulated Gnutella Traffic Breakdown

Ping and Pong
60%

Query
36%

QueryHit
4%

Ping and Pong

Query

QueryHit

Semester Thesis Appendix

Page 63

Figure 54: Gnutella monthly bandwidth costs

Figure 55: Gnutella total costs

>ping_costs:=(n_ping[TTL_max]*(overhead_per_packet+23)*pingrate*(60*24*30)*byte_costs);
>pong_costs:=(n_pong[TTL_max]*(overhead_per_packet+37)*pingrate*(60*24*30)*byte_costs);
>query_costs:=((n_ping[TTL_max]*(overhead_per_packet+25+avg_words_per_query*avg_char_per_

word)*queryrate*(60*24*30)*byte_costs));
>queryhit_costs:=((n_ping[TTL_max]*(query_proportion/

100)*(overhead_per_packet+58+avg_chars_per_file)*queryrate*(60*24*30)*byte_costs));
>download_costs:=((peer_downupload_rate*mega*byte_costs)+(ceil((peer_downupload_rate*
mega)/MTU)*(overhead_per_packet))*byte_costs);
>bandwidth_costs:=ping_costs+pong_costs+query_costs+queryhit_costs+download_costs;

Peer's perspective
Total Costs per month and peer for the next 4 years

> total_cost:=evalf(bandwidth_costs+storage_costs);
Total Cost per month and peer without investment

> total_cost_plus:=evalf(bandwidth_costs);

ISP's perspective
Total Costs for the ISP per month excluding storage costs

> isp_total_cost:=evalf(total_cost_plus*peer_network_size*(100-isp_proft_margin)/100);

Gnutella overall perspective
Total Costs per month and all peer for the next 4 years

> total_cost_all_peers:=evalf((bandwidth_costs+storage_costs)*no);
Total Cost per month and all peer without investment

> total_cost_plus_all_peers:=evalf(bandwidth_costs*no);

Appendix Semester Thesis

Page 64

7.1.3 FTP Model: Maple Code and Additional Figures

Figure 56: FTP constants, derived variables and byte volumina

FTP constants and derived variables
> ftp_client_login_avg:=3;
> ftp_number_folder_1:=6;
> ftp_number_folder_2:=26;
> ftp_number_folder_3:=100;
> ftp_number_folder_4:=100;
> ftp_char_folder_1:=7;
> ftp_char_folder_2:=1;
> ftp_char_folder_3:=15;
> FTP_server_name:=10;
> File_size_in_bytes:=7;
> ftp_number_files:=evalf(avg_unique_files_in_system);
> ftp_login_overhead:=evalf((311+3*username+password+FTP_server_name)+

18*overhead_per_packet);
> ftp_change_folder:=evalf(236+9*overhead_per_packet);
> ftp_file_download_overhead:=evalf((284+2*username+password+avg_chars_per_file+

file_length_in_bytes)+9*overhead_per_packet);
> ftp_file_upload_overhead:=evalf((352+2*avg_chars_per_file)+18*overhead_per_packet);
> ftp_downupload_requests:=evalf(ceil((peer_downupload_rate*mega)/

(avg_files_size*mega)));
> MTU_folder_1:=evalf(ftp_change_folder+3*ftp_char_folder_1+ceil(ftp_number_folder_1*(

57+ftp_char_folder_2)/MTU)*(overhead_per_packet));
> MTU_folder_2:=evalf(ftp_change_folder+3*ftp_char_folder_2+ceil(ftp_number_folder_2*

(57+ftp_char_folder_2)/MTU)*(overhead_per_packet));
> MTU_folder_3:=evalf(ftp_change_folder+3*ftp_char_folder_3+ceil(ftp_number_folder_3*

(57+ftp_char_folder_3)/MTU)*(overhead_per_packet));
> MTU_folder_4:=evalf(ceil((ftp_number_files/

(ftp_number_folder_1*ftp_number_folder_2*ftp_number_folder_3)*
(57+avg_chars_per_file))/MTU)*(overhead_per_packet));

> ftp_connect:=evalf(ftp_login_overhead+((ftp_number_folder_1*(57+ftp_char_folder_1)+
MTU_folder_1)));

> ftp_query_folder:=evalf((ftp_number_folder_2*(57+ftp_char_folder_2)+
MTU_folder_2+ftp_char_folder_3*(57+ftp_char_folder_3)+MTU_folder_3+
(ftp_number_files*(57+avg_chars_per_file)/
(ftp_number_folder_1*ftp_number_folder_2*ftp_number_folder_3))+MTU_folder_4));
(ftp_number_folder_1*ftp_number_folder_2*ftp_number_folder_3)*
(57+avg_chars_per_file))/MTU)*(overhead_per_packet));

> ftp_connect:=evalf(ftp_login_overhead+((ftp_number_folder_1*(57+ftp_char_folder_1)+
MTU_folder_1)));

> ftp_query_folder:=evalf((ftp_number_folder_2*(57+ftp_char_folder_2)+
MTU_folder_2+ftp_char_folder_3*(57+ftp_char_folder_3)+MTU_folder_3+
(ftp_number_files*(57+avg_chars_per_file)/
(ftp_number_folder_1*ftp_number_folder_2*ftp_number_folder_3))+MTU_folder_4));

> storage_capacity_server:=evalf((avg_unique_files_in_system*avg_files_size*mega)/giga);

Byte Volumina
> ftp_connect:=evalf(ftp_connect*ftp_client_login_avg*(30));
> ftp_search:=evalf((queries_per_day*30*ftp_query_folder));
> ftp_download:=evalf(ftp_downupload_requests/

2*(ftp_file_download_overhead+ftp_file_upload_overhead)+
(peer_downupload_rate*mega)+(ceil((peer_downupload_rate*mega)/
MTU)*(overhead_per_packet)));

Semester Thesis Appendix

Page 65

Figure 57: FTP bandwidth performance

Figure 58: FTP: Number of outsourced packages

> ftp_client_bandwidth_total:=evalf(ftp_download+ftp_search+ftp_connect);
> ftp_client_overhead_download_kbps:=evalf(ftp_client_bandwidth_total*8/

((60*60*24*30)*kilo));
> ftp_bandwidth_usage_proportion_128kbps:=evalf(((ftp_client_overhead_download_kbps/2)/

128)*100);
> ftp_bandwidth_usage_proportion_512kbps:=evalf(((ftp_client_overhead_download_kbps/2)/

512)*100);

> ftp_server_bandwidth_total:=evalf((ftp_client_bandwidth_total*no)/giga);
In [GB/month]
> ftp_server_bandwidth_total_kbps:=evalf((ftp_server_bandwidth_total*giga*8)/

((60*60*24*30)*kilo));
Number of required Servers
> if (storage_capacity_hosting > storage_capacity_server)

then server_number:=1
else server_number:=evalf(ceil(storage_capacity_server/storage_capacity_hosting))
end if;

Traffic, that is provided by the necessary standard server packages
> ftp_server_monthly_traffic_provided:=evalf(((server_number*(monthly_traffic*

(8*giga/((60*60*24*30)*kilo))))-ftp_server_bandwidth_total_kbps));

Additional Traffic which have to be bought from the Hosting Company:
> if (0 < ftp_server_monthly_traffic_provided)

then traffic_add:=1
else
traffic_add:=evalf(-1*ceil(ftp_server_monthly_traffic_provided/
((monthly_traffic)*8*giga/(60*60*24*30*kilo))))
end if;

Appendix Semester Thesis

Page 66

Figure 59: FTP: Number of inhouse servers and connections

Figure 60: FTP inhouse and outsourced costs

Number of required Servers
> if (inhouse_storage_capacity > storage_capacity_server)

then server_inhouse_number:=1
else server_inhouse_number:=evalf(ceil(storage_capacity_server/
inhouse_storage_capacity))
end if;

> ftp_server_inhouse_monthly_traffic_provided:=
evalf((inhouse_monthly_provided_traffic*kilo)-(ftp_server_bandwidth_total_kbps));

Additional Traffic which have to be bought:
> if (0 < ftp_server_inhouse_monthly_traffic_provided)

then traffic_inhouse_add:=0
else traffic_inhouse_add:=evalf(-1*ceil(ftp_server_inhouse_monthly_traffic_provided/
(inhouse_monthly_provided_traffic*kilo)))
end if;.

Server Performance Check. If result < 0 then Server perfomance ok
> ftp_inhouse_performance_check:=evalf(ftp_server_bandwidth_total_kbps*kilo/

(server_inhouse_number*giga));

Outsourced Solution
> traffic_add_costs:=evalf(traffic_add*ftp_monthly_traffic_add);
> ftp_server_hosting_costs:=evalf(server_number*monthly_payment);
> ftp_server_installation_costs:=evalf(server_number*installation_costs_hosting);
> ftp_server_installation_costs_monthly:=evalf(ftp_server_installation_costs/

(storage_depreciation*12));

Inhouse Solution
> traffic_inhouse_add_costs:=evalf(traffic_inhouse_add*inhouse_monthly_line_lease);
> ftp_inhouse_server_costs:=evalf((server_inhouse_number*inhouse_costs)/(

storage_depreciation*12));
> ftp_inhouse_performance_check:=evalf(ftp_server_bandwidth_total_kbps*kilo/

(server_inhouse_number*giga));

Semester Thesis Appendix

Page 67

Figure 61: FTP Total costs

Client's perspective

> ftp_client_total_costs:=evalf(ftp_client_bandwidth_total_costs);

Server perspective

Outsourced: Total Costs per month for the next 4 years
> ftp_server_total_costs:=evalf(traffic_add_costs+ftp_server_hosting_costs+

ftp_server_installation_costs_monthly);

Outsourced: Total Costs per month after 4 years (without investment)
> ftp_server_total_costs_plus:=evalf(traffic_add_costs+ftp_server_hosting_costs);

Inhouse: Total Costs per month for the next 4 years
> ftp_inhouse_server_total_costs:=evalf(traffic_inhouse_add_costs+

ftp_inhouse_server_costs+inhouse_monthly_line_lease);

Inhouse: Total Costs per month after 4 years (without investment)
> ftp_inhouse_server_total_costs_plus:=evalf(traffic_inhouse_add_costs+

inhouse_monthly_line_lease);

ISP's perspective

Total Costs for the ISP per month excluding storage costs
> ftp_isp_total_cost:=evalf(ftp_client_total_costs*peer_network_size*(100-

isp_proft_margin)/100);

Overall perspective

Outsourced: Total Costs per month for the next 4 years
> ftp_overall_costs:=evalf((ftp_client_total_costs*no)+ftp_server_total_costs);

Total Costs per month after 4 years (without investment)
> ftp_overall_costs_plus:=evalf((ftp_client_total_costs*no)+ftp_server_total_costs_plus);

Inhouse: Total Costs per month for the next 4 years
> ftp_inhouse_overall_costs:=evalf((ftp_client_total_costs*no)+

ftp_inhouse_server_total_costs);

Inhouse: Total Costs per month after 4 years (without investment)
> ftp_inhouse_overall_costs_plus:=evalf((ftp_client_total_costs*no)+

ftp_inhouse_server_total_costs_plus);

Appendix Semester Thesis

Page 68

7.1.4 Napster Model: Maple Code and Additional Figures

Figure 62: Napster message type costs: Length in bytes

Message Message
receiver

Total bytes (incl. message
header and "blanks")

Description

Login Server 46 bytes Nick: 10 bytes
Password: 10 bytes
Port: 4 bytes
Client Info: 10 bytes
Link-Type: 2 bytes

Client notification of
shared files

Server 79 bytes Filename: 17 bytes
MD5: 32 bytes
Size: 7 bytes
Bitrate: 4 bytes
Frequency: 4 bytes
Time: 4 bytes

Client search request Server 137 bytes Filename contains: 32 bytes
Max_Result: 13 bytes
Filename contains: 32 bytes
Linespeed contains: 22 bytes
Bitrate: 15 bytes
Freq: 12 bytes

Search response Client 106 bytes Filename: 19 bytes
MD5: 32 bytes
Size: 7 bytes
Bitrate: 4 bytes
Frequency: 4 bytes
Length: 4 bytes
Nick: 10 bytes
IP: 10 bytes
Link-Type: 2 bytes

Download request Server 36 bytes Nick: 10 bytes
Filename: 19 bytes

Download ack Client 90 bytes Nick: 10 bytes
IP: 10 bytes
Port: 4 bytes
Filename: 19 bytes
MD5: 32 bytes
Link-Type: 4 bytes

Downloading file Server 5 bytes No payload
Uploading file Server 5 bytes No payload
Download complete Server 5 bytes No payload
Upload complete Server 5 bytes No payload

Semester Thesis Appendix

Page 69

Figure 63: Napster constants and derived variables

Figure 64: Napster byte volumina

Client Variables
> napster_max_search_results:=20;

Client Derived Variables:
> napster_client_login_avg:=ftp_client_login_avg;

Message type costs:
> napster_login:=evalf((46+(79+(avg_chars_per_file))*avg_files_per_peer)

+ceil((46+(79+(avg_chars_per_file))*avg_files_per_peer)/MTU)*(overhead_per_packet));
> napster_query:=evalf(109+2*((avg_words_per_query*avg_char_per_word)+2)+

((overhead_per_packet)));
> napster_download_request:=evalf(17+((avg_chars_per_file)+2)+((overhead_per_packet)));
> napster_updownload_start_complete:=evalf((4+(overhead_per_packet))*2);
> napster_download_p2p:=evalf((peer_downupload_rate*mega)+

(ceil((peer_downupload_rate*mega)/MTU)*(overhead_per_packet)));

Server Variables
> napster_server_number:=1;

Server Derived Variables:
> napster_server_inhouse_number:=evalf(napster_server_number);

Message type costs:
> napster_query_server_response:=evalf((87+((avg_chars_per_file)+2))*

napster_max_search_results+(ceil((87+((avg_chars_per_file)+2))*
napster_max_search_results)/MTU)*(overhead_per_packet));

> napster_download_request_server_response:=evalf(71+((avg_chars_per_file)+2)+
((overhead_per_packet)));

Client Byte volumina
> napster_connect:=evalf(napster_login*ftp_client_login_avg*(30));
> napster_search:=evalf((queryrate*(60*24*30)*(napster_query+

napster_query_server_response)));
> napster_download_request_replies:=evalf(download_request_rate*(60*24*30)*

(napster_download_request+napster_download_request_server_response));
> napster_download:=evalf((peer_downupload_rate*mega)+(ceil((peer_downupload_rate*mega)/

MTU)*(overhead_per_packet)));
> napster_finish_message:=evalf(ceil(peer_downupload_rate/

avg_files_size)*napster_updownload_start_complete);
> napster_client_overhead:=evalf((napster_connect)/mega);
> napster_client_bandwidth:=evalf(napster_download+napster_search+

napster_download_request_replies+napster_finish_message+
(napster_client_overhead*mega));

Server byte volumina
In [bytes/month]
>napster_server_bandwidth_total:=evalf(((napster_client_bandwidth-napster_download)*no));

Appendix Semester Thesis

Page 70

Figure 65: Napster bandwidth performance

Client Overhead in [MB/month]:
> napster_client_overhead:=evalf((napster_connect)/mega);
Traffic consumption in [Byte/month] and client:
> napster_client_bandwidth_total:=evalf(napster_download+napster_search+

napster_download_request_replies+napster_finish_message+
(napster_client_overhead*mega));

Server Traffic Consumption in [Byte/month]:
> napster_server_bandwidth_total:=evalf(((napster_client_bandwidth-napster_download)*no))

Client total traffic:
> napster_client_overhead_download_kbps:=evalf(napster_client_bandwidth_total*8/

((60*60*24*30)*kilo));
All bandwidth usage figures in [%]

> napster_bandwidth_usage_proportion_128kbps:=
evalf(((napster_client_overhead_download_kbps/2)/128)*100);

> napster_bandwidth_usage_proportion_512kbps:=
evalf(((napster_client_overhead_download_kbps/2)/512)*100);

Napster Server traffic:
> napster_server_bandwidth_total_kbps:=

evalf((napster_server_bandwidth_total*8)/((60*60*24*30)*kilo));

Dedicated Server Hosting - Outsourcing
> napster_server_monthly_traffic_provided:=evalf(((napster_server_number*

(monthly_traffic*(8*giga/((60*60*24*30)*kilo))))-
napster_server_bandwidth_total_kbps));
Additional Traffic which have to be bought from the Hosting Company:

> if (0 < napster_server_monthly_traffic_provided)
else napster_traffic_add:=
evalf(-1*ceil(napster_server_monthly_traffic_provided/((monthly_traffic)*8*giga/
(60*60*24*30*kilo))))
end if;

Server In house solution
> napster_server_inhouse_monthly_traffic_provided:=

evalf((inhouse_monthly_provided_traffic*kilo)-(napster_server_bandwidth_total_kbps));
Additional Traffic which have to be bought from a PoP offering company:

> if (0 < napster_server_inhouse_monthly_traffic_provided)
then napster_traffic_inhouse_add:=0
else napster_traffic_inhouse_add:=evalf(-1*
ceil(napster_server_inhouse_monthly_traffic_provided
(inhouse_monthly_provided_traffic*kilo)))
end if;

Semester Thesis Appendix

Page 71

Figure 66: Napster inhouse and outsourced costs

Outspurced Solution
> napster_traffic_add_costs:=evalf(napster_traffic_add*ftp_monthly_traffic_add);
> napster_server_hosting_costs:=evalf(napster_server_number*monthly_payment);
> napster_server_installation_costs:=

evalf(napster_server_number*installation_costs_hosting);
> napster_server_installation_costs_monthly:=

evalf(napster_server_installation_costs/(storage_depreciation*12));

Inhouse Solution
> napster_traffic_inhouse_add_costs:=

evalf(napster_traffic_inhouse_add*inhouse_monthly_line_lease);
Costs for additional traffic in [CHF] per month
> napster_inhouse_server_costs:=

evalf((napster_server_inhouse_number*inhouse_costs)/(storage_depreciation*12));

Client Storage Costs
> napster_storage_costs:=evalf(((harddisk_price)/(storage_depreciation*12)));

Appendix Semester Thesis

Page 72

Figure 67: Napster total costs

Client's perspective

Total Costs per month and peer for the next 4 years
> napster_client_total_costs:=

evalf(napster_client_bandwidth_total_costs+napster_storage_costs);
Total Costs per month and peer after 4 years (without investment)
> napster_client_total_costs_plus:=evalf(napster_client_bandwidth_total_costs);

Server perspective

Outsourced: Total Costs per month for the next 4 years
> napster_server_total_costs:=

evalf(napster_traffic_add_costs+napster_server_hosting_costs+
napster_server_installation_costs_monthly);

Outsourced: Total Costs per month after 4 years (without investment)
> napster_server_total_costs_plus:=

evalf(napster_traffic_add_costs+napster_server_hosting_costs);

Inhouse: Total Costs per month for the next 4 years
> napster_inhouse_server_total_costs:=

evalf(napster_traffic_inhouse_add_costs+napster_inhouse_server_costs+
inhouse_monthly_line_lease);

Inhouse: Total Costs per month after 4 years (without investment)
> napster_inhouse_server_total_costs_plus:=

evalf(napster_traffic_inhouse_add_costs+inhouse_monthly_line_lease);

ISP's perspective

Total Costs for the ISP per month excluding storage costs
> napster_isp_total_cost:=evalf(napster_client_total_costs_plus*peer_network_size);

Overall perspective

Outsourced: Total Costs per month for the next 4 years
> napster_overall_costs:=

evalf((napster_client_total_costs*no)+napster_server_total_costs);
Outsourced: Total Costs per month after 4 years (without investment)
> napster_overall_costs_plus:=evalf((napster_client_total_costs_plus*no)+

napster_server_total_costs_plus);

Inhouse: Total Costs per month for the next 4 years
> napster_inhouse_overall_costs:=evalf((napster_client_total_costs*no)+

napster_inhouse_server_total_costs);

Inhouse: Total Costs per month after 4 years (without investment)
> napster_inhouse_overall_costs_plus:=evalf((napster_client_total_costs_plus*no)+

napster_inhouse_server_total_costs_plus);

Semester Thesis Appendix

Page 73

Figure 68: Reported bandwidth for Napster clients

7.2 Stakeholder Analysis

7.2.1 Peer/Client Cost Perspective without Investment

Figure 69: Scenario 2: Client/Peer cost perspective > 4 years

Figure 70: Scenario 3: Client/Peer cost perspective > 4 years

3%

15%

2%

3%

33%

14%

4%

2%

22%

1%

1%

14.4 Kbps

28.8 Kbps

33.6 Kbps

56 Kbps

64 Kbps

128 Kbps

Cable

DSL

T1

T3

unknown

0

1

2

3

4

5

6

10 100 1000 10000 100000 1000000

Number of clients or peers

C
H

F
pe

r
m

on
th

Gnutella

Napster Outsourced

Napster Inhouse

FTP Outsourced

FTP Inhouse

0.01

0.1

1

10

100

1000

10 100 1000 10000 100000 1000000

Number of clients or peers

C
H

F
pe

r
m

on
th

Gnutella

Napster Outsourced

Napster Inhouse

FTP Outsourced

FTP Inhouse

Appendix Semester Thesis

Page 74

7.2.2 Peer/Client Load Performance

Figure 71: Scenario 1: Uplink load performance

Figure 72: Scenario 2: Uplink load performance

7.2.3 Server Cost Perspective without Investment

Figure 73: Scenario 1: Server cost perspective > 4 years

0

1

2

3

4

5

6

10 100 1000 10000 100000 1000000

Number of clients or peers

U
p

lin
k

lo
ad

 [
%

]

Gnutella

Napster

FTP

0

2

4

6

8

10

12

14

16

18

20

10 100 1000 10000 100000 1000000

Number of clients or peers

U
pl

in
k

lo
ad

 [%
]

Gnutella

Napster

FTP

1

10

100

1000

10000

100000

1000000

10000000

100000000

10 100 1000 10000 100000 1000000

Number of clients or peers

C
H

F
pe

r
m

on
th

Gnutella

Napster Outsourced

Napster Inhouse

FTP Outsourced

FTP Inhouse

Semester Thesis Appendix

Page 75

Figure 74: Scenario 2: Server cost perspective > 4 years

Figure 75: Scenario 3: Server cost perspective > 4 years

7.2.4 ISP Cost Perspective

Figure 76: Scenario 2: ISP cost perspective

1

10

100

1000

10000

100000

1000000

10000000

100000000

10 100 1000 10000 100000 1000000

Number of clients or peers

C
H

F
pe

r
m

on
th

Gnutella

Napster Outsourced

Napster Inhouse

FTP Outsourced

FTP Inhouse

1

10

100

1000

10000

100000

1000000

10000000

100000000

10 100 1000 10000 100000 1000000

Number of clients or peers

C
H

F
pe

r
m

on
th

Gnutella

Napster Outsourced

Napster Inhouse

FTP Outsourced

FTP Inhouse

0

1000

2000

3000

4000

5000

6000

10 100 1000 10000 100000 1000000

Number of clients or peers

C
H

F
pe

r
m

on
th

Gnutella

Napster Outsourced

Napster Inhouse

FTP Outsourced

FTP Inhouse

Appendix Semester Thesis

Page 76

Figure 77: Scenario 3: ISP cost perspective

7.2.5 Overall Cost Perspective without Investment

Figure 78: Scenario 1: Overall cost perspective > 4 years

Figure 79: Scenario 2: Overall cost perspective > 4 years

1

10

100

1000

10000

100000

1000000

10 100 1000 10000 100000 1000000

Number of clients or peers

C
H

F
pe

r
m

on
th

Gnutella

Napster Outsourced

Napster Inhouse

FTP Outsourced

FTP Inhouse

1

10

100

1000

10000

100000

1000000

10000000

100000000

10 100 1000 10000 100000 1000000

Number of clients or peers

C
H

F
pe

r
m

on
th

Gnutella

Napster Outsourced

Napster Inhouse

FTP Outsourced

FTP Inhouse

1

10

100

1000

10000

100000

1000000

10000000

100000000

10 100 1000 10000 100000 1000000

Number of clients or peers

C
H

F
pe

r
m

on
th

Gnutella

Napster Outsourced

Napster Inhouse

FTP Outsourced

FTP Inhouse

Semester Thesis Appendix

Page 77

Figure 80: Scenario 3: Overall cost perspective > 4 years

7.3 Application Parameters

Table 5: Gnutella variables and constants

Table 6: FTP variables and constants

Table 7: Napster variables and constants

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

10 100 1000 10000 100000 1000000

Number of clients or peers

C
H

F
pe

r
m

on
th

Gnutella

Napster Outsourced

Napster Inhouse

FTP Outsourced

FTP Inhouse

No. Variable name Value Unit Explanation Source
33 pingrate_eval 15 [minutes] Ping creation period of a peer in minutes Assumption

34 pingrate derived [1/minute] Average ping creations per minute and
peer

see pingrate_eval

35 query_proportion 12 [%] Percentage of queryhit descriptors
compared to queries

www.cs.ucr.edu/~csyiazti/course
s/cs204/project/html/final.html

36 n_c 3.4 [] Average node connectivity people.cs.uchicago.edu/~matei/P
APERS/ic.pdf

37 TTL 7 [] Time to live people.cs.uchicago.edu/~matei/P
APERS/ic.pdf

Gnutella

No. Variable name Value Unit Explanation Source
38 ftp_client_login_avg 3 [] Total number of client logins per day Assumption
39 ftp_chars_per_file derived [chars] Chars per file see avg_chars_per_file
40 ftp_number_folder_1 6 [folders] Number of folders within this folder level Assumption
41 ftp_number_folder_2 26 [folders] Number of folders within this folder level Assumption
42 ftp_number_folder_3 100 [folders] Number of folders within this folder level Assumption
43 ftp_char_folder_1 7 [chars] Number of chars for ftp_number_folder_1

folders
Assumption

44 ftp_char_folder_2 1 [chars] Number of chars for ftp_number_folder_2
folders

Assumption

45 ftp_char_folder_3 15 [chars] Number of chars for ftp_number_folder_3
folders

Assumption

46 ftp_number_files derived [files] Number of files stored on the server see avg_unique_files_in_system

FTP

No. Variable name Value Unit Explanation Source
47 napster_max_search_result 20 [] Is the maximum number of search

replies from the server
Assumption

48 napster_server_number 1 [] Number of central servers Assumption
49 napster_client_login_avg derived [] Number of logins per day see ftp_client_login_avg

Napster

Appendix Semester Thesis

Page 78

Semester Thesis References

Page 79

8 References
[1] Limewire: The Gnutella Protocol Specification vO.4; http://www9.limewire.com/devel-

oper/gnutella_protocol_0.4.pdf (in March 2003).

[2] A. Oram (ed.): Peer-To-Peer: Harnessing the Power of Disruptive Technologies;
O'Reilly&Associates, Sebastopol, U.S.A., 2001.

[3] A. Michalove: Amdahls Law; http://home.wlu.edu/~whaleyt/classes/parallel/topics/
amdahl.html (in March 2003).

[4] S. Saroiu, P. Gummadi, S. Gribble: A Measurement Study of Peer-to peer File Sharing
Systems; Technical Report # UW CSE-01-06-02, Department of Computer Science &
Engineering, University of Washington, Seattle, U.S.A., 2002.

[5] C. Shirky: What Is P2P… And What Isn't?; http://www.oreillynet.com/pub/a/p2p/2000/
11/24/shirky1-whatisp2p.html (in November 2000).

[6] R. Schollmeier: A Definition of Peer-to-Peer Networking for the Classification of Peer-
to-Peer Architectures and Applications; Proceedings of the First International Confer-
ence on Peer-to-Peer Computing (P2P.01).

[7] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Roll-
ins, and Z. Xu. Peer-to-peer computing. Technical Report HPL-2002-57, HP Lab,
2002.

[8] Webopedia: Client/server architecture; http://www.webopedia.com/TERM/C/
client_server_architecture.html (in February 2003).

[9] Peer-to-Peer working group: What is peer-to-peer?; http://www.peer-to-peerwg.org/
whatis/index.html (in February 2003).

[10] ETHOS: Client Servers; http://www.ethoseurope.org/ethos/Techterm.nsf/All/CLI-
ENT+SERVERS (in February 2003)

[11] Peer-to-Peer working group: Glossary for Peer-to-Peer; http://www.peer-to-
peerwg.org/tech/glossary.html (in February 2003).

[12] A. Oram: Peer-to-Peer makes the Internet interesting again; http://linux.oreillynet.com/
pub/a/linux/2000/09/22/p2psummit.html (in February 2003).

[13] M. Ripeanu, A. Iamnitchi, I. Foster: Mapping the Gnutella network: Properties of large-
scale peer-to-peer systems and implications for system design. IEEE Internet Comput-
ing Journal 6, 1 (2002), 50-57.

[14] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in unstructured
peer to peer networks. In ICS'02, New York, USA, June 2002.

[15] M. Findeli: Peer-to-Peer (P2P) Networking; Lehrstuhl für Kommunikationsnetze an der
Technischen Universität München, München, Deutschland, 2001; http://
www.onlinejunkie.de/docs/p2p.pdf (in March 2003).

[16] D. Zeinalipour, Y.T. Folias: A Quantitative Analysis of the Gnutella Network Traffic;
http://www.cs.ucr.edu/~csyiazti/courses/cs204/project/html/final.html (in February
2003).

[17] Limewire Homepage: http://www.limewire.com/index.jsp/size (in March 2003).

[18] Dr. Scholl: Napster protocol specification, April 7, 2000; http://opennap.source-
forge.net/napster.txt (in March 2003).

References Semester Thesis

Page 80

[19] J. Postel, J. Reynolds: File Transfer Protocol (FTP), RFC 959, October 1985.

[20] CenterSpan: Mediated Peer-to-Peer (P2P) Enables Viable, Cost Effective Delivery of
Digital Entertainment; http://www.centerspan.com/technology/cscc_p2pwhitepaper.pdf
(in March 2003).

[21] B. Yang and H. Garcia-Molina: Improving Search in Peer-to-Peer Networks; 22nd
International Conference on Distributed Computing Systems (ICDCS'02), July 2002.

[22] K. Sripanidkulchai: The popularity of Gnutella queries and its implications on scalabil-
ity, http://www-2.cs.cmu.edu/~kunwadee/research/p2p/gnutella.html (in March 2003).

[23] B. Yang, H. Garcia-Molina: Comparing Hybrid Peer-to-Peer Systems, Proceedings of
the 27th Intl. Conf. on Very Large Data Bases.

[24] E. Criscuolo: Performance Efficiency of Internet Protocol (IP) in Space Applications;
Computer Science Corp. for the Goddard Soace Flight Center; http://ipins-
pace.gsfc.nasa.gov/flatsat/docs/IP-Performance.doc (in March 2003).

[25] Sans Institute: TCP/ IP and tcpdump Flyer; http://www.sans.org/resources/tcpip.pdf (in
March 2003).

[26] R. Schollmeier: Why Peer-to-Peer (P2P) does scale: An analysis of P2P traffic pat-
terns; Proceedings. Second International Conference on Peer-to-Peer Computing
(P2P’02), 2002.

Semester Thesis List of Figures

Page 81

9 List of Figures

Figure 1: Classification of Computer Systems ... 2
Figure 2: Pure Peer-to-Peer Architecture .. 4
Figure 3: Hybrid Peer-to-Peer Architecture ... 4
Figure 4: Flat architecture (left); Hierarchical architecture (right) .. 7
Figure 5: Generic Approach: Procedure .. 8
Figure 6: Peer-to-Peer taxonomy: Sample systems/applications 14
Figure 7: Gnutella descriptors ... 16
Figure 8: Gnutella descriptor header ... 17
Figure 9: Pong descriptor .. 18
Figure 10: Query descriptor ...18
Figure 11: Queryhit descriptor ... 18
Figure 12: Napster messages ... 20
Figure 13: Napster message header ... 20
Figure 14: Login message ...21
Figure 15: Client notification of shared files message ... 21
Figure 16: Client search request message .. 21
Figure 17: Search response message ... 21
Figure 18: Download request message ...22
Figure 19: Download ack message ... 22
Figure 20: Normal downloading message ... 22
Figure 21: FTP model ..23
Figure 22: FTP login log file ...24
Figure 23: FTP directory information ... 24
Figure 24: FTP communication overhead ... 25
Figure 25: Qualitative comparison ... 26
Figure 26: System ... 28
Figure 27: Gnutella tree structure ..33
Figure 28: FTP folder structure .. 36
Figure 29: Costs distribution .. 40
Figure 30: Scenario 1: Client/Peer cost perspective < 4 years ...46
Figure 31: Scenario 2: Client/Peer cost perspective < 4 years ...47
Figure 32: Scenario 3: Client/Peer cost perspective < 4 years ...47
Figure 33: Scenario 1: Client/Peer cost perspective > 4 years ...48
Figure 34: Scenario 3: Uplink load performance ... 49
Figure 35: Scenario 1: Server cost perspective < 4 years ... 49
Figure 36: Scenario 2: Server cost perspective < 4 years ... 50
Figure 37: Scenario 1: Server load per used server .. 51
Figure 38: Scenario 2: Server load per used server .. 51
Figure 39: Scenario 1: ISP cost perspective ... 52
Figure 40: Scenario 1: Overall cost perspective < 4 years ..53
Figure 41: Scenario 2: Overall cost perspective < 4 years ..53
Figure 42: Scenario 3: Overall cost perspective < 4 years ..54
Figure 43: Overall cost perspective: Accurate data ...54
Figure 44: Resolve “Area of Conflict” .. 57
Figure 45: FTP change folder log file .. 60
Figure 46: FTP download log file ... 60
Figure 47: FTP upload log file ... 60

List of Figures Semester Thesis

Page 82

Figure 48: Cumulated pings and pongs ...61
Figure 49: Gnutella constants and derived variables .. 61
Figure 50: Gnutella monthly byte volumina ... 62
Figure 51: Gnutella connection performance ..62
Figure 52: Measured Gnutella Traffic Breakdown ... 62
Figure 53: Simulated Gnutella Traffic Breakdown ... 62
Figure 54: Gnutella monthly bandwidth costs ..63
Figure 55: Gnutella total costs ... 63
Figure 56: FTP constants, derived variables and byte volumina64
Figure 57: FTP bandwidth performance .. 65
Figure 58: FTP: Number of outsourced packages ... 65
Figure 59: FTP: Number of inhouse servers and connections .. 66
Figure 60: FTP inhouse and outsourced costs ..66
Figure 61: FTP Total costs .. 67
Figure 62: Napster message type costs: Length in bytes ..68
Figure 63: Napster constants and derived variables ...69
Figure 64: Napster byte volumina ..69
Figure 65: Napster bandwidth performance .. 70
Figure 66: Napster inhouse and outsourced costs .. 71
Figure 67: Napster total costs .. 72
Figure 68: Reported bandwidth for Napster clients ...73
Figure 69: Scenario 2: Client/Peer cost perspective > 4 years ...73
Figure 70: Scenario 3: Client/Peer cost perspective > 4 years ...73
Figure 71: Scenario 1: Uplink load performance ... 74
Figure 72: Scenario 2: Uplink load performance ... 74
Figure 73: Scenario 1: Server cost perspective > 4 years ... 74
Figure 74: Scenario 2: Server cost perspective > 4 years ... 75
Figure 75: Scenario 3: Server cost perspective > 4 years ... 75
Figure 76: Scenario 2: ISP cost perspective ... 75
Figure 77: Scenario 3: ISP cost perspective ... 76
Figure 78: Scenario 1: Overall cost perspective > 4 years ..76
Figure 79: Scenario 2: Overall cost perspective > 4 years ..76
Figure 80: Scenario 3: Overall cost perspective > 4 years ..77

Semester Thesis List of Tables

Page 83

10 List of Tables
Table 1: System variables and constants .. 29
Table 2: Total server load .. 50
Table 3: Number of servers ...51
Table 4: Proposed implementation regarding costs and net size (< 4 years)55
Table 5: Gnutella variables and constants .. 77
Table 6: FTP variables and constants ... 77
Table 7: Napster variables and constants ... 77

List of Tables Semester Thesis

Page 84

