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1 Introduction

Multicast allows a source to disseminate data among multiple recipients, called the multicast
group, such that the actual data packages are routed efficiently over the physical network
links. Secure multicast additionally provides authenticity and privacy of the multicast data.
Authenticity means that each group member can recognize whether a message was sent by a
particular source, whereas secrecy means that only the multicast group members (and all of
them) learn the transmitted data.

Multicast is at the core for many collaborative applications. Examples include Internet video
transmissions, stock quotes, news feeds, software updates, live multi-party conferencing, on-
line video games and shared white-boards. By the diversity of these scenarios, it soon becomes
clear that there is little hope for a unified security solution that accommodates all scenarios.
Therefore, Canetti et al. [CGIT99] suggest to investigate security solutions for two ’bench-
mark’ scenarios, which are not only important on their own, but also have the property that
solutions for these scenarios may serve as a good basis for other scenarios. The first scenario
involves a single sender (e.g. an on-line stock-quotes distributor) and a large number of re-
cipients (e.g. hundres of thousands). The second scenario — which we consider in this work
— is on-line virtual private conferencing among up to a few hundreds of participants, where
many (or all) of the members may be sending data to the group.

The standard approach for implementing secure multicast in the second scenario is to provide
all members of the group (and only the members) with a secret group key under which
all messages to be multicast are encrypted. Authenticity is usually achieved through digital
signatures, or some form of symmetric message authentication codes (MACs) [CGIT99]. Thus,
setting up secure multicast for private virtual conferencing essentially reduces to the problem
of generating and distributing a secret group key. This can be done through a so-called group
key exchange (GKE) protocol, which allows a group of servers to compute a secret key that
remains well hidden from anyone outside the group. The problem with using such protocols
is that they only terminate if all group members participate. Thus, if the group key is to be
used for secure multicasting in a virtual conference scenario, the secure communication will
only become available once the last group member has joined the conference. This is certainly
undesirable, as in many practical scenarios, members may be joining at different points in
time, or not join the conference at all. Servers that join the conference early should be able
to compute the key without having to wait for all servers to join the conference.

One way to solve this problem is to integrate GKE protocols with a view-based group commu-
nication system (GCS), that provides the abstraction of “currently live nodes” to all servers of
the multicast group in a consistent way. The idea is now to run a GKE protocol only among
those members of the multicast group that are reported to be live by the GCS. Whenever
a membership change occurs, i.e., when a member joins or leaves the conference, the GKE
protocol is run from scratch among the new set of live servers. This way, early joining mem-
bers will be able to communicate before all servers have joined the system. The disadvantage
of this approach is that GCSs rely on timeouts to detect membership events, and thus are
subject to timing attacks, which are often easy to launch in practice.

In order to avoid these issues, we suggest to run a fault-tolerant GKE protocol among the
entire multicast group, instead of integrating standard GKE protocols with a GCS. A fault-
tolerant GKE protocol terminates for all servers as long as a majority of the participants



remain up. Thus, if the key is to be used for private virtual conferencing, secure multicast
communication will become available as soon as a majority of the members have joined the
conference. The advantage of this approach is that it is completely asynchronous and therefore
robust against timing attacks. Furthermore, it facilitates key management, as there is only
a single group key being generated. On the downside, it can only be applied in conference
scenarios where a majority of group members are guaranteed to join the conference.

In the first part of this work, we present a performance evaluation of a secure multicast imple-
mentation that uses the fault-tolerant GKE protocol proposed by Cachin and Strobl [CS04]
for group key generation, and digital signatures for authentication. In the second part of this
work, we describe the architecture of SecChat, which is a peer-to-peer application allowing
peers to dynamically setup virtual conferences among various groups of peers without relying
on a central component. SecChat uses an (untrusted) directory service for storing information
on conferences to be held, such as the group members, or the date and time of the confer-
ence. It allows any peer to announce a conference by storing the corresponding entry in the
directory. In order to achieve secure and efficient multicast communication among members
of a conference, SecChat uses the solution for secure multicast we described before. This
yields a system for secure on-line virtual conferencing where security is guaranteed as soon
as a majority of the conference members have entered a conference.

The thesis is organized as follows. In Section 2, we describe our system model, and our
construction of a secure multicast channel from an agreement-based GKE protocol. In Sec-
tion 3, we present our experimental results on the performance of the construction. Finally,
in Section 4, we describe the architecture and implementation of SecChat.

2 Secure Multicasting among Majorities

We now describe our protocol for secure multicast. Our construction consists of three pro-
tocols: a fault-tolerant consensus protocol, a fault-tolerant GKE protocol, and a protocol for
secure multicast. The consensus protocol serves as sub-protocol for the GKE protocol, which
in turn serves as sub-protocol for the secure multicast protocol. In the following, we describe
our system model and provide a detailed description of the protocols.

2.1 The System Model

We consider a multicast group of n servers MC = {S1,...,S,} that wish to establish a secure
multicast channel for private virtual conferencing. We assume that at most a minority of these
servers crash, i.e., stop executing the protocol at some point. We call such servers crashed,
and all other servers honest.

The servers in MC' are connected by reliable asynchronous point-to-point links and have
no access to a common clock. Every server S; € MC has a public/private signature key
pair (pi, si), and knows the public keys of all other servers. The point-to-point links are
authenticated using digital signatures and message authentication codes (MAC). Specifically,
the first time two servers wish to communicate with each other, they exchange a symmetric
key using a standard two-party key exchange protocol [BCK98, Sho99, BPR00]. During this
stage, digital signatures (under the distributed public keys) are used to authenticate the point-



to-point link. Once the symmetric key is established, the point-to-point link is authenticated
using a message authentication code (MAC) under the established key.

Apart from the point-to-point links, every server can also send messages to all other servers
through a reliable multicast channel. This channel neither provides authenticity nor secrecy
of transmitted messages, and is completely asynchronous, i.e., messages may be delayed ar-
bitrarily.

We will state the theoretical complexity of a protocol in this setting in terms of the total
number of messages sent by honest servers, the size of these messages in bits, and the number
of sequential message exchanges, called asynchronous rounds, that it takes until the first server
may terminate the protocol.

2.2 Asynchronous Consensus with Failures

An important primitive of our solution for GKE is a fault-tolerant consensus protocol. In a
consensus protocol, every server receives as input at bit string of some length L, and produces
as output some bit string of length L. The goal is that all servers output the same bit string,
and that this bit string corresponds to the input of at least one servers. Furthermore, every
server must terminate, provided that a majority of the servers invoke the protocol and do not
crash. In the protocol specification below, we allow the servers to invoke several instances of
a consensus protocol concurrently, where every instance is identified by a tag ID. The tag
may be an arbitrary bit string.

Specification. Technically, a consensus protocol has the following interface. Every server
S; accepts input actions of the form (propose, ID,v). If this happens, we say S; proposes v
for (instance) ID. Every server S; produces output actions of the form (decide, ID,v). If this
happens, we say S; decides v in (instance) ID . With respect to this interface, a fault-tolerant
consensus protocol satisfies the following properties:

TERMINATION: If {"THW honest servers propose some value for an instance ID, then all honest
servers that propose a value for ID eventually decide some value in instance ID.

AGREEMENT: If two servers decide values v; and v; in an instance ID, then v; = v;.

VALIDITY: If some server decides a value v; in an instance ID, then at least one server has
proposed v; for ID before.

The Protocol. Fischer et al. [FLP85] showed that there exists no deterministic asyn-
chronous fault-tolerant consensus protocol. To circumvent this impossibility result, one can
either use randomized protocols, or extend the system model by some form of timing assump-
tion (see [Asp02] for a survey of the currently known asynchronous consensus protocols of
either type). The most efficient randomized consensus protocols are asymptotically constant-
round; see for example Canetti and Rabin’s construction [CR93]. However, these protocols
are not very efficient in terms of their concrete complexity, and only allow to agree on binary
values; it is not immediately clear how to derive consensus protocols thereof that allow to
agree on bit strings of arbitrary length, as we will need it.



In this work, we will therefore use a consensus protocol due to Chandra and Toueg [CT96]
that relies on so-called failure detectors [CT96]. A failure detector is a local module available
to every server that periodically outputs a list of servers that it suspects to have crashed and
is usually based on a timing assumption. The consensus protocol that we will use relies on a
failure detector &S that satisfies the following two properties:

EVENTUAL WEAK ACCURACY: There is an honest server and a time after which that server
is not suspected to have crashed by the failure detector of any other honest server.

EVENTUAL STRONG COMPLETENESS: There is a time after which every crashed server is per-
manently suspected by the failure detector of any honest server.

To implement <S5, we use a protocol due to [CT96]. It assumes that every server has a local
clock, and relies on the following synchrony assumption: there are bounds on the relative
speeds of the local clocks and on message transmission times, but these bounds are not
known and they hold only after some unknown time. These assumptions are also known as
partial synchrony, and denoted by M3. The implementation for &S works as follows.

Each server 5; periodically sends a “S;-is-alive” message to all other servers. If S; does not
receive a “Sj-is-alive” message from some server S; for Ag,(S;) time units on its local clock,
S; adds S; to its list of suspects. If S; receives “Sj-is-alive” from some process S; that it
currently suspects, S; knows that its previous time-out on S; was premature. In this case,
S; removes S; from its list of suspects and increases its time-out period Ag,(S;). For a more
detailed description of this protocol, we refer to [CT96].

We now proceed with the description of the fault-tolerant consensus protocol that we use
in this work. The protocol uses the rotating coordinator paradigm [Rei82]; the idea is to
proceed in “rounds” as follows (these are different than the asynchronous rounds we consider
for stating the efficiency of a protocol). During a round r, the current coordinator is server
Sc for ¢ = (r mod n) + 1. All messages are either to or from the current coordinator. The
current coordinator S, tries to determine a consistent decision value. If S, is honest and is not
suspected by any other honest server, then the coordinator will succeed, and it will broadcast
this decision value. Otherwise, the servers proceed with the next round.

Every round of this consensus protocol is divided into the following four asynchronous phases.

Phase 1: Every server sends its current estimate estimate; of the decision value timestamped
with the round ¢s; number in which it adopted this estimate, to the current coordinator
Sc. In the first round, estimate; is the input of server 4, and ts; is set to 1.

Phase 2: The coordinator waits for receiving [”T“} such estimates, selects one with the
largest time stamp, and sends it to all the servers as their new estimate estimate,

Phase 3: Every server S; waits for either receiving estimate. from S., or for receiving a
signal from its failure detector indicating S, has crashed.
In the first case, S; adopts estimate. as its new estimate, and sends ack to the coordi-

nator. In the second case, S; sends nack to S..

Phase 4: The coordinator waits for [241] replies (ack s or nack s). If all replies are ack s,
then S, sends a request to decide on estimate. to all other servers.



At any time, if a server receives such a request, it echos the request to all other servers.
A server decides estimate. and terminates the protocol if it either receives the direct
request, or an echo thereof.

It is easy to see that if after some time, there exists an honest server that is not suspected by
any other honest server, then this server will succeed to determine a consistent decision value
in the round where it is the coordinator, and the protocol will terminate.

Validity of the protocol follows immediately, as only values are proposed as estimates that
at least one server has received as input. To see agreement, note that a coordinator only
requests to decide on a value estimate. if a majority of servers have adopted estimate. as
their current estimate. The way a coordinator selects the estimate it proposes ensures that
in any subsequent round, the current coordinator will propose the same value estimate. as
the new estimate.

We remark that the protocol is not fully asynchronous as it relies on a failure detector.
However, as pointed out by [CT96], it is only the termination property of the protocol that
depends on the timing assumption underlying the failure detector. Specifically, invalidating
this timing assumption only delays the protocol, but does not affect its agreement or validity

property.

Complexity. The efficiency of the protocol depends on the number of rounds the servers go
through until the failure detectors stabilize, i.e., until there exists an honest server that is not
suspected to have crashed by all other honest servers. Once this happens, this coordinator
will fix the decision value, and the servers will terminate. Assuming that the failure detectors
stabilize after R rounds, then the protocol uses 3Rn+n? messages of size L bits in 4R rounds.

2.3 Asynchronous Group Key Exchange with Failures

An important primitive of our solution for secure multicasting is a fault-tolerant GKE proto-
col. Such a protocol allows the servers of the multicast group to repeatedly establish a secret
group key, where every such key is identified by a unique tag ID € {0,1}*. The protocol
ensures that the key remains hidden from anyone outside the group that can only observe
the network traffic. Moreover, it guarantees that if at least a majority of servers initialize the
generation of a key with tag ID, then all servers eventually terminate and compute the key.

Specification. More technically, a fault-tolerant GKE protocol has the following interface.
Every server S; accepts input actions of the form (init, ID), and produces output actions of
the form (finished, ID, sk). If a server S; receives such an input, we say S; initializes session
ID , and if it produces such an output, we say S; computes key sk in session ID . With
respect to this interface, a fault-tolerant GKE protocol satisfies the following properties:

TERMINATION: If a majority of servers initialize a session ID, then all servers that initialize
1D eventually compute a key sk in session ID.

SECRECY: Only the servers of the multicast group learn the keys being computed.



The Protocol. In this work, we will use an implementation for fault-tolerant GKE recently
proposed by Cachin and Strobl [CS04]. It is the first known implementation for fault-tolerant
GKE, and assumes a setting where the servers are connected by authenticated point-to-point
links. The protocol uses a public key encryption scheme, and relies on a fault-tolerant sub-
protocol for asynchronous consensus. Given these primitives, protocol GKE of Cachin and
Strobl [CS04] works as follows.

e When a server i initializes a session ID, it first chooses a contribution y; randomly from
{0,1}*; the goal is to compute the key for this session as sk = > jeg Yi for some set G
of [241] servers. It then generates public key/private encryption keys (PK;, SK;), and
sends PK; to every other server.

e When a server S; receives such a public key PK; from another server Sj;, it sends the
contribution value y; encrypted under PK; to server S;. Once it has received the con-

tribution values vy, , . .. Sy of [”T‘H} servers like this, it computes the differences
nl
d1 — Yuy — Yuz> 42 < Yuy — Yuzs - - - d|’L+1‘| — yu[m-lW — Yu, , and proposes the sequences
2 oF=

(u, ... ,u(Lﬂ]) and (dy, ... ,d(Lﬂ]) in the consensus sub-protocol. Note that the dif-
2 2

ference between any pair of contribution values may be leaked through this, but since

no other information is revealed, all contribution values remain secret.

e When a server S; decides two sequences <ﬂ1,...,a(L+1w> and @1,...,&(@1) in the
2
consensus protocol, it computes the session key as follows. It first chooses an arbitrary
index m € [1, [%1]] such that it has received yg,, before (notice that such an m exists,
as it has received at least [%FL] values y; at this point).
ntly_q  _ -
It then computes the session key sk = (23[221 1 Jdmtj) + ([ ) ya,, . where dpyj =

It is easy to see that every server terminates. It is also easy to verify that every server
ntl
computes the same session key sk = Z£:21 1 Ya;, regardless of which m it chooses. Finally,
since all contribution values remain secret (as argued above), the same holds for the key sk.

Complexity. The protocol requires every server to perform n encryptions and n decryp-
tions. Furthermore, every server sends 2n messages of size k bits in two rounds (k is the size
of the public keys used for the encryption scheme), and additionally, requires every server to
complete a consensus protocol on a value of size k(”THW

2.4 Implementation for Secure Multicast

Our protocol SMC for secure multicasting allows to establish several instances of a secure
multicast channel in parallel. Every such instance is identified by a unique tag ID, which
may be an arbitrary bit-string. An established instance allows every server to send a message
to all other servers, such that nobody outside the group learns the content of the message.
Furthermore, it guarantees authenticity of the sender, i.e., if an instance delivers a message
m from a server S;, then S; has sent m through this instance before.



Specification. More technically, our protocol has the following interface. Every server .S;
accepts two types of input messages: (init, ID) and (multicast, ID, m). If S; receives an input
of the first type, we say S; initializes instance ID; in case of an input of the second type, we
say S; multicasts m over ID .

Every server produces also two types of output messages: (established, ID) and
(received, ID,m, 7). If a server S; produces an output of the first type, we say S; estab-
lishes instance ID; if the output is of the second form, we say S; delivers m from S; in ID.
With respect to this interface, our protocol SMC satisfies the following properties:

TERMINATION: If at least a majority of servers initialize an instance ID, then every server
that initializes ID eventually establishes ID.

Moreover, if a server S; multicasts m over ID after establishing ID, then every server
that established ID at that point eventually delivers m from S; in ID.

AUTHENTICITY: If a server delivers m from S; in ID, then S; has multicast m over ID before.
SECRECY: Only the servers of the multicast group learn the messages being multicast.
EFFICIENCY: Multicasting a message of size [ bits over an instance ID requires multicasting

I + k bits over the underlying insecure multicast channel, where k is the length of a
digital signature under the given public keys.

The Protocol. Our protocol SMC for secure multicasting assumes a sub-protocol GKE for
fault-tolerant GKE, a symmetric encryption scheme, and works as follows.

e When a server S; initializes an instance ID, it initializes a session ID|gke of the sub-
protocol GKE, where gke is an arbitrary public constant.

e When a server S; computes a key sk in a session ID|gke of the sub-protocol GKE, it
stores the key in a local variable skjp, and outputs (established, ID).

e When a server S; multicasts a message m over 1D, it waits until it has computed the key
skrp. It then computes a signature o; on the message m||ID||i under its secret key s;,
where || denote the concatenation of the values in a well-defined encoding. Next, it com-
putes the encryption ¢ of m||o; under the key skp using the given symmetric encryption
scheme, and multicasts (¢, ID) over the underlying insecure multicast channel.

e When a server S; receives a message (c,ID) from a server P; through the underly-
ing insecure multicast channel, it waits until it has computed the key sk;p, and then
decrypts ¢ using skip to get m’. Next, it parses m' as ml|o;, and verifies the signa-
ture o; on m||ID||j using the public key p;. If this verification succeeds, it outputs
(deliver, ID,m, j).

By the termination property of the underlying GKE protocol, it follows immediately that
every server that initializes an instance ID eventually establishes ID, provided that a majority
(i.e., [ELT) of the servers initialize ID. The second part of the termination property of SMC
then follows immediately by the reliability of the underlying insecure multicast channel.

Authenticity of SMC follows by the security of the signature scheme used. We remark that
the reason for signing m concatenated with the tag ID is to ensure that messages sent over



an instance ID will only be delivered by this instance. Notice, however, that our protocol
does not prevent reply attacks, i.e., even though messages are authenticated, they may be
delivered multiple times. A higher level application can easily prevent this by adding sequence
numbers to the messages it multicasts over an instance, and by accepting a delivered message
only once for every sequence number.

Privacy of SMC follows by the secrecy property of the underlying GKE protocol, and the security
of the symmetric encryption scheme used. It is also easy to see that efficiency holds: to
multicast a message m over an instance ID, a server sends the encryption of m||o; together
with the identifier ID over the underlying channel. These are at most |m| + |o;| + |ID] bits,
assuming that the underling encryption scheme is a one-way permutation, i.e., encryptions of a
message have the same length as the message itself (this holds for most symmetric encryption
schemes, such as 3DES or AES). As |m| will be typically much bigger than |ID|, we may
neglect |ID].

Complexity. In order to setup a secure multicast instance ID, our protocol requires one
execution of the GKE protocol (see previous section). The overhead for multicasting one
message through an instance ID (as opposed to just multicast the message over the underlying
insecure multicast channel) consists of computing one digital signature and one symmetric
encryption of the message. The overhead for receiving a message consists of one signature
verification, and one symmetric decryption.

3 Experimental Results

We now present the experimental costs of our construction for secure multicast. Specifically,
we present the costs for setting up a secure multicast channel, and the continuous overhead
for authenticating and encrypting multicast messages. The prototype implementation that
we used for this measurements is written in Java; we describe its architecture in Section 4.2.

Our testbed for these measurements consists of a cluster of seven 1.2 GHz Pentium III dual-
processor computers running Linux 2.4.20. The machines were connected over a 100 bits/s
LAN. For the private and public signature key pairs that every server is assume to have in
our system model (cf. Section 2.1), we used 512-bit RSA keys.

3.1 Setting up a Multicast Channel

The time needed for setting up a secure multicast channel consists of the time needed for
computing a common group key by the GKE protocol described in Section 2.3. Below,
we present the performance of our prototype implementation of the GKE protocol. In this
implementation, we instantiated the encryption scheme used by the GKE protocol through an
RSA encryption scheme. For measuring the running time of the GKE protocol, we started the
protocol on all servers simultaneously, and computed the average time it took a server from
starting the protocol until it computed the group key. This time involves all the overhead by
the underlying consensus, as well as the underlying network.

Our primary goal is to investigate how the running time of the protocol grows in relation to
the group size. We therefore measured the running time of the GKE protocol for different



Figure 1: Running time of the GKE protocol

group sizes, ranging from 3 peers up to 21 peers. For all measurements, we used 512-bit
RSA encryption keys (within the GKE protocol), and generated a group key of size 128-bits.
Figure 3.1 summarizes the results. Notice that the running time grows faster than linear in
the number of peers that participate. This growth seems to be induced by the running time
of the consensus sub-protocol. The fact that the consensus sub-protocol has a super-linear
running time is somewhat surprising, as its theoretical round complexity does not depend on
the group size but only on the time needed until the failure detector stabilizes.

We remark that in our measurements, all peers were participating in the protocol. In case
that only a majority of peers participates, the protocols may actually run faster, since fewer
messages will be sent and the load on the network will be reduced by a factor of two. It
would be interesting to investigate this through another series of experiments (due to time
constraints, we could not investigate this anymore).

3.2 Continuous Overhead for Securely Multicasting Messages

The continuous overhead for securely multicasting messages consists on the sender-side of one
symmetric encryption and one asymmetric signature generation per message. On the receiver-
side, it consists of one symmetric decryption and one asymmetric signature verification per
message.

For our measurements, we instantiated the symmetric encryption scheme used by our SMC
protocol by 128-bit AES; for the signature scheme used to authenticate messages, we used
the 512-bit RSA signature keys from our testbed. We measured the sender and receiver
overhead for different message sizes, ranging from 0 to 1000 kbits. From the time needed for
signing and encrypting messages, one can easily derive an upper bound on the “throughput”

10



Figure 2: The continuous overhead for multicasting messages is shown on the left hand side.
The corresponding maximal throughput is shown on the right hand side.

of our secure multicast implementation, i.e., the bits per second that can be transmitted over
a secure multicast channel. Figure 3.2 summarizes the overhead, as well as the maximal
throughput.

We remark that the actual end-to-end throughput will be lower, as messages may be lost or
corrupted when sent over the underlying insecure multicast channel. The rate at which such
losses or corruptions occur will depend on the particular network, and will typically increase
as the message size increases.

Asymmetric signature generation and verification is typically much slower than symmetric
authentication. We therefore also measured an alternative implementation for authenticating
multicast messages. In particular, we used a second group key of size 128-bits, and authen-
ticated all messages using HMAC-MD5 under this group key. As a result, the messages are
only authentic on a group level and not on a peer level. For certain applications, this may
actually be enough. Figure 3.2 summarizes these results. Not surprisingly, this approach
outperforms the asymmetric approach by a factor of four.

4 A Peer-to-Peer System for Private Virtual Conferencing

In this section, we describe the architecture and implementation of SecChat, which is a
peer-to-peer application for private virtual conferencing. SecChat allows any peer to create
conferences among a subset of the peers, and provides secure multicast communication among
the peers of a conference. The secure multicast channel for a conference becomes available as
soon as a majority of the designated members have joined the conference.

4.1 Architecture

We consider a system of N peers Pi,..., Py, subsets of which want to repeatedly and con-
currently establish a private virtual conference. We assume an X509 public key infrastructure
(PKI), which assigns — by means of an X509 certificate — a unique signature public key p;
to every peer F;; the corresponding private key s; is only known to the peer F;.

SecChat allows peers to create conferences among each other and to join created confer-
ences. Furthermore, it provides secure multicast communication among peers of a conference.
Technically, SecChat consists of two components: a directory service, and a protocol for se-
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cure multicast. The directory service is used to store conference specific information, and
to distribute the necessary public keys and certificates among the conference members. The
secure multicast protocol is used to provide secure communication among the members of a
conference. On an abstract level, SecChat works as follows.

Add Participant: The system allows any peer to add itself as a participant of the system.
To do this, a peer has to generate a public and private key pair, and to get an X509
certificate on its public key from the PKI. It then stores the certificate in the directory
service.

Get Participant: The system allows each peer to retrieve the public key certificates as well
as the names of all participants.

Create: The system allows any peer to create a conference. In order to create a conference, a
peer has to provide a unique tag ID for the conference, a time frame tg,t; during which
the conference shall be held, as well as the indices (names) G of intended members of
the conference together with their public key certificates C = {(5,C;) | 7 € G}. A
conference is then created by storing the corresponding tuple (ID,tg,t;,G,C) in the
directory service.

Join: The system allows any peer to join a conference for which it is a member. In order
to join a conference with identifier ID, a peer ¢ first retrieves the corresponding tuple
(ID,tp,t1,G,C) from the directory service, and verifies all certificates in C. If the
verification fails, it aborts the conference. Otherwise, it it starts a secure multicast
instance with tag ID|smc among the peers in G, using the public keys from C.

Send: The system allows a peer that joined a conference with tag ID to send a message
m to all other conference members. The message m is sent using the secure multicast
instance with tag ID|smc

Receive: If a peer has joined a conference with tag ID, and the secure multicast instance
with tag ID|smc delivers a message m, then the system delivers the message m to the
peer for conference ID.

Notice that by assumption, the X509 PKI assigns a unique signature key to every peer, i.e.,
for every peer, there exists exactly one valid X509 certificate binding a public key to this peer,
such that only this peer knows the corresponding private key. This ensures the authenticity
of the public keys and thereby the security of the conferences, even in case the directory
service behaves maliciously. Specifically, a malicious directory service can only prevent a
conference from happening (by providing for example invalid certificates), but not invalidate
the authenticity of the public signature keys, as it is impossible (by assumption) to forge
certificates.

4.2 A Prototype Implementation in Java

We now proceed with an overview of our prototype implementation of SecChat. The prototype
is written in Java, and is organized in the following packages:

12



Figure 3: Architecture of the Prototype Implementation of SecChat

secureMulticast.protocols: This package contains all classes for implementing the pro-
tocols involved in a secure multicast. Specifically, it implements peer-to-peer commu-
nication, a failure-detector, a consensus protocol, a GKE protocol, as well as a secure
multicast protocol.

secureMulticast.database: This package contains all classes for implementing the direc-
tory service. We implemented the directory service as a central component running on
a server that must be accessible by every peer.

secureMulticast.gui: This package contains all classes for the graphical user interface
(GUI) of our application.

secureMulticast.model: This package contains all classes needed for managing initialization
data, such as the private and public key certificates, encryption algorithms used, and
so on. It serves as a basis for all other packages.

Figure 4.2 illustrates the dependencies of the packages, and also lists the most important
classes of each package. In the following, we describe each of the packages in more detail.

The Protocol Stack (secureMulticast.protocols). This package provides a set of
protocols used for implementing secure multicast (see Figure 4.2 for a list of all proto-
cols). Every such protocol is a sub-class of the abstract class Protocol, the abstract class
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SingletonProtocol, or of the abstract class GroupSingletonProtocol. Protocols of the first
type can be instantiated multiple times for the same group, whereas protocols of the second
type can only be instantiated once for the same group. Protocols of the third type can only
be instantiated once per virtual machine.

For every protocol class protName, there is a caller interface [protName]Caller that must be
implemented by the object that instantiates the protocol. The interface specifies the methods
that will be called by the protocol instance in case it produces an output.

Protocols are instantiated by calling the corresponding static method Protocol .newInstance
(or GroupSingletonProtocol.newInstance, SingletonProtocol.newInstance, respec-
tively). This method expects a unique tag ID, a reference to the calling object, and an
object of type Group, which specifies the intended participants. It is then verified if the tag
ID is unique, and if the calling object implements the corresponding caller interface. In case
all checks succeed, the corresponding instance in generated (in case of singleton protocols, it
is looked-up in an internal hashtable) and returned to the calling object.

Protocols may be built in a modular way, i.e., they may build on sub-protocols. In the follow-
ing, we call such a composition of protocols a protocol stack. The intra-stack communication
is done by method calls whereas the inter-stack communication is message based. Every mes-
sage contains the unique protocol ID and name of the sender and the receiver. There are
two types of messages, peer-messages and group-messages. Regarding which message type
the PT2PTLink — a GroupSingletonProtocol — will send the message to all or just to one
peer.

For each peer in each group exists a ReceivingThread. This thread waits for incoming mes-
sages and puts them in the ReceivingQueue (java 1.4.2 java.nio does not support ssl channels
- so we had to give each socket his own listener namely a ReceivingThread). The message
will then be handled by a WorkingThread, which delivers the message to the destination
protocol and performs all actions started by the protocol upon receiving this message. So the
WorkingThread will run through the whole protocol stack if needed.

Messages to other peers may either be send by the WorkingThread in case the message is
produced by a protocol or by a thread of the application using this protocol stack.

We now sketch the implementation of the lowest layer of the protocol stack: the protocol
PT2PTLink. This GroupSingletonProtocol implements the links used by all protocols in order
to send messages authetically. The authenticity is retrieved by using authentic ssl connections.
To verify the authenticity the X509 public key certificates in the SingleKeyStore are used.
The SingleKeyStore is a wrapper class for java.security.KeyStore. The SingleKeyStore takes
care of loading, storing the KeyStore data and asks the user for the password if needed.

The PT2PTLink starts a ListeningThread to which all other group members may connect. In-
stantiates the ReceivingQueue and starts as much WorkingThreads as specified in the proper-
ties. Upon receiving a connect request the ListeningThread verifies the authenticity,registers
the outputstream and address. Creates a ReceivingThread which is then listening on this
sslsocket.

Sending a message without having already an established connection will lead to the following.
If an address is known for this peer a connection will tried to be opened. If no connection can
be established to an other peer, the message is put into a SendingQueue. Upon initialization of
the SendingQueue the SendingThread is started which tries to connect and send the messages
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periodically. The delay between the retries is specified in the properties file. Notice that it is
sufficient if one of each pair of peers knows the address of the other to establish a connection.
Once a connection was established, both got the address of the other peer, so they can try to
reconnect if necessary.

The Directory Service (secureMulticast.database). The directory service is build on
top of an HSQL-database. In the HSQL-database, java objects can be easily stored as seri-
alized data. The data for this database is stored in the files Test.script, Test.properties. To
generate these two files for a new, empty database, run the ant file build.xml. The database
is behind a server, which handles the requests. The only purpose of the server is connecting
the database to the network. For each request a HandlingThread is started, which takes
care of the database updates. The DB-Stub transforms the messages to the corresponding
SQL-queries. In case of an add participant it also checks if the certificate is valid. This is nec-
essary, because for each identity (the canonical name of the certificate subject in combination
with the certification authority) only one entry may be made in the database. Therefore, an
adversary could prevent a peer to participate by adding a forged certificate.

The port to be served by the database server and the path where to find the database files is
specified in a property file which path has to be given as argument starting the Server. An
example property file can be found under /parameters/DBParameters.secmec.

The User Interface (secureMulticast.gui) and Setup (secureMulticast.model). A
peer is started by invoking the IMFrame with the arguments of your name, and the path to
a property file. This property file contains the address of the directory service, the path to
the keystorefile, the location of the accepted public certificates, the cryptographic algorithms
and providers used, the key sizes, the queue sizes, and the number of WorkingThreads used.
Example property files can be found under /parameters/parameters*.secmc.

The communication between the SecChat and the directory service is handled by
secureMulticast.protocols.DBConnection. Joining a conference will firstly perform a
check if all certificates of the conference members are already accepted. All accepted cer-
tificates are stored in the secureMulticast.model.SingleKeyStore. For the not accepted
certificates, the user will be asked if he trusts these certificates. After all certificates have
been accepted and added to the Singlekey Store, the members of the conference are added
to secureMulticast.model.Peers. Furthermore a Session object is created and added to
secureMulticast.model.Sessions. The AuthenticlpGroup (which is needed to start the
SMC) is then created from of the Session object. Then, the Sec_Multicast is started to com-
pute the group key, and once the group key is computed, messages will be securely multicasted
via Sec_Multicast.send().

A Assessment of personal work

In the beginning, I enjoyed studying the protocols, which I should implement. I spend too
much time on finding out which approach to take for the protocol stack. Therefore, I started
with the design of SecChat. First, the directory service and the model for the chat, then
it was time for the GUI. Since this was my first GUI, this took much too long and is still
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not finished. At that point, I started implementing the protocol stack, thinking that I was
already much too late. So I did probably the biggest mistake, I developed the protocol stack
without testing. Like that, I could catch up with my time plan. But when I started testing
the whole protocol stack, I had to pay for it. Furthermore there have been some problems
in setting up a test environment, which cost me quite a lot of time. But trying to set up
the test environment, I learned a lot about KNOPPIX (We first wanted to run the tests on
Laptops, all exactly the same, running KNOPPIX. But the Laptops were so slow, setting up
the Secure Multicast took about 10 times as long as on a 'normal-PIII 1.1GHz’ Laptop so we
decided to test it on the servers.) The two main conclusions are for me:

e never program faster than you can test

e never work too much, because you will have to pay for your overhours with inproduc-
tivity tomorrow
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