Semester Thesis

Development and Testing Layer

for Ad-Hoc Network Software in
Java

Yves Weber
webery@student.ethz.ch

Dept. of Computer Science
Swiss Federal Institute of Technology (ETH) Zurich
Winter 2003/04

Prof. Dr. Roger Wattenhofer
Distributed Computing Group
Advisor: Aaron Zollinger

Contents

1 Introduction

2 Design of the Emulator
2.1 The Four Main Parts
2.2 Replacing MulticastSocket

3 Implementation: Class Overview

31 CoreClasses.« o v v vt it
3.2 The Replaced Socket L.
3.3 GUI Components v
3.3.1 DrawPanel
3.3.2 ControlPanel
3.3.3 Output
4 Outlook
4.1 Open Problems L
4.1.1 Stopping Clients
4.1.2 Mapping a Socket to its Client
4.1.3 Clients Calling System.exit()
4.1.4 Options of DatagramSocketImpl
4.2 Possible Extensionso

5 Conclusion
5.1 The Program
5.2 Personal Experience

A Short Manual

13
13
13

14

Chapter 1

Introduction

In the exercises of the Mobile Computing lecture [1], the task was to imple-
ment an Instant Messenger (IM) for an ad-hoc network. The messenger should
communicate through java.net.MulticastSockets and use multihop routing
to allow interaction between two clients which do not hear each other directly.
While the implementation was very interesting, it showed that testing the IM
in the real world is not an easy task.

The simple approach of taking a number of notebooks with wireless equip-
ment running in ad-hoc mode and starting an instance of the IM on each of
them has some disadvantages:

e It is difficult to test the IM on a specific graph, e.g. on a circle. A lot of
coordination is needed to ensure that each wireless card is in the trans-
mission range of exactly two others.

e When the multihop routing algorithm fails, it is hard to find out whether
it failed because of packet losses or because of the algorithm itself, i.e. it
is not possible to test the IM in a perfect, deterministic environment.

The task of this semester thesis was to develop a testing layer which allows
to start several instances of the IM on one computer. The layer takes as its
input the description of a graph, where each node represents an instance of
the IM and the existence of a link between two nodes means that the two
corresponding instances hear each other. The layer then emulates the ad-hoc
network by forwarding the messages from one IM to another if the graph allows
this.

The emulator! should be completely transparent to the IM, i.e. the IM can-
not recognize if it is running on top of the layer or in a real ad-hoc network.
This implies that the code of the IM does not need to be changed to make it
compatible to the testing layer. To improve the versatility of the ad-hoc layer,
its compatibility should not be restricted to the IM done in the Mobile Com-
puting lecture. It should be able to collaborate with every Java program that
uses MulticastSockets to communicate.

1In the following document, the development and testing layer is also called emulator.
Programs like the IM that use the layer are called clients; each client corresponds to one node
of the graph representing the ad-hoc network.

Chapter 2

Design of the Emulator

This chapter contains the main design ideas behind the emulator. After a short
overview on the most important modules of the emulator, information is given
about how the emulator replaces the socket used by a client without the need
to adjust the client.

2.1

The Four Main Parts

The project consists of the following four main parts:

A data structure to represent the underlying graph of the emulator. It
abstracts from the fact that it represents an ad-hoc network, i.e. it is just a
collection of nodes with some links between them. It should basically offer
methods to add and remove nodes and links as well as the possibility to
read the whole graph from or write it to a file, respectively. The required
methods of this data structure are defined in the interface Graph.

The emulated MulticastSockets. These sockets must have the same
interface as the java.net.MulticastSocket, but instead of sending the
UDP packets over a network, they are passed directly from one socket to
another since all instances of the socket are running on the same machine.
The sockets abstract from the program they belong to and they do not
know anything about the underlying graph structure. All they can do is
sending and receiving packets of type java.net.DatagramPacket.

The GUI. Besides the parts that take care of the emulation itself, much
emphasis was put on a convenient user interface. The user should always
see what is currently going on and have the possibility to change as many
parameters as possible at runtime.

The core. This part represented by the class Emulator is holding every-
thing together. It keeps a list of all open sockets and a reference to the
GUI. When a packet needs to be sent, this part checks from which client
it is coming from and passes the packet via the link to all neighboring
clients.

The idea was to connect all those four parts by a small interface and keep
each of them independent of the implementation of the other ones. However
first versions of the emulator have shown that this approach produces an unrea-
sonable amount of traffic between the data structure representing the graph and
the GUI since most actions of the graph (including sending a packet and thus
increasing a counter on the corresponding link) required an update of the user
interface. This is the reason why the graph data structure is now part of the
GUI (namely the class DrawPanel), thus partially sacrificing the independence
between the graph and the GUI to increase efficiency.

2.2 Replacing MulticastSocket

A normal client usually opens one or more java.net.MulticastSockets and
starts sending and receiving UDP packets. A very challenging task was to
replace this socket without the client knowing about it, i.e. without changing
the code of the client. It took three attempts to finally succeed:

1. The first approach was to just write a new socket class with the same
interface as java.net.MulticastSocket. Of course, this worked very
well, but it had a big drawback: The user needed to adjust the code of
the client in at least two locations: an import statement at the beginning
to import the modified socket, and at the location the socket is created,
the user had to call a different constructor.

2. The second idea was to use a ClassLoader to solve the problem: When
the client creates a new instance of MulticastSocket, the default Class-
Loader receives a request for this class and returns the default Multi-
castSocket. By replacing the default ClassLoader with a personalized
one, this request can be intercepted and the modified socket can be re-
turned. This procedure works until the point where the ClassLoader
needs to register the modified socket to the system. For security reasons,
the runtime system does not allow to register customized classes with a
name starting with "java.", e.g. java.net.MulticastSocket. There is
no way to circumvent this restriction®.

3. After running out of ideas, the problem was posted in the Java Technology
Forums [3]. Already the first reply [4] pointed out that the Datagram-
Socket class (which is the superclass of MulticastSocket) has the static
method setDatagramSocketImplFactory to set a customized factory for
creating the sockets. Using this method, the customized socket can be
returned to the client without any changes, since the DatagramSocket-
ImplFactory can be set by the emulator before any client is started. This
finally allowed to replace the MulticastSocket in a manner totally trans-
parent to any client.

1 Actually, there is a way to circumvent this problem. The idea is to temporarily corrupt
the internal string table of the runtime system so that the check name.startsWith("java.")
in the method defineClass() of the class ClassLoader returns false even though name is the
String java.net.MulticastSocket. The precise procedure to do this is described on [2]. But
this approach is considered a dirty hack and heavily dependent of the current implementation
on the Java runtime system.

Chapter 3

Implementation: Class
Overview

In this chapter, an overview is given about all classes written for this project.
Their tasks are described and a rough outline of their implementation is given.
For more details and the description of all methods and parameters, the com-
ments in the code of the classes should be consulted.

3.1 Core Classes

As mentioned in section 2.1, the most important class of the project is the class
Emulator. It keeps all other parts together and gets everything to work. This is
also where the main method of the whole project is located. The two principle
tasks of the class Emulator, besides offering communication between the other
parts, are:

e Starting the client applications. This is done with the help of the class
ClientThread. To allow the user to run different applications in each
node, ClientThread uses Reflection (java.lang.reflect) to load the
classes specified by the user at runtime. Each client is started in a different
ThreadGroup with the name of the corresponding node. This is required
by the method mapThreadToNodename () to identify which thread belongs
to which client!.

e Distributing a packet between the sockets. As stated in section 2.1, a
packet sent by a socket is passed to the class Emulator. Its task is to find
all other sockets connected to the sender socket which are in the multicast
group the packet is sent to. This is done by passing the packet to all links
(class Link) of the sender. The links then check whether or not there is
at least one socket of the desired multicast group on the other side and
whether the packet gets lost by a simulated transmission error.

Since Emulator is implemented as a singleton, all classes can always access
it using the static method Emulator.getRef ().

Isee section 4.1.2 for restrictions of this approach.

3.2 The Replaced Socket

A very important class is EmuSocket. As described in 2.2, this class replaces
the original java.net.MulticastSocket. All packets sent via this socket are
passed to the Emulator class for further distribution instead of sending them
out through a network adapter.

When the EmuSocket receives a packet, it cannot be directly forwarded to
the program the socket belongs to. Instead, the packet has to be saved until
the owner calls the blocking method receive(DatagramPacket). All packets
waiting in the socket ready for being received are stored in a priority queue
sorted according to their delivery time. This is necessary since the packets have
different delays if the user changes the delay of a link during runtime.

Besides the two methods to insert a packet into the priority queue, all meth-
ods of class EmuSocket are inherited from the abstract class DatagramSocket—
Impl. An annoying aspect is that this abstract class has two methods—set-
TTL() and getTTL()—which are deprecated in the current Java API version
1.4.2. Not implementing these methods leads the compiler to generate an error
message saying that the class EmuSocket should be declared abstract; but imple-
menting the two methods results in a warning that the class is using deprecated
methods. No way was found to circumvent this warning.

3.3 GUI Components

etwork Emulatar

Statistics
\#of clients: 5
of links: 5
#of packets sent: 0

. Edit Graph manually

Add Client
Remaove Client
| Start Clients
' Load!Save Graph
New Graph
Load Graph
Save Graph
Save Graph As
i—MisceIIaneuus
! Settings
| Hide Output Wind
| Exit

100 ms

sent: 0 lost 0

Figure 3.1: The main window of the Emulator with the DrawPanel on the left
and the ControlPanel on the right.

Figure 3.1 shows the GUI of the emulator. This window is represented by the
class MainWindow, which consists of two panels, namely the DrawPanel on the
left to display and edit the underlying graph of the emulator and ControlPanel
on the right. Figure 3.2 shows another important part of the GUL. It is a window
where the output of all running clients goes to. This window is represented by
the class OutputWindow. These three classes including their helper classes will
be described in the next chapters.

& outputiindow

O0PS: Our MYNEIGHEORS was not receiwved.

Figure 3.2: The output window collecting output from all running clients and
the messages of the Emulator

3.3.1 DrawPanel

In the DrawPanel, the user can specify what the graph emulated by the ad-hoc
layer should look like. Using the left mouse button, nodes can be moved around
and links can be created and edited. A click with the right mouse button on a
node brings up a window to edit (EditClientWindow) the node or creates a new
node when clicked on the background. The implementation of the DrawPanel
is pretty straightforward: The class extends JPanel and keeps a Vector of all
currently available nodes (class Client) and links (class Link). A request to
draw the panel is redirected to all these elements resulting in each element being
drawn. When the MouseListener reports any clicks from the user, the Draw-
Panel checks whether a node or a link was hit and generates the appropriate
reaction, e.g. moving a client or creating an instance of EditClientWindow.
The DrawPanel also implements the interface Graph. Using this interface,
other classes can get information about the current graph or even edit it, as
described in section 2.1. The class GraphFileWriter is able to write the current
graph to a file, while a complete graph can be read from a file using class Graph-

FileReader. So the DrawPanel is not only responsible for drawing the graph
but also the data structure containing the graph.

3.3.2 ControlPanel

The ControlPanel contains no code other than for creating and positioning its
buttons and a mouse listener to react to clicks on any of the buttons. The main
function of the ControlPanel is to provide the user with another method to edit
the graph. The possibilities to change the graph go far beyond those that are
offered by the DrawPanel: The user can load and save complete graphs, start
clients, remove clients? and change the properties of a link. This is done by
creating and starting an instance of the appropriate window. The classes repre-
senting these windows have fairly self-explanatory names (e.g. EditLinkWindow
or EditLinkPropWindow) and their implementation is—besides the creation and
positioning of many SWING components—very short and easy to understand,
consequently they do not deserve further explanation here.

Another job of the ControlPanel is to give the user the possibility to change
certain global parameters of the emulator. Such parameters include the size of
the buffer in which the sockets save the packets waiting to be received or the
amount of milliseconds the arrow of a link flashes if the link was used to send
a packet. These settings are saved as static fields in the class Options. To
edit them, the ControlPanel opens an OptionsWindow. When the emulator is
closed, the settings are saved in the file “emulator.txt” and reloaded when the
emulator is started the next time.

The final task of the ControlPanel is to show some statistics of the running
emulation process (e.g. how many packets have been sent) and keeping this
information up-to-date. This is done by a private thread which renews the
statistics once per second.

3.3.3 Output

The user can choose in the OptionWindow to redirect all output of the running
clients not to the console but to a special window. This window is represented
by the class OutputWindow. It consists of a JTabbedPane with one tab for each
running client and the two additional tabs “Emulator” and “All”. In the tabs of
the clients, all the output generated by the corresponding client is shown. The
text sent to System. out is printed in black, text to System. err in red. This way,
the user is able to see a difference between the two streams. Output generated
by the emulator itself (e.g. when a packet is lost due to a buffer overflow in a
socket) is of course shown in the tab “Emulator”. The last tab labeled “All”
shows the output of all clients together, including messages from the Emulator.
Different background colors are used, one for each client. The implementation of
OutputWindow is quite straightforward: There are methods to add and remove
tabs and a method to write text. The latter takes as parameters the name of
the destination tab, the text to write, and a boolean flag whether or not the
text is coming from System.err.

The main work—intercepting the print() and println() calls and redi-
recting them to the corresponding tab—is done by the class OutputHandler.

2see section 4.1.1 for restrictions when removing clients.

When started, it replaces the default streams with its own streams by calling
System.setOut () and System.setErr() respectively. These streams have to
find out from which client the text is coming. This is achieved by calling Emu-
lator.mapThreadToNodename () with the current thread as its parameter. The
Emulator class recognizes which thread belongs to which thread group; since
the thread groups carry the names of their corresponding clients, this transla-
tion can be done easily. As stated in section 4.1.2, this mapping may fail. If the
text cannot be associated with a client, it is printed with the same color as the
messages from the emulator.

The user can choose not to use the OutputWindow but to print everything
to the console. The OutputHandler then redirects the output to the default
System.out and—if chosen by the user—prefixes the name of the sender to
each line of text.

Chapter 4

Outlook

4.1 Open Problems

There are some problems for which no satisfying solution was found during this
thesis. This was either because there was not enough time—or the amount of
time needed to solve the problem was not justified—or because there appears
to be no feasible way to solve the problem.

4.1.1 Stopping Clients

In the current version, removing a client from the emulation is done by removing
the client from the graph, i.e. removing all links connected to the corresponding
node and the node itself. The client itself keeps running. There are two possible
approaches to change this:

e The client itself offers a method externalStop(), which allows the em-
ulator to force a client to terminate. But this approach contradicts the
universality of the clients. Further, this method has to respect some rules,
e.g. not to use System.exit() (see section 4.1.3)

e The emulator stops the client without informing it. This could be achieved
by identifying all associated threads and stop each one of them, or even
simpler by stopping the whole ThreadGroup of the client. But since
Thread.stop() and ThreadGroup.stop() are deprecated, this can not
be done with the current JDK version.

4.1.2 Mapping a Socket to its Client

The current approach to use ThreadGroups to identify which socket belongs to
which client has a major disadvantage: If a socket is created as a reaction to
an event from the GUI of a client, e.g. an ActionEvent when the user clicked
a button, the mapping from the socket to its client fails. The reason for this is
the fact that the code of the listener of such an event is executed by the AWT
event dispatcher thread. This thread is the same for all clients and does not
belong to a specific thread group.

If a socket is created and cannot be assigned to a client by the emulator,
the socket is ignored by the emulator, and an error message is displayed to the

10

user. It tells him or her not to create a socket as a reaction to an event from
the GUI but to instantiate all sockets when the client is started.

4.1.3 Clients Calling System.exit ()

A major problem is that when the user manually wants to remove a client by
closing it, it is very likely that the client calls System.exit () to terminate. Un-
fortunately, this also stops all other clients and the emulator itself. Possibilities
to solve this problem are:

e A SecurityManager. Before the System.exit() call is executed, the
runtime environment calls checkExit () of the current SecurityManager,
if there is one installed. Unfortunately, installing a SecurityManager is
not the perfect solution. It is very likely that the program which called
System.exit () is left in an undefined state and is still running. So this
approach leads to new problems.

e All clients could be run in different virtual machines. A System.exit()
call would then only terminate the virtual machine of the corresponding
client. But this makes communication between the clients much more
complicated; this would go beyond the scope of this thesis.

The current implementation just assumes that either the clients can be ter-
minated without the use of System.exit() or that the user does not try to
close a client.

4.1.4 Options of DatagramSocketImpl

The interface DatagramSocketImpl implements the interface java.net.Socket-
Options. This interface consists of the two methods setOption() and get-
Option() to set several options of the socket. Since most of these options
change the behavior of lower levels which are not simulated by the emulator,
most calls to setOption() are ignored. The only option ID having an effect is
SocketOptions.SO_TIMEQUT to set a timeout of a call to MulticastSocket.re-
ceive (). Because all other option IDs have no effect, clients depending on them
might show unexpected behavior.

4.2 Possible Extensions

During the work on the program, several ideas for additional features were
proposed. While most of them are implemented, some had to be ignored because
of time limitations. These possible extensions are listed in the following:

e Experiments have shown that running more than about a dozen clients
in the emulator is not feasible since the user tends to lose track. There
are much likely memory issues too, depending on the client programs.
This is the reason why it would be very useful to run the emulator on
several machines and emulate one big network on them. To implement this
feature, precise coordination and synchronization between the instances
of the emulator is needed to ensure consistency.

11

e At the moment, the user has the possibility to define the delay and the
error probability or a deterministic error pattern for each link. It could
be useful to set more precise properties. Such attributes could be:

— Delay based on a probability distribution. This would imply that the
clients could not rely on the FIFO property of the links any more.

— Packet loss dependent on different factors, such as link load, node
buffer status or packet length.

— Probability for bit errors in a packet.

The main challenge would be to integrate these features without making
the link properties dialog window overloaded and still easy to handle.

12

Chapter 5

Conclusion

5.1 The Program

The current version of the testing layer is capable of emulating an ad-hoc net-
work so that this program can be used as a tool to develop and test new ad-hoc
software. The main goal—the nonnecessity to do any adjustments to this soft-
ware to make it compatible with the layer—was mostly achieved'. Tests have
shown that this emulator is capable of running up to 8 instances of the given
Instant Messenger—a total number of 16 sockets—without any problem. Be-
yond that number, OutOfMemoryExceptions started to occur. Using a smaller
client which requires less memory, the emulator succeeded to run more than
30 instances in parallel. The biggest open problem remaining is that there are
limitations when a user wants to stop a running client either by removing it
from the emulation itself or by closing it manually. But since there is barely a
scenario where stopping a client is really essential, this is totally acceptable.

5.2 Personal Experience

It was very exciting to work on this project from the design over the implemen-
tation to the final testing phase. It was surprising how many aspects such as
Reflection, Classloaders or Security Managers were needed to work with during
the whole process, even though this thesis not look as if it would require such
in-depth Java knowledge at the beginning.

Of course, there were also some frustrating setbacks, the biggest one being to
realize that the approach to use Classloaders to replace the MulticastSocket
would not lead to success, after a considerable amount of work on them. But the
fact that another approach finally solved the problem in an even more elegant
way was more than rewarding for the time lost before.

1See section 4.1.2 for information about the only restriction to the client.

13

Appendix A

Short Manual

Starting the Emulator The emulator is started from the console with the
command java -jar Emulator.jar. It can also be started by double-clicking
the jar file if this function is supported by the operating system. It is important
that the programs to be run in a node are in the same directory as the emulator.
If not, the runtime system is not able to locate the classes. Of course, they must
be already compiled.

Editing the graph On the left side of the main window of the emulator, the
graph can be edited. With the right mouse button clicked in an empty location,
a new node can be added, while a right click on an existing node opens a window
to edit its properties. The left mouse button is used to change the position of a
node and to add or remove links. A node can be moved around by dragging it
in the middle. When clicked on its border, a new link starting at this node is
created. To remove a link, it must be grabbed at one of its arrows and released
in an empty area of the graph.

The graph can also be edited by the use of the buttons on the right side of
the window. These buttons offer even more possibilities to change the graph,
e.g. adjusting the properties like the delay or the error probability of a link. A
graph can also be saved or loaded using the corresponding buttons.

Starting the Emulation Process When the graph is drawn and the class
name including the parameters for main() of each node is specified, the emula-
tion process can be started by pressing the “Start Clients” button. Even when
the programs are started, the graph can still be edited and new clients can be
added. A subsequent click on the “Start Clients” button activates the recently
added programs.

Stopping a Client To stop a client, the “Remove Client” button should
be used. The emulator then removes all links of the corresponding node and
closes all sockets of the client. The window of the client remains visible. If
this window is closed, it is very likely that the client executes System.exit ().
This would result in the termination of the whole emulator. This is the reason
why preferably the “Remove Client” button should be used to directly close the
window of the client.

14

Bibliography

[1] Homepage of the Mobile Computing course, summer 2003
http://dcg.ethz.ch/lectures/ss03/mobicomp/index.html

[2] Insane Strings (changing hardcoded strings at runtime)

http://www.smotricz.com/kabutz/Issue014.html

[3] Java Technology Forums

http://forum. java.sun.com/

[4] Java Technology Forums - Posting containing the advice to use a factory
to replace the MulticastSocket

http://forum. java.sun.com/thread. jsp?forum=4&thread=469427

15

