
Diploma Thesis

A Churn-Resistant P2P-System
Based on the Pancake Graph

Joest M. Smit

Prof. Dr. Roger Wattenhofer

Fabian Kuhn

Stefan Schmid

Distributed Computing Group

ETH Zurich, Switzerland November 2004 - March 2005

Abstract

Since many years, peer-to-peer systems are very popular and the number of their users
is still increasing. Also in the research of computer science, this topic has achieved
much attention. The analysis of fault tolerant P2P-systems mostly covers random joins
and leaves in a static model, i.e. a P2P system tolerates a number of simultaneous
random faults. However, in real P2P system, the set of peers connected to the system,
continuously changes. For this, a dynamic model seem to be more appropriate.

In this diploma thesis, a P2P system is presented, that can defend a malicious adver-
sary, joining and leaving peers in the system. In contrast to other models, the adversary
can do this continuously in a worst case manner, while the system tries to stay fully
functional.

Contents

1 Introduction 5
1.1 Model . 7
1.2 Related Work . 7

2 Basic Components 9
2.1 Scaling . 9

2.1.1 Expansion . 9
2.1.2 Reduction . 9

2.2 Information Aggregation .10
2.3 Token Distribution . 11
2.4 Node Representation .14

2.4.1 The Grid . 14
2.4.2 Edges .15

3 Algorithms 17
3.1 Introduction . 17
3.2 Grid Maintenance .18
3.3 Updating Inter-Node Connections20
3.4 Expansion .22

3.4.1 Matching Establishment .22
3.4.2 Matching maintenance .25
3.4.3 Expand Step .26

3.5 Reduction .27
3.6 Token Distribution on the Grid Level33
3.7 Information Aggregation Algorithm in Our System37

4 The System 41
4.1 Overview . 41
4.2 Thresholds .43
4.3 Properties of the Pancake System .46
4.4 Data and Routing .47

5 Conclusions 51

A Acknowledgements 55

3

Chapter 1

Introduction

Stirred by the remarkable popularity of Internet file-sharing software, distributed sys-
tems and networking research made peer-to-peer (P2P) systems a focal point of their
recent studies. As opposed to P2P systems, conventional distributed systems typically
consist of afixedset of machines. During operation, occasionally (but rarely!) a small
subset of machines might fail (crash or behave maliciously, depending on the model).
Thanks to ingenious communication protocols these failures will be detected, and op-
erable parts of the system will eventually be guided back to a save state.

In a P2P system, however, there will be no fixed set of participating machines. In-
stead, a distributed P2P system is composed of a huge number of machines (peers)
who join and leave the system at high rates. In P2P lingo, this high turnover of ma-
chines is calledchurn. For distributed systems with high churn the orthodox group
communication schemes seem futile. In a P2P system with millions of peers where
each participates in the system for a few hours on average, hundreds of peers join and
leave the system every second. In such a system, it seems out of the question to achieve
consensus which peers currently participate.

In spite of being a foremost difficulty in P2P systems, churn has not received the
attention it deserves in the literature. With the exception of [13], P2P systems are
instead analyzed against an adversary who can crash a functionally bounded number of
random peers. Then, much in the esprit of self-stabilization or group communication,
the P2P system is given sufficient time to recover.

In this paper we describe an efficient P2P system which is resilient to churn. We
assume that joins and leaves occur in a worst-case manner. In particular, an adversary
can remove and add a bounded number of peers. The adversary chooses which peers to
crash and how peers join. However, we assume that a joining peer knows a peer which
already belongs to the system. Moreover, the adversary does not need to wait until the
system is recovered before it crashes the next group of peers.

Instead, the adversary may crash peers continuously while the system is trying to
stay alive. Our system remains fully functional in the presence of such an adversary
which constantly attacks its weakest part. For example, an adversary could insert a
crawler into the P2P system, learn the topology, and then repeatedly crash selected
peers, attempting to partition the P2P network. Such an adversary is countered by
our system by continuously moving the remaining or newly joining peers towards the
weakest areas.

Of course, we can not allow our adversary to have unlimited capabilities. In par-
ticular, in any constant time interval, the adversary can at most add and/or remove

5

6 CHAPTER 1. INTRODUCTION

Figure 1.1:A pancake graph of order 4 (P4).

O(log n
log log n) peers,n being the total number of peers presently in the system. This

model covers an adversary which repeatedly takes down machines by a distributed de-
nial of service attack, but only a bounded number of machines at each point in time.
Our system issynchronousand we assume messages to be delivered timely, i.e., in
at most constant time between any pair of operational peers. Note however that if
nodes are synchronized locally, our algorithm also runs in an asynchronous environ-
ment. Thereby, the propagation delay of the slowest message defines the notion of time
which is needed for the adversarial model.

The basic structure of our P2P system is a pancake graph (cf. Definition 1.1 and
Figure 1.1). Each peer is part of a distinct pancake node; each pancake node consists
of O((log n

log log n)2) peers. A data item is redundantly stored by the peers of the node to
which its identifier hashes. Peers have connections to other peers of their pancake node
and to peers of the neighboring pancake nodes. In the case of joins or leaves, some
of the peers have to change to another pancake node such that up to constant factors,
all pancake nodes own the same number of peers at all times. If the total number of
peers grows or shrinks above or below a certain threshold, the order of the pancake is
increased or decreased by one, respectively.

Definition 1.1. A Pancake Graphof orderd is a graphPd = (V, E), with V (Pd) =
{l1l2...ld |li ∈ {1, ..., d}, ∀i 6= j : li 6= lj}, i.e.,V (Pd) is the set of all permutations
on d elements. Letρi denote a prefix-inversion of lengthi, i.e. ρi(l1...li...ld) :=
lili−1...l1li+1...ld. We have{u, v} ∈ E(Pd) ⇔ v = ρi(u).

The balancing of peers among the pancake nodes can be seen as a dynamic token
distribution problem [16] on the pancake. Each node of a graph has a certain number
of tokens, the goal is to distribute the tokens along the edges of the graph such that
all nodes end up with roughly the same number of tokens. While tokens are moved

1.1. MODEL 7

around, an adversary continuously inserts and deletes tokens. Our P2P system builds
on two basic components: i) an algorithm which performs the described dynamic token
distribution and ii) an information aggregation algorithm which is used to estimate the
number of peers in the system and accordingly adapt the order.

Based on the described structure, we get a fully scalable, efficient P2P system
which toleratesO(log n

log log n) worst-case joins and/or crashes per constant time inter-

val. Moreover, peers haveO(log n
log log n) neighbors, and the usual operations (e.g. search)

take timeO(log n
log log n).

1.1 Model

The synchronous message passing modelis considered where in each round, every
peer can send a message to all its neighbors. The ongoing churn is modelled with an
adversaryAADV (J, L) which may performJ arbitrary joins andL arbitrary leaves
(crashes) per time interval of unit length. A joining peerπ1 is assumed to contact
an arbitrary peerπ2 which already belongs to the system. In contrast to other systems
where peers have to do some finalizing operations before leaving, we consider the more
general case where peers depart or crash without notice.

1.2 Related Work

The pancake graph and the famous unsolved problem of computing its diameter has
been introduced by [6], and has been analyzed in several papers [5, 8, 10, 11]. How-
ever, to the best of our knowledge, this is the first paper that addresses the issues of
scalability, information aggregation, and token distribution on the pancake graph.

Over the last years, enough and to spare overlay networks with various interesting
technical properties have been proposed (e.g. [2, 3, 4, 9, 12, 15, 17, 18, 21, 22]).
Because of the nature of P2P systems, fault-tolerance has been a prime issue from the
beginning. The systems are usually robust against a large number of random faults.
But after crashing a few peers, the systems are given time to recover again. Churn has
been addressed in [19] from an experimental point of view.

Resilience to worst-case failures has been studied by Fiat, Saia et al. in [7, 20].
They introduce a system where, with high probability,(1 − ε)-fractions of peers and
data survive the adversarial deletion of up to half of all nodes. However, in contrast
to our work the failure model is static. Moreover, the whole structure has to be rebuilt
from scratch if the total number of peers changes by a constant factor.

Abraham et al. [1] address scalability and resilience to worst-case joins and leaves.
They focus on maintaining a balanced network rather than on fault-tolerance in the
presence of concurrent faults. In contrast to our system, whenever a join or leave takes
place, the network has some time to adapt.

The first paper treating arbitrarily concurrent worst-case joins and leaves is by Li
et al. [14]. In contrast to our paper, Li et al. consider a completely asynchronous
model where messages can be arbitrarily delayed. The stronger communication model
is compensated by a weaker failure model. Leaving peers execute an appropriate “exit”
protocol and do not leave before the system allows this; crashes are not allowed.

To the best of our knowledge the only paper which tolerates continuous joins
and leaves is [13]. In [13] it is shown that a hypercubic topology can tolerate

8 CHAPTER 1. INTRODUCTION

O(log n) worst-case joins and/or crashes per constant time interval. In this paper—
superficially—we improve the result of [13] by presenting a topology with better char-
acteristics (faster search time and lower degree). However, we think our main contri-
bution is to make a most intricate graph topology dynamic. Majoring the pancake, we
believe, essentially gives a recipe for any P2P topology, by simply applying our basic
components (see Chapter 2) as ingredients.

Chapter 2

Basic Components

2.1 Scaling

The order of the pancake graph is changed according to the total number of peers in
the system. For the expansion, nodel1...ld ∈ Pd splits intod + 1 new nodes{(d +
1)l1l2...ld, l1(d+1)l2...ld, ..., l1l2...ld(d+1)} of Pd+1, and vice versa for the reduction.

To be useful for our application, the order change of the pancake has to fulfill a
crucial requirement: A node must be able to compute its new neighborslocally, i.e.,
based on the information about the neighbors in the graph before the order changed. We
will now describe the expansion and the reduction in detail and show that this criterion
is indeed fulfilled in both cases.

2.1.1 Expansion

If the total number of peers exceeds a certain threshold, each nodev = l1...ld ∈
Pd splits into d + 1 new nodes{vexp

(1) := (d + 1)l1l2...ld, v
exp
(2) := l1(d +

1)l2...ld, ..., v
exp
(d+1) := l1l2...ld(d + 1)} of Pd+1. The following lemma states that

the new neighbors of a nodevexp
(i) ∈ Pd+1 can easily be computed by the knowledge

about the neighbors of the original nodev ∈ Pd.

Lemma 2.1. Consider two arbitrary nodesu and v. It holds that if{uexp
(i) , vexp

(j) } ∈
E(Pd+1) for somei, j ∈ {1, ..., d + 1}, then{u, v} ∈ E(Pd) or u = v.

Proof. If {uexp
(i) , vexp

(j) } ∈ E(Pd+1) there is ak ∈ {2, ..., d + 1} such thatuexp
(i) =

ρk(uexp
(j)). If the numberd+1 appears among the firstk positions ofui (and thus also of

uexp
(i)), the original nodes—having no number(d+1)—are related by a prefix-inversion

of lengthk−1: u = ρk−1(v). If on the other hand the numberd+1 appears among the
remaining positions,u andv are related by the same prefix-inversion:u = ρk(v).

2.1.2 Reduction

If the total number of peers per node on average falls beyond a certain threshold, all
nodesl1...li(d + 1)li+1...ld ∈ Pd+1 for i ∈ [0, d] merge into a single nodel1...ld ∈
Pd. This reduction works as follows. First, the followingdominating seton Pd+1 is
computed: every nodev = l1...ld+1 havingl1 = d + 1 becomes a dominator. We will

9

10 CHAPTER 2. BASIC COMPONENTS

call a dominator plus its adjacent (dominated) nodes acluster. In the following, let
vdom
(1) = (d+1)l1...ld be a dominator andvdom

(i) = ρi(vdom
(1)) = li−1li−2...(d+1)li...ld

its neighbor with prefix-inversion of lengthi. The idea will be to contract each cluster
with dominatorvdom

(1) = (d + 1)l1...ld to a single nodev = l1...ld ∈ Pd. However,
our clusters do not yield the desired reduction yet: In order to get the inverse operation
of the expansion, each cluster has to exchange one dominated node with each of its
adjacent clusters.

Before we explain the exchange of the dominated nodes in detail, we first prove that
the set of nodes havingl1 = d+1 indeed forms a dominating set, that every dominated
node is adjacent to exactly one dominator, and that dominators are never adjacent.

Lemma 2.2. Consider the graphPd+1. Thed! nodes ofPd+1 with first numberl1 =
d + 1 build a dominating set, i.e., each node is either a dominator itself or adjacent to
a dominator. Moreover, clusters are disjoint.

Proof. Consider an arbitrary nodev = l1l2...ld+1. Assume thatli = d + 1 for some
i ∈ {1, ..., d+1}. If i = 1, v is a dominator itself. Clearly, two nodes havingl1 = d+1
cannot be adjacent. Ifi 6= 1, there is exactly one neighbor ofv which is a dominator,
namely nodeu = ρi(v).

According to Lemma 2.2, each node belongs to exactly one cluster, hence the con-
traction operation is well-defined.

However, as stated, we additionally need to exchange dominated nodes between
adjacent clusters. This works as follows: The cluster with dominatorvdom

(1) = (d +
1)l1...ld sends its dominated nodevdom

(i) to the cluster with dominator(d+1)ρi(l1...ld),
for i ∈ [2, d].

We will now show that after the exchange of the dominated nodes, (1) each cluster
with dominatorvdom

(1) = vexp
(1) = (d+1)l1...ld which will reduce to nodev = l1...ld con-

sists of the nodesvexp
(1) = (d+1)l1...ld, v

exp
(2) = l1(d+1)...ld, ..., v

exp
(d+1) = l1...ld(d+1),

and (2) the dominated nodevexp
(i) for i ∈ [3, d + 1]—before being transferred to the

cluster dominated byvdom
(1) —belonged to the cluster that will form the new nodeρi(v).

To see this, note that nodevdom
(i) is replaced byρi−1(vdom

(i)) = ρi−1(li−1...l1(d +
1)li...ld) = vexp

(i) , and that before the transfer,vexp
(i) belonged to the cluster dominated

by ρi(v
exp
(i)) = (d+1)li−1...l1li...ld which will reduce to nodeρi−1(v). Thus, after the

exchange, the cluster which will contract to nodev consists of the nodesv would also
expand to, and a cluster has information about each of its future neighbors.

2.2 Information Aggregation

The order of our pancake is adapted according to the total number of peers in the
system. In this chapter, we present an algorithmAIA which allows to count the total
number of tokens (peers) at the pancake’s nodes. LetPi(v) denote the sub-graph of the
pancake graphPd consisting of those nodes that share a postfix of lengthd − i with a
given nodev. (Note that the graph induced byPi(v) is also a pancake graph, namely
of orderi.) The algorithm runs ind − 1 phases and accumulates the total number of
tokens in sub-graphs of increasing size.

Each phase consists of two rounds. In the first round of phasei, a nodev sends the
total number of tokens in its sub-graphPi(v)—which is known by induction—to its
neighborρi+1(v). Thus, since prefix-inversion is a symmetric operation,v receives the

2.3. TOKEN DISTRIBUTION 11

total number of tokens in the sub-graphPi(ρi+1(v)) from nodeρi+1(v). In the second
round, nodev sends this information to all neighborsρj(v) for j < i + 1. Given the
information about allPi(ρi+1(ρj(v))) (for j < i+1), the total number of tokens in the
sub-graphPi+1(v) can be computed:|Pi+1(v)| = |Pi(v)|+ ∑i

j=1 |Pi(ρi+1(ρj(v)))|,
where| · | denotes the number of tokens in the corresponding sub-graph. Hence, by
induction, afterd−1 phases, every node can compute the total number of tokens in the
system.

Theorem 2.3. AIA provides all nodes with the correct total number of tokens in the
system afterd− 1 phases.

Proof. By induction over the phases we show that after phasei, it holds that each node
v knows the total number of tokens inPi+1(v).

i = 0 : Before the first phase, a nodev only knows its own tokens, and as there is
only one node inP1(v), the claim trivially holds.

i → i + 1 : By the induction hypothesis, after phasei, each nodev = l1...ld knows
the total number of tokens in the sub-graphPi+1(v). In phasei + 1 nodev learns the
total number of tokens in the sub-graphsPi+1(ρi+2(ρj(v))) for j < i + 2. This allows
to compute the total number of tokens inPi+2(v).

To see this, note that the nodesρj(v) for j < i+2 all have a different number at the
first place and share the postfixli+2li+3...ld with v. Performing aρi+2 prefix-switch
yields a member for each sub-graph with postfixli+3li+4...ld of lengthd − (i + 2).
Therefore, combining the information of the sub-graphs yields the total number of
tokens inPi+2(v).

In our system,AIA is executed all the time. Even it could be run pipelined, i.e.
all phases concurrently and thus supplying a result after each phase, this will not be
done, since the number of integer that would be received by a peer would be inΘ(d2).
The latest result, before the arrival of the next result, is thus delayed by at most2d− 3
phases.

2.3 Token Distribution

As stated, each pancake node is simulated by a number of peers. Ideally, the number
of peers per pancake node should be roughly equal for all nodes. Because peers join
and leave, it is necessary to constantly adapt the assignment of peers to nodes. To
problem of assigning peers to nodes is closely related to the token distribution problem
as introduced in [16]. Given a graphG and a number of tokens at each nodes ofG, the
goal is to find a distributed algorithm which moves tokens along the edges ofG such
that in the end, the tokens are distributed equally among all nodes ofG. In the context
of this paper, we look at a dynamic token distribution problem on the pancake graph
where in each step, tokens (peers) can be inserted and deleted at arbitrary nodes. The
objective is to constantly move tokens along edges such that at all times, all pancake
nodes have roughly the same number of tokens.

Formally, the goal is to minimize the maximum difference of the number of tokens
of any two pancake nodes, denoted by thediscrepancyφ. Analogously to the informa-
tion aggregation algorithm of Chapter 2.2, our token distribution algorithm exploits the
recursive structure of the pancake graph. In a first step, all pancakes of order2 balance
their tokens. Then, the pancakes of order3, 4, . . . exchange tokens. Pancakes of order
i can thereby build on the fact that all pancakes of orderi− 1 have balanced the token

12 CHAPTER 2. BASIC COMPONENTS

levels of their nodes. A detailed description is given in Algorithm 1. We assume that
we have given a dominating set as described in Chapter 2.1 for each pancakePi(v).
The dominators could e.g. be all nodes ofPi(v) which have the largest of the firsti
coordinates at the first position. Note that coordinatesi + 1 to d are fixed for all nodes
of Pi(v) by definition.

Algorithm 1 Pancake Token Distribution (nodev)
1: for i := 2 to d do
2: sendall tokens toρi(v);
3: sendall tokens to dominator inPi(v);
4: dominatorssendtokens to nodes of their clusters
5: end for

Let Pi(v) be the pancake of orderi as in Chapter 2.2. After theith iteration of
Algorithm 1, for all v, all nodes ofPi(v) have the same number of tokens. Hence, at
the end (i = d) all nodes of the pancake have the same number of tokens. In line 4 of
Algorithm 1, it is not specified how many tokens to send to which nodes if the number
of tokens at a node is not divisible byi. There is also no explicit notion of tokens
which are inserted or deleted by an adversary during the algorithm. In the following,
we will prove that the algorithm perfectly distributes tokens if tokens are fractional,
that is, if they can be divided arbitrarily and if no tokens are inserted or deleted during
the algorithm (static token distribution). We will then analyze the effects of adversarial
insertions and deletions and of integer tokens.

Lemma 2.4. Algorithm 1 perfectly solves the static fractional token distribution prob-
lem on a pancake of orderd.

Proof. As outlined above, we prove the lemma by induction overi. SinceP1(v) is
a single node, clearly at the beginning all nodes ofP1(v) have the same number of
tokens. Let us therefore assume that for allu, all nodes ofPi−1(u) have the same
number of tokensti−1(u). The pancakesPi−1(u) of orderi − 1 belonging toPi(v)
can be characterized by theirith coordinate. Letli be theith coordinate of the nodes
of Pi−1(u). In line 2 of Algorithm 1, a nodeu of Pi−1(u) modes all tokens toρi(u),
that is, all tokens are moved to a node withli as its first coordinate. Hence, after line 2,
all nodes ofPi(u) with first coordinateli haveti−1(u) tokens.

In lines 3 and 4, each cluster (dominator plus neighbors) distributes all its tokens
equally among the members of the cluster. It therefore remains to show that each
cluster ofPi(u) has the same number of tokens. However, since in each cluster, every
possible first coordinate occurs exactly once, this is clear from the discussion of the
first step of the algorithm (line 2).

We will now show how dynamic insertions and deletions of tokens affect the frac-
tional token distribution of Algorithm 1. For the dynamic token distribution algorithm,
we assume that thed − 1 iterations of the algorithm are repeated, that is, afteri = d,
we start again ati = 2.

Lemma 2.5. If in every iteration of Algorithm 1 at mostJ tokens are inserted and at
mostL tokens are deleted, the algorithm guarantees that at all timest ≥ d − 1, the
maximal difference between the numbers of fractional tokens between any two nodes is
3(J + L).

2.3. TOKEN DISTRIBUTION 13

Proof. To start, we only consider insertions and neglect deletions. Because all opera-
tions of the algorithm are linear, we can look at each token independently. By Lemma
2.4, each token which is inserted before the first iteration of the algorithm is distributed
equally among1/i! ≤ 2i nodes after iterationi. A token which is inserted after it-
erationj is distributed amongi!/j! ≤ 2i−j nodes after iterationi. All tokens which
were inserted before the last complete execution of Algorithm 1 are equally distributed
among all nodes of the pancake. We therefore only have to look at the last complete
execution and at the current execution of the algorithm. All tokens which are inserted
in the current execution of Algorithm 1 are distributed among at least2t nodes,t it-
erations after the insertion. Therefore, by a geometric series argument, there are at
most2J tokens per node which were inserted in the current iteration. All tokens which
were inserted before the end of the last complete execution of the algorithm, were dis-
tributed among at leastd nodes after the last complete execution. Because in iterationi,
each node distributes its tokens amongi different nodes and each node receives tokens
from i different nodes, all the tokens from the last complete execution of the algorithm
remain distributed among at leastd nodes. Because there are at most(d− 1)J such to-
kens, each node has less than one of them. Together, the number of tokens between the
heaviest and the lightest node becomes3J . For deleted tokens the same argumentation
as for inserted tokens holds.

Up to now, we have analyzed the token distribution algorithm for the idealized case
where tokens can be divided arbitrarily. In our application, tokens correspond to peers,
we thus have to extend the analysis to integer tokens. We assume that in line 4, tokens
are distributed as good as possible. That is, if there arek tokens in a cluster, some of
the nodes receivebk/ic tokens and some nodes receivedk/ie tokens.

Lemma 2.6. The (absolute) difference between the number of integer tokens and the
number of fractional tokens at any node is always upper bounded by2d.

Proof. We start the proof by looking at iterationi of Algorithm 1. Assume that before
iteration i, the difference between the number of integer tokens and the number of
fractional tokens is at mostξ at each node. If there are token insertions or deletions
at a nodes, this does not change because insertions and deletions affect the numbers
of fractional and integer tokens in the same way. In line 2, all tokens are moved and
thereforeξ remains unchanged. In lines 3 and 4, tokens are distributed equally among
i nodes of a cluster. If there arek tokens in such a cluster, each node gets between
bk/ic anddk/ie tokens. If every node got exactlyk/i tokens, the difference between
fractional and integer would remain at mostξ. Due to the rounding, the difference can
therefore grow to at mostξ + 1 after iterationi. Hence, aftert iterations, the absolute
difference between the numbers of fractional and integer tokens is at mostt.

To prove that at each node, the number of integer tokens cannot deviate from the
number of fractional tokens by more than2d, we need the following observation. By
Lemma 2.4, fractional tokens are distributed equally among all nodes after their first
complete execution of Algorithm 1, that is, after less than2d iterations. Therefore,
the number of fractional tokens at each node does only depend on the insertions and
deletions of the last2d iterations and on the total number of tokens in the system.
Therefore, the distribution of fractional tokens is the same if we assume that before the
last2d iterations, the number of fractional tokens at each node was equal to the number
of integer tokens. By the above argumentation, the difference between the numbers
of integer and fractional tokens at a node can have grown to at most2d in those2d
iterations.

14 CHAPTER 2. BASIC COMPONENTS

Combining Lemmas 2.4, 2.5, and 2.6, we obtain the following theorem about the
dynamic integer token distribution algorithm.

Theorem 2.7. The discrepancyφ of the dynamic integer token distribution algorithm
is at mostφ ≤ 4d + 3(J + L).

We end this chapter with a few considerations about an actual implementation of
Algorithm 1. The algorithm is formulated in the form which makes the proofs of this
chapter as simple as possible. It is of course not desirable that all nodes first have to
move all tokens to dominator nodes which then redistribute the tokens. Especially in
the case where no insertions or deletions occur, we would like the system to stabilize to
a point where no tokens have to be moved around. It is not difficult to implement Al-
gorithm 1 in a way which has this property. In line 2, two nodesu andρi(u) exchange
all their tokens. They can of course obtain the same effect by computing the difference
between the number of tokens and by only moving this number of tokens in the appro-
priate direction. A similar trick can be applied for lines 3 and 4. The dominator nodes
can collect all the necessary information and decide about the necessary movements of
tokens.

2.4 Node Representation

Our systemsimulatesthe pancake topology and a pancake node consists of several
peers. In this chapter we will first present the internal structure of a node (Chapter
2.4.1) plus the representation of the pancake’s edges (Chapter 2.4.2).

2.4.1 The Grid

The peers of a nodev ∈ V (Pd) are arranged to form a2-dimensional gridGv consist-
ing of exactlyd + 1 columns while the number of rowsR may vary depending on the
total number of peers inv.

Let |v| be the total number of peers in nodev and letR := b|v|/(d + 1)c. The first
R·(d+1) peers are arranged in a2-dimensional grid withd+1 columns andR complete
rows, such that every peer occupies exactly one positionGv[x, y] for x ∈ [0, d] and
y ∈ [0, R−1]. The remaining|v|mod(d+1) peers—from now on calledextra peers—
are located in an incomplete additional rowGv[i, R] for i ∈ [0, |v|mod(d+1)]. Inside
a node, the peers are connected as follows (intra-connections): A peer atGv[x, y] is
connected to the peersGv[x, i] for i ∈ [0, R] andGv[i, y] for i ∈ [0, d]. As the extra
peers do not form a complete row, they are more vulnerable: Assume the grid having
two rows and one extra-peer, the extra-peer would only be connected to two peers. In
order to avoid this weakness, the extra peers are also assumed to be full members of
the highest complete rowR − 1, i.e., we also have connections betweenGv[i, R] for
i ∈ [0, |v| mod(d + 1)] andall peersGv[j, R − 1] for j ∈ [0, |v| mod(d + 1)]. When
we state that a peer sends a message to all of it’s row members, we thus mean for the
row R − 1, that the senders send the message also to the extra-peers and, vice versa,
also the extra-peers send the corresponding message to the members of rowR− 1.

Definition 2.1. A grid as described above and containing at least2d+2 peers is called
a fully repairedgrid.

2.4. NODE REPRESENTATION 15

2.4.2 Edges

Having described the pancake’s nodes, we now specify the representation of the pan-
cake’s edges (inter-connections). The idea is as follows: If two nodesu andv are
connected in the pancake graphPd, i.e.,{u, v} ∈ Pd, then each peerGu[i, 0] is con-
nected to the peer occupyingGv[i, 0], for i ∈ [0, d]. In the following, we will call the
peers in the lowest row (row zero) thecoreof the corresponding node. Thus, we can
say that two nodes are connected by amatching between their cores.

Definition 2.2. We call the matching of a node inPd fully repaired, when each column
in the grid has a core-peer, and all core peers have a connection to their matching
peers in all neighbored nodes.

Definition 2.3. The pancake system is calledfully repaired, when all grids as well as
their inter-node connections are fully repaired, and the discrepancy between any two
nodes is bounded by4d + 3(J + L).

Lemma 2.8. Assumed the number of peers in any grid of the pancake system is
bounded byO(d2), the following statement holds: For any peer in a fully repaired
pancake system, the out-degree is bounded byO(d).

Proof. A peer in the pancake system is connected to its row neighbors, which are at
most2d (in the top row, when there ared extra peers) and its column neighbors. For
the row neighbors there is nothing to prove: Each node has justd. Since the number
of peers per node is assumed to be bounded byO(d2), the number of rows in the grid,
and thus the number of column neighbors is bounded byO(d), since we haved + 1
columns. Finally, the core peers are connected to one core peer of each neighbored
node. Since each node inPd has exactlyd− 1 neighbors, the statement holds.

Chapter 3

Algorithms

3.1 Introduction

In this chapter the algorithms that are needed for the pancake system are presented
in detail. First the algorithmAGRID is presented (Chapter 3.2), which will be used
to repair the grid, followed byAEDGE (Chapter 3.3), which updates the inter-node
connections. Then the algorithms that are needed for the expansion step, the reduc-
tion step (Chapter 3.4), the token distribution (Chapter 3.6) and finally the information
aggregation (Chapter 3.7) follow.

For understanding this chapter, it is crucial to have an idea of how the system finally
will work and how the adversary will be modelled. For this, we here present the idea of
thephase. A phaseis the time interval in which various algorithms are run, depending
of the state of the system. The first algorithms of aphaseare always the same. Starting
with AGRID andAEDGE , in the following the algorithms for the token distribution
ATD, and the information aggregation(AIA) are run. Finally, depending on the current
result of the token distribution algorithm, the expand step may be prepared (c.f. Chapter
3.4) or executed, or the reduction algorithm may be run. Then a new phase begins with
AGRID. We will restrict our adversary tod/2 joins and leaves during any time interval
that corresponds to the longest possible phase (c.f. Chapter 4). We will prove that
AGRID andAEDGE will fully repair the pancake system, with respect to the joins and
leaves of the last phase. Thus for all following algorithms, the pancake system will
be fully repaired up tod/2 joins and leaves, which may occur at arbitrary time during
the current phase. For this, correctness will be proved for at mostd/2 joins and leaves
during the algorithm run. Note that this is sufficient, even if some of the joins and
leaves occur before the run of the algorithm: The information of the possible joins and
leaves before the start of these algorithms is simply not used. Other algorithms running
during the same phase can be neglected. Thus for proving properties of any algorithm
AX , we think of the the three algorithmsAGRID → AEDGE → AX continuously
running on each grid inPd. This is possible, as long as it can be guaranteed, that all
algorithmsAX that run during a phase, will end with a pancake system that is fully
repaired up to the churn during it’s run.

In the following, unless stated otherwise, with ’all peer in a grid/row/column’, we
mean all peers that were part of the grid on the beginning of the phase. These nodes
are known by the corresponding (neighbored) peers in the grid, based on asnapshotin
the beginning of the grid maintenance algorithm.

17

18 CHAPTER 3. ALGORITHMS

3.2 Grid Maintenance

In this chapter, we describe how to maintain the grid against continuous adversarial
churn. Our algorithmAGRID takes several rounds. The idea is as follows: At the
beginning, asnapshotof the state (living peers, etc.) of the system is made. The
following rounds are then only based on this information—ignoring the fact that some
peers may have crashed by the concurrent adversary in the meantime. That is, by using
enough redundancy, we take the crashed and newly joined peers only into account
when the maintenance algorithm begins again with the first round. We thus accept that
a newly joined peer will be disconnected, when the peer to which it joins leaves before
a new run ofAGRID is started

AGRID consists of two parts. In the first part, the following information is broad-
casted throughout the grid: (1) the positions where peers have left, (2) the IP addresses
of the peers that have joined, (3) the IP addresses of the extra peers, and (4) the IP
addresses of the peers in rowsR− 1 andR− 2. The second phase is based on this in-
formation and works as follows: Every surviving peer can locally compute which peers
will take the positions of the left peers (gaps in the grid). Thereby, newly joined peers
are taken into account first, and if this is not enough the extra peers are used. If there
are still gaps in the grid, the peers of the top row are used, decrementing the number of
rows (R := R − 1). If on the other hand there are still joining peers left after all gaps
have been filled, these peers are added to the top row, perhaps creating a new top row
if necessary (R := R + 1). After this local computation, the peers that have to fill the
gaps are provided with the necessary neighbor information. With an adversary which
may remove and insert at mostd/2 peers during any time period of4 rounds, we can
guarantee that no row may be deleted completely and that there is always a complete
column. Note that we refer to the joins and leaves as to the joins and leaves at the start
of AGRID. As mentioned above, the churn that happens during the run ofAGRID is
ignored.

We now give the detailed description ofAGRID. Thereby, the following notation
is used: We will writeGv[·, y] andGv[x, ·] to denote all (surviving) peers in they-th
row and in thex-th column respectively.

ROUND 1

Outline: Starting to broadcast the positions where peers have left, the IP addresses
of the joining peers, and the IP addresses of the extra peers plus rowGv[·, R − 1] and
Gv[·, R− 2].

Sent Messages: A surviving peer at positionGv[x, y] sends its IP address and the IP
addresses of its joiners to all peers inGv[·, y].

ROUND 2

Outline: The broadcast is continued along the columns.

Sent Messages: Each peer at positionGv[x, y], y < R − 2 sends the addresses of
the joiners in its row plus the information in which columns peers in its row have left
to Gv[x, ·]. Each peer at positionGv[x, y], y ≥ R− 2 sends all IPs of it’s row, together
with the corresponding grid coordinates toGv[x, ·]. The joiners are sent without grid
coordinates.

3.2. GRID MAINTENANCE 19

ROUND 3

Outline: The broadcast along the rows completes the information dissemination.

Sent Messages: Each peer at positionGv[x, y] forwards the information received in
ROUND 2 to the peersGv[·, y], including the joining peers that joined the row during
the last phase.

ROUND 4

Outline: The new form ofGv is computed locally.

Local Computation: Each peer atGv[x, y] computes the new positions of the join-
ers, extra-peers and the top-row. If the number of joiners and extra-peers exceeds the
number of leaves by more thend+1, the number of rows in the grid is increased. If on
the other hand the number of gaps exceeds the number of joiners and extra-peers, the
row number is decreased. The computation is not specified here. We just assume that
the computation is done unambiguous and similar in all nodes.

Sent Messages: Each peer having a missing neighbor on its row sends the informa-
tion about all neighbors of this row or column directly to the peer which will replace
it.

The following lemma is crucial for all later described algorithms: WhenAGRID runs
continuously on the grid and an adversary may joins or leaves at mostd/2 peers during
any time interval that corresponds to the length of one run ofAGRID, the grid can
be maintained despite the adversarial churn: The grid is thus always repaired up to
the joins and leaves during the current and the last run ofAGRID as long as there
are enough peers in the grid. Since other algorithms may be run in the same phase, a
following algorithm can rely on a grid that is repaired up tod/2 joins and leaves.

Lemma 3.1. Let the algorithmAGRID run continuously on an initially fully repaired
grid. Let further the number of joins and leaves in any time interval of4 rounds be
bounded byd/2, and the number of peers in the system always be at least2d+2. Then
the following statement holds: The system is always fully repaired up to the joins and
leaves since the beginning of the last run ofAGRID.

Proof. We first show that the presented algorithm can repair a grid that is fully repaired
up tod joins and leaves in quiet rounds, that is, no further joins and leaves may occur
during the run of the algorithm. First we observe, that the maximum ofd leaves and
the minimum of2d+2 peers in the grid guarantee at least one complete column during
each complete run ofAGRID, let it be columnc, and thus a grid-diameter of at most
3. In ROUND 1, each peer at positionGv[c, ·] receives all IP’addresses from its row,
additionally, the peer atGv[c,R − 1] gets all ID’s of rowGv[·, R], if there are extra
peers in the grid. As the peers can compute from the received IP-addresses, which
row-members are missing, also the grid coordinates of left row members are known.
At least the peers at positionGv[·.c] then can then send the complete information as
described inROUND 2 to their column neighbors, and inROUND 3, all peers of column

20 CHAPTER 3. ALGORITHMS

c are informed about all the information that has to be broadcasted through the grid.
After sending this information into the rows inROUND 3, it is guaranteed that all peers
in the grid receive inROUND 4 the necessary information for the computation: their
row and column neighbors, the IPs of the extra-peers, and the complete information
about rowR − 1 andR − 2. The computation is not presented in detail. But since
an order on the peer IP-addresses as well as the grid positions can be defined, it can
obviously be done unambiguous. To conclude the first part of the proof, it has to be
shown, that all peers indeed receive their new row- and column neighbors. Each peer
in the grid can compute the following: It’s new grid position, all peers in the rows
with row number at leastR − 2 including the corresponding grid coordinates. Finally,
all IP-addresses and coordinates from peers that will change their position. All peers
that change their column receive the missing column information from a peer in the
column. For each peer, being newly on a grid position with row number at mostR− 3,
gets its row information from the peers in that row.

Let now run the grid maintenance algorithm repeatedly on an initially fully repaired
grid. The number of joins and leaves on the grid are restricted tod/2 in any time
interval of4 rounds and finally the number of peers in the grid is always at least2d+2.
After the first run, the number of joins and leaves is at mostd/2. These can be repaired
during the second run ofAGRID, since the total number of leaves are restricted tod
during both runs ofAGRID. Note that it is not necessary to know in advance which
column will be complete during the whole run. We conclude, that in the second run,
all joins and leaves that occurred during the first run are repaired and thus the situation
after the second run ofAGRID is the same as after the first run. Of course, this is also
true for all following runs ofAGRID.

Since in our pancake-system, we bounded the out-degree byO(d), also the total
number of different information a peer receives should be bounded byO(d). This is
stated in the following lemma.

Lemma 3.2. Let the number of peers in a grid be bounded byO(d2). Then the total
information that is received duringAGRID by any peer in the grid, is bounded by
O(d).

Proof. The number of rows, and thus the number of peers in a column is restricted
by O(d), since the number of peers in the grid is bounded byO(d2). The received
information contains the following messages, their lengths all bounded byO(d): All
IP-addresses of the peers in a row (own row and rowsR−2, R−1) all IPs in a column
(own column), the IPs of the extra peers and joining peers and finally the grid positions
where peers left the system.

3.3 Updating Inter-Node Connections

As stated above, the matching between neighbored nodes has to be updated. This is
done with the here presented algorithmAUPDATE , which will be run after the grid
maintenance algorithm. So the information that is known inAGRID can be used here,
i.e. the information, which peers newly joined the core of the node. The simplest idea
to update the matching, is that core nodes send all IPs of the current core, together with
the corresponding column numbers to the matched core peers in the neighbors, and in
the next round, the received information could be sent to all core peers of the node.
The problem with this solution is, that a core peer would receiveΘ(d) core peers from

3.3. UPDATING INTER-NODE CONNECTIONS 21

Θ(d) neighbors. So the information a core peer would receive would be inΘ(d2),
which is not desirable. For this, we only send the update information and afterwards
take into account possibly missing information. Note that a core peer never changes
it’s column number in the grid (unless the dimension is changed), but stays on it’s place
till it leaves the system. Also forAUPDATE we give a detailed algorithm in rounds. It
is run synchronously in all core peers of all grids in the system.

ROUND 1

Outline: All (core) peers of a node know the IPs of the core peers, that joined the
core in the last run ofAGRID.

Sent Messages: Each core peer atGv[x, 0] that has not newly joined the nodes core,
sends the IPs of the peers, that newly joined the node’s core, to it’s matching partners
Gρi [x, 0] for all 2 ≤ i ≤ n. Together with the IP, also the column numberc of each
new core peer is provided as well as the node ID ofv, namely(`1 . . . `d).

ROUND 2

Outline: The message received in the last round is forwarded to the destination.

Sent Messages: Each core peerGv[x, 0], that received a message in the last round,
sends the following information: For each received triple[IP, c, ID], the IP, together
with the corresponding node ID is forwarded toGv[c, 0].

ROUND 3

Outline: The previous core nodes now all know their new matching partners and the
corresponding node ID to which they belong. However, a peer newly entered to a core,
does not know it’s matching partners, that were not replaced in the last run ofAGRID.

Sent Messages: Each core peerGv[x, 0] that received new matching partners
Gρi [x, 0] in ROUND 2 sends its own IP-address together with its node ID(`1, . . . , `n)
to all its new matching-partnersGρi [x, 0].

As already mentioned,AEDGE will run afterAGRID. It will be run on all nodes ofPd

at the same time. The following lemma states, corresponding to Lemma 3.1, that the
two algorithms can defend the ongoing churn bounded byd/2 joins and leaves in the
pancake system during7 rounds that are needed for both algorithms.

Lemma 3.3. Given a pancake systemPd, that is initially fully repaired. In each node,
the two algorithmsAGRID andAEDGE are run continuously in this order. Let the
number of joins and leaves in any time interval of7 rounds be bounded byd/2, and
further the number of peers in any node be always at least2d + 2. Then the following
statement holds: The pancake system after after every run of the two algorithms is fully
repaired up to the joins and leaves that occur during the algorithms.

22 CHAPTER 3. ALGORITHMS

Proof. We first state that the pancake graphPd is always fully repaired up tod/2 joins
and leaves after each run of the two algorithms. This follows (1) from Lemma 3.1,
(2) the fact that the same number of joins and leaves now is allowed for the time both
algorithms are running and (3) thatAEDGE does not affect the grids. This implies that
for any two consecutive full runs ofAGRID andAEDGE , there exists a column number
c, for which in each grid ofPd the columnc in the system are complete and not changed
up possible joining nodes in the top rows. The existence of the complete columns
guarantee the that the core peers in columnc have all information for the sending of
the IPs, column numbers and node ID’s to the neighboring core peer in columnc in
ROUND 1 and the sending to the destination inROUND 2. Thus all peers that not newly
joined the core receive the information about their new matching partners. The sent
messages inROUND 3 guarantee, that also new core peers receive the IPs and node ID’s
of their matching partners.

Lemma 3.4. The total size of information that is received by any peer in the pancake
system during the run ofAUPDATE , is bounded byO(d).

Proof. The number of sent IP-addresses in the first two rounds is bounded by the num-
ber of peers that were replaced in the grid algorithm, thusd/2. In ROUND 3, the
number of received IP-addresses is bounded by the number of joins and leaves as well.
These are obviously inO(d).

3.4 Expansion

When the pancake graphs order is increased fromd to d + 1, each nodev must split
into d + 1 new nodes (c.f. Chapter 2.1). How can this expansion be achieved on the
grid level? As has been mentioned before, the gridGv consists ofd + 1 columns. This
allows a simple way to split the grid: Every column yield one new node.

We know from Chapter 2.1 that two neighboring expanded nodes have already been
adjacent inPd (or originate from the same node). Now assume that two columnsGv

andGu of two expanding adjacent nodesu, v ∈ Pd become neighbors inPd+1. With
the grid as described so far, these two columns have only one connection to each other.

In order to increase the fault-tolerance, the following mechanism is applied: As
soon as a certain threshold in the information aggregation algorithm is achieved, which
guarantees at leastd + 1 complete rows in each node, the nodes start to establish a
matching between the columns inGu andGv that will be future neighbors. In order to
limit the information that is sent, we establish this matching stepwise, ensuring that it
is finished before the node actually has to split.

The following algorithms will be run afterAGRID andAEDGE , in the same phase
as described in Chapter 3. For this we can assume that the joins and leaves of the last
phase are fully repaired, and during the run of the following algorithms, onlyd/2 joins
and leaves have to be taken into account. Thus in the following, we assume to have a
fully repaired pancake graph, and allowd/2 joins and leaves during the algorithm runs.
Note that it makes no difference, if some of the joins and leaves may occurred before
the start of the algorithm.

3.4.1 Matching Establishment

Again, we provide a detailed description of the expansion rounds. First, we describe
how to establish the matching, which is done byAMATCH . This is done ind phases:

3.4. EXPANSION 23

in phasedim for the matching to neighborρi(v), which is indicated by the argument
i. The idea is that each peer atGv[y, y + 1] with 0 ≤ y ≤ dd/2 + 1e sends its IP
addresses of its row to the peerGv[y, 0]. PeerGv[y, 0] is then responsible to transfer
they + 1-th row to the corresponding peersGρi(v)[y, 0] for i ∈ [2, d]. From there, the
information is broadcast toGρi(v)[·, y + 1]. Despite the adversarial churn, we will be
able to guarantee, that there is at least one complete row that reaches its destination.
We will describe phasei. We will usei as the argument of the algorithm, thus phasei
is referred to asAMATCH(i). We assume, that the algorithm is run on a fully repaired
pancake system, allowingd/2 joins and leaves during the algorithm run (c.f. Chapter
3.1).

ROUND 1

Outline Each peer in the grid knows the IP-addresses of its row neighbors. Each peer
at positionGv[y, y + 1], 0 ≤ y ≤ (d + 1), starts the transfer of it’s row information to
the neighboring node.

Sent Messages: A peer atGv[y, y + 1] sends the IP-addresses of it’s row neighbors
to Gv[y, 0], the core peer in its column.

ROUND 2

Outline The information is sent to the neighboring core.

Sent Messages: Gv[y, 0] forwards the message received in this round toGρi(v)[y, 0],
its matching partner in the neighbor node, given by a prefix-inversion of lengthi.

ROUND 3

The message is forwarded to they + 1-th row.

Sent Messages: Gρi(v)[y, 0] forwards the message toGρi(v)[y, y + 1].

ROUND 4

Sent Messages: Gρi(v)[y, y + 1] sends the received messages toGρi(v)[·, y + 1].

ROUND 5

Outline: Now the matching, which may not all nodes received is repaired.

Local Computation: Each peerv of columnccan compute to which column inρi(v)
it has to be matched: Forc ≥ i, a matching columnk in Gρi(v)is given byk = j. On
the other hand, forc ≤ i, the to be matched column is given byk = i− c. Note that in
the casec = i + 1, two columns have to be matched.

Sent Messages: Each peer that received a row of the neighbors node, sends an or-
dered array of IPs of the lowestd + 1 members of it’s column to the received peer IPs
that belong to columns to which a matching has to be established.

24 CHAPTER 3. ALGORITHMS

ROUND 6

Outline: The matching establishment is finished.

Sent Messages: The messages that are received, are forwarded into the column.
The following lemma states that the establishment of the matching is guaranteed

when there are at mostd/2 joins and leaves in the systemPd. The algorithmAMATCH

will be run afterAGRID as described in Chapter 4. For this, we can assume that there
are at mostd/2 joins and leaves.

Figure 3.1:Disjoint sets of used peers for differenty-values in (P4).

Lemma 3.5. Assuming all nodes inPd have at leastd+1 rows andPd is fully repaired
up tod/2 joins and leaves. After runningAMATCH(i) in all nodes synchronously, the
following statement holds: All matchings toρi(v), that are needed for expanding the
grid are established up tod/2 joins and leaves.

Proof. We senddd/2+1emessages that containd+1 IPs. The set of peers correspond-
ing to the IPs, as well as the pathes over which the IPs are sent are disjoint: the IPs of
row Gv[·, y + 1] are sent to the rowGρdim(v)[·, y + 1], using the core peersG(v)[y, 0]
andGρdim(v)[y, 0] . We usebd/2 + 1e differenty-values. For two different y-values,
all involved nodes are obviously disjoint, as long asy 6= 0. For this, see also Figure
3.1 Since the grid is repaired up to the at mostd/2 joins and leaves, for at leasty-value
(0 ≤ y ≤ dd/2 + 1e the following statement holds: For each nodev in Pd, the row
Gv[·, y + 1] as well as the core peerGv[y, 0] will not leave during the full run of the
algorithm. In other words there exists a row, for which the message could be sent in
both directions and both rows are complete during the whole run ofAMATCH . Such
a row number exists, since the number of used rows isdd/2 + 1e > d/2. A node in
this row can now send the columns to the columns that have to be matched. Vise versa,
the corresponding IPs and row numbers of the to be matched column can be received
and forwarded to the peers that will be their matching partners. Then the matching is
complete up to the joins and leaves during the current phase. To conclude, it has to
be shown that the computing of the matching partners is correct, i.e. any two columns
that establish a matching are indeed future neighbors, and all future neighbors are in-
deed matched. From symmetry it then obviously holds, that if a columnc1 decides to
establish a matching to a columnc2 in a neighbored node, alsoc2 takes the decision to
matchc1.

3.4. EXPANSION 25

In AMATCH(i), matchings between columns in the nodesv = (`1 . . . `d) and
ρi(v) = (`i . . . `1`i+1 . . . `d) have to be established. The future ID’s of the columns
have all literals̀ 1 . . . `d in the same order, and additionally, for thec-th column, the
new number(d + 1) inserted at positionc + 1. For two columns in neighbored nodes
to be neighbors, the prefix-inversions must have the same effect on(`1 . . . `n) as the
prefix-inversion of their parent nodes. From the position of(d + 1) then the column
number of the matching partner is easily found. Let now firstc > i. The literal(d + 1)
being at positionc + 1, the future nodes are connected by the same prefix-inversion as
their current node, not affecting the number(d+1). It follows that in both columns, the
entry(d + 1) is at the same position and they thus have also the same column number.
For c < i + 1, (d + 1) will be part of the prefix-inversion. The future neighbors thus
are connected by a prefix-inversion of lengthi + 1. A prefix-inversion of lengthi + 1
changes the position of any literal fromc + 1 to i− c + 1 and thus corresponds to the
column numberi − j. Finally, for i = c, prefix-inversions of the lengthi andi + 1
respectively, affect the literals̀1 . . . `n in the same way, and thus result both in a to be
matched column, at positionj andi − j = 0 respectively. Note that for the columns
c = 0 andc = 1, c = i never holds. The reason is, that these columns are future
neighbors and thus have to establish a matching to onlyd − 1 columns in neighbored
nodes.

Lemma 3.6. The total information that is received by any node during the run of
AMATCH sent is bounded byO(d).

Proof. Before the last round, the sent and received messages are obviously all of length
O(d): A single row is received and/or sent in the first four rounds, inROUND 5 d + 1
IPs, i.e. the lowestd+1 column members, are sent. For round 6 we see that the number
of matchings that one column inGv has to establish toGρ(v) is 1 or 2 and thus inO(1),
as seen from the calculation inROUND 5. It follows that the number of peer IPs that
have to be sent and received in the column are inO(d).

Since we want the out-degree in our pancake system be bounded byO(d), this also
is shown for the complete matching between the columns as stated in the following
lemma:

Lemma 3.7. The total information needed for the matching between columns that will
be future neighbors, is bounded byO(d).

Proof. In the expanded (future) pancake graphPd+1, each node will be neighbored
to d neighbors. Thus each column will be matched to at mostd columns in different
nodes. A node holds for each of itsd (or d − 1 for column0 and1) matched columns
one IP-address. Thus the information needed for the complete matching between future
neighbors is bounded byd IPs and thus byO(d).

3.4.2 Matching maintenance

The matching maintenance algorithmAMM is based on the same idea asAEDGE . It
updates the matchings that were already established byAMATCH . Remember that
after the run ofAGRID all peers know their column neighbors. Also the peers that
have not newly come into the column, know which peers newly came into the column.
For this, the same algorithm asAEDGE can be used, up to the fact that instead of the
matching between core rows, the matching between columns are updated. Note that
we have the same number of peers as in the core (we take thed+1 lowest rows in each

26 CHAPTER 3. ALGORITHMS

column). So also all proves can be overtaken from Chapter 3.3 since also the maximum
number of leaves that have to be repaired are the same as inAEDGE , namelyd/2. Also
for the matching maintenance, we introduce an argumenti: InAMM (i), the matchings
to the future neighbors in the nodesρj(v), v ≤ i are updated.

Lemma 3.8. When the number of complete rows in each grid is at leastd + 1, the
already established matchings are repaired byAMM up to the churn in the current
phase.

Proof. See proof of Lemma 3.3

Lemma 3.9. The total size of information that is received and/or sent is bounded by
O(d).

Proof. See proof of Lemma 3.4

3.4.3 Expand Step

In order to change the order of the pancake system fromd to d + 1, the following
algorithmAEXP is used. For the latter, we consider a nodev = l1...ld with grid Gv.
The columnGv[i, ·] for i ∈ [1, d + 1] will form the new nodevexp

(i) = l1...li−1(d +
1)li...ld.

ROUND 1

Outline: The peers of thei-th columnGv[i, ·] which will form the new nodevexp
(i)

are completely connected. Thus, it is easy to build the new gridsGvexp
(i)

, including
cores and inter-connections: The inter-node connection will consist of the established
matching between the former columns plus one additional, to be defined connection,
since in the new dimensiond + 1, there ared + 2 core-peers.

Local Computation: Each peer invexp
(i) locally computes the form ofGvexp

(i)
, for ex-

ample depending on the IP addresses or the row numbers. The peers that were matching
peers, namely the peers in the lowestd + 1 rows are assumed to be new core peers,
where the row number in the old grid corresponds to the column number in the new
grid. Thus one new core peer has to be computed.

Sent Messages: All new core peers send the IP of the core peer in columnd + 2
together with the corresponding node ID to their matching partners.

ROUND 2

Outline: The expansion is finished.

Sent Messages: The core peers invexp
(i) inform the new core peer about it’s matching

partners (IP and node ID), received in the last round.

Lemma 3.10. Let the algorithmAEXP run on a fully repaired pancake systemPd, and
all columns be matched to their future neighbors as described above. Let further the
number of complete rows in each grid be at least2d + 4 and the churn duringAEXP

be bounded byd/2 joins and leaves. Then the following statement holds: After the run

3.5. REDUCTION 27

ofAEXP , the pancake system is of dimensiond + 1 and fully repaired up to the joins
and leaves during the expand step.

Proof. First we note that in the beginning the number of connections between any two
new nodes esd + 1. Thus thed/2 leaves can not destroy the connection. The only
thing to show is that the computation can be done unambiguously. The argument is the
same as forAGRID: An order can be defined as well on the new grid positions and the
IP-addresses.

Lemma 3.11. The information received duringAEXP is bounded byO(d).

Proof. For each neighbor, one IP-address is received, namely the IP of the peer that
will be the new core peer. Since inPd+1 each node hasd neighbors, this is bounded by
O(d).

3.5 Reduction

If the pancake graph reduces its order fromd + 1 to d, d + 1 grids have to be merged
to one and some nodes have to be interchanged between the dominators (cf. Chapter
2.1). For this, we will use the algorithmARED. We will again describe the operations
of ARED in terms of the grid representation.

Similarly to the notation introduced in Chapter 2.1, letvdom
(1) ∈ Pd+1 be the domi-

nator of a cluster that reduces tov ∈ Pd and letvdom
(i) = ρi(vdom

(1)). In order to reduce

the order of the pancake graph, we must exchange the nodesvdom
(i+1) with udom

(i+1) for
i ∈ [2, d] whereu = ρi(v), and then merge these nodes into one nodev (cf. Chapter
2.1).

On the grid level, a constant number of rounds is needed for this order reduction
which of course are again assumed to execute concurrently to the adversary.

Basically, the procedure is as follows. First we turnGvdom
(i)

for i ∈ [1, d + 1]

into a clique and the information about the core ofGvdom
(1)

is sent toρi−1(vdom
(i)) (node

exchange). Now, the new grid of nodev will be formed. For this, let againvexp
(i) for

i ∈ [1, d + 1] be the nodes that will formv after the node exchange,vexp
(1) being the

dominator. Nodevexp
(1) now sendsall its peers’ addresses tovexp

(i) for i ∈ [2, d+1]. With
this information, a first version ofGv can be computed, where columni is given by
vexp
(i) . Based on this structure, the final grid can be obtained by a simple rearrangement

which is not described further here.
In the following we give the detailed algorithm. Note that some rounds in the

description could be parallelized. However, in order to enhance clarity, we accept
some additional rounds.

ROUND 1

Outline: In order to exchange the dominated nodes according to exchange of the
dominated nodes,vdom

(i) for i ∈ [3, d + 1] gets the information about the core of its
future dominator. Moreover, the latest joiners are integrated into the grid.

28 CHAPTER 3. ALGORITHMS

Sent Messages: Each peer inGvdom
(i)

[x, 0] sends the IP address of the corresponding

dominator peerGρi(vdom
(i))[x, 0] (given by the matching) toGρi−1(vdom

(i))[x, 0]. Addition-

ally, each peer in the system broadcasts its own address and the addresses of its joiners
within its row.

ROUND 2

Outline: The to be transferred nodes inform their new dominators about themselves.
Nodes start building a clique.

Sent Messages: The core peersGvdom
(i)

[x, 0] for i ∈ [3, d + 1] send their addresses to

the dominator peers they learned in the previous round. In order to establish a clique,
each peer broadcasts the addresses of its row to its column.

ROUND 3

Outline: Inside each node, a clique is built.

Sent Messages: Each peer sends the addresses collected in the previous rounds to
their row.

ROUND 4

Outline: Dominated nodes learn about all peers in their dominator.

Sent Messages: Each peer in the core of a dominator, i.e.,Gvexp
(1)

[x, 0], sends all

addresses in the node to the neighboring peers inGvexp
(i)

[x, 0] for i ∈ [2, d + 1].

ROUND 5

Outline: The information about the peer in the neighboring dominator is dissemi-
nated inside dominated nodes.

Sent Messages: Gvexp
(i)

[x, 0] for i ∈ [2, d + 1] distributes the dominator’s peer ad-
dresses withinGvexp

(i)
.

ROUND 6

Outline: The grids reduce tod rows and one column (future column of the reduced
node). Thus, each grid position may have a constant number of peers. Thesed rows
then establish a matching to the corresponding row of the dominator.

Local Computation: Each peer inGvexp
(i)

[x, y] for i ∈ [1, d + 1] can compute its

position in the new grid ofd rows (uniformly distributed).

Sent Messages: In order to establish the complete bipartite matching to the peers at
the corresponding row of the dominator, the peers in rowx of Gvexp

(i)
for i ∈ [3, d + 1]

send their addresses to the peers in rowx in Gvexp
(1)

.

3.5. REDUCTION 29

ROUND 7

Outline: Using the information received in the previous round, the peers in the dom-
inator transform thed+1 gridsGvexp

(i)
for i ∈ [1, d+1] into one gridGv having at least

d/2 complete rows.

Sent Messages: Each peer in rowx of Gvexp
(1) forwards the received packets to all

rowsx of the nodesGvexp
(i) for i ∈ [2, d + 1].

ROUND 8

Outline: Due to the ongoing churn (e.g., crashed mediating peer in dominator), some
peers may not have received the row information. This issue is tackled next.

Sent Messages: Each peer atGv[x, y] sends a packet toGv[x, ·] saying whether it
has received the row information or not, and the total number of peers in its row.

ROUND 9

Outline: Incomplete rows are merged together, forming at least3d/4 complete rows.
The new core is built.

Local Computation: The new core is computed locally. For each column (former
node), the new core peer is given by the previous core peer, that has the lowest IP-
address.

Sent Messages: Peers in complete rows send the necessary neighbor information to
the peers in incomplete rows in order to integrate them. Core addresses are sent along
the columns.

ROUND 10

Outline: The new core is made public within the whole node.

Sent Messages: The core addresses are sent along the rows.

ROUND 11

Outline: Now the inter-connections between the nodes inPd are established. For
this, we kept our connections to the transferred nodes in the exchange of the dominated
nodes.

Sent Messages: The old core nodes ofvexp
(i) for i ∈ [3, d+1] send the core of the new

nodev to their previous neighborρi−1v
exp
(i) . Note that since all nodesvexp

(i) originally
had a different dominator, this procedure yields all necessary connections.

ROUND 12

Outline: The information about the core is propagated.

30 CHAPTER 3. ALGORITHMS

Sent Messages: The received core information is broadcasted inside the column.

ROUND 13

Outline: The establishment of the inter-connections is continued.

Sent Messages: Core information is forwarded to the corresponding column.

ROUND 14

Outline: The new connections established.

Sent Messages: Core information is sent to the core peers in order to complete the
matching.

ROUND 15–16

Outline: We now start to repair the grid. Up to the joins and leaves during this
algorithm, it will be fully repaired at the end of the algorithm.

Sent Messages: Each peer sends the number of peers in its row and the number
of peers in its column to all neighbors (taking 2 rounds), which allows every peer
to compute locally the state of the grid. Moreover, each peer in rowy sends all IP
addresses of its row to its adjacent peer in rowy + 1. In order to handle faults, this
information is then also broadcasted along the row inROUND 16.

ROUND 17

Outline: The number of peers per row is made a multiple ofd + 1 in order to split
rows later.

Local Computation: Each peer computes how many peers of each row have to be
sent to another row. Since each row contains at leastd + 1 peers, the idea is that peers
are only transferred from a higher rowy + 1 to the next lower rowy. The computation
works as follows: row1 sends so many (uniquely defined) peers to row0 such that the
number of peers in row0 is divisible byd+1. This procedure is then repeated between
row 2 and row1, and so on. The assigning of new column numbers to the peers are
done, such that the number of peers in the row that have to change the column is
minimized.

Sent Messages: The IP addresses of the peers that have to move are sent to the lower
row.

ROUND 18

Outline: Peers are distributed evenly among the rows.

3.5. REDUCTION 31

Local Computation: Given the number of peers at each position, we can locally
compute which peer has to move to which place. The remaining peers in the top row,
are assigned to the lowest columns, one remaining peer in each column. This will be
the extra peers.

Sent Messages: Moving peers are provided with the necessary neighbor information.

ROUND 19

Outline: If a peer has not received its new column information, it informs its previous
column about its new column.

Sent Messages: If necessary, a peer informs its old column as described above.

ROUND 20–22

Outline: The requests of the previous rounds are satisfied.

Sent Messages: The information, which peer requested information about which col-
umn is broadcasted in the column. Then, then this is sent to the column of which the
information is missing. Finally, the column of the peer receives the column information
from its new column.

ROUND 23

Outline: Some transferred peers may still be unknown to other transferred peers.

Sent Messages: Addresses of transferred peers are broadcasted along the column.

ROUND 24

Outline: The rows are finally split. The grid is now repaired up to the churn that
happened during the execution of this repairing phase.

Local computation: The peers can based on the IP-addresses decide, which neighbor
will be part of which row. Of course the core peers, known by all peers in the grid are
assigned to row0.

Lemma 3.12. LetARED run on a fully repaired pancake systemPd+1. Let the churn
during the run ofARED be bounded byd/2. Then the following statement holds: After
the run of algorithmARED on all grids of the nodes ofPd+1, the result is a pancake
graph of orderd, which is fully repaired up to the churn that happened during the run
of the algorithm.

Proof. We first note that the pancake system is during the whole run ofARED fully
repaired up tod/2 joins and leaves with respect to the old dimension. This guarantees
that no connections between nodes (i.e. the inter-node connections) are completely
lost. Moreover, there exist at leastdd/2 + 1e column numbers in the old graphPd,
for which all corresponding columns in the grid are complete during the whole run
of ARED. To enhance clarity, the proof is done round by round. AfterROUND 1 it

32 CHAPTER 3. ALGORITHMS

is guaranteed by the observation above, that each nodevdom
(i) receives a matching of

its core to its dominators’ core. Since the diameter of the grids inPd is 3, which is
guaranteed by the complete columns, the cliques are established inROUND 4. The
IPs of the dominators’ nodes received inROUND 5 are thus received by all peers in a
non-dominator node inROUND 6. Again, the computation inROUND 6 can be done
unambiguous, using an order on the IP-addresses of both the dominators peers and
the peers in the non-dominators node. These IPs are all known by each peer of the
node. The new (temporary) grid will consist ofd rows. Since each old node consist
of at least2d + 2 peers, and each old node distributes the peers equally over the new
grid rows (up to rounding errors), at least2 peers are assigned to each grid position.
Taking in account the up tod/2 leaves during the run ofARED, at least3d/4 rows will
have at least one surviving peer on each grid position. This observation guarantees,
that at least3d/4 rows can be established after round 7 (and will survive as long as
needed inARED). Also at leastd + 1− d/4 = 3d/4 + 1 columns are complete, again
yielding a grid diameter of at most3. For this, also the messages inROUND 9 can
be sent and will be received, based on a unambiguous computation that assigns each
IP-address in an incomplete row to a complete row. Since in each column a surviving
core peer exists, it can be computed inROUND 9. With the guaranteed diameter, all
peers know the IPs of the core of the new node afterROUND 10. The establishment
of the inter-node connections in roundsROUND 10–14can be guaranteed, since each
peer in the node knows the core peers in the node and the connections to the previous
neighbors are not lost as stated above and again by the diameter of the grid. The latter
also guarantees the successful sending inROUNDS15–16. The computation inROUND

17can be done unambiguous by the above: Each peer knows all peers in its row as well
as their grid positions and the number of peers in the other rows. From this, the IPs of
the peers that will leave and join the column can be computed. The receiving of the
information afterROUND 22 is guaranteed, since there still exist complete columns in
the grid and forROUND 23 it is sufficient that each column has members that have not
changed the column in the last rounds, which obviously holds (see Local Computation
in ROUND 17). Finally, in ROUND 24, the peers are evenly distributed among the rows
and columns by the above, i.e. the computations and the guaranteed receiving of the
messages.

Lemma 3.13. Assume the number of peers in each node ofPd is bounded byO(d).
Then the total information that is received by any node in algorithmARED is bounded
byO(d).

Proof. Since the old nodes are assumed to be bounded byO(d+1), all IPs of a constant
number of old nodes can be sent (i.e. the dominator nodes in each cluster) and an old
node can build a clique inO(d). A new column inPd consists ofd + 1 old nodes, thus
bounded byO(d2). Note that from the beginning, the new grid consists ofΘ(d) rows,
which are equally distributed up to rounding errors, bounding the row information by
O(d). Beginning inROUND 10, the new inter-node connections are established: The
procedure as described above, guarantees that (1) each previous node receives at most
one neighbored complete core (d + 1 IPs) and (2) the received core-peers IPs (and
corresponding node ID’s) are, after broadcasting them in the column, directly sent to
the right column. Thus in a column, the peers receive the own core, one complete
neighbors core, and finally for each neighbor one core-peer. In the round17 to 24,
the received messages include for each column the number of peers, the IPs of one
complete row, the IPs of one complete column as well as the number of peers in each
column and row. All bounded byO(d) as shown above.

3.6. TOKEN DISTRIBUTION ON THE GRID LEVEL 33

3.6 Token Distribution on the Grid Level

Now the token distribution on the grid level is presented. As in the whole text, the
number of rounds will not be minimized. We only want to assure that the number of
needed rounds is constant and not dependent ond. The token distribution algorithm of
Chapter 3.6 can not be used directly: Since our out-degree is assumed to be inΘ(d), it is
of course not desirable that an information amount ofO(d2) has to managed in constant
time. However, we can not guarantee that this is not the case, when all transferred peers
within a cluster have to pass the dominator node: the number of neighbors isO(d), and
also the number of peers that have to be sent between two neighbor are bounded by
O(d). Since we cannot decide which peers may leave the system during the algorithm,
the load can not be balanced directly between the core peers.

As described later in Chapter 4, the token distribution algorithm is run after the
grid maintenance algorithm. For this, the number of peers in a node (up to joins and
leaves in the current phase) and the IP-addresses of all extra peers are known by all
peers in a node. In this chapter, with the number of peers in a grid, the number of peers
of the grid at the end of the previous phase is meant. Since in every round, some peers
may join and leave, we never know the exact current number of peers in the system.
However, the error corresponds at most to the allowed number of leaves or joins in the
system. We do here not define explicitly the dominators. We just assume that they are
well defined. However, this could be easily done. For example in phasei, each node
v = (`1, . . . , `d), for which`1 = max{`1, · · · , `i−1} could be defined as a dominator.

ROUND 1

Sent Messages: All core peers send the number of peers in their grid to their match-
ing core peer inρi(v).

ROUND 2

Local Computation: The core peers compute the difference of the number of peers,
i.e. |v| − |ρi(v)|. If |v| > |ρi(v)|, the numberq1 of the to be transferred peers is
computed:q1 = b|v| − |ρi(v)|c

Sent Messages: If |v| > |ρi(v)|, the core peers send the number of the to be trans-
ferred peers into their column.

ROUND 3

Sent Messages: All peers send the information received in the last round to all row
neighbors.

ROUND 4

Outline Now all peers in the node are informed about the number of peers that will
be sent to the nodeρi(v). If |v| > |ρi(v)|, the new number of rows is computed. The
IP-addresses of the peers in the vanishing rows will be broadcasted in the grid.

Local Computation Every peer computes the new number of rowsRnew of the node,
based on the current number of rowsRold of the node:Rnew = bRold − q1−e

d+1 c. e is
the number of extra peers in the grid.

34 CHAPTER 3. ALGORITHMS

Sent Messages: Each peer having a row number larger thanRnew− 1 sends the ID’s
of its row to its column neighbors.

ROUND 5

Outline This round guarantees that in the next round, all peers will receive the IPs of
the peers in the rowsRnew...Rold − 1.

Sent Messages: The information received in the last round is forwarded to the row
neighbors.

ROUND 6

Outline All peers know all IP-addresses of the peers that are in the rows larger then
Rnew−1. The peers that are sent to the neighborρi(v) can be computed locally (lowest
IP-addresses). Note that the peers were provided earlier with the number of peers
that have been sent to the neighbor. All remaining peers can compute the remaining
peers, i.e. those their IP’addresses have been forwarded, but are not transferred to the
neighbor.

Local computations Each peer computes which peers are sent to the neighbor node
ρi(v) (lowestq IPs). For reasons seen in round 10, all peers setRold := Rnew.

Sent Messages: The core peers send the ID’s of the to be transferred peers to their
neighbored core peers inρi(v). All core peers in the system send the number of peers
in their nodeafter the exchange to their dominator.

Remark The remaining peers in the senders node, i.e. the peers that were prepared
for sending but not sent, are also called extra peers in this node. Also, in the receivers
node, the set of extra peers is referred to the extra peers at the beginning of the algorithm
plus the peers that were received in the exchange withρi(v).

ROUND 7

Outline The cores of all nodes are provided with the IPs of the joining peers. More-
over, the dominator knows for each node in it’s cluster, of how many peers it con-
sists. Based on this, the dominator will decide how many peers are sent between which
nodes.

Local Computations: The dominator computes the peers exchange within it’s clus-
ter. The way how this is computed is not described here. It is obviously possible
to do this in such a way, that at mostO(d) tokens have to be exchanged between
any two nodes. i.e. The number of to be sent or received peers is bounded by
φ/2 = 4d + 3(J + L) = 7d/2 for each node.(c.f. Theorem 2.7)

Sent Messages: Each core peer in the dominator node, sends a message to all neigh-
bors that have to send nodes with the following information: For each sending that has
to be done the number of peers to be sent, and the IP-address of the matching peer of
the destination, that is, the connection to the destination peer.

3.6. TOKEN DISTRIBUTION ON THE GRID LEVEL 35

ROUND 8

Outline: The core peers in the cluster are informed, how many peers have to be sent
to which node and additionally, the corresponding core peers are known. The sending
of the peers is prepared: When the number of to be sent peers exceeds the number of
extra peers, new peers are prepared for sending, similar to the first peers exchange.

Local Computations: The core peers calculate the differenceδ = q2 − e, between
the to be sent peersq2 and the current number of extra peerse.

Sent Messages: In all nodes, wheredelta > 0, t he core peers sendδ, into their
column.

ROUND 9

Outline This Round corresponds to round 3:

Sent Messages: All peers send the information received in the last round to all row
neighbors.

ROUND 10

Outline This Round corresponds to round 4: All peers in the node are informed about
δ. If δ > 0, the new number of rows is computed. The IP-addresses of the peers in the
vanishing rows will be broadcasted in the grid.

Local Computation Every peer computes the new number of rows, based on the
current number of rowsRold of the node:Rnew = bRold − δ

d+1c.

Sent Messages: Each peer having a row number larger thanRnew − 1 sends the IPs
of its row to it’s column neighbors.

ROUND 13

Outline: This round corresponds to round 5: This round guarantees that in the next
round, all peers will receive the IPs of the peers in the rowsRnew...Rold − 1.

Sent Messages: The information received in the last round is forwarded to the row
neighbors.

ROUND 14

Outline: The peers are sent to the neighbors, corresponding to the decision of the
dominator.

local computations: The core peers compute which peers are sent to which nodes:
The destination nodes can be ordered by their Permutation, and the peers that were
prepared for sending by their IP: the lowest IPs are sent to the node with the lowest
permutation.

36 CHAPTER 3. ALGORITHMS

Sent Messages: The IPs of the to be transferred peers are sent by the core peers to
the corresponding core peer as computed above.

ROUND 15

Outline: The core peers now have received the IPs of the peers that join the node.
These are now broadcasted in the grid, before integrating them.

Sent Messages: The core peers send the IPs of the joined peers into their column.

ROUND 16

Outline The broadcast is completed.

Sent Messages: The information received in the last round is forwarded to the row
neighbors.

ROUND 17

Outline: All peers now know the IPs of the peers that are part of the node, but not
yet part of a row. The joining peers are now integrated into the grid.

Local Computations: The joining peers are assigned to grid positions as follows:
By increasing IPs, each peer is assigned to the lowest possible row, and then to the
lowest possible column. Of course, each peer in the grid can now decide which of the
joining peers will end up in the same column. Also all peers get to know the IPs of the
new extra peers.

Sent Messages Each peer that is not a joiner, sends the column and row informa-
tion to the peers that will newly be part of the same column. Further, all peers send
the column and row peers to the joiners, that are joiners as well. With each IP, the
corresponding grid coordinates are provided.

Lemma 3.14. Let Pd, d > 1 be a pancake system that is initially fully repaired. Fur-
ther, in all core peers, the variablei is set to the value same value2 ≤ i ≤ d. Finally,
the number of joins and leaves during the algorithm is bounded byd/2. Then the
following statement holds: After the run ofATD(i), the peers are distributed inPd,
corresponding toi-th phase of Algorithm 1. Also, all grids are repaired up to the joins
and leaves that may occur during the run ofATD(i).

Proof. We again state that in each grid, at any time during the whole run, there is a
columnc that is not affected by the ongoing churn in all grids. This again guarantees
the grid diameter to be at most3, and that the connection between nodes is not bro-
ken. This obviously guarantees the successful sending of all messages: Each sending
through a row is received by columnc. The sending between the nodes is guaranteed
by the core peersGv[c, 0] in each node. Finally all messages sent through a column
succeed are received and can be forwarded in columnc and the sending into the rows,
are received by all core peers when sent from columnc in any grid. Note that the

3.7. INFORMATION AGGREGATION ALGORITHM IN OUR SYSTEM 37

column numberc is not known in advance, but it is guaranteed that it exists. The
computations are unambiguous. Where this is not obvious, it is pointed out in the al-
gorithm. Finally by construction, as pointed out above, the algorithm corresponds to
the algorithm presented in Chapter 2.3. The repairing of the grid in the end is done like
in AGRID, which guaranteed that indeed the pancake systemPd is repaired up to the
joins of leaves duringATD.

Lemma 3.15. The total information that is received by any node during the algorithm
ATD is bounded byO(d).

Proof. In ROUND 1 to ROUND 3 only single integer values are sent. Beginning with
ROUND 4, all IPs of the to be transferred peers are broadcasted throughout the grid (plus
at mostd peers of a row, that will not remain complete. However, the to be sent nodes
is bounded byφ = 4d + 3J + L = 7d as seen in Theorem 2.7, and thus inO(d). For
each non-neighbored node to which IPs have to be sent, each core peer receives one IP-
address. Since the core peer has onlyd−1 neighbors, also here the received information
is bounded byO(d). The last step is similar to the grid maintenance algorithm: Row
and column information are sent to the new peers.

3.7 Information Aggregation Algorithm in Our System

The information aggregation algorithm is very simple to realize at the grid level. How-
ever, for completeness it is described here in rounds. As described in Chapter 3.1, we
can rely on grids that are fully repaired up to possible joins and leaves in the current
phase. Further, the number of peers in the grid are known, again, up to the leaves and
joins in the current phase. It would be desirable, to do the steps for all dimensions
in parallel in order to get a new estimation of the total number of peers in the system
in each run ofAIA. However, we then would have to receiveΘ(d2) messages in one
round:1 integer value to aggregate the result forP2, 2 integer values to aggregate the
value forP3 and so on, ending finally withd− 1 integer values to aggregate the value
for Pd. So the number of to be received integer values would be inΘ(d2). For this the
algorithm is not run in parallel and we only get a result afterd runs ofAIA. This also
has an advantage: since as seen in Chapter 4,AIA always runs afterATD. Since both
algorithms need the same number ofd − 1 runs to complete, the receiving of a new
value ofAIA also guarantees that the tokens have been distributed in all subgraphs.
We used a variablei, which indicates for which subgraphPi(v) containing v, the in-
formation is aggregated in the current round. The result during the calculation (i < d)
is stored in the variablecurr. The final result, that is the result for the whole graph,
will then be stored inestimation. Again, because of the ongoing churn, it is always
possible that a certain message is not received. To solve this problem, in the algorithm,
we used a boolean variablecomplete, which is setFALSE, whenever a information
is not received. To solve this problem, the core peers that have the correct result, thus
havingcomplete == TRUE send the result array of the previous phase to all core
peers of the node. This also guarantees, that new core nodes can run the algorithm too.
Nodes, that newly enter the core rowGv[·, 0], thus also set the value ofcomplete to
FALSE.

The algorithm consists of5 rounds. The algorithm as described in Chapter 2.2 is
done inROUND 2,ROUND 3 and ROUND 4. In the first round is the sending of the
previous result as just described. The result of the previous run of the algorithm is sent
into the core row. InROUND 2, the result of the last round or, ifi = 2, the number

38 CHAPTER 3. ALGORITHMS

of tokens at each the node, is interchanged withρdim(v), and then forwarded to the
neighborsρj(v), j < i in ROUND 3. In ROUND 4, the result of the current round
is computed, using the received messages. Withcurr(ρj(v)), we mean the number
curr that was received from the nodeρj(v). As stated earlier and pointed out in detail
in Chapter 4, the goal ofAIA is that the peers in a node know, if a matching has
to be established and/or updated, or the dimension has to be changed. In the above
algorithms, we assumed that at the beginning ofAMATCH ,AMM ,AEXP andARED

respectively, all nodes were informed that the corresponding algorithm begins. To
guarantee this, inROUND 4 andROUND 5, the result is sent to all peers in the grid.

3.7. INFORMATION AGGREGATION ALGORITHM IN OUR SYSTEM 39

The following lemma states, thatAIA can be run in a phase withAGRID and
AUPDATE and it provides the estimated value forestimation afterd− 1 consecutive
runs of the3 algorithms.

Lemma 3.16. LetPd, d > 1 be a pancake system that is fully repaired up tod/2 joins
and leaves andi = 2 in all core peers. Let now run the following three algorithms
d − 1 times in this order:AGRID → AUPDATE → AIA. Let be the churn bounded
byd/2 joins and leaves during each run of these three algorithms. Then the following
statement holds: In the, end each peer inPd that not newly joined during the last run of
the three algorithms, has the same value forestimation, andestimation corresponds
to the total number of peers in the system on beginning of the phase on which the first
run was started.

Proof. We first show, that in the end, for any core peer havingcomplete = TRUE, the
value of the variableestimation corresponds to the total number of peers that are inPd

at the beginning of the first run ofAGRID. Since during each run ofAIA, Pd is fully
repaired up tod/2 joins and leaves, there exist column numbers, for which all columns
are complete. Moreover, havingd + 1 columns, there is at least one column number
for which all core peers stay alive during2 runs of the algorithm. This guarantees that
there is always one column number, in which the calculation succeeds (complete =
TRUE), and from which all core peers receive the current result inROUND 2 of the
next run ofAIA. The way how the new estimation is calculated corresponds to the
description in Chapter 2.2 and correctness was proofed in Theorem 2.3. The above
guarantees that the computation can be done completely .Again, since there is a column
number for which all columns are complete, the variablethreshold can be sent into a
complete column in each grid at the end ofROUND 4 and thus is indeed received by
all peers inPd after sending the information into the rows. As described above, only
the peers that joined in the current run ofAGRID,AUPDATE andAIA will not get the
result.

Lemma 3.17. The total size of information that is received by any node during the
algorithmATD is bounded byO(d).

Proof. In ROUND 1, 2 integer values may be received. In roundROUND 3 and
ROUND 4, from the neighborsρi, i ≤ dim, one integer is received. The number of
neighbors inPd is d− 1. In the end, only the value ofestimation is received.

40 CHAPTER 3. ALGORITHMS

Algorithm 2 AIA

1: ROUND 1(core peers)
2: if succeed = TRUE then
3: sendi, estimation, curr into the core row
4: end if
5: ROUND 2(core peers)
6: if succeed = FALSE then
7: receivedim, curr from any core peer in row
8: else
9: dim = 2

10: end if
11: succeed := TRUE
12: if dim = 2 then
13: curr = |v|
14: end if
15: sendmessagecurr to ρi(v)
16: ROUND 3(core peers)
17: receivemessagecurr(ρi) from ρi(v)
18: curr := curr + curr(ρi)
19: if message was not receivedthen
20: complete := FALSE
21: end if
22: i=1
23: for i = 2 to i; j + + do
24: sendmessagecurr(ρi) to ρj(v)
25: end for
26: ROUND 4(core peers)
27: while do
28: for i = 2 to i− 1; j + + do
29: receivemessagecurr(ρj) from ρj(v)
30: if message was not receivedthen
31: success := FALSE
32: end if
33: curr := curr + curr(ρj)
34: end for
35: end while
36: if success = TRUE then
37: if i = d then
38: estimation := curr
39: end if
40: sendestimation to all column neighbors
41: end if
42: ROUND 5(non-core peers)
43: all non-core peers:receiveestimation from core in column
44: all peers:sendestimation to all row neighbors

Chapter 4

The System

4.1 Overview

Armed with the algorithms of Chapter 2 we can now put our system together. In Algo-
rithm 3, it is shown how the components presented in earlier chapters can be assembled
in order to build the pancake system, a P2P-system resilient to an adversary allowed
to remove or joinΘ(logn

loglogn) peers in constant time, based on the algorithms presented
in Chapter 3. The algorithm is given ford > 1. The case ofd = 1 is not discussed
in detail here: It is just a clique. Note that ford = 1, more leaves and joins have
to be tolerated asd/2. This is obviously simply possible. For the latter we omit the
starting phase and assume, the algorithm is running and all variables are set correctly.
We restrict the concurrent adversary tod/2 joins and leaves during each time period,
corresponding to the longest possible phase, thus toΘ(d) in constant time. The longest
possible phase is given by first the grid maintenance algorithmAGRID, consisting of4
rounds, followed byAEDGE (3 rounds),ATD(i) (17 rounds),AIA(i) (5 rounds) and
finallyARED, consisting of24 rounds, ending with a total of53 rounds. Our adversary
is thus allowed to remove or joind/2 peers in any time interval corresponding to53
rounds. Once again, we point out that the number of rounds has not been minimized:
For example the token information aggregationAIA(i) could easily be done in paral-
lel with other algorithms. By not optimizing the number of rounds, a much simpler
overview of the system can be given. Moreover, the asymptotically results remain the
same. Note that we only need one variablei as the arguments forAIA(i),ATD(i) and
AMATCH(i) respectively. The reason for this is twofold: First the number of phases
for a complete run of the corresponding algorithm is the same for all mentioned. The
second reason is that the information aggregation algorithm is not run in parallel. This
guarantees that a new threshold is achieved only alld− 1 phases. Since the starting of
AMATCH depends on whether a certain threshold is passed, the matching establish-
ment algorithm is run synchronously to the information aggregation algorithm.

In the first 4 lines, the algorithmsAGRID, followed byAEDGE , ATD(i) and
AIA(i) are run. These algorithms are part of any phase. In line5, the variable
estimation is compared withtm(d) · d!. tm(d) is the threshold that guarantees that at
leastd+1 complete rows in any grid of the pancake system exist. Since the thresholds,
as described in Chapter 4.2 are given in peers per node, andestimation estimates the
total number of peers in the system, we multiply any threshold withd! before compar-
ing it with estimation. This because the pancake graph consists ofd! nodes. For fur-

41

42 CHAPTER 4. THE SYSTEM

ther information on the thresholds, see the corresponding Chapter 4.2. We now assume
thatestimation ≥ tm(d) and thus the if-clause is entered. The variablecomplete is
set toTRUE, when the whole matching is already established. If this is the case, the
algorithmAMM (d) is run, thus the matching is updated. As stated in Chapter 3.4.2,
the argumentd means that the matching is updated to the future neighbors in all neigh-
bored nodes. If on the other handcomplete = FALSE the matchings to neighbors for
which a matching already exists are updated byAMM (i − 1), namely the matchings
to all neighborsρj(v), j ≤ i − 1. In the case wherei = 2, no matching has been es-
tablished yet, and thus nothing is done. Then, in line10 of the algorithm, the matching
to the neighborρi(v) is established. If nowi = d, the matchings to the last remaining
neighborρd(v) is established and the variablecomplete is set toTRUE. If i 6= d, no
further algorithm is run in this phase. In line16, it is checked ifi = d. If this is the
case, a new result of the information aggregation algorithm is achieved. Then this new
result, given by the variableestimation, is compared with the thresholds. Also, the
variablei is set to2 (line17), indicating that theATD(i) andAIA will be restarted with
the argument2 in the next phase. Ifestimation ≥ te(d) or estimation ≤ tr(d), the
pancake system is expanded toPd+1 byAEXP (line 19) or reduced toPd−1 byARED

(line 22) respectively. Additionally, the variablecomplete is set toFALSE, indicat-
ing that in the new graph, no matchings are established yet and thus no matchings have
to be updated in the next phase. In Chapter 4.2, we will show that no threshold is
achieved before the first result ofATD is supplied. Finally,estimation is compared
with tm(d), the threshold that indicates if the matchings between future neighbors have
to be established. If not, i.e.estimation ≤ tm(d), complete is set toFALSE. In line
32, all unnecessary IPs are deleted, that may were saved during the algorithms of the
phase. This is necessary in order to guarantee, that onlyO(d) memory is needed for
the system maintenance in any peer of the system. The information that is not deleted
include the variables for the algorithms, the row and column neighbors, for the core
peers the matching partners in the neighbors nodes which are necessary to represent
the edges, and finally, ifestimation ≥ tm(d), the matching partners to the future
neighbors, that are already established.

To conclude, it has to be mentioned, that joining nodes also must receive the current
variables that are needed for the algorithms. This data can be received from the node, to
which a joiner newly connected. The nodes that are interchanged byATD, receive the
result of the information aggregation algorithm in round4 or 5 of ATD. Interchanged
nodes do not become directly core nodes, and thus are not involved in the calculation.

4.2. THRESHOLDS 43

Algorithm 3 System (high-level)
1: AGRID (c.f. Chapter 3.2)
2: AEDGE (c.f. Chapter 3.3)
3: ATD(i) (c.f. Chapter 3.6)
4: AIA(i) (c.f. Chapter 2.2)
5: if estimation ≥ tm(d) · d! then
6: if complete=TRUEthen
7: AMM (d) (c.f. Chapter 3.4.2)
8: else
9: AMM (i− 1) (c.f. Chapter 3.4.2)

10: AMATCH(i) (c.f. Chapter 3.4.1)
11: if i = d then
12: complete := TRUE
13: end if
14: end if
15: end if
16: if i = d then
17: i := 2
18: if estimation ≥ te(d) · d! then
19: AEXP (c.f.Chapter 3.4.3)
20: complete := FALSE
21: d := d + 1
22: else
23: if estimation ≤ tr(d) · d! then
24: ARED (c.f. Chapter 3.5)
25: complete := FALSE
26: d := d + 1
27: end if
28: else
29: if estimation ≤ tm(d) · d! then
30: complete = FALSE
31: end if
32: end if
33: end if
34: deleteall IPs that are not needed any more
35: i := i + 1
36: GOTO 1

4.2 Thresholds

The pancake system presented by now is complete up to the thresholds: It has to be
shown that it is possible to choose thresholds inΘ(d) for reducing andΘ(d2) for ex-
panding, such that our system can compete an adversary, being able to join and remove
O(d) peers within constant time. The thresholds for expanding and reducing should be
in Θ(d2) andΘ(d) respectively, in order to guarantee that the node out-degree within
a node is at most linear ind before expanding and after reducing. So our system would
preserve asymptotically the out-degreelogn/loglogn of the pancake graphPd. Cor-
responding to earlier chapter, we assume that the adversary is restricted to at most

44 CHAPTER 4. THE SYSTEM

d/2 joins and leaves during any time interval of53 rounds, which corresponds to the
longest possible phase. Let furtherkd be the maximum discrepancy between the num-
ber of nodes at a peer and the average number of peers per node. The threshold for
reducing is referred to astr(d) = cr,1d + cr,0 and the threshold for expanding as
te(d) = ce,2d

2 + ce,1d + ce,0 peers per node. We need a third threshold inΘ(d2),
which indicates that the matching establishment has to be started. Let this threshold be
tm(d) = cm,2d

2 + cm,1d + cm,0. In order to find the missing constants, we first look
at the restrictions for the reduce step which changes the order fromd + 1 to d. When
the threshold is achieved, the total number of peers may has changed byd(d + 1)/2
since the information aggregation algorithm supplies the number of peers inPd+1 with
a delay ofd phases. The next result of the information aggregation algorithm will be
suppliedd − 1 phases after the reduction, changing the total number of tokens by at
mostd(d− 1)/2. Sod− 1 rounds after the reduce step, the average number of tokens
per node is at most(d+1) ·tr(d+1)+((d+1) ·d+d ·(d−1))/(2 ·d!), since each node
of the reduced pancakePd consists ofd + 1 nodes of the previous pancakePd+1. The
threshold for establishing the matching should not be achieved already. Sinced + 1
nodes merge to one new node,tr(d + 1) is multiplied by(d + 1).

(d + 1) · tr(d + 1) +
d2

d!
< tm(d) (4.1)

The restriction for a following reduce step after reducing is computed by the same
idea. Now, the worst case is given by leaves instead of joins. The last term takes into
account, that the threshold may not exactly be reached. i.e. it can be passed by at most
(d(d+1)− 1)/2d! peers per node inPd+1: For each of thed phases in which no result
is received fromATD, (d + 1)/2 peers may have been added to the system. One is
subtracted in the denominator, since the threshold was not achieved by the last result
of ATD. So as a second restriction we get:

(d + 1) · tr(d + 1)− d2

2d!
− d(d + 1)− 1

2d!
> tr(d) (4.2)

For the expand step we get another two restrictions. First we have to guarantee, that
the thresholdtm(d + 1) is not achieved in the firstd phases after expansion: Afterd
phases we get the first result of the token distribution algorithm inPd+1. Again, the
threshold that gives the decision to increase the dimension ofPd may be passed. InPd,
this can be at most(d(d− 1)− 1)/2d! peers per node with the same argumentation as
above. Note thattm(d) in the first term is divided byd + 1, since in the expand step,
all nodes are split intod + 1 new nodes.

te(d)
d + 1

+
d2

(d + 1)!
+

d(d− 1)− 1
2d!

< tm(d + 1) (4.3)

The restriction given by a possible reducing after expanding is:

te(d)
d + 1

− d2

2(d + 1)!
> tr(d + 1) (4.4)

We further have to guarantee that during a reduce step, enough peers are in each
node. We assumed to have at least2d + 2 peers in each node ofPd+1 before the
reduction toPd, giving the following restriction:

tr(d + 1)− k(d + 1)− d(d− 1)
2d!

− d(d + 1)− 1
2d!

≥ 2d + 2 (4.5)

4.2. THRESHOLDS 45

for some constantk. Beside the thresholdtr(d), the left hand side includes the maxi-
mum discrepancy in number of peers per node from the average, the number of possible
leaves during the delay given byAIA and the value the threshold may be passed. The
last restrictions are object to the expand step. An expansion can only be done, when a
matching has been established. To guarantee this,d− 1 phases are needed between the
start of the matching establishment and the expansion step. So the minimal difference
betweentm(d) andte(d) has to be(d − 1)d/2d! and, again, the thresholdtm(d) may
be passed by(d(d− 1)− 1)/2d!.

te(d)− tm(d) >
2d(d− 1)− 1

2d!
(4.6)

The establishment of the matching is only possible, when the number of peers at any
node is larger as(d + 1)2. This gives a minimal value fortm(d), depending onk:

tm(d) > (d + 1)2 + k +
d · (d− 1)

2d!
(4.7)

The last term takes into account, once more, that the result of the information ag-
gregation algorithm has a delay of(d − 1) phases. Note that it has not explicitly to
be guaranteed, that after an expand step, enough peers will be in each grid. This is
included in Inequality 4.4, which guarantees that after an expansion, no reduction is
necessary.

The Inequalities 4.1 to 4.7 should hold for alld ≥ 1. For simplicity, we consider
the coefficients oftr(d), te(d) andtm(d) respectively to be integer constants. This is
of course not necessary, since the thresholds are given in the average number of peers
per node. Fractional constants could be more favorable in respect to the maximum
number of peers per node. However, since the our goal is just to show the existence of
the thresholds, rather then optimizing them, integer constants are used

From Inequality 4.5 we concludetr(d+1) ≥ (2+k)(d+1)+(2d2−1)/2d!. This
is satisfied by

tr(d) = (2 + k)d + 4

for all d ≥ 1.
To satisfy Inequality 4.1, we set

tm(d) = (2 + k)d2 + (8 + 4k)d + k + 8

Further, satisfying Inequality 4.6, we set

te(d) = (2 + k)d2 + (6 + 2k)d + k + 10

It can easily be verified, that all other inequalities also hold with these thresholds. From
the threshold for reducing, the minimal number of nodes in the system can be computed
(for d > 1). The maximum discrepancy from the averagekd, as well as the possibly
removed tokens within the delay of the information aggregation algorithm, as well as
the number of tokens per node the threshold may be passed have to be subtracted from
tr:

|v|min = tr(d)− kd− 2d(d− 1)− 1
2d!

= 2d + 4− 2d(d− 1)− 1
2d!

> 2d

46 CHAPTER 4. THE SYSTEM

The maximum number of peers that can be at a node, is given by the threshold for
expanding, plus the maximum discrepancykd in the number of peers at a node from
the average plus the number of peers that can join during the delay given by the token
distribution algorithm plus the number of peers the threshold may be passed. Thus
ending up with the maximum numbers of peers per node

|v|max = te(d) + kd +
2d(d− 1)− 1

2d!
≤ (2 + k)d2 + (6 + 3k)d + k + 11

To conclude, a value fork has to be set. From chapter 2.3, we haveφ ≤ 4d+3(J +L)
as the maximum discrepancy in the number of peers per node between two arbitrary
nodes inPd. Since the joins and leaves are linearly superposed, we can set

k = 4 <
φ

2d
=

4d + 3(d/2 + d/2)
2d

= 7d/2

Lemma 4.1. With the thresholdstr(d) = (2 + k)d + 2, tm(d) = (2 + k)d2 + (6 +
2k)d + k + 6, and te(d) = (2 + k)d2 + (6 + 2k)d + k + 8, it is guaranteed, that
the number of peers in any node of the pancake system is always at least2d + 2 and
bounded byO(d2).

Proof. The lemma is proved with the above calculation.

4.3 Properties of the Pancake System

This chapter will give a short overview over the properties of the pancake system. They
are all based on the detailed discussion of the pancake system in the earlier chapters.
Here we will present the most important results. We again assume that the pancake
system is running in any orderd > 1. The fact that our algorithm does never fail, is not
made explicit here. However, this is the directly seen from the corresponding proofs in
Chapter 3.

We first state that the pancake system on the end of each phase, is always repaired up
to the churn of the current phase.

Theorem 4.2. At the end of each phase, the pancake system is fully repaired up tod/2
joins and leaves.

Proof. In each phase, the churn that happened to the pancake system before the current
phase is repaired. This is done byAGRID andAEDGE , as stated in the Lemmas 3.1
and 3.3. It is also shown for all further algorithms that may run during a phase, do not
affect the grid. AfterAGRID andAEDGE , the system is always fully repaired up to
the at mostd/2 joins and leaves that may occur during the current phase. For this, we
observe that only the algorithmsAEXP ,ARED andATD may change the connections
of the grids. For these three algorithms, the desired is stated and proved in the Lemmas
3.10, 3.12 and 3.14 respectively.

Corollary 4.3. The pancake systemPd is always fully repaired up to at mostd joins
and leaves.

4.4. DATA AND ROUTING 47

Proof. From Theorem 4.2 and the following proof, we know that at the end, as well
as after the run ofAGRID, the system is always repaired up tod/2 joins and leaves.
During the run ofAGRID, there are at mostd leaves and joins in the system: namely
the up tod/2 not yet repaired joins and leaves of the last round, and the up tod/2 of
the current round.

The following corollary guarantees that there is always a core peer. Since data is
stored in the core peers as will be explained later in Chapter 4.4, this will guarantee
that no data is lost.

Corollary 4.4. For each phase of the pancake system, there is always at least one core
peer in each node, that does not leave during the whole phase.

Proof. This follows from the (1) the above corollary and its prove, and (2) from the
fact that a fully repaired grid hasd + 1 core peers in each node. Further, in the expand
step, the statement holds for the old core, until the new core is defined.

Finally, we show that the out-degree of any peer is bounded byO(d). Moreover, all
information that is needed by any peer to participate in the pancake system is bounded
byO(d). This is optimal for an adversary that can join or removeΘ(d) peers in constant
time.

Theorem 4.5. As long as the pancake systemPd is run, the total information needed
for any peer to preserve the topology is bounded byO(n).

Proof. This is seen from the Lemmas 2.8, 3.2, 3.4, 3.6, 3.7, 3.11, 3.13, 3.15, 3.17 and
4.2 and the fact that after each phase, the old information is deleted up to the needed
connections, namely row and column neighbors, additionally for core peers thed − 1
matching partner and finally, ifm > 0, the up tod matching partners needed for
preparing the expand step.

4.4 Data and Routing

The n peers in our system are arranged in a simulated pancake topology of orderd.
The data of the DHT is stored as follows. Lethash(·) be a hash function which,
given an identifierID, outputs a random permutation on some set[1, N], whereN is
a sufficiently large global integer constant. A data item with identifierID is stored on
the nodev ∈ V (Pd) which is determined by the ordering of the smallestd numbers
of hash(ID). However, a data item is not copied toall peers in that node, but only
replicated on the core at the bottom row. This has the advantage that—if we use peers
in topmost rows for the peer distribution—unnecessary copying of data can be avoided
when peers move between nodes, while we are still able to tolerate the same powerful
adversary.

As already mentioned in the introduction, the computing of the diameter of a pan-
cake graph in an efficient way is an unsolved problem. However, the routing can be
done inO(d), which approximates the shortest path up to a constant factor. This fac-
tor is shown to be less then2. The following algorithm computes a path between two
nodesv = (`1 . . . `d) andu = (`i1 . . . `id

), consisting of the nodesv1 to vk−1, where
k < 2d− 4, yielding a diameter of the pancake graph of2d− 3.

Lemma 4.6. Algorithm 4 computes a path between any two nodes inPd. The path
length is at most2d− 3.

48 CHAPTER 4. THE SYSTEM

Algorithm 4 Path between two nodes
1: k := 0
2: v0 := v
3: `i is set to thelth literal of v0, ∀1 ≤ k ≤ d
4: for j := 0 to d− 3 do
5: if `d−j 6= `id−j

then
6: find l, for which`l = `id−j

7: k := k + 1
8: vk = ρl(vk−1)
9: k := k + 1

10: vk = ρd−j(vk−1

11: `i is set to thelth literal of vk,∀1 ≤ k ≤ d
12: end if
13: end for
14: if `2 = `i2 then
15: vk+1 = ρ2(vk)
16: end if

Proof. The above algorithm computes an ordered set of nodesv0, . . . , vm. We have
v0 = v. For allvj , 1 ≤ j ≤ k + 1, vj vj andvj−1 are neighbored sincevj is retrieved
by a prefix-inversion ofvj−1. In stepj of the for loop, the number̀id−j

is brought
to positiond − j. Beginning withj = 0, after thed − 2 iterations of the while loop,
the latest computed node has the same numbers at positions3 to d asv. This holds,
since after iterationj of the while loop, all following prefix-inversion will be shorter
asd − j. After the while loop, the last prefix inversion of length2 is done ifvk 6= u.
From the above we conclude, that the last computed nodevm = u. m can be at most
2d − 3: Beginning withk = 0, the for-loop is passedd − 2 times, increasingk by at
most2, and in the end one further node may be added.m obviously corresponds to the
path length.

Lemma 4.7. The routing between any two peers in our pancake system can be done in
O(d) steps.

Proof. Consider any two peers in the presented pancake system. First the message is
sent to all row members by the sender, and then each peer that receives the message
forwards it to the core peer in its column. It is guaranteed that one of the core peers will
receive the message. Since we can not guarantee a complete column number during the
complete sending, the core peers send the message to all members of the core. Then,
the path as computed in Algorithm 4 is applied. Additionally, we insert for each node
one step, forwarding the message to all core members. In the following round it then
is sent to the core peers of the next node in the path. When the destination node is
achieved, the message is sent into to the row of the destination peer. From there, the
message can be sent to it’s destination. After3 rounds the message is broadcasted in
the core of the senders node, then within the next2(2d + 3) rounds the message is
broadcasted in the core of the destination node, and finally, in the last2 rounds the
message is received, taking at most4d + 11 rounds.

Note that the proof does not correspond to the best possible solution: Since during
each phase, there exists a column number that is complete in all grids, the broadcasting
through the core has only be done when a new phase begins.

4.4. DATA AND ROUTING 49

In the following theorem, the observations above are summarized:

Theorem 4.8. Our pancake P2P system guarantees node degree and network diameter
O(d) in the presence of an adversary which inserts and deletesΘ(d) peers per unit
time. Each node always has at least1 living core peer and no data is lost. Moreover, it
holds thatd = Θ(log n

log log n).

Proof. The node degree is a direct consequence of Theorem 4.5 and the network diam-
eter in the above Lemma 4.7. The surviving core peer is stated in Corollary 4.4. That
no data is lost, is directly derived from the surviving core peer and the fact that all data
of a node is stored in each node peer.

Chapter 5

Conclusions

We presented a P2P system which maintains desirable properties such as low peer
degree and low network diameter against powerful, concurrent adversary which has
complete visibility of the entire state of the system. We showed that the fault tolerance
is asymptotically optimal as the robustness of any topology is trivially upper bounded
by the peer degree.

We showed that our techniques allow to make a most intricate graph topology dy-
namic. We believe that majoring the pancake as a most intricate topology it may be
possible to write a recipe for any P2P topology, by simply applying our basic compo-
nents as ingredients.

The basic components we used were also used in [13]. We just applied them to
the pancake graph, a topology, which is more complex and less intuitive. However, we
developed various new ideas that may be used for other topologies too, two of them
mentioned here: The node representation as a2-dimensional grid allowed a node to
consist ofO(d2) peers, still bounding the out-degree of the peers byO(d). Even if this
is not done explicitly here, we state that the grid can be generalized to any dimension
k. For each fixedk, this may increases the diameter of the grid by a constant. With this
idea, the out-degree of a peer in a node, consisting of at mostO(dk) can be bounded
byO(k). Since the diameter, and thus the number of rounds needed for the necessary
algorithms will only be increased by a constant, this does not change the asymptotically
results.

A further idea which was not used in [13], is that neighbored cores are only con-
nected by a matching. With this idea, the out-degree of the hypercube system presented
in [13], could be decreased fromlog2d to logd, which is optimal since it corresponds
to the out-degree of the hypercube. For this optimization, the number of rounds per
phase in the hypercube system has just to be increased by1.

51

Bibliography

[1] I. Abraham, B. Awerbuch, Y. Azar, Y. Bartal, D. Malkhi, and E. Pavlov. A Generic Scheme
for Building Overlay Networks in Adversarial Scenarios. InProc. 17th Int. Symp. on Par-
allel and Distributed Processing (IPDPS), page 40.2, 2003.

[2] I. Abraham, D. Malkhi, and O. Dobzinski. LAND: Stretch (1 +ε) Locality-Aware Net-
works for DHTs. InProc. 15th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA),
pages 550–559, 2004.

[3] J. Aspnes and G. Shah. Skip Graphs. InProc. 14th Ann. ACM-SIAM Symp. on Discrete
Algorithms (SODA), pages 384–393, 2003.

[4] B. Awerbuch and C. Scheideler. The Hyperring: A Low-Congestion Deterministic Data
Structure for Distributed Environments. InProc. 15th Ann. ACM-SIAM Symp. on Discrete
Algorithms (SODA), pages 318–327, 2004.

[5] D. Berman and M. Klamkin. A Reverse Card Shuffle.SIAM Review, 19:739–741, 1977.

[6] H. Dweighter.American Mathematical Monthly, 82, 1995.

[7] A. Fiat and J. Saia. Censorship Resistant Peer-to-Peer Content Addressable Networks. In
Proc. 13th Symp. on Discrete Algorithms (SODA), 2002.

[8] W. Gates and C. Papadimitriou. Bounds for Sorting by Prefix Reversal.Discrete Math.,
27:47–57, 1979.

[9] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. SkipNet: A Scal-
able Overlay Network with Practical Locality Properties. InProc. 4th USENIX Symp. on
Internet Technologies and Systems (USITS), 2003.

[10] M. Heydari and I. Sudborough. A Quadratic Lower Bound for Reverse Card Shuffle. In
Proc. 26th S.E. Conf. Combinatorics, Graph Theory, and Computing, 1995.

[11] M. Heydari and I. Sudborough. On the Diameter of Pancake Networks.J. Algorithms,
25:67–94, 1997.

[12] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weather-
spoon, W. Weimer, C. Wells, and B. Zhao. OceanStore: An Architecture for Global-scale
Persistent Storage. InProc. of ACM ASPLOS, November 2000.

[13] F. Kuhn, S. Schmid, and R. Wattenhofer. A Self-Repairing Peer-to-Peer System Resilient to
Dynamic Adversarial Churn. InProc. 4th Int. Workshop on Peer-to-Peer Systems (IPTPS),
2005.

[14] X. Li, J. Misra, and C. G. Plaxton. Active and Concurrent Topology Maintenance. InProc.
18th Ann. Conference on Distributed Computing (DISC), 2004.

[15] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A Scalable and Dynamic Emulation of
the Butterfly. InProc. 21st Ann. Symp. on Principles of Distributed Computing (PODC),
pages 183–192, 2002.

[16] D. Peleg and E. Upfal. The Token Distribution Problem.SIAM Journal on Computing,
18(2):229–243, 1989.

53

54 BIBLIOGRAPHY

[17] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby Copies of Replicated
Objects in a Distributed Environment. InProc. 9th Ann. ACM Symp. on Parallel Algorithms
and Architectures (SPAA), pages 311–320, 1997.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content Ad-
dressable Network. InProc. of ACM SIGCOMM 2001, 2001.

[19] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling Churn in a DHT. InProc.
USENIX Ann. Technical Conference, 2004.

[20] J. Saia, A. Fiat, S. Gribble, A. Karlin, and S. Saroiu. Dynamically Fault-Tolerant Content
Addressable Networks. InProc. 1st Int. Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[21] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications. InProc. ACM SIGCOMM Confer-
ence, 2001.

[22] B. Y. Zhao, L. Huang, J. Stribling, A. D. Joseph, and J. D. Kubiatowicz. Tapestry: A
Resilient Global-scale Overlay for Service Deployment.IEEE Journal on Selected Areas
in Communications, 22(1), 2004.

Appendix A

Acknowledgements

Finishing my diploma thesis in computer science, I look back to 4 months of hard
working on a theoretical topic. My decision to choose for this topic was based on
my affection for theoretical work. In contrast to other offers, this thesis seemed not
narrowing to me, in the sense that it was open for my own ideas. I was also sure, that I
would achieve interesting results.
Now, at the end of the diploma thesis, I can conclude that my expectations have been
fulfilled: From the beginning, my ideas have been supported by my advisors and
decided the following work. I am proud that with the help of my advisors, a conference
paper on my work has been handed in. This gave me an additional insight to research
in theoretical computer science.

I want to thank Fabian, Roger and Stefan for their support and various helpful
ideas and feedback.

55

