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Abstract

Since many years, peer-to-peer systems are very popular and the number of their users
is still increasing. Also in the research of computer science, this topic has achieved
much attention. The analysis of fault tolerant P2P-systems mostly covers random joins
and leaves in a static model, i.e. a P2P system tolerates a number of simultaneous
random faults. However, in real P2P system, the set of peers connected to the system,
continuously changes. For this, a dynamic model seem to be more appropriate.

In this diploma thesis, a P2P system is presented, that can defend a malicious adver-
sary, joining and leaving peers in the system. In contrast to other models, the adversary
can do this continuously in a worst case manner, while the system tries to stay fully
functional.
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Chapter 1

Introduction

Stirred by the remarkable popularity of Internet file-sharing software, distributed sys-
tems and networking research made peer-to-peer (P2P) systems a focal point of their
recent studies. As opposed to P2P systems, conventional distributed systems typically
consist of dixedset of machines. During operation, occasionally (but rarely!) a small
subset of machines might fail (crash or behave maliciously, depending on the model).
Thanks to ingenious communication protocols these failures will be detected, and op-
erable parts of the system will eventually be guided back to a save state.

In a P2P system, however, there will be no fixed set of participating machines. In-
stead, a distributed P2P system is composed of a huge number of machines (peers)
who join and leave the system at high rates. In P2P lingo, this high turnover of ma-
chines is callecchurn For distributed systems with high churn the orthodox group
communication schemes seem futile. In a P2P system with millions of peers where
each participates in the system for a few hours on average, hundreds of peers join and
leave the system every second. In such a system, it seems out of the question to achieve
consensus which peers currently participate.

In spite of being a foremost difficulty in P2P systems, churn has not received the
attention it deserves in the literature. With the exception of [13], P2P systems are
instead analyzed against an adversary who can crash a functionally bounded number of
random peers. Then, much in the esprit of self-stabilization or group communication,
the P2P system is given sufficient time to recover.

In this paper we describe an efficient P2P system which is resilient to churn. We
assume that joins and leaves occur in a worst-case manner. In particular, an adversary
can remove and add a bounded number of peers. The adversary chooses which peers to
crash and how peers join. However, we assume that a joining peer knows a peer which
already belongs to the system. Moreover, the adversary does not need to wait until the
system is recovered before it crashes the next group of peers.

Instead, the adversary may crash peers continuously while the system is trying to
stay alive. Our system remains fully functional in the presence of such an adversary
which constantly attacks its weakest part. For example, an adversary could insert a
crawler into the P2P system, learn the topology, and then repeatedly crash selected
peers, attempting to partition the P2P network. Such an adversary is countered by
our system by continuously moving the remaining or newly joining peers towards the
weakest areas.

Of course, we can not allow our adversary to have unlimited capabilities. In par-
ticular, in any constant time interval, the adversary can at most add and/or remove
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Figure 1.1:A pancake graph of order 4%).

O(log’ign) peers,n being the total number of peers presently in the system. This
model covers an adversary which repeatedly takes down machines by a distributed de-
nial of service attack, but only a bounded number of machines at each point in time.
Our system issynchronousaind we assume messages to be delivered timely, i.e., in

at most constant time between any pair of operational peers. Note however that if
nodes are synchronized locally, our algorithm also runs in an asynchronous environ-
ment. Thereby, the propagation delay of the slowest message defines the notion of time
which is needed for the adversarial model.

The basic structure of our P2P system is a pancake graph (cf. Definition 1.1 and
Figure 1.1). Each peer is part of a distinct pancake node; each pancake node consists
of O((logi”nﬁ) peers. A data item is redundantly stored by the peers of the node to
which its idgentifier hashes. Peers have connections to other peers of their pancake node
and to peers of the neighboring pancake nodes. In the case of joins or leaves, some
of the peers have to change to another pancake node such that up to constant factors,
all pancake nodes own the same number of peers at all times. If the total number of
peers grows or shrinks above or below a certain threshold, the order of the pancake is

increased or decreased by one, respectively.

Definition 1.1. A Pancake Grapbf orderd is a graphP,; = (V, E), with V(P;) =
{lile..dg |l; € {1,...,d}, Vi # j : I; # 1}, 1.e., V(Py) is the set of all permutations
on d elements. Lep; denote a prefix-inversion of length i.e. p;(l1...l;...lq) =
lilifl...llli+1...ld. We have{u,v} € E(Pd) <V = pi(u).

The balancing of peers among the pancake nodes can be seen as a dynamic token
distribution problem [16] on the pancake. Each node of a graph has a certain number
of tokens, the goal is to distribute the tokens along the edges of the graph such that
all nodes end up with roughly the same number of tokens. While tokens are moved
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around, an adversary continuously inserts and deletes tokens. Our P2P system builds
on two basic components: i) an algorithm which performs the described dynamic token
distribution and ii) an information aggregation algorithm which is used to estimate the
number of peers in the system and accordingly adapt the order.

Based on the described structure, we get a fully scalable, efficient P2P system

which toIeratei)(log’i <) worst-case joins and/or crashes per constant time inter-

val. Moreover, peers hav@(—°2"_ ) neighbors, and the usual operations (e.g. search)

loglogn
H logn
take timeO (35 )-

1.1 Model

The synchronous message passing madetonsidered where in each round, every
peer can send a message to all its neighbors. The ongoing churn is modelled with an
adversaryA 4 pv (J, L) which may performJ arbitrary joins andL arbitrary leaves
(crashes) per time interval of unit length. A joining pearis assumed to contact

an arbitrary peefr» which already belongs to the system. In contrast to other systems
where peers have to do some finalizing operations before leaving, we consider the more
general case where peers depart or crash without notice.

1.2 Related Work

The pancake graph and the famous unsolved problem of computing its diameter has
been introduced by [6], and has been analyzed in several papers [5, 8, 10, 11]. How-
ever, to the best of our knowledge, this is the first paper that addresses the issues of
scalability, information aggregation, and token distribution on the pancake graph.

Over the last years, enough and to spare overlay networks with various interesting
technical properties have been proposed (e.g. [2, 3, 4, 9, 12, 15, 17, 18, 21, 22]).
Because of the nature of P2P systems, fault-tolerance has been a prime issue from the
beginning. The systems are usually robust against a large number of random faults.
But after crashing a few peers, the systems are given time to recover again. Churn has
been addressed in [19] from an experimental point of view.

Resilience to worst-case failures has been studied by Fiat, Saia et al. in [7, 20].
They introduce a system where, with high probability,— ¢)-fractions of peers and
data survive the adversarial deletion of up to half of all nodes. However, in contrast
to our work the failure model is static. Moreover, the whole structure has to be rebuilt
from scratch if the total number of peers changes by a constant factor.

Abraham et al. [1] address scalability and resilience to worst-case joins and leaves.
They focus on maintaining a balanced network rather than on fault-tolerance in the
presence of concurrent faults. In contrast to our system, whenever a join or leave takes
place, the network has some time to adapt.

The first paper treating arbitrarily concurrent worst-case joins and leaves is by Li
et al. [14]. In contrast to our paper, Li et al. consider a completely asynchronous
model where messages can be arbitrarily delayed. The stronger communication model
is compensated by a weaker failure model. Leaving peers execute an appropriate “exit”
protocol and do not leave before the system allows this; crashes are not allowed.

To the best of our knowledge the only paper which tolerates continuous joins
and leaves is [13]. In [13] it is shown that a hypercubic topology can tolerate
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O(logn) worst-case joins and/or crashes per constant time interval. In this paper—
superficially—we improve the result of [13] by presenting a topology with better char-
acteristics (faster search time and lower degree). However, we think our main contri-
bution is to make a most intricate graph topology dynamic. Majoring the pancake, we
believe, essentially gives a recipe for any P2P topology, by simply applying our basic
components (see Chapter 2) as ingredients.



Chapter 2

Basic Components

2.1 Scaling

The order of the pancake graph is changed according to the total number of peers in
the system. For the expansion, ndge.l; € P; splits intod + 1 new nodes{(d +
Dile.dg, li(d4+1)la..0g, ..., lila.. lg(d+1) } Of Py 1, and vice versa for the reduction.

To be useful for our application, the order change of the pancake has to fulfill a
crucial requirement: A node must be able to compute its new neighbacady, i.e.,
based on the information about the neighbors in the graph before the order changed. We
will now describe the expansion and the reduction in detail and show that this criterion
is indeed fulfilled in both cases.

2.1.1 Expansion

If the total number of peers exceeds a certain threshold, eachwmedel;...l; €

P, splits intod + 1 new nodes{vff)p = (d + 1)1112...1(1,@(@;)1’ = li(d +
1)la...1q, ...,v(eﬁl) := Iila...lg(d + 1)} of Pyyq. The following lemma states that

the new neighbors of a nod¢” € P, can easily be computed by the knowledge
about the neighbors of the original node P;.

Lemma 2.1. Consider two arbitrary nodes andv. It holds that if{u?f)p,vf;”} €
E(Py41) forsomei, j € {1,...,d + 1}, then{u,v} € E(Py) oru = v.

Proof. If {u?f)p,v(ef)”} € E(Py11) thereis ak € {2,...,d + 1} such thatu?f)” =
Dk (u?f)”). If the numberi+1 appears among the firkipositions ofu; (and thus also of
u?i‘"’;p), the original nodes—having no numk@r 1)—are related by a prefix-inversion
of lengthk —1: u = pr_1(v). If on the other hand the numbé#- 1 appears among the
remaining positionsy andv are related by the same prefix-inversian= pi(v). O

2.1.2 Reduction

If the total number of peers per node on average falls beyond a certain threshold, all
nodesl;...l;(d + 1)l;11...l¢ € Pyyq fori € [0,d] merge into a single node...l; €

P,. This reduction works as follows. First, the followimpminating sebn P, is
computed: every node = [;...l411 havingl; = d + 1 becomes a dominator. We will
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call a dominator plus its adjacent (dominated) nodetuater In the following, let
v?{’)"" = (d+1)l;...1; be a dominator and?;;m = pi(vff)m) =li1li_o..(d+1)l;..14
its neighbor with prefix-inversion of length The idea will be to contract each cluster
with dominatorvdfm = (d + 1)l;...l; to a single node = [;...l; € P;. However,
our clusters do not yield the desired reduction yet: In order to get the inverse operation
of the expansion, each cluster has to exchange one dominated node with each of its
adjacent clusters.

Before we explain the exchange of the dominated nodes in detail, we first prove that
the set of nodes havifg = d+ 1 indeed forms a dominating set, that every dominated
node is adjacent to exactly one dominator, and that dominators are never adjacent.

Lemma 2.2. Consider the graptP,.,. Thed! nodes ofP,,, with first number; =
d + 1 build a dominating set, i.e., each node is either a dominator itself or adjacent to
a dominator. Moreover, clusters are disjoint.

Proof. Consider an arbitrary node= [1l5...l4+1. Assume that; = d + 1 for some
i€{l,...,d+1}. If i = 1,vis adominator itself. Clearly, two nodes haviiig= d+1
cannot be adjacent. if£ 1, there is exactly one neighbor ofwhich is a dominator,
namely node: = p;(v). O

According to Lemma 2.2, each node belongs to exactly one cluster, hence the con-
traction operation is well-defined.
However, as stated, we additionally need to exchange dominated nodes between

adjacent clusters. This works as follows: The cluster with dominefigjf = (d +
1){3...14 sends its dominated nodé‘;m to the cluster with dominatqd+1)p; (11...14),
fori € [2,d].

We will now show that after the exchange of the dominated nodes, (1) each cluster
with dominatomglf)m = v(ef)” = (d+1)l;...1g which will reduce to node = [;...l4 con-
sists of the nodes(ef)” = (d+1)l1...ld,vf§)” =li(d+1)...la, ...,v(ej;fl) =1y...14(d+1),
and (2) the dominated nod%”;p for i € [3,d + 1]—before being transferred to the
cluster dominated bygf)m—belonged to the cluster that will form the new nqdév).

To see this, note that nody%‘;m is replaced bypi,l(vé‘gm) = pic1(liy.ly(d +
Dl;..lg) = ng)p, and that before the transfe@”ﬁp belonged to the cluster dominated
by p; (vfsp) = (d+1)l;_1...l11;...15 which will reduce to node; _; (v). Thus, after the
exchange, the cluster which will contract to nadeonsists of the nodaeswould also
expand to, and a cluster has information about each of its future neighbors.

2.2 Information Aggregation

The order of our pancake is adapted according to the total number of peers in the
system. In this chapter, we present an algoritdpy which allows to count the total
number of tokens (peers) at the pancake’s nodesPL(et denote the sub-graph of the
pancake grapl®; consisting of those nodes that share a postfix of ledgthi with a
given nodev. (Note that the graph induced ¥ (v) is also a pancake graph, namely
of orderi.) The algorithm runs il — 1 phases and accumulates the total number of
tokens in sub-graphs of increasing size.

Each phase consists of two rounds. In the first round of phaseodev sends the
total number of tokens in its sub-gragh(v)—which is known by induction—to its
neighborp; 1 (v). Thus, since prefix-inversion is a symmetric operatioreceives the
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total number of tokens in the sub-grapf(p;+1(v)) from nodep; 1 (v). In the second
round, nodev sends this information to all neighbops(v) for j < i + 1. Given the
information about alP; (p;+1(p;(v))) (for j < i+ 1), the total number of tokens in the
sub-graphP; .1 (v) can be computed?; .1 (v)| = |P;(v) + 35— [Pi(pit1(pj(v)))],
where| - | denotes the number of tokens in the corresponding sub-graph. Hence, by
induction, afterl — 1 phases, every node can compute the total number of tokens in the
system.

Theorem 2.3. A4 provides all nodes with the correct total number of tokens in the
system afted — 1 phases.

Proof. By induction over the phases we show that after phaséolds that each node
v knows the total number of tokens )11 (v).

i = 0 : Before the first phase, a nodeonly knows its own tokens, and as there is
only one node inP; (v), the claim trivially holds.

i — i+ 1 : By the induction hypothesis, after phaseach node = [;...l; knows
the total number of tokens in the sub-graBh 1 (v). In phase + 1 nodev learns the
total number of tokens in the sub-grapfs i (pi+2(p;(v))) for j < i+ 2. This allows
to compute the total number of tokensit 2 (v).

To see this, note that the nodegv) for j < i+ 2 all have a different number at the
first place and share the postfix /;13...lq with v. Performing ap; > prefix-switch
yields a member for each sub-graph with postfixsl;t4...lq of lengthd — (i + 2).
Therefore, combining the information of the sub-graphs yields the total number of
tokens inP; ;o (v). O

In our system,4; 4 is executed all the time. Even it could be run pipelined, i.e.
all phases concurrently and thus supplying a result after each phase, this will not be
done, since the number of integer that would be received by a peer wouldein
The latest result, before the arrival of the next result, is thus delayed by atrhest
phases.

2.3 Token Distribution

As stated, each pancake node is simulated by a number of peers. Ideally, the number
of peers per pancake node should be roughly equal for all nodes. Because peers join
and leave, it is necessary to constantly adapt the assignment of peers to nodes. To
problem of assigning peers to nodes is closely related to the token distribution problem
as introduced in [16]. Given a graghand a number of tokens at each node&/othe
goal is to find a distributed algorithm which moves tokens along the edgéssoth
that in the end, the tokens are distributed equally among all nod@s lof the context
of this paper, we look at a dynamic token distribution problem on the pancake graph
where in each step, tokens (peers) can be inserted and deleted at arbitrary nodes. The
objective is to constantly move tokens along edges such that at all times, all pancake
nodes have roughly the same number of tokens.

Formally, the goal is to minimize the maximum difference of the number of tokens
of any two pancake nodes, denoted bydiserepancy). Analogously to the informa-
tion aggregation algorithm of Chapter 2.2, our token distribution algorithm exploits the
recursive structure of the pancake graph. In a first step, all pancakes oRdralkance
their tokens. Then, the pancakes of or8et, . .. exchange tokens. Pancakes of order
i can thereby build on the fact that all pancakes of oidern have balanced the token
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levels of their nodes. A detailed description is given in Algorithm 1. We assume that
we have given a dominating set as described in Chapter 2.1 for each pahc¢ake

The dominators could e.g. be all nodesi®fv) which have the largest of the first
coordinates at the first position. Note that coordinatesl to d are fixed for all nodes

of P;(v) by definition.

Algorithm 1 Pancake Token Distribution (nod¢
1: fori:=2toddo
2:  sendall tokens top; (v);
3:  sendall tokens to dominator i®; (v);
4:  dominatorssendtokens to nodes of their clusters
5: end for

Let P;(v) be the pancake of ordéras in Chapter 2.2. After th&” iteration of
Algorithm 1, for allv, all nodes ofP;(v) have the same number of tokens. Hence, at
the end { = d) all nodes of the pancake have the same number of tokens. In line 4 of
Algorithm 1, it is not specified how many tokens to send to which nodes if the number
of tokens at a node is not divisible by There is also no explicit notion of tokens
which are inserted or deleted by an adversary during the algorithm. In the following,
we will prove that the algorithm perfectly distributes tokens if tokens are fractional,
that is, if they can be divided arbitrarily and if no tokens are inserted or deleted during
the algorithm (static token distribution). We will then analyze the effects of adversarial
insertions and deletions and of integer tokens.

Lemma 2.4. Algorithm 1 perfectly solves the static fractional token distribution prob-
lem on a pancake of ordet.

Proof. As outlined above, we prove the lemma by induction ovefince P; (v) is

a single node, clearly at the beginning all nodesPpfv) have the same number of
tokens. Let us therefore assume that forwgllall nodes ofP;_;(u) have the same
number of tokens; _, (u). The pancake®;_;(u) of orderi — 1 belonging toP;(v)
can be characterized by théif coordinate. Let; be thei?* coordinate of the nodes
of P;,_1(u). In line 2 of Algorithm 1, a node: of P,_; () modes all tokens tp; (u),
that is, all tokens are moved to a node witlas its first coordinate. Hence, after line 2,
all nodes ofP; (u) with first coordinate; havet;_;(u) tokens.

In lines 3 and 4, each cluster (dominator plus neighbors) distributes all its tokens
equally among the members of the cluster. It therefore remains to show that each
cluster of P;(u) has the same number of tokens. However, since in each cluster, every
possible first coordinate occurs exactly once, this is clear from the discussion of the
first step of the algorithm (line 2). O

We will now show how dynamic insertions and deletions of tokens affect the frac-
tional token distribution of Algorithm 1. For the dynamic token distribution algorithm,
we assume that thé — 1 iterations of the algorithm are repeated, that is, afterd,
we start again at = 2.

Lemma 2.5. If in every iteration of Algorithm 1 at most tokens are inserted and at
mostL tokens are deleted, the algorithm guarantees that at all titnesd — 1, the
maximal difference between the numbers of fractional tokens between any two nodes is
3(J+L).
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Proof. To start, we only consider insertions and neglect deletions. Because all opera-
tions of the algorithm are linear, we can look at each token independently. By Lemma
2.4, each token which is inserted before the first iteration of the algorithm is distributed
equally amongl /i! < 2¢ nodes after iteration. A token which is inserted after it-
eration; is distributed among!/;j! < 2¢~7 nodes after iteration. All tokens which

were inserted before the last complete execution of Algorithm 1 are equally distributed
among all nodes of the pancake. We therefore only have to look at the last complete
execution and at the current execution of the algorithm. All tokens which are inserted
in the current execution of Algorithm 1 are distributed among at I2asbdest it-
erations after the insertion. Therefore, by a geometric series argument, there are at
most2J tokens per node which were inserted in the current iteration. All tokens which
were inserted before the end of the last complete execution of the algorithm, were dis-
tributed among at leagtnodes after the last complete execution. Because in iteration
each node distributes its tokens amamifferent nodes and each node receives tokens
from ¢ different nodes, all the tokens from the last complete execution of the algorithm
remain distributed among at leashodes. Because there are at m@st 1).J such to-

kens, each node has less than one of them. Together, the number of tokens between the
heaviest and the lightest node becoésFor deleted tokens the same argumentation

as for inserted tokens holds. O

Up to now, we have analyzed the token distribution algorithm for the idealized case
where tokens can be divided arbitrarily. In our application, tokens correspond to peers,
we thus have to extend the analysis to integer tokens. We assume that in line 4, tokens
are distributed as good as possible. That is, if theré:dokens in a cluster, some of
the nodes receivgk /i | tokens and some nodes recejiig’7] tokens.

Lemma 2.6. The (absolute) difference between the number of integer tokens and the
number of fractional tokens at any node is always upper bound@d.by

Proof. We start the proof by looking at iteratiarof Algorithm 1. Assume that before
iteration ¢, the difference between the number of integer tokens and the number of
fractional tokens is at most at each node. If there are token insertions or deletions
at a nodes, this does not change because insertions and deletions affect the numbers
of fractional and integer tokens in the same way. In line 2, all tokens are moved and
thereforet remains unchanged. In lines 3 and 4, tokens are distributed equally among
i nodes of a cluster. If there afetokens in such a cluster, each node gets between
|k/i] and[k/i] tokens. If every node got exacthy/i tokens, the difference between
fractional and integer would remain at mgstDue to the rounding, the difference can
therefore grow to at most+ 1 after iterationi. Hence, after iterations, the absolute
difference between the numbers of fractional and integer tokens is at most

To prove that at each node, the number of integer tokens cannot deviate from the
number of fractional tokens by more thad, we need the following observation. By
Lemma 2.4, fractional tokens are distributed equally among all nodes after their first
complete execution of Algorithm 1, that is, after less tRaniterations. Therefore,
the number of fractional tokens at each node does only depend on the insertions and
deletions of the las2d iterations and on the total number of tokens in the system.
Therefore, the distribution of fractional tokens is the same if we assume that before the
last2d iterations, the number of fractional tokens at each node was equal to the number
of integer tokens. By the above argumentation, the difference between the numbers
of integer and fractional tokens at a node can have grown to at 2aaist those2d
iterations. O
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Combining Lemmas 2.4, 2.5, and 2.6, we obtain the following theorem about the
dynamic integer token distribution algorithm.

Theorem 2.7. The discrepancy of the dynamic integer token distribution algorithm
is at mostp < 4d + 3(J + L).

We end this chapter with a few considerations about an actual implementation of
Algorithm 1. The algorithm is formulated in the form which makes the proofs of this
chapter as simple as possible. It is of course not desirable that all nodes first have to
move all tokens to dominator nodes which then redistribute the tokens. Especially in
the case where no insertions or deletions occur, we would like the system to stabilize to
a point where no tokens have to be moved around. It is not difficult to implement Al-
gorithm 1 in a way which has this property. In line 2, two nodemdp;(u) exchange
all their tokens. They can of course obtain the same effect by computing the difference
between the number of tokens and by only moving this number of tokens in the appro-
priate direction. A similar trick can be applied for lines 3 and 4. The dominator nodes
can collect all the necessary information and decide about the necessary movements of
tokens.

2.4 Node Representation

Our systemsimulatesthe pancake topology and a pancake node consists of several
peers. In this chapter we will first present the internal structure of a node (Chapter
2.4.1) plus the representation of the pancake’s edges (Chapter 2.4.2).

2.4.1 The Grid

The peers of a node € V(FP,) are arranged to form zdimensional grid~, consist-
ing of exactlyd + 1 columns while the number of row8 may vary depending on the
total number of peers in.

Let |v| be the total number of peers in nodand letR := ||v|/(d + 1)]. The first
R-(d+1) peers are arranged ireadimensional grid withi+1 columns and? complete
rows, such that every peer occupies exactly one posttig:, y] for = € [0,d] and
y € [0, R—1]. The remainingv| mod(d+1) peers—from now on callegitra peers—
are located in an incomplete additional rGiy[i, R] for i € [0, |[v| mod(d+1)]. Inside
a node, the peers are connected as follansg-connections A peer atG, [z, y] is
connected to the pee€s, [z, ] for ¢ € [0, R] andG,[i,y] for i € [0,d]. As the extra
peers do not form a complete row, they are more vulnerable: Assume the grid having
two rows and one extra-peer, the extra-peer would only be connected to two peers. In
order to avoid this weakness, the extra peers are also assumed to be full members of
the highest complete ro& — 1, i.e., we also have connections betwe&@y|i, R] for
i € [0, |v| mod(d + 1)] andall peersG,[j, R — 1] for j € [0, |v] mod(d + 1)]. When
we state that a peer sends a message to all of it's row members, we thus mean for the
row R — 1, that the senders send the message also to the extra-peers and, vice versa,
also the extra-peers send the corresponding message to the membergof row

Definition 2.1. A grid as described above and containing at ezt 2 peers is called
a fully repairedgrid.
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2.4.2 Edges

Having described the pancake’s nodes, we now specify the representation of the pan-
cake’s edgesirfter-connections The idea is as follows: If two nodes and v are
connected in the pancake graph, i.e., {u,v} € P;, then each pee&f,,[i, 0] is con-
nected to the peer occupyirg, [i, 0], for i € [0,d]. In the following, we will call the

peers in the lowest row (row zero) tleere of the corresponding node. Thus, we can
say that two nodes are connected byaching between their cores

Definition 2.2. We call the matching of a node #; fully repaired when each column
in the grid has a core-peer, and all core peers have a connection to their matching
peers in all neighbored nodes.

Definition 2.3. The pancake system is callédly repaired when all grids as well as
their inter-node connections are fully repaired, and the discrepancy between any two
nodes is bounded byl + 3(J + L).

Lemma 2.8. Assumed the number of peers in any grid of the pancake system is
bounded byO(d?), the following statement holds: For any peer in a fully repaired
pancake system, the out-degree is bounded (aj).

Proof. A peer in the pancake system is connected to its row neighbors, which are at
most2d (in the top row, when there arkextra peers) and its column neighbors. For

the row neighbors there is nothing to prove: Each node hasljuSince the number

of peers per node is assumed to be bounded @), the number of rows in the grid,

and thus the number of column neighbors is bounde®fy), since we havel + 1
columns. Finally, the core peers are connected to one core peer of each neighbored
node. Since each node Iy has exactlyl — 1 neighbors, the statement holds. [






Chapter 3

Algorithms

3.1 Introduction

In this chapter the algorithms that are needed for the pancake system are presented
in detail. First the algorithmd¢ rrp is presented (Chapter 3.2), which will be used

to repair the grid, followed bydgpge (Chapter 3.3), which updates the inter-node
connections. Then the algorithms that are needed for the expansion step, the reduc-
tion step (Chapter 3.4), the token distribution (Chapter 3.6) and finally the information
aggregation (Chapter 3.7) follow.

For understanding this chapter, it is crucial to have an idea of how the system finally
will work and how the adversary will be modelled. For this, we here present the idea of
thephase A phasés the time interval in which various algorithms are run, depending
of the state of the system. The first algorithms phaseare always the same. Starting
with Agrrp and Agpcg, in the following the algorithms for the token distribution
Arp, and the information aggregatioff 4) are run. Finally, depending on the current
result of the token distribution algorithm, the expand step may be prepared (c.f. Chapter
3.4) or executed, or the reduction algorithm may be run. Then a new phase begins with
Acrrp- We will restrict our adversary t@/2 joins and leaves during any time interval
that corresponds to the longest possible phase (c.f. Chapter 4). We will prove that
Acrrp andAgpa e Will fully repair the pancake system, with respect to the joins and
leaves of the last phase. Thus for all following algorithms, the pancake system will
be fully repaired up tal/2 joins and leaves, which may occur at arbitrary time during
the current phase. For this, correctness will be proved for at dy@gbins and leaves
during the algorithm run. Note that this is sufficient, even if some of the joins and
leaves occur before the run of the algorithm: The information of the possible joins and
leaves before the start of these algorithms is simply not used. Other algorithms running
during the same phase can be neglected. Thus for proving properties of any algorithm
Ax, we think of the the three algorithmdcrrp — Agpce — Ax continuously
running on each grid irP;. This is possible, as long as it can be guaranteed, that all
algorithms A x that run during a phase, will end with a pancake system that is fully
repaired up to the churn during it’s run.

In the following, unless stated otherwise, with "all peer in a grid/row/column’, we
mean all peers that were part of the grid on the beginning of the phase. These nodes
are known by the corresponding (neighbored) peers in the grid, baseshapshotn
the beginning of the grid maintenance algorithm.

17
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3.2 Grid Maintenance

In this chapter, we describe how to maintain the grid against continuous adversarial
churn. Our algorithmAgrrp takes several rounds. The idea is as follows: At the
beginning, asnapshotof the state (living peers, etc.) of the system is made. The
following rounds are then only based on this information—ignoring the fact that some
peers may have crashed by the concurrent adversary in the meantime. That is, by using
enough redundancy, we take the crashed and newly joined peers only into account
when the maintenance algorithm begins again with the first round. We thus accept that
a newly joined peer will be disconnected, when the peer to which it joins leaves before
a new run ofdg g p is started

Agrrp consists of two parts. In the first part, the following information is broad-
casted throughout the grid: (1) the positions where peers have left, (2) the IP addresses
of the peers that have joined, (3) the IP addresses of the extra peers, and (4) the IP
addresses of the peers in rolRs- 1 and R — 2. The second phase is based on this in-
formation and works as follows: Every surviving peer can locally compute which peers
will take the positions of the left peers (gaps in the grid). Thereby, newly joined peers
are taken into account first, and if this is not enough the extra peers are used. If there
are still gaps in the grid, the peers of the top row are used, decrementing the number of
rows (R := R — 1). If on the other hand there are still joining peers left after all gaps
have been filled, these peers are added to the top row, perhaps creating a new top row
if necessary R := R + 1). After this local computation, the peers that have to fill the
gaps are provided with the necessary neighbor information. With an adversary which
may remove and insert at ma$t2 peers during any time period dfrounds, we can
guarantee that no row may be deleted completely and that there is always a complete
column. Note that we refer to the joins and leaves as to the joins and leaves at the start
of Agrrp. As mentioned above, the churn that happens during the rutyef; p is
ignored.

We now give the detailed description df;r;p. Thereby, the following notation
is used: We will writeG,[-, y] andG, [z, -] to denote all (surviving) peers in theth
row and in ther-th column respectively.

RounND 1

Outline:  Starting to broadcast the positions where peers have left, the IP addresses
of the joining peers, and the IP addresses of the extra peers plus jewR — 1] and
Gy, R—2].

Sent Messages: A surviving peer at positiol, [z, y] sends its IP address and the IP
addresses of its joiners to all peersdp|-, y].

ROUND 2

Outline: The broadcast is continued along the columns.

Sent Messages: Each peer at positiotv, [z, y], y < R — 2 sends the addresses of
the joiners in its row plus the information in which columns peers in its row have left
to G, [z, -]. Each peer at positiof¥, [z, y], y > R — 2 sends all IPs of it's row, together
with the corresponding grid coordinates@ [z, -]. The joiners are sent without grid
coordinates.
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RouND 3

Outline:  The broadcast along the rows completes the information dissemination.

Sent Messages: Each peer at positio&, [z, y] forwards the information received in
ROUND 2 to the peers7, [, y], including the joining peers that joined the row during
the last phase.

RouNnD 4

Outline:  The new form ofG, is computed locally.

Local Computation: Each peer a7, [z, y] computes the new positions of the join-

ers, extra-peers and the top-row. If the number of joiners and extra-peers exceeds the
number of leaves by more theént 1, the number of rows in the grid is increased. If on

the other hand the number of gaps exceeds the number of joiners and extra-peers, the
row number is decreased. The computation is not specified here. We just assume that
the computation is done unambiguous and similar in all nodes.

Sent Messages: Each peer having a missing neighbor on its row sends the informa-
tion about all neighbors of this row or column directly to the peer which will replace
it.

The following lemma is crucial for all later described algorithms: Whktr;p runs
continuously on the grid and an adversary may joins or leaves atdy@geers during

any time interval that corresponds to the length of one rumegk;p, the grid can

be maintained despite the adversarial churn: The grid is thus always repaired up to
the joins and leaves during the current and the last rudl@k;p as long as there

are enough peers in the grid. Since other algorithms may be run in the same phase, a
following algorithm can rely on a grid that is repaired upi2 joins and leaves.

Lemma 3.1. Let the algorithmAg gy p run continuously on an initially fully repaired
grid. Let further the number of joins and leaves in any time interval afunds be
bounded byi/2, and the number of peers in the system always be at2gast. Then

the following statement holds: The system is always fully repaired up to the joins and
leaves since the beginning of the last runkfr;p.

Proof. We first show that the presented algorithm can repair a grid that is fully repaired
up tod joins and leaves in quiet rounds, that is, no further joins and leaves may occur
during the run of the algorithm. First we observe, that the maximumlefives and

the minimum of2d + 2 peers in the grid guarantee at least one complete column during
each complete run oflggrrp, let it be columne, and thus a grid-diameter of at most

3. In ROUND 1, each peer at positio@,[c, | receives all IP’addresses from its row,
additionally, the peer a7, [c, R — 1] gets all ID’s of rowG,[-, R], if there are extra
peers in the grid. As the peers can compute from the received IP-addresses, which
row-members are missing, also the grid coordinates of left row members are known.
At least the peers at positiaH, [-.c] then can then send the complete information as
described irROUND 2 to their column neighbors, and ROUND 3, all peers of column
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c are informed about all the information that has to be broadcasted through the grid.
After sending this information into the rows ROUND 3, it is guaranteed that all peers

in the grid receive iIrROUND 4 the necessary information for the computation: their
row and column neighbors, the IPs of the extra-peers, and the complete information
about rowR — 1 and R — 2. The computation is not presented in detail. But since
an order on the peer IP-addresses as well as the grid positions can be defined, it can
obviously be done unambiguous. To conclude the first part of the proof, it has to be
shown, that all peers indeed receive their new row- and column neighbors. Each peer
in the grid can compute the following: It's new grid position, all peers in the rows
with row number at leask — 2 including the corresponding grid coordinates. Finally,

all IP-addresses and coordinates from peers that will change their position. All peers
that change their column receive the missing column information from a peer in the
column. For each peer, being newly on a grid position with row number at Riest,

gets its row information from the peers in that row.

Let now run the grid maintenance algorithm repeatedly on an initially fully repaired
grid. The number of joins and leaves on the grid are restricted/2oin any time
interval of4 rounds and finally the number of peers in the grid is always at feast.

After the first run, the number of joins and leaves is at nadg&t These can be repaired
during the second run oflgr;p, since the total number of leaves are restricted to
during both runs ofdgrrp. Note that it is not necessary to know in advance which
column will be complete during the whole run. We conclude, that in the second run,
all joins and leaves that occurred during the first run are repaired and thus the situation
after the second run odl¢ g p is the same as after the first run. Of course, this is also
true for all following runs ofAd¢rrp. O

Since in our pancake-system, we bounded the out-degré&#), also the total
number of different information a peer receives should be bounded(By. This is
stated in the following lemma.

Lemma 3.2. Let the number of peers in a grid be bounded(iyi?). Then the total
information that is received duringlgrrp by any peer in the grid, is bounded by
O(d).

Proof. The number of rows, and thus the number of peers in a column is restricted
by O(d), since the number of peers in the grid is boundedlgy?). The received
information contains the following messages, their lengths all boundedl(By: All
IP-addresses of the peers in a row (own row and rBws2, R — 1) all IPs in a column

(own column), the IPs of the extra peers and joining peers and finally the grid positions
where peers left the system. O

3.3 Updating Inter-Node Connections

As stated above, the matching between neighbored nodes has to be updated. This is
done with the here presented algorittdg pp a7 £, Which will be run after the grid
maintenance algorithm. So the information that is knownlitiz; p can be used here,

i.e. the information, which peers newly joined the core of the node. The simplest idea
to update the matching, is that core nodes send all IPs of the current core, together with
the corresponding column numbers to the matched core peers in the neighbors, and in
the next round, the received information could be sent to all core peers of the node.
The problem with this solution is, that a core peer would recéiyé) core peers from
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O(d) neighbors. So the information a core peer would receive would l(iff),

which is not desirable. For this, we only send the update information and afterwards
take into account possibly missing information. Note that a core peer never changes
it's column number in the grid (unless the dimension is changed), but stays onit's place
till it leaves the system. Also faly pp a7 E We give a detailed algorithm in rounds. It

is run synchronously in all core peers of all grids in the system.

RouNnD 1

Outline:  All (core) peers of a node know the IPs of the core peers, that joined the
core in the last run ofd¢rrp.

Sent Messages: Each core peer &, [z, 0] that has not newly joined the nodes core,
sends the IPs of the peers, that newly joined the node’s core, to it's matching partners
G, [z, 0] for all 2 < ¢ < n. Together with the IP, also the column numbesf each

new core peer is provided as well as the node ID,afamely(¢; . .. £4).

ROUND 2

Outline: The message received in the last round is forwarded to the destination.

Sent Messages: Each core peefr, [z, 0], that received a message in the last round,
sends the following information: For each received tril®, ¢, I D], the IP, together
with the corresponding node ID is forwarded@g|c, 0].

RouND 3

Outline:  The previous core nodes now all know their new matching partners and the
corresponding node ID to which they belong. However, a peer newly entered to a core,
does not know it's matching partners, that were not replaced in the last tdp of .

Sent Messages: Each core peelG,[z,0] that received new matching partners
G, [z, 0] in ROUND 2 sends its own |IP-address together with its nod¢4D. . ., ¢,,)
to all its new matching-partners,, [z, 0].

As already mentionedd g pg g Will run after Aggrp- It will be run on all nodes oP;

at the same time. The following lemma states, corresponding to Lemma 3.1, that the
two algorithms can defend the ongoing churn bounded f2joins and leaves in the
pancake system duringrounds that are needed for both algorithms.

Lemma 3.3. Given a pancake systefy, that is initially fully repaired. In each node,

the two algorithmsdgrrp and Agpae are run continuously in this order. Let the
number of joins and leaves in any time interval7afounds be bounded hy/2, and
further the number of peers in any node be always at [2dst 2. Then the following
statement holds: The pancake system after after every run of the two algorithms is fully
repaired up to the joins and leaves that occur during the algorithms.
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Proof. We first state that the pancake graRhis always fully repaired up td/2 joins

and leaves after each run of the two algorithms. This follows (1) from Lemma 3.1,
(2) the fact that the same number of joins and leaves now is allowed for the time both
algorithms are running and (3) thdtz pr does not affect the grids. This implies that

for any two consecutive full runs odgrrp andAgpa g, there exists a column number

¢, for which in each grid of?; the columnc in the system are complete and not changed
up possible joining nodes in the top rows. The existence of the complete columns
guarantee the that the core peers in colunivave all information for the sending of

the IPs, column numbers and node ID’s to the neighboring core peer in celumn
ROUND 1 and the sending to the destinatiorioaUND 2. Thus all peers that not newly
joined the core receive the information about their new matching partners. The sent
messages ROUND 3 guarantee, that also new core peers receive the IPs and node ID’s
of their matching partners. O

Lemma 3.4. The total size of information that is received by any peer in the pancake
system during the run &y ppare, is bounded by (d).

Proof. The number of sent IP-addresses in the first two rounds is bounded by the num-
ber of peers that were replaced in the grid algorithm, #(& In ROUND 3, the
number of received IP-addresses is bounded by the number of joins and leaves as well.
These are obviously i0(d). O

3.4 Expansion

When the pancake graphs order is increased fidmd + 1, each noder must split

into d + 1 new nodes (c.f. Chapter 2.1). How can this expansion be achieved on the
grid level? As has been mentioned before, the gricconsists ofl + 1 columns. This
allows a simple way to split the grid: Every column yield one new node.

We know from Chapter 2.1 that two neighboring expanded nodes have already been
adjacent inP; (or originate from the same node). Now assume that two coluthns
andG,, of two expanding adjacent nodesv € P; become neighbors iR, ;. With
the grid as described so far, these two columns have only one connection to each other.

In order to increase the fault-tolerance, the following mechanism is applied: As
soon as a certain threshold in the information aggregation algorithm is achieved, which
guarantees at leadt+ 1 complete rows in each node, the nodes start to establish a
matching between the columnsdh, andG,, that will be future neighbors. In order to
limit the information that is sent, we establish this matching stepwise, ensuring that it
is finished before the node actually has to split.

The following algorithms will be run aftedcrrp andAgpaEe, in the same phase
as described in Chapter 3. For this we can assume that the joins and leaves of the last
phase are fully repaired, and during the run of the following algorithms, @f#yoins
and leaves have to be taken into account. Thus in the following, we assume to have a
fully repaired pancake graph, and allé#2 joins and leaves during the algorithm runs.
Note that it makes no difference, if some of the joins and leaves may occurred before
the start of the algorithm.

3.4.1 Matching Establishment

Again, we provide a detailed description of the expansion rounds. First, we describe
how to establish the matching, which is doney; srcg. This is done ind phases:
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in phasedim for the matching to neighbgs; (v), which is indicated by the argument

i. The idea is that each peer@[y,y + 1] with 0 < y < [d/2 + 1] sends its IP
addresses of its row to the pe@ [y, 0]. PeerG,y, 0] is then responsible to transfer

they + 1-th row to the corresponding peess,, () [y, 0] for i € [2, d]. From there, the
information is broadcast t&',, ,,y[-, ¥ + 1]. Despite the adversarial churn, we will be

able to guarantee, that there is at least one complete row that reaches its destination.
We will describe phasé We will usei as the argument of the algorithm, thus phase

is referred to asdyr arc (7). We assume, that the algorithm is run on a fully repaired
pancake system, allowingy/2 joins and leaves during the algorithm run (c.f. Chapter
3.1).

RounND 1

Outline Each peer in the grid knows the IP-addresses of its row neighbors. Each peer
at positionG,[y,y + 1], 0 < y < (d + 1), starts the transfer of it's row information to
the neighboring node.

Sent Messages: A peer atG, [y, y + 1] sends the IP-addresses of it's row neighbors
to G, [y, 0], the core peer in its column.

ROUND 2

Outline The information is sent to the neighboring core.

Sent Messages: G, [y, 0] forwards the message received in this round't.) [y, 0],

its matching partner in the neighbor node, given by a prefix-inversion of length

ROUND 3

The message is forwarded to the- 1-th row.

Sent Messages: G, (.)[y, 0] forwards the message @, () [y, v + 1].

i

RouNnD 4

Sent Messages: G, )|y, y + 1] sends the received messages 1q.,)[-, v + 1].

i

RouND 5

Outline:  Now the matching, which may not all nodes received is repaired.

Local Computation: Each peep of columnccan compute to which column i (v)

it has to be matched: Fer> i, a matching columi in GG, (,,is given byk = j. On
the other hand, fot < 4, the to be matched column is given by= ¢ — c. Note that in
the case: = i + 1, two columns have to be matched.

Sent Messages: Each peer that received a row of the neighbors node, sends an or-
dered array of IPs of the lowedt+ 1 members of it's column to the received peer IPs
that belong to columns to which a matching has to be established.



24 CHAPTER 3. ALGORITHMS

RoOUND 6

Outline:  The matching establishment is finished.

Sent Messages: The messages that are received, are forwarded into the column.

The following lemma states that the establishment of the matching is guaranteed
when there are at mogf 2 joins and leaves in the systeR). The algorithmAy arc
will be run afterAcrrp as described in Chapter 4. For this, we can assume that there
are at mostl/2 joins and leaves.

W y=0

¢ =1
@ y=2

v piv)

Figure 3.1:Disjoint sets of used peers for differepvalues in ().

Lemma 3.5. Assuming all nodes i; have at least/+ 1 rows andP; is fully repaired
up tod/2 joins and leaves. After runningd s arc g (7) in all nodes synchronously, the
following statement holds: All matchings pg(v), that are needed for expanding the
grid are established up td/2 joins and leaves.

Proof. We sendd/2+1| messages that contair-1 IPs. The set of peers correspond-

ing to the IPs, as well as the pathes over which the IPs are sent are disjoint: the IPs of
row G,[-,y + 1] are sent to the rowr,, . (. [-,¥ + 1], using the core peelS,)[y, 0]
andG,,,. w)ly,0] . We use|d/2 + 1] differenty-values. For two different y-values,

all involved nodes are obviously disjoint, as longiast 0. For this, see also Figure

3.1 Since the grid is repaired up to the at mdAl joins and leaves, for at leagtvalue

(0 <y < [d/2 + 1] the following statement holds: For each nada P, the row

Gy[-,y + 1] as well as the core peé€#,[y, 0] will not leave during the full run of the
algorithm. In other words there exists a row, for which the message could be sent in
both directions and both rows are complete during the whole rufefircx. Such

a row number exists, since the number of used rowg i€ + 1] > d/2. A node in

this row can now send the columns to the columns that have to be matched. Vise versa,
the corresponding IPs and row numbers of the to be matched column can be received
and forwarded to the peers that will be their matching partners. Then the matching is
complete up to the joins and leaves during the current phase. To conclude, it has to
be shown that the computing of the matching partners is correct, i.e. any two columns
that establish a matching are indeed future neighbors, and all future neighbors are in-
deed matched. From symmetry it then obviously holds, that if a coluntiecides to
establish a matching to a columsin a neighbored node, algg takes the decision to
matchc;.
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In Aprarcm (i), matchings between columns in the nodes= (¢;...¢,4) and
pi(v) = (4;... 01411 ... L4) have to be established. The future ID’s of the columns
have all literals?; . .. ¢, in the same order, and additionally, for theh column, the
new number(d + 1) inserted at positioa + 1. For two columns in neighbored nodes
to be neighbors, the prefix-inversions must have the same effe@ on. ¢,,) as the
prefix-inversion of their parent nodes. From the positiofid# 1) then the column
number of the matching partner is easily found. Let now &irsti. The literal(d + 1)
being at positiore + 1, the future nodes are connected by the same prefix-inversion as
their current node, not affecting the numiér-1). It follows that in both columns, the
entry (d + 1) is at the same position and they thus have also the same column number.
Forc < i+ 1, (d+ 1) will be part of the prefix-inversion. The future neighbors thus
are connected by a prefix-inversion of length 1. A prefix-inversion of length + 1
changes the position of any literal fromt- 1 to i — ¢ + 1 and thus corresponds to the
column numbei — j. Finally, fori = ¢, prefix-inversions of the lengthandi + 1
respectively, affect the literals . . . Z,, in the same way, and thus result both in a to be
matched column, at positiohandi — j = 0 respectively. Note that for the columns
¢ = 0andc = 1, ¢ = i never holds. The reason is, that these columns are future
neighbors and thus have to establish a matching to @nlyl columns in neighbored
nodes. O

Lemma 3.6. The total information that is received by any node during the run of
Anrarcnm sentis bounded b®(d).

Proof. Before the last round, the sent and received messages are obviously all of length
O(d): A single row is received and/or sent in the first four roundsR@uND 5 d + 1

IPs, i.e. the lowes{+1 column members, are sent. For round 6 we see that the number
of matchings that one column @, has to establish &',y is 1 or 2 and thus irO(1),

as seen from the calculation RouND 5. It follows that the number of peer IPs that
have to be sent and received in the column ai@ (id). O

Since we want the out-degree in our pancake system be boundegibythis also
is shown for the complete matching between the columns as stated in the following
lemma:

Lemma 3.7. The total information needed for the matching between columns that will
be future neighbors, is bounded BYd).

Proof. In the expanded (future) pancake graBh.,, each node will be neighbored

to d neighbors. Thus each column will be matched to at mastlumns in different
nodes. A node holds for each of #gor d — 1 for column0 and1) matched columns

one IP-address. Thus the information needed for the complete matching between future
neighbors is bounded h¥1Ps and thus by (d). O

3.4.2 Matching maintenance

The matching maintenance algorith#,j; is based on the same ideadgpgg. It
updates the matchings that were already established byircy. Remember that

after the run ofAgrrp all peers know their column neighbors. Also the peers that
have not newly come into the column, know which peers newly came into the column.
For this, the same algorithm a&z pr can be used, up to the fact that instead of the
matching between core rows, the matching between columns are updated. Note that
we have the same number of peers as in the core (we takietthdowest rows in each
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column). So also all proves can be overtaken from Chapter 3.3 since also the maximum
number of leaves that have to be repaired are the samefsja , namelyd/2. Also

for the matching maintenance, we introduce an arguméntA,, ,(4), the matchings

to the future neighbors in the nodegv), v < ¢ are updated.

Lemma 3.8. When the number of complete rows in each grid is at ldast1, the
already established matchings are repaired Ay, ; up to the churn in the current
phase.

Proof. See proof of Lemma 3.3 O

Lemma 3.9. The total size of information that is received and/or sent is bounded by
0O(d).

Proof. See proof of Lemma 3.4 O

3.4.3 Expand Step

In order to change the order of the pancake system ficim d + 1, the following
algorithm A x p is used. For the latter, we consider a nede [;...l4 with grid G,,.
The columnG,,[i, -] for i € [1,d + 1] will form the new nodeu(e;;p =ly..0;_1(d +
)l;...1g.

RounD 1

exp

Outline:  The peers of the-th columnG,[i, -] which will form the new nodey;
are completely connected. Thus, it is easy to build the new g’ﬂdgism including

cores and inter-connections: The inter-node connection will consist of the established
matching between the former columns plus one additional, to be defined connection,
since in the new dimensiah+ 1, there arel + 2 core-peers.

Local Computation: Each peer in)(ejg” locally computes the form aﬂvﬁf)p, for ex-

ample depending on the IP addresses or the row numbers. The peers that were matching
peers, namely the peers in the lowdst 1 rows are assumed to be new core peers,
where the row number in the old grid corresponds to the column number in the new
grid. Thus one new core peer has to be computed.

Sent Messages: All new core peers send the IP of the core peer in coluhn 2
together with the corresponding node ID to their matching partners.

ROUND 2

Outline:  The expansion is finished.

Sent Messages: The core peers in7,” inform the new core peer about it's matching
partners (IP and node ID), received in the last round.

Lemma 3.10. Let the algorithmA4 g x p run on a fully repaired pancake systdry, and

all columns be matched to their future neighbors as described above. Let further the
number of complete rows in each grid be at lezét- 4 and the churn duringdgx p

be bounded by/2 joins and leaves. Then the following statement holds: After the run
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of Agx p, the pancake system is of dimensib# 1 and fully repaired up to the joins
and leaves during the expand step.

Proof. First we note that in the beginning the number of connections between any two
new nodes ed + 1. Thus thed/2 leaves can not destroy the connection. The only
thing to show is that the computation can be done unambiguously. The argumentis the
same as forarrp: An order can be defined as well on the new grid positions and the
IP-addresses. O

Lemma 3.11. The information received durind g x p is bounded by)(d).

Proof. For each neighbor, one IP-address is received, namely the IP of the peer that
will be the new core peer. Since iy, each node hagneighbors, this is bounded by
O(d). O

3.5 Reduction

If the pancake graph reduces its order frém 1 to d, d + 1 grids have to be merged
to one and some nodes have to be interchanged between the dominators (cf. Chapter
2.1). For this, we will use the algorithdz g p. We will again describe the operations
of Argp in terms of the grid representation.
Similarly to the notation introduced in Chapter 2.1,1}%?)“T € P,y be the domi-
nator of a cluster that reducesdce P; and Ietvfl;;m = pi(vff)m). In order to reduce

the order of the pancake graph, we must exchange the mjgﬁ with u‘{;’ﬂ) for
i € [2,d] whereu = p;(v), and then merge these nodes into one no@e. Chapter
2.1).
On the grid level, a constant number of rounds is needed for this order reduction
which of course are again assumed to execute concurrently to the adversary.

Basically, the procedure is as follows. First we ttﬁgg_{gm fori e [1,d + 1]
into a clique and the information about the coreG)j(igm is sent tOpi_l(v{i‘;m) (node

e

exchange). Now, the new grid of nodewill be formed. For this, let again(g” for

exrp

i € [1,d + 1] be the nodes that will form after the node exchangem being the
dominator. Node})” now sendsill its peers’ addresses 6" for i € (2, d+1]. With
this information, a first version aff, can be computed, where colunais given by
v(“"sp. Based on this structure, the final grid can be obtained by a simple rearrangement
which is not described further here.

In the following we give the detailed algorithm. Note that some rounds in the
description could be parallelized. However, in order to enhance clarity, we accept
some additional rounds.

RounD 1

Outline: In order to exchange the dominated nodes according to exchange of the
dominated nodes;ﬁ;’m for i € [3,d + 1] gets the information about the core of its
future dominator. Moreover, the latest joiners are integrated into the grid.
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Sent Messages: Each peer ier?;;m [x,0] sends the IP address of the corresponding
dominator pee€ dom) [z, 0] (given by the matching) &, dom) [x,0]. Addition-

l)i(’U(l 'i—l('“(l
ally, each peer in the system broadcasts its own address and the addresses of its joiners
within its row.

ROUND 2

Outline:  The to be transferred nodes inform their new dominators about themselves.
Nodes start building a clique.

Sent Messages: The core peer&, com [z, 0] for i € [3,d + 1] send their addresses to
the dominator peers they learned in the previous round. In order to establish a clique,

each peer broadcasts the addresses of its row to its column.

ROUND 3

Outline: Inside each node, a clique is built.

Sent Messages: Each peer sends the addresses collected in the previous rounds to
their row.

ROUND 4

Outline: Dominated nodes learn about all peers in their dominator.

Sent Messages: Each peer in the core of a dominator, i-@-w;f; [x,0], sends all
addresses in the node to the neighboring pee@ufﬂp [,0] fori € [2,d + 1].

RouUND 5

Outline: The information about the peer in the neighboring dominator is dissemi-
nated inside dominated nodes.

Sent Messages: Gv(ﬁp [x,0] for ¢ € [2,d + 1] distributes the dominator’s peer ad-
dresses withirGUEzgp.

RoOuUND 6

Outline: The grids reduce td rows and one column (future column of the reduced
node). Thus, each grid position may have a constant number of peers. d'tege
then establish a matching to the corresponding row of the dominator.

Local Computation: Each peer irG,U?_a;p [z,y] for i € [1,d + 1] can compute its
position in the new grid off rows (uniformly distributed).

Sent Messages: In order to establish the complete bipartite matching to the peers at
the corresponding row of the dominator, the peers ianGv(e,z)p fori e [3,d+1]

send their addresses to the peers in fow szzlw)p.
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RouND 7

Outline:  Using the information received in the previous round, the peers in the dom-
inator transform the + 1 gridstF_a;p fori € [1,d+ 1] into one gridG,, having at least

d/2 complete rows.

exp

Sent Messages: Each peer in row: of G”u)

rowsz of the nodes&*v(eg” fori e [2,d+1].

forwards the received packets to all

ROUND 8
Outline: Due to the ongoing churn (e.g., crashed mediating peer in dominator), some
peers may not have received the row information. This issue is tackled next.

Sent Messages: Each peer at, [z, y] sends a packet t&', [z, -] saying whether it
has received the row information or not, and the total number of peers in its row.
RounD 9

Outline:  Incomplete rows are merged together, forming at 18dst complete rows.

The new core is built.

Local Computation: The new core is computed locally. For each column (former
node), the new core peer is given by the previous core peer, that has the lowest IP-
address.

Sent Messages: Peers in complete rows send the necessary neighbor information to
the peers in incomplete rows in order to integrate them. Core addresses are sent along
the columns.

RounD 10

Outline:  The new core is made public within the whole node.
Sent Messages: The core addresses are sent along the rows.

RouNnD 11

Outline: Now the inter-connections between the noded’jnare established. For
this, we kept our connections to the transferred nodes in the exchange of the dominated
nodes.

Sent Messages: The old core nodes oifj;p fori € [3,d+1] send the core of the new

nodev to their previous neighbags; _1v7,)". Note that since all noda%p originally
had a different dominator, this procedure yields all necessary connections.

ROUND 12

Outline:  The information about the core is propagated.
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Sent Messages: The received core information is broadcasted inside the column.

RouND 13

Outline: The establishment of the inter-connections is continued.

Sent Messages: Core information is forwarded to the corresponding column.

RoOuUND 14

Outline: The new connections established.

Sent Messages: Core information is sent to the core peers in order to complete the
matching.

RouND 15-16

Outline: We now start to repair the grid. Up to the joins and leaves during this
algorithm, it will be fully repaired at the end of the algorithm.

Sent Messages: Each peer sends the number of peers in its row and the number
of peers in its column to all neighbors (taking 2 rounds), which allows every peer
to compute locally the state of the grid. Moreover, each peer iny®&nds all IP
addresses of its row to its adjacent peer in gpw 1. In order to handle faults, this
information is then also broadcasted along the roR@UND 16.

RouND 17

Outline: The number of peers per row is made a multiplelef 1 in order to split
rows later.

Local Computation: Each peer computes how many peers of each row have to be
sent to another row. Since each row contains at kkast peers, the idea is that peers

are only transferred from a higher raw 1 to the next lower rowy. The computation
works as follows: rom sends so many (uniquely defined) peers to esuch that the
number of peers in row is divisible byd + 1. This procedure is then repeated between
row 2 and row1, and so on. The assigning of new column numbers to the peers are
done, such that the number of peers in the row that have to change the column is
minimized.

Sent Messages: The IP addresses of the peers that have to move are sent to the lower
row.

RoOuUND 18

Outline: Peers are distributed evenly among the rows.
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Local Computation: Given the number of peers at each position, we can locally
compute which peer has to move to which place. The remaining peers in the top row,
are assigned to the lowest columns, one remaining peer in each column. This will be
the extra peers.

Sent Messages: Moving peers are provided with the necessary neighbor information.

RounD 19

Outline: If apeer has not received its new column information, it informs its previous
column about its new column.

Sent Messages: If necessary, a peer informs its old column as described above.

RouND 20-22

Outline: The requests of the previous rounds are satisfied.

Sent Messages: The information, which peer requested information about which col-
umn is broadcasted in the column. Then, then this is sent to the column of which the
information is missing. Finally, the column of the peer receives the column information
from its new column.

ROUND 23

Outline: Some transferred peers may still be unknown to other transferred peers.
Sent Messages: Addresses of transferred peers are broadcasted along the column.

RouND 24

Outline:  The rows are finally split. The grid is now repaired up to the churn that
happened during the execution of this repairing phase.

Local computation: The peers can based on the IP-addresses decide, which neighbor
will be part of which row. Of course the core peers, known by all peers in the grid are
assigned to rov.

Lemma 3.12. Let Argp run on a fully repaired pancake systefa, ;. Let the churn
during the run ofd z g p be bounded by/2. Then the following statement holds: After
the run of algorithmAggp on all grids of the nodes aP,, 1, the result is a pancake
graph of orderd, which is fully repaired up to the churn that happened during the run
of the algorithm.

Proof. We first note that the pancake system is during the whole rudgfp fully
repaired up tal/2 joins and leaves with respect to the old dimension. This guarantees
that no connections between nodes (i.e. the inter-node connections) are completely
lost. Moreover, there exist at leagf/2 + 1] column numbers in the old graph;,

for which all corresponding columns in the grid are complete during the whole run
of Aggp. To enhance clarity, the proof is done round by round. AReND 1 it
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is guaranteed by the observation above, that each nffe receives a matching of

its core to its dominators’ core. Since the diameter of the gridByiis 3, which is
guaranteed by the complete columns, the cliques are establistrmuinD 4. The

IPs of the dominators’ nodes receivedRDUND 5 are thus received by all peers in a
non-dominator node iIROUND 6. Again, the computation iROUND 6 can be done
unambiguous, using an order on the IP-addresses of both the dominators peers and
the peers in the non-dominators node. These IPs are all known by each peer of the
node. The new (temporary) grid will consist @frows. Since each old node consist

of at least2d + 2 peers, and each old node distributes the peers equally over the new
grid rows (up to rounding errors), at legspeers are assigned to each grid position.
Taking in account the up /2 leaves during the run oz p, at leasBd/4 rows will

have at least one surviving peer on each grid position. This observation guarantees,
that at leasBd/4 rows can be established after round 7 (and will survive as long as
needed indggp). Also atleasti + 1 — d/4 = 3d/4 + 1 columns are complete, again
yielding a grid diameter of at most For this, also the messagesrR@OUND 9 can

be sent and will be received, based on a unambiguous computation that assigns each
IP-address in an incomplete row to a complete row. Since in each column a surviving
core peer exists, it can be computedrRiauND 9. With the guaranteed diameter, all
peers know the IPs of the core of the new node afteunD 10. The establishment

of the inter-node connections in rounBeUND 10-14can be guaranteed, since each
peer in the node knows the core peers in the node and the connections to the previous
neighbors are not lost as stated above and again by the diameter of the grid. The latter
also guarantees the successful sendirgEinNDs15-16 The computation iIROUND

17 can be done unambiguous by the above: Each peer knows all peers in its row as well
as their grid positions and the number of peers in the other rows. From this, the IPs of
the peers that will leave and join the column can be computed. The receiving of the
information afterROUND 22 is guaranteed, since there still exist complete columns in
the grid and forouND 23t is sufficient that each column has members that have not
changed the column in the last rounds, which obviously holds (see Local Computation
in ROUND 17). Finally, inROUND 24, the peers are evenly distributed among the rows
and columns by the above, i.e. the computations and the guaranteed receiving of the
messages. O

Lemma 3.13. Assume the number of peers in each nod&,ofs bounded byO(d).

Then the total information that is received by any node in algorithgy: p is bounded

by O(d).

Proof. Since the old nodes are assumed to be boundéx By-1), all IPs of a constant
number of old nodes can be sent (i.e. the dominator nodes in each cluster) and an old
node can build a clique i®(d). A new column inP, consists ofl + 1 old nodes, thus
bounded byO(d?). Note that from the beginning, the new grid consist©¢#) rows,

which are equally distributed up to rounding errors, bounding the row information by
O(d). Beginning inROUND 10, the new inter-node connections are established: The
procedure as described above, guarantees that (1) each previous node receives at most
one neighbored complete coré ¢ 1 IPs) and (2) the received core-peers IPs (and
corresponding node ID’s) are, after broadcasting them in the column, directly sent to
the right column. Thus in a column, the peers receive the own core, one complete
neighbors core, and finally for each neighbor one core-peer. In the rBuim 24,

the received messages include for each column the number of peers, the IPs of one
complete row, the IPs of one complete column as well as the number of peers in each
column and row. All bounded b§(d) as shown above. O



3.6. TOKEN DISTRIBUTION ON THE GRID LEVEL 33

3.6 Token Distribution on the Grid Level

Now the token distribution on the grid level is presented. As in the whole text, the
number of rounds will not be minimized. We only want to assure that the number of
needed rounds is constant and not dependent e token distribution algorithm of
Chapter 3.6 can not be used directly: Since our out-degree is assumed (g, i is

of course not desirable that an information amouré 64?) has to managed in constant
time. However, we can not guarantee that this is not the case, when all transferred peers
within a cluster have to pass the dominator node: the number of neightiofg)isand

also the number of peers that have to be sent between two neighbor are bounded by
O(d). Since we cannot decide which peers may leave the system during the algorithm,
the load can not be balanced directly between the core peers.

As described later in Chapter 4, the token distribution algorithm is run after the
grid maintenance algorithm. For this, the number of peers in a node (up to joins and
leaves in the current phase) and the IP-addresses of all extra peers are known by all
peers in a node. In this chapter, with the number of peers in a grid, the number of peers
of the grid at the end of the previous phase is meant. Since in every round, some peers
may join and leave, we never know the exact current number of peers in the system.
However, the error corresponds at most to the allowed number of leaves or joins in the
system. We do here not define explicitly the dominators. We just assume that they are
well defined. However, this could be easily done. For example in phasech node
v=(l1,...,44), forwhich¢; = maz{ly,--- ,¢;_1} could be defined as a dominator.

RounD 1

Sent Messages: All core peers send the number of peers in their grid to their match-
ing core peer ip;(v).

ROUND 2

Local Computation: The core peers compute the difference of the number of peers,
i.e. Jv| — |pi(v)|. If [v| > |pi(v)], the numbery of the to be transferred peers is
computedi; = ||v] — |pi(v)]]

Sent Messages: If |v| > |p;(v)|, the core peers send the number of the to be trans-
ferred peers into their column.

ROUND 3
Sent Messages: All peers send the information received in the last round to all row
neighbors.

RouNnD 4

Outline Now all peers in the node are informed about the number of peers that will
be sent to the nodg; (v). If |v] > |p;(v)|, the new number of rows is computed. The
IP-addresses of the peers in the vanishing rows will be broadcasted in the grid.

Local Computation Every peer computes the new number of rawys,, of the node,
based on the current number of roWs;; of the node:R,,c., = | Rotd — ‘{il;ej. eis
the number of extra peers in the grid.
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Sent Messages: Each peer having a row number larger tHan.,, — 1 sends the ID’s
of its row to its column neighbors.

RoOUND 5

Outline This round guarantees that in the next round, all peers will receive the IPs of
the peers in the rowB,,c.... Roia — 1.

Sent Messages: The information received in the last round is forwarded to the row
neighbors.

RoOUND 6

Outline  All peers know all IP-addresses of the peers that are in the rows larger then
R,.w—1. The peers that are sent to the neighladr) can be computed locally (lowest
IP-addresses). Note that the peers were provided earlier with the number of peers
that have been sent to the neighbor. All remaining peers can compute the remaining
peers, i.e. those their IP’addresses have been forwarded, but are not transferred to the
neighbor.

Local computations Each peer computes which peers are sent to the neighbor node
pi(v) (lowestq IPs). For reasons seen in round 10, all peerfsgt:= Ryeq-

Sent Messages: The core peers send the ID’s of the to be transferred peers to their
neighbored core peers jn(v). All core peers in the system send the number of peers
in their nodeafter the exchange to their dominator.

Remark The remaining peers in the senders node, i.e. the peers that were prepared
for sending but not sent, are also called extra peers in this node. Also, in the receivers
node, the set of extra peers is referred to the extra peers at the beginning of the algorithm
plus the peers that were received in the exchange pyith).

RouND 7

Outline The cores of all nodes are provided with the IPs of the joining peers. More-
over, the dominator knows for each node in it's cluster, of how many peers it con-
sists. Based on this, the dominator will decide how many peers are sent between which
nodes.

Local Computations: The dominator computes the peers exchange within it's clus-
ter. The way how this is computed is not described here. It is obviously possible
to do this in such a way, that at mo8i(d) tokens have to be exchanged between
any two nodes. i.e. The number of to be sent or received peers is bounded by
¢/2=4d+ 3(J + L) = 7d/2 for each node.(c.f. Theorem 2.7)

Sent Messages: Each core peer in the dominator node, sends a message to all neigh-
bors that have to send nodes with the following information: For each sending that has
to be done the number of peers to be sent, and the IP-address of the matching peer of
the destination, that is, the connection to the destination peer.
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RouND 8

Outline: The core peers in the cluster are informed, how many peers have to be sent
to which node and additionally, the corresponding core peers are known. The sending
of the peers is prepared: When the number of to be sent peers exceeds the number of
extra peers, new peers are prepared for sending, similar to the first peers exchange.

Local Computations: The core peers calculate the differerice- g2 — e, between
the to be sent peerg and the current number of extra peers

Sent Messages: In all nodes, wherelelta > 0, t he core peers send into their
column.

ROUND 9

Outline This Round corresponds to round 3:

Sent Messages: All peers send the information received in the last round to all row
neighbors.

RounD 10

Outline This Round corresponds to round 4: All peers in the node are informed about
8. If 6 > 0, the new number of rows is computed. The IP-addresses of the peers in the
vanishing rows will be broadcasted in the grid.

Local Computation Every peer computes the new number of rows, based on the
current number of rows ;4 of the node:R,,c., = | Rotd — %j.

Sent Messages: Each peer having a row number larger tHap.., — 1 sends the IPs
of its row to it's column neighbors.

RounD 13
Outline:  This round corresponds to round 5: This round guarantees that in the next

round, all peers will receive the IPs of the peers in the r&ys,,... Roig — 1.

Sent Messages: The information received in the last round is forwarded to the row
neighbors.

RouND 14

Outline: The peers are sent to the neighbors, corresponding to the decision of the
dominator.

local computations: The core peers compute which peers are sent to which nodes:
The destination nodes can be ordered by their Permutation, and the peers that were
prepared for sending by their IP: the lowest IPs are sent to the node with the lowest
permutation.



36 CHAPTER 3. ALGORITHMS

Sent Messages: The IPs of the to be transferred peers are sent by the core peers to
the corresponding core peer as computed above.

ROUND 15

Outline: The core peers now have received the IPs of the peers that join the node.
These are now broadcasted in the grid, before integrating them.

Sent Messages: The core peers send the IPs of the joined peers into their column.

RoOUND 16

Outline The broadcast is completed.

Sent Messages: The information received in the last round is forwarded to the row
neighbors.

ROUND 17

Outline:  All peers now know the IPs of the peers that are part of the node, but not
yet part of a row. The joining peers are now integrated into the grid.

Local Computations: The joining peers are assigned to grid positions as follows:
By increasing IPs, each peer is assigned to the lowest possible row, and then to the
lowest possible column. Of course, each peer in the grid can now decide which of the
joining peers will end up in the same column. Also all peers get to know the IPs of the
new extra peers.

Sent Messages Each peer that is not a joiner, sends the column and row informa-
tion to the peers that will newly be part of the same column. Further, all peers send
the column and row peers to the joiners, that are joiners as well. With each IP, the
corresponding grid coordinates are provided.

Lemma 3.14. Let P;,d > 1 be a pancake system that is initially fully repaired. Fur-
ther, in all core peers, the variableis set to the value same val@e< i < d. Finally,

the number of joins and leaves during the algorithm is bounded /@y Then the
following statement holds: After the run gfrp (i), the peers are distributed i,
corresponding ta-th phase of Algorithm 1. Also, all grids are repaired up to the joins
and leaves that may occur during the runf (7).

Proof. We again state that in each grid, at any time during the whole run, there is a
columne that is not affected by the ongoing churn in all grids. This again guarantees
the grid diameter to be at mo3t and that the connection between nodes is not bro-
ken. This obviously guarantees the successful sending of all messages: Each sending
through a row is received by column The sending between the nodes is guaranteed

by the core peer&,[c,0] in each node. Finally all messages sent through a column
succeed are received and can be forwarded in coluermd the sending into the rows,

are received by all core peers when sent from colunim any grid. Note that the
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column numbetre is not known in advance, but it is guaranteed that it exists. The
computations are unambiguous. Where this is not obvious, it is pointed out in the al-
gorithm. Finally by construction, as pointed out above, the algorithm corresponds to
the algorithm presented in Chapter 2.3. The repairing of the grid in the end is done like
in Agrip, Which guaranteed that indeed the pancake sy$2giis repaired up to the
joins of leaves duringdrp. O

Lemma 3.15. The total information that is received by any node during the algorithm
Arp is bounded by (d).

Proof. In ROUND 1 to ROUND 3 only single integer values are sent. Beginning with
ROUND 4, all IPs of the to be transferred peers are broadcasted throughout the grid (plus
at mostd peers of a row, that will not remain complete. However, the to be sent nodes

is bounded by = 4d + 3J + L = 7d as seen in Theorem 2.7, and thuglitd). For

each non-neighbored node to which IPs have to be sent, each core peer receives one IP-
address. Since the core peer has @iyt neighbors, also here the received information

is bounded byO(d). The last step is similar to the grid maintenance algorithm: Row
and column information are sent to the new peers. O

3.7 Information Aggregation Algorithm in Our System

The information aggregation algorithm is very simple to realize at the grid level. How-
ever, for completeness it is described here in rounds. As described in Chapter 3.1, we
can rely on grids that are fully repaired up to possible joins and leaves in the current
phase. Further, the number of peers in the grid are known, again, up to the leaves and
joins in the current phase. It would be desirable, to do the steps for all dimensions
in parallel in order to get a new estimation of the total number of peers in the system
in each run of4d;4. However, we then would have to recei®éd?) messages in one
round: 1 integer value to aggregate the result fér, 2 integer values to aggregate the
value for P; and so on, ending finally with — 1 integer values to aggregate the value

for P;. So the number of to be received integer values would I6&(if?). For this the
algorithm is not run in parallel and we only get a result afteuns of A7 4. This also

has an advantage: since as seen in Chaptdy 4,always runs aftedrp. Since both
algorithms need the same numberdof 1 runs to complete, the receiving of a new
value of 474 also guarantees that the tokens have been distributed in all subgraphs.
We used a variablé which indicates for which subgraph® (v) containing v, the in-
formation is aggregated in the current round. The result during the calculatio

is stored in the variableurr. The final result, that is the result for the whole graph,
will then be stored irestimation. Again, because of the ongoing churn, it is always
possible that a certain message is not received. To solve this problem, in the algorithm,
we used a boolean variabtemplete, which is setF’ ALS E, whenever a information

is not received. To solve this problem, the core peers that have the correct result, thus
havingcomplete == T RUFE send the result array of the previous phase to all core
peers of the node. This also guarantees, that new core nodes can run the algorithm too.
Nodes, that newly enter the core r@W,[-, 0], thus also set the value ebmplete to
FALSE.

The algorithm consists df rounds. The algorithm as described in Chapter 2.2 is
done iINROUND 2,ROUND 3 and ROUND 4. In the first round is the sending of the
previous result as just described. The result of the previous run of the algorithm is sent
into the core row. INROUND 2, the result of the last round or, if= 2, the number
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of tokens at each the node, is interchanged with, (v), and then forwarded to the
neighborsp;(v),j < ¢ in ROUND 3. In ROUND 4, the result of the current round

is computed, using the received messages. With(p;(v)), we mean the number

curr that was received from the noge(v). As stated earlier and pointed out in detail

in Chapter 4, the goal afi; 4 is that the peers in a node know, if a matching has

to be established and/or updated, or the dimension has to be changed. In the above
algorithms, we assumed that at the beginningl@f arcx, Aniar, Aexp andAgrep
respectively, all nodes were informed that the corresponding algorithm begins. To
guarantee this, iROUND 4 andROUND 5, the result is sent to all peers in the grid.
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The following lemma states, thad;4 can be run in a phase witdgr;p and
Avppare and it provides the estimated value tetimation afterd — 1 consecutive
runs of the3 algorithms.

Lemma 3.16. Let P, d > 1 be a pancake system that is fully repaired uglt@ joins

and leaves and = 2 in all core peers. Let now run the following three algorithms

d — 1 times in this order:Aqgrrip — Avppare — Ara. Let be the churn bounded

by d/2 joins and leaves during each run of these three algorithms. Then the following
statement holds: In the, end each peeFinthat not newly joined during the last run of

the three algorithms, has the same valuedatimation, andestimation corresponds

to the total number of peers in the system on beginning of the phase on which the first
run was started.

Proof. We first show, that in the end, for any core peer havingplete = T RU E, the

value of the variablestimation corresponds to the total number of peers that afg;in

at the beginning of the first run odgr;p. Since during each run o4, Py is fully
repaired up tal/2 joins and leaves, there exist column numbers, for which all columns
are complete. Moreover, having+ 1 columns, there is at least one column number
for which all core peers stay alive duri2guns of the algorithm. This guarantees that
there is always one column number, in which the calculation succeedlete =
TRUE), and from which all core peers receive the current resuRorND 2 of the

next run of A;4. The way how the new estimation is calculated corresponds to the
description in Chapter 2.2 and correctness was proofed in Theorem 2.3. The above
guarantees that the computation can be done completely .Again, since there is a column
number for which all columns are complete, the variableeshold can be sent into a
complete column in each grid at the endrifUND 4 and thus is indeed received by

all peers inP, after sending the information into the rows. As described above, only
the peers that joined in the current rundf:z;p, Avppare and.A; 4 will not get the

result. O

Lemma 3.17. The total size of information that is received by any node during the
algorithm Arp is bounded by (d).

Proof. In ROUND 1, 2 integer values may be received. In rouROUND 3 and
ROUND 4, from the neighborg;,i < dim, one integer is received. The number of
neighbors inP; is d — 1. In the end, only the value efktimation is received. O
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Algorithm 2 Aj 4

: ROUND 1 (core peers)

2: if succeed = TRUFE then

3. sendi, estimation, curr into the core row
4: end if

5. ROUND 2(core peers)

6

7

8

9

[uy

- if succeed = FALSFE then

. receivedim, curr from any core peer in row
. else
odim =2

10: end if

11: succeed == TRUFE

12: if dim = 2 then

13 curr = |v|

14: end if

15: sendmessageurr to p;(v)

16: ROUND 3(core peers)

17: receivemessageurr(p;) from p;(v)

18: curr := curr + curr(p;)

19: if message was not receivdebn

20:  complete := FALSFE

21: end if

22: i=1

23: for : = 2toi; j + + do

24:  sendmessageurr(p;) to p;(v)

25: end for

26: ROUND 4(core peers)

27: while do

28: fori=2toi—1;5+ +do

29: receivemessageurr(p;) from p;(v)
30: if message was not receiviten
31 success := FALSFE

32: end if

33: curr = curr + curr(p;)

34:  end for

35: end while

36: if success = TRUE then
37.  if i =dthen

38: estimation = curr

39: endif

40:  sendestimation to all column neighbors
41: end if

42: ROUND 5(non-core peers)
43: all non-core peergeceiveestimation from core in column
44: all peers:sendestimation to all row neighbors




Chapter 4

The System

4.1 Overview

Armed with the algorithms of Chapter 2 we can now put our system together. In Algo-
rithm 3, itis shown how the components presented in earlier chapters can be assembled
in order to build the pancake system, a P2P-system resilient to an adversary allowed
to remove or joird( lol;l-‘j)’;n) peers in constant time, based on the algorithms presented
in Chapter 3. The algorithm is given fdr > 1. The case ofl = 1 is not discussed

in detail here: It is just a clique. Note that fdr= 1, more leaves and joins have

to be tolerated ad/2. This is obviously simply possible. For the latter we omit the
starting phase and assume, the algorithm is running and all variables are set correctly.
We restrict the concurrent adversaryd joins and leaves during each time period,
corresponding to the longest possible phase, th@g &) in constant time. The longest
possible phase is given by first the grid maintenance algorilam; p, consisting oft
rounds, followed byAgpe e (3 rounds),Arp (i) (17 rounds),Ar4(¢) (5 rounds) and
finally Argp, consisting oR4 rounds, ending with a total &f3 rounds. Our adversary

is thus allowed to remove or joid/2 peers in any time interval corresponding5®
rounds. Once again, we point out that the number of rounds has not been minimized:
For example the token information aggregatidp, ;, could easily be done in paral-

lel with other algorithms. By not optimizing the number of rounds, a much simpler
overview of the system can be given. Moreover, the asymptotically results remain the
same. Note that we only need one variabds the arguments fod; 4 (7), Arp (i) and
Anrarcn (i) respectively. The reason for this is twofold: First the number of phases
for a complete run of the corresponding algorithm is the same for all mentioned. The
second reason is that the information aggregation algorithm is not run in parallel. This
guarantees that a new threshold is achieved only alll phases. Since the starting of

Ay arcn depends on whether a certain threshold is passed, the matching establish-
ment algorithm is run synchronously to the information aggregation algorithm.

In the first 4 lines, the algorithmslgrrp, followed by Agper, Arp(i) and
Ara(i) are run. These algorithms are part of any phase. In dinthe variable
estimation is compared with,, (d) - d!. t,,,(d) is the threshold that guarantees that at
leastd + 1 complete rows in any grid of the pancake system exist. Since the thresholds,
as described in Chapter 4.2 are given in peers per nodessaitdation estimates the
total number of peers in the system, we multiply any threshold wlithefore compar-
ing it with estimation. This because the pancake graph consist8 nbdes. For fur-

41
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ther information on the thresholds, see the corresponding Chapter 4.2. We now assume
thatestimation > t,,(d) and thus the if-clause is entered. The varialale:plete is

set toT RU E/, when the whole matching is already established. If this is the case, the
algorithm A,/ (d) is run, thus the matching is updated. As stated in Chapter 3.4.2,
the argument means that the matching is updated to the future neighbors in all neigh-
bored nodes. If on the other haaginplete = F ALSE the matchings to neighbors for
which a matching already exists are updateddy, (i — 1), namely the matchings

to all neighbors; (v),j < i — 1. In the case whereé = 2, no matching has been es-
tablished yet, and thus nothing is done. Then, in lib®f the algorithm, the matching

to the neighbop; (v) is established. If now = d, the matchings to the last remaining
neighborp,(v) is established and the variaklemplete is set tol’ RUE. If i # d, no

further algorithm is run in this phase. In lifié, it is checked ifi = d. If this is the

case, a hew result of the information aggregation algorithm is achieved. Then this new
result, given by the variablestimation, is compared with the thresholds. Also, the
variablei is set to2 (line 17), indicating that thedr (i) and.A; 4 will be restarted with

the argumen? in the next phase. Bstimation > t.(d) or estimation < t.(d), the
pancake system is expandedig. ; by Agx p (line 19) or reduced ta®;_1 by Arpp

(line 22) respectively. Additionally, the variablemplete is set toF ALSE, indicat-

ing that in the new graph, no matchings are established yet and thus no matchings have
to be updated in the next phase. In Chapter 4.2, we will show that no threshold is
achieved before the first result gfrp is supplied. Finallyestimation is compared

with ¢,,,(d), the threshold that indicates if the matchings between future neighbors have
to be established. If not, i.estimation < t,,,(d), complete is settoF ALSE. Inline

32, all unnecessary IPs are deleted, that may were saved during the algorithms of the
phase. This is necessary in order to guarantee, that@@ly memory is needed for

the system maintenance in any peer of the system. The information that is not deleted
include the variables for the algorithms, the row and column neighbors, for the core
peers the matching partners in the neighbors nodes which are necessary to represent
the edges, and finally, #stimation > t,,(d), the matching partners to the future
neighbors, that are already established.

To conclude, it has to be mentioned, that joining nodes also must receive the current
variables that are needed for the algorithms. This data can be received from the node, to
which a joiner newly connected. The nodes that are interchanget-y receive the
result of the information aggregation algorithm in rouhdr 5 of Arp. Interchanged
nodes do not become directly core nodes, and thus are not involved in the calculation.
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Algorithm 3 System (high-level)
1: Agrrp (c.f. Chapter 3.2)
2. Appge (c.f. Chapter 3.3)
3: Arp(i) (c.f. Chapter 3.6)
4: A;a(7) (c.f. Chapter 2.2)
5: if estimation > t,,(d) - d! then
6: if complete=TRUEhen
7 Anrn(d) (c.f. Chapter 3.4.2)
8: else
9: Aara (i — 1) (c.f. Chapter 3.4.2)
10: AMATCH(i) (c.f. Chapter 3.4.1)

11: if 7+ = dthen

12: complete .= TRUFE
13: end if

14: endif

15: end if

16: if 7 = d then

17: 1:=2

18:  if estimation > t.(d) - d! then
19: Agxp (c.f.Chapter 3.4.3)

20: complete .= FALSE

21: d:=d+1

22 else

23: if estimation < t,(d) - d!then
24: Arep (c.f. Chapter 3.5)

25: complete := FALSE

26: d=d+1

27: end if

28: else

29: if estimation <t,,(d) - d!then
30: complete = FALSE

31 end if

322 endif

33: end if

34: deleteall IPs that are not needed any more
35 =1+ 1

36: GOTO 1

4.2 Thresholds

The pancake system presented by now is complete up to the thresholds: It has to be
shown that it is possible to choose threshold®ii) for reducing and(d?) for ex-
panding, such that our system can compete an adversary, being able to join and remove
O(d) peers within constant time. The thresholds for expanding and reducing should be
in ©(d?) and©(d) respectively, in order to guarantee that the node out-degree within

a node is at most linear hbefore expanding and after reducing. So our system would
preserve asymptotically the out-degrieen/loglogn of the pancake grapR,;. Cor-
responding to earlier chapter, we assume that the adversary is restricted to at most
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d/2 joins and leaves during any time interval 5 rounds, which corresponds to the
longest possible phase. Let furthiet be the maximum discrepancy between the num-
ber of nodes at a peer and the average number of peers per node. The threshold for
reducing is referred to a&.(d) = ¢,1d + ¢, and the threshold for expanding as
te(d) = cead?® + cend + co o peers per node. We need a third threshol®i@?),

which indicates that the matching establishment has to be started. Let this threshold be
tm(d) = ¢m2d? + cmad + cm 0. In order to find the missing constants, we first look

at the restrictions for the reduce step which changes the orderdror to d. When

the threshold is achieved, the total number of peers may has chang&d hby1)/2

since the information aggregation algorithm supplies the number of pegys inwith

a delay ofd phases. The next result of the information aggregation algorithm will be
suppliedd — 1 phases after the reduction, changing the total number of tokens by at
mostd(d — 1)/2. Sod — 1 rounds after the reduce step, the average number of tokens
pernode is at mogti+1)-¢,(d+1)+((d+1)-d+d-(d—1))/(2-d!), since each node

of the reduced pancak®, consists ofl + 1 nodes of the previous pancakg, ;. The
threshold for establishing the matching should not be achieved already. &inde

nodes merge to one new nodg(d + 1) is multiplied by(d + 1).

2

(d+1) t.(d+ 1)+% < tm(d) (4.1)

The restriction for a following reduce step after reducing is computed by the same
idea. Now, the worst case is given by leaves instead of joins. The last term takes into
account, that the threshold may not exactly be reached. i.e. it can be passed by at most
(d(d+1) —1)/2d! peers per node ift;. 1 : For each of the phases in which no result

is received fromArp, (d + 1)/2 peers may have been added to the system. One is
subtracted in the denominator, since the threshold was not achieved by the last result
of Arp. So as a second restriction we get:

2 —
(d+1) t-(d+ 1)—%—% > t,(d) 4.2)

For the expand step we get another two restrictions. First we have to guarantee, that
the threshold,,, (d + 1) is not achieved in the first phases after expansion: Aftér
phases we get the first result of the token distribution algorithiR,in,. Again, the
threshold that gives the decision to increase the dimensié} ofay be passed. 1A,

this can be at mosti(d — 1) — 1)/2d! peers per node with the same argumentation as
above. Note that,,(d) in the first term is divided byl + 1, since in the expand step,

all nodes are splitintd + 1 new nodes.

te(d) d? +dw—n—1
d+1  (d+1)! 2d!

The restriction given by a possible reducing after expanding is:

<tm(d+1) (4.3)

te(d) d?
d+1 2(d+1)
We further have to guarantee that during a reduce step, enough peers are in each

node. We assumed to have at le2gt+ 2 peers in each node df,;; before the
reduction toP;, giving the following restriction:

>t (d+ 1) (4.4)

t(d+1) —k(d+1) - d(‘;; ) _dd 7;;) 1 9q42 (4.5)
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for some constant. Beside the threshold.(d), the left hand side includes the maxi-
mum discrepancy in number of peers per node from the average, the number of possible
leaves during the delay given b4; 4 and the value the threshold may be passed. The
last restrictions are object to the expand step. An expansion can only be done, when a
matching has been established. To guaranteedhid, phases are needed between the
start of the matching establishment and the expansion step. So the minimal difference
betweery,, (d) andt.(d) has to beld — 1)d/2d! and, again, the threshoig, (d) may

be passed byd(d — 1) — 1)/2d!.

2d(d—1) — 1
2!

The establishment of the matching is only possible, when the number of peers at any
node is larger a&l + 1)2. This gives a minimal value faf,, (d), depending ork:

te(d) — tin(d) > (4.6)

d-(d—1)
2d!

The last term takes into account, once more, that the result of the information ag-
gregation algorithm has a delay 6f — 1) phases. Note that it has not explicitly to
be guaranteed, that after an expand step, enough peers will be in each grid. This is
included in Inequality 4.4, which guarantees that after an expansion, no reduction is
necessary.

The Inequalities 4.1 to 4.7 should hold for dll> 1. For simplicity, we consider
the coefficients of,.(d), t.(d) andt,,(d) respectively to be integer constants. This is
of course not necessary, since the thresholds are given in the average number of peers
per node. Fractional constants could be more favorable in respect to the maximum
number of peers per node. However, since the our goal is just to show the existence of
the thresholds, rather then optimizing them, integer constants are used

From Inequality 4.5 we concludg(d+1) > (2+k)(d+1) + (2d*> —1)/2d!. This
is satisfied by

ti(d) > (d+1)% + k + (4.7)

tr(d) =2+ k)d+4

foralld > 1.
To satisfy Inequality 4.1, we set

tm(d) = (2+k)d* + (8 +4k)d + k +8

Further, satisfying Inequality 4.6, we set
te(d) = (24 k)d* + (6 + 2k)d + k + 10

It can easily be verified, that all other inequalities also hold with these thresholds. From
the threshold for reducing, the minimal number of nodes in the system can be computed
(for d > 1). The maximum discrepancy from the averdgk as well as the possibly
removed tokens within the delay of the information aggregation algorithm, as well as
the number of tokens per node the threshold may be passed have to be subtracted from
25

—-1)—1 —-1)—1
2d-1) -1 _ ., 2dd-1)

[Vlmin = tr(d) = kd = —— 5 541

> 2d
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The maximum number of peers that can be at a node, is given by the threshold for
expanding, plus the maximum discreparielin the number of peers at a node from

the average plus the number of peers that can join during the delay given by the token
distribution algorithm plus the number of peers the threshold may be passed. Thus
ending up with the maximum numbers of peers per node

B 2d(d—1) — 1
[Vmas = te(d) + kd + === r—

< (2+k)d* + (6 +3k)d + k+ 11
To conclude, a value fdt has to be set. From chapter 2.3, we have 4d+3(J + L)
as the maximum discrepancy in the number of peers per node between two arbitrary
nodes inP;. Since the joins and leaves are linearly superposed, we can set
¢ 4d+3(d/2+d/2)

k:4<ﬁ_ 5 =7d/2

Lemma 4.1. With the thresholds,.(d) = (2 + k)d + 2, t,,(d) = (2 + k)d* + (6 +
2k)d + k + 6, andt.(d) = (2 + k)d*> + (6 + 2k)d + k + 8, it is guaranteed, that
the number of peers in any node of the pancake system is always a2deast and
bounded by)(d?).

Proof. The lemma is proved with the above calculation. O

4.3 Properties of the Pancake System

This chapter will give a short overview over the properties of the pancake system. They
are all based on the detailed discussion of the pancake system in the earlier chapters.
Here we will present the most important results. We again assume that the pancake
system is running in any ordér> 1. The fact that our algorithm does never fail, is not
made explicit here. However, this is the directly seen from the corresponding proofs in
Chapter 3.

We first state that the pancake system on the end of each phase, is always repaired up
to the churn of the current phase.

Theorem 4.2. At the end of each phase, the pancake system is fully repairedd/g to
joins and leaves.

Proof. In each phase, the churn that happened to the pancake system before the current
phase is repaired. This is done By rrp and Agpgk, as stated in the Lemmas 3.1

and 3.3. It is also shown for all further algorithms that may run during a phase, do not
affect the grid. AfterAqgrrp and Agpag, the system is always fully repaired up to

the at mosti/2 joins and leaves that may occur during the current phase. For this, we
observe that only the algorithroég x p, Arep and.Arp may change the connections

of the grids. For these three algorithms, the desired is stated and proved in the Lemmas
3.10, 3.12 and 3.14 respectively. O

Corollary 4.3. The pancake systef; is always fully repaired up to at mosgtjoins
and leaves.
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Proof. From Theorem 4.2 and the following proof, we know that at the end, as well
as after the run ofdgrsp, the system is always repaired upd joins and leaves.
During the run ofA¢r;p, there are at most leaves and joins in the system: namely
the up tod/2 not yet repaired joins and leaves of the last round, and the dp2of

the current round. O

The following corollary guarantees that there is always a core peer. Since data is
stored in the core peers as will be explained later in Chapter 4.4, this will guarantee
that no data is lost.

Corollary 4.4. For each phase of the pancake system, there is always at least one core
peer in each node, that does not leave during the whole phase.

Proof. This follows from the (1) the above corollary and its prove, and (2) from the
fact that a fully repaired grid has+ 1 core peers in each node. Further, in the expand
step, the statement holds for the old core, until the new core is defined. O

Finally, we show that the out-degree of any peer is bounded(lay. Moreover, all
information that is needed by any peer to participate in the pancake system is bounded
by O(d). This is optimal for an adversary that can join or remé\é) peers in constant
time.

Theorem 4.5. As long as the pancake systdmis run, the total information needed
for any peer to preserve the topology is boundedify).

Proof. This is seen from the Lemmas 2.8, 3.2, 3.4, 3.6, 3.7, 3.11, 3.13, 3.15, 3.17 and
4.2 and the fact that after each phase, the old information is deleted up to the needed
connections, namely row and column neighbors, additionally for core peetis-thie
matching partner and finally, if > 0, the up tod matching partners needed for
preparing the expand step. O

4.4 Data and Routing

The n peers in our system are arranged in a simulated pancake topology ofdorder
The data of the DHT is stored as follows. Letsh(-) be a hash function which,
given an identified D, outputs a random permutation on some[$elV], whereN is

a sufficiently large global integer constant. A data item with identifieris stored on

the nodev € V(P,) which is determined by the ordering of the smalléstumbers

of hash(ID). However, a data item is not copied all peers in that node, but only
replicated on the core at the bottom row. This has the advantage that—if we use peers
in topmost rows for the peer distribution—unnecessary copying of data can be avoided
when peers move between nodes, while we are still able to tolerate the same powerful
adversary.

As already mentioned in the introduction, the computing of the diameter of a pan-
cake graph in an efficient way is an unsolved problem. However, the routing can be
done inO(d), which approximates the shortest path up to a constant factor. This fac-
tor is shown to be less theh The following algorithm computes a path between two
nodesv = (¢1...44) andu = (¢;, ... ¢;,), consisting of the nodes to v;_1, where
k < 2d — 4, yielding a diameter of the pancake grapt2df— 3.

Lemma 4.6. Algorithm 4 computes a path between any two nodeB;in The path
length is at mos2d — 3.
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Algorithm 4 Path between two nodes
1. k:=0
2. Vg =
3: ¢, is set to thd®" literal of vy, V1 < k < d
4. for j:=0tod—3do

5 if Ed—j # gid7J then

6: findl, for which¢; = ¢;, .

7: ki=k+1 ‘

8: v = pi(vk—1)

9: k=k+1

10: Vg = pa—j(Vk—1

11: ¢; is set to th@t” literal of v, V1 < k < d
12:  endif

13: end for

14: if 05 = fiz then
150 vgt1 = pa(vg)
16: end if

Proof. The above algorithm computes an ordered set of neges ., v,,,. We have
vo =v. Forallv;,1 < j <k+1,v; v; andv;_; are neighbored sincg is retrieved
by a prefix-inversion ob; ;. In step; of the for loop, the numbef;, . is brought
to positiond — j. Beginning withj = 0, after thed — 2 iterations of the while loop,
the latest computed node has the same numbers at positions asv. This holds,
since after iteratiory of the while loop, all following prefix-inversion will be shorter
asd — j. After the while loop, the last prefix inversion of lengths done ifv;, # w.
From the above we conclude, that the last computed mgpde- u. m can be at most
2d — 3: Beginning withk = 0, the for-loop is passed — 2 times, increasing by at
most2, and in the end one further node may be addeabviously corresponds to the
path length. O

Lemma 4.7. The routing between any two peers in our pancake system can be done in
O(d) steps.

Proof. Consider any two peers in the presented pancake system. First the message is
sent to all row members by the sender, and then each peer that receives the message
forwards it to the core peer in its column. It is guaranteed that one of the core peers will
receive the message. Since we can not guarantee a complete column number during the
complete sending, the core peers send the message to all members of the core. Then,
the path as computed in Algorithm 4 is applied. Additionally, we insert for each node
one step, forwarding the message to all core members. In the following round it then
is sent to the core peers of the next node in the path. When the destination node is
achieved, the message is sent into to the row of the destination peer. From there, the
message can be sent to it's destination. Ateounds the message is broadcasted in

the core of the senders node, then within the 2t/ + 3) rounds the message is
broadcasted in the core of the destination node, and finally, in the llaginds the
message is received, taking at mégt+ 11 rounds. O

Note that the proof does not correspond to the best possible solution: Since during
each phase, there exists a column number that is complete in all grids, the broadcasting
through the core has only be done when a new phase begins.
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In the following theorem, the observations above are summarized:

Theorem 4.8. Our pancake P2P system guarantees node degree and network diameter
O(d) in the presence of an adversary which inserts and deléted peers per unit

time. Each node always has at leadiving core peer and no data is lost. Moreover, it
holds thatd = ©(—25"_),

log logn

Proof. The node degree is a direct consequence of Theorem 4.5 and the network diam-
eter in the above Lemma 4.7. The surviving core peer is stated in Corollary 4.4. That
no data is lost, is directly derived from the surviving core peer and the fact that all data
of a node is stored in each node peer. O






Chapter 5

Conclusions

We presented a P2P system which maintains desirable properties such as low peer
degree and low network diameter against powerful, concurrent adversary which has
complete visibility of the entire state of the system. We showed that the fault tolerance
is asymptotically optimal as the robustness of any topology is trivially upper bounded
by the peer degree.

We showed that our techniques allow to make a most intricate graph topology dy-
namic. We believe that majoring the pancake as a most intricate topology it may be
possible to write a recipe for any P2P topology, by simply applying our basic compo-
nents as ingredients.

The basic components we used were also used in [13]. We just applied them to
the pancake graph, a topology, which is more complex and less intuitive. However, we
developed various new ideas that may be used for other topologies too, two of them
mentioned here: The node representation asdamensional grid allowed a node to
consist ofO(d?) peers, still bounding the out-degree of the peer®ky). Even if this
is not done explicitly here, we state that the grid can be generalized to any dimension
k. For each fixed:, this may increases the diameter of the grid by a constant. With this
idea, the out-degree of a peer in a node, consisting of at @a#t) can be bounded
by O(k). Since the diameter, and thus the number of rounds needed for the necessary
algorithms will only be increased by a constant, this does not change the asymptotically
results.

A further idea which was not used in [13], is that neighbored cores are only con-
nected by a matching. With this idea, the out-degree of the hypercube system presented
in [13], could be decreased fromg?d to logd, which is optimal since it corresponds
to the out-degree of the hypercube. For this optimization, the number of rounds per
phase in the hypercube system has just to be increaséd by
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