
Gclipse

A Collaborative Editor Plug-In for
Eclipse

Marco Cicolini

Master’s Thesis

August 3, 2004 –February 2, 2005

Supervising Professor: Prof. Dr. Roger Wattenhofer
Supervising Assistant: Keno Albrecht

2

Preface

Abstract

This thesis is about a collaborative text editor, Gclipse. The editor is im-
plemented in Java as an Eclipse plug-in. Eclipse is an application development
framework for Java that also provides a Java development environment. Gclipse
extends this environment by adding the feature of collaborative editing addi-
tionally to the inherited abilities, such as syntax highlighting, code formatting
and code completion.

Document consistency and high responsiveness are key characteristics in the
field of collaborative editing. To achieve these requirements, first, Gclipse uses
the approach of Operational Transformation to ensure document consistency
even if different people modify them at the same time. Additionally, by exe-
cuting local operations immediately, high responsiveness is guaranteed.

The editor is based on JGroups, a Java group communication framework.
JGroups offers the notion of groups, which represent a set of connected hosts
sharing the same document. In such group communication, reliable broadcast
and group membership protocols is provided.

Gclipse shows that, based on Operational Transformation, a collaborative
editor is achieving high responsiveness and document consistency. Gclipse is a
prototype, but it is a first step towards a collaborative software development
environment.

3

Acknowledgment

With this thesis I complete my degree in Computer Science. I would like to
thank all the people who supported me during this long time of study at the
ETH. Especially, I would like thank my family and my friends for supporting
me. I spent a lot of time in learning and studying and particularly the last six
months in writing this thesis. Therefore, some people missed me out, I would
like to apologize for that. Since I have some spare time now I will try to catch
this up.

I would like to thank the whole DCG group who supported me with good
advices.

I would most notably thank Keno Albrecht, my supervisor, for supporting
me the whole time. We had a lot of good discussions and ideas. Some of them
were used, some not. He was always ready to answer my question helping me
out when i had problem.

I would also like to thank Simon Schlachter he supported me with good ideas
for the implementation and had always time for some debug sessions.

I also want to thank Roger Wattenhofer for giving me the possibility to write
this interesting and demanding thesis.

4

Contents

1 Introduction 7

2 Computer Supported Cooperative Work 9
2.1 Introduction . 9
2.2 Concurrency Control . 9

2.2.1 Operational Transformation 11
2.2.2 Time Stamp Ordering . 15
2.2.3 Discussion . 18

3 Eclipse 21
3.1 Introduction . 21
3.2 Eclipse - An Overview . 22

3.2.1 Extension Points . 23
3.2.2 Rich Client Platform . 23
3.2.3 Java Development Tools 24

4 Group Editor in Eclipse 27
4.1 Software Design . 27
4.2 P2P Layer . 30

4.2.1 JGroups . 30
4.2.2 JGroups in the group editor 33

4.3 Application Layer . 34
4.4 Concurrency Control . 36

4.4.1 adOPTed . 37
4.5 JGroups Protocols . 37

4.5.1 Join Protocol . 37
4.5.2 Leave Protocol . 38

4.6 Integration into Eclipse . 39
4.6.1 GUI . 39
4.6.2 Eclipse . 39
4.6.3 Redirect User Input . 39

5 Summary 43
5.1 Discussion . 44

6 Future Work 45
6.1 Concurrency Control . 45

6.1.1 Time Stamps . 45
6.1.2 Operational Transformation 45

5

Contents

6.1.3 Checkpoints . 45
6.2 Group Editor . 45

6.2.1 Implement a new Editor 46
6.2.2 Improve the Group Editor 46
6.2.3 GUI . 46

6.3 P2P and Network . 46
6.3.1 Reuse of Network Connections 46
6.3.2 P2P Protocols . 46

1 Bibliography 47

6

1 Introduction

Extreme Programming is a new trend in the software development process.
The benefit of this technique is higher quality software which is less error-prone
and much more maintainable. One aspect of Extreme Programming is Pair
Programming. Using this technique, two developers sit together in front of one
computer, one keyboard, one mouse and one display. One of the developers is
writing source code while the other one is checking the new code for errors and
improvements. During this process the developers discuss current problems to
find improved solutions. One disadvantage of Pair Programming is the fact
that one developer is blocked.That’s where Gclipse comes into play.

Gclipse is an editor which supports collaborative editing. With such a tool
the two developers can sit apart but still do the same work. This opens up
additional possibilities for the develpmoent process. One developer could write
comment the other one program code. Alternative one developer observes the
process and corrects mistakes on the fly. Oppositional to Pair Programming
more than only two person can take part in the development process. This could
also be done with Pair Programming but the place in front of one computer
is limited. Finally a group editor also supports users working from different
places all over the world. Both, space and place, are obviously no limitations to
the group editor. It would have been nice to have written this documentation
with a group editor so a proof reader could already have started correcting it.

Thinking of the open source community Gclipse could bring all these features
to it. Integrating Gclipse into a software development environment would par-
tially replace revision control systems. Additionally Gclipse would bring the
Pair Programming paradigm to everybody who wants to try it out.

Why another editor? Gclipse provides the feature of collaborative editing.
Collaborative writing demands document consistency and high responsiveness.
To achieve these requirements it uses the approach of Operation Transforma-
tion. In to traditional consistency systems Operational Transformation achieves
the requirements without locking.

Chaper 2 introduces the field of Computer Supported Collaborative Work
(CSCW). Problems which occur in such system system and solutions to solve
them are discussed. OT is introduced.

Chapter 3 brings the application development framework Eclipse in. Gclipse
is integrated into Eclipse. This provides development features to Gclipse.

Chapter 4 describes the development process of Gclipse. Additionally JGroups
is introduced. JGroups is group communication framework for Java. JGroups is
used for the communication between the hosts running Gclipse. It offers mem-
bership and reliable broadcast options. The whole design of Gclipse, problems
and their solutions, are explained.

7

1 Introduction

Chapter 5 summarizes the whole work done during the master thesis. It again
highlights important parts, solutions and encountered problems.

Chapter 6 gives an outlook on possible additions to Gclipse. Features to
increase the usability and the efficiency while working with Gclipse.

8

2 Computer Supported Cooperative
Work

This chapter introduces Computer Supported Cooperative Work (CSCW). First
of all, an informal definition is given of what a groupware system is and what
it is used for. After that, the idea of collaborative work is explained. Finally,
difficulties and possible solutions to handle them will be discussed.

2.1 Introduction

On the one hand, there is computer supported work that shows up wherever
a person works with a computer to accomplish a task. On the other hand, of
collaborative work is spoken when a group of people work together to solve a
task. Connecting these two parts opens the area of CSCW.

There are a lot of examples of computer supported collaborative work in
the world, such as the Wikipedia project [3], a public encyclopaedia, which is
written by everybody who wants to participate. Another example are group
communication tools like email or instant messaging. In a more technical en-
vironment, there are so called Source Management Systems (SCM) which help
to organize different kinds of resources. Version or Revision control systems
like CVS or Subversion represent SCMs to control source code in a software
development process. The meaning of CSCW is when a group of people need
to achieve a goal with the help of computers.

2.2 Concurrency Control

Figure 2.1 shows a possible scenario what happens when two users work on
the same document. The result in this case are two different words which
is unintentional. The words should be the same for every user. This is a
consistency problem and comes from the operation execution order. User 1
first inserts the character N and then E. User 2 does the other way round. This
obviously leads to two different words KENO and KNEO. The desired result
would be either KENO or KNEO in both documents. This problem introduces
the area of consistency control. The task of consistency control is to guarantee
the same states on both sides. There are a lot of different approaches to solve
this problems.

Optimistic This type of concurrency control allows inconsistent state and there-
fore provides mechanisms for human users to resolve them. This is a good
approach if inconsistencies are rare. CVS, offers this kind of concurrency
control. If the system cannot resolve a conflict by itself it ask the user

9

2 Computer Supported Cooperative Work

how to solve the inconsistency. One big advantage of this system is the
high responsiveness on the user side.

Pessimistic This type of concurrency control does not allow inconsistencies as
the optimistic approach. It ensures that the state of the system never
converges to an inconsistent state. This means whenever the system is
about to be changed, the system has to guarantee that after the change it
is still consistent. To do so pessimistic concurrency control can be divided
into two different categories, centralized and decentralized.

Centralized In this approach of pessimistic concurrency control, a cen-
tralized instance takes care of the concurrency control. Usually, there
is some kind of central locking mechanism. For example, a server
granting read and/or write access to a site, preventing other sites
from reading/writing as well.

Decentralized In contrast of the centralized approach, decentralized pes-
simistic concurrency control uses decentralized mechanisms to guar-
antee consistent states. Examples are distributed locking mecha-
nisms or voting techniques.

As mentioned before, the different approaches have different advantages and
disadvantages. However, the more is known about a system the more specific
a concurrency control system can be chosen. Therefore, some conditions have
to hold for implementing a distributed group editor.

Responsiveness An editor should be as responsive as possible. If the user needs
to wait too long after every input, the editor is not usable. While typing,
the editor should behave the same as a single user editor. Therefore,
responsiveness is very important.

Consistency The documents need to be consistent. Otherwise, the idea of
a group editor is senseless. However, it is not needed, that every time a
change is done the document has to look the same. So no strict consistency
is needed. The local changes should be done as fast as possible but remote
changes might be done later in time, to achieve good responsiveness. So if
all changes are executed and the system is in a quiet state the documents
became eventually consistent.

Intention Preservation This means to ensure that the local operation effect
observed by user is the same as its remote effect observed by other users
in the face of concurrency.

Causality Preservation Causality preservation means to ensure that user ac-
tions are always performed in their natural cause-effect order during a
session.

According to these constraints the concurrency control can be chosen. Due
to the requirement of high responsiveness, every system using locks is dropped
because locking blocks sites for an unknown long time. Due to consistency the

10

2.2 Concurrency Control

optimistic approach is also dropped, because of the user intervention. This
decreases the responsiveness for other users. Also the change done by the user
need to be propagated to the other sites.

Figure 2.1 shows a simple example what happens when two users insert a
character at the same time. The results are two different words which violates
the consistency constraint. Now two possible ideas for concurrency control are
discussed regarding an implementation of an editor and the constraints.

KO KO

User 1 User 2

KEOKNO

Ins(2,E)Ins(2,N)

KENO KNEO

Ins(2,E) Ins(2,N)

Figure 2.1: This figure shows what happens, when two user concurrent insert a
character at the same place in a document.

2.2.1 Operational Transformation

This approach for consistency control was introduce by Ellis and Gibbs in 1989
[6] and was refined by several other scientists [7], [10], [11]. The idea of this
approach is to transform all incoming operations so they have the same effect on
every document even the documents on which the operations are executed don’t
look the same. To achieve this so called operational transformation functions
are used. These functions transform operations if the operations are concurrent.
To check if two operations are concurrent a vector time stamp is used. The proof
that this approach is correct was done in 2004 by Imine et. al [7]. They also
proved the correctness of their proposed functions. A lot of functions proposed
early were proven to be incorrect.

Introduction

The Operational Transformation (OT) approach defines a request as a tuple
(u, v, o) where u is the user issuing the operation, v is the vector time stamp
and o is the operation to be executed on the document. The execution of an

11

2 Computer Supported Cooperative Work

operation is the insertion of the operation content into the document. In the OT
approach the documents on all host have a different document state denoted by
the vector time stamp v. When an operation op1 is issued the local time stamp
is attached to it before its execution. Then this operation is distributed to
other users. Other users have different document states. The new operation is
transformed against already executed operations resulting in a new operation.
The adOPTed algorithm proposed in [10] describes how this transformation
works.

The adOPTed Algorithm

To use the transformation functions an algorithm which transforms and exe-
cutes them is needed. As mentioned, the adOPTed algorithm is used. A detailed
description and explanation of the adOPTed algorithm, which is employed in
Gclipse, can be found in [10]. The algorithm ensures the causal execution order
of the operations. So remote operations might be delayed for local operations
this cannot happen. While typing the local causal order is defined immediately,
because every change in the document is executed immediately. The algorithm
keeps a history of all received operations before execution, which is needed to
execute the transformation functions.

Transformation Functions

This approach uses so called operational transformation functions. These func-
tions transform operations against the state of a document, that when the op-
eration is executed, has the same effect as the execution on the host which initi-
ated the operation. A transformation of two operations is written as T (op1, op2),
whereas T is one of the transformation functions defined later. The meaning is,
op1 is transformed against op2 that implies that op2 was already executed. The
functions must meet the following two conditions also know as the Convergence
Properties.

• The first condition, C1, defines a state identity. A document state gener-
ated by first executing op1 and then the transformed operation T (op2, op1)
must be the same as if the state was generated by first executing op2 and
then the transformed operation T (op1, op2). C1 is defined as follows:

C1 : [op1;T (op2, op1)] ≡ [op2;T (op1, op2)]

• As there are usually more then only two hosts condition C1 is necessary
but not sufficient. Therefore condition C2 ensures that an operation trans-
formed against a sequence of concurrent operations does not depend on
the order in which the operations are transformed.

C2 : T ∗(op3, [op1;T (op2, op1)]) = T ∗(op3, [op2;T (op2, op2)])

where T ∗ is the definition of transformation one operation according a
sequence of operations.

T ∗(op, []) = op
T ∗(op, [op1; op2; . . . ; opn]) = T ∗(T (op1, op2), [op2; . . . ; opn])

12

2.2 Concurrency Control

The prove that the conditions C1 and C2 are sufficient to ensure the convergence
property for any number of concurrent operations is done in [10] and [9]. To
use the properties the operations need to be defined. The operations differ
depending on the type of the object which has to be consistent. In the case of
the group editor it is a simple text document. Therefore the operations Insert
and Delete are defined.

Insert Ins(p, c, w) Defines the operation for inserting a character c at the posi-
tion p. The parameter w is used for the transformation functions to keep
track of the insertion positions and what is described in more detail in
[7].

Delete Del(p) Defines the operation for deleting a character at position p. The
deletion does not need the additional parameters c and w.

Nop Nop() Defines the empty operation, which has no effect.

The transformation functions are defined for every combination of all defined
operations. In this case, four functions are needed: (insert → insert), (insert
→ delete), (delete → insert) and (delete → delete). The functions are defined
as follows.

T(Ins(p1,c1,w1), Ins(p2,c2,w2)) =
�1 = PW(Ins(p1,c1,w1))
�2 = PW(Ins(p2,c2,w2))
if (�1 < �2 or (�1 = �2 and C(c1) < C(c2)))

return Ins(p1,c1,w1)
else if (�1 > �2 or (�1 = �2 and C(c1) > C(c2)))

return Ins(p1 + 1,c1,p1w1)
else

return Nop(Ins(p1,c1,w1))

T(Del(p1), Del(p2) =
if (p1 < p2)

return Del(p)
if (p1 > p2)

return Del(p1 - 1)
else

 return Nop(Del(p1))

T(Del(p1), Ins(p2,c2,w2)) =
if (p1 < p2)

return Del(p)
if (p1 > p2)

return Del(p1 + 1)

T(Ins(p1,c1,w1), Del(p2)) =
if (p1 < p2)

return Ins(p1,c1,w1)
if (p1 > p2)

return Ins(p1 -1,c1,w1)
else

return Ins(p1,c1,p1w1)

Figure 2.2: These are the four functions to transform the operations. For every
combination of operations a function is needed. There are 4 functions missing, the
ones containing the Nop operation. This operation has no effect on the document.
When an insert or delete operation is transformed against a Nop operation the
result is the unchanged insert or delete operation. The other way round the result
is a Nop operation.

In the first transformation, the PW function is used which is defined as
follows:

PW(Ins(p, c, w)) =


p if w = ε
pw if w 6= ε and (p = Current(w) or

p = Current(w) ±1)
ε otherwise

13

2 Computer Supported Cooperative Work

To understand the PW and the transformation functions the PWord is intro-
duced. The PWord is a vector of numbers which is denoted by w. This vector
keeps track of the insert position of an operation before its transformation, be-
cause otherwise this information would be lost, for a more detailed description
see [7]. The PW function, defined only on insert operations, returns the PWord
of the given insert operation. pw denotes the concatenation of the position p
in front of the PWord w. PW uses the function Current(w) which is the first
element of w.

Examples

To see how these functions work two examples are given, the correction of Figure
2.1 and a more complex insertion.

The first example is shown in Figure 2.3. Two users insert one character
into the initial string KO. They both want the same string as result. After
User 1 inserted the character N at position 2 it gets the string KNO. User 2
inserts the character E at position 2, resulting in the string KEO. Both user
then send their operation to the other user. User 1 inserts op2 from user two
by first transforming it against operation op1 which results in the operation op′

2

which in this case is the same as the original op2. User 1 gets to string KENO
which is the desired one. User 2 receives op1 which before inserting needs to
be transformed against op2 resulting in op′

1. According to the transformation
functions the position of op1 was shifted by one. So User 2 inserts the character
N at position 3 resulting in the same string as the one from User 1 KENO. To
mention is that also the string KNEO would have been correct as long as the
two users get the same string.

KO KO

User 1 User 2

KEOKNO

op2 = Ins(2,E,[])op1 = Ins(2,N,[])

KENO KENO

op2' = Ins(2,E,[]) op1' = Ins(3,N,[])

op1' = T(op1,op2) op2' = T(op2,op1)

Figure 2.3: This figure shows an example of an insertion using OT. It is the
correction of the concurrency problem example in Figure 2.1

The example in Figure 2.4 shows a more complex example of insertions. This
example is called the C2 puzzle, because lots of proposed OT functions don’t
solve this problem due to a violation of the C2 condition. The interested reader
can follow the example and try to do the transformations by himself. It’s just
applying the transformation functions to the received operations.

14

2.2 Concurrency Control

CORE CORE

User 1 User 2

COECORFE

op2 = Del(2)op1 = Ins(3,F,[])

COFE

op3' = T(op3,op2) = Ins(2,F,[2])

CORE

User 3

COFRE

op3 = Ins(2,F,[])

COFE

op2' = T(op2,op3) = Del(3)

op1'' = T(T(op1,op2),op3') = Ins(3,F,[2,3]) op1'' = T(T(op1,op3),op2') = Ins(3,F,[4,3])

op2' = T(op2,op1) = Del(2)

COFE

COFFE COFFECOFFE

op3'' = T(T(op3,op1),op2') = Ins(2,F,[2])

Figure 2.4: This figure shows the C2 puzzle. It is a scenario to check if the C2

condition is met.

2.2.2 Time Stamp Ordering

To achieve concurrency control a deterministic order on operations is needed.
Whenever two operations are concurrent, meaning they were issued at the same
time, it is not clear which one is executed first. For this case, a technique to
guarantee the same order on every host is needed. In this approach, this order
is guaranteed by time stamps. This time stamps are, in contrast to those from
OT, not logical but are taken from the local clock. Therefore, the clock on
all hosts need to be synchronized. This could be done by some kind of clock
synchronization algorithm like the Network Time Protocol could be used.

The storage of the document also differs from that one in OT. In this case,
a linked list is used and not an array. Every node in this list contains the
character, a unique ID, a flag to declare if the node is deleted or not and a time
stamp. The operations executed on the list are Insert, a new node is inserted,
and Delete, a node is removed from the list.

Delete

The delete operation is quite simple. When a node is declared as deleted it
is not shown anymore in the user interface, but it is still in the list. It might
not be that obvious why the deleted nodes cannot be removed from the list.
Assuming User 1 receives the delete operation from User 3, but User 2 does
not. User 1 removes the deleted node, in the meantime User 2 is inserting
another node after the deleted Node and sends this operation to User 1. User
1 already deleted the node after which the new node should be inserted. Thats
way the deleted nodes cannot be removed. This results in an always growing
list. But when the system is in a steady state and all sites agree on the same

15

2 Computer Supported Cooperative Work

state they could agree on removing deleted nodes, so eventually the list size,
can be decreased. Agreement can be achieved by some consensus algorithm,
which is a well known problem.

Insert

The insert operation inserts a new node after an existing node in the list.
Every node has a unique id. This id consists of the site user or host name and
a sequence number that is increased whenever a site adds a new node. This
sequence number is different for all sites, it can be considered as a local logical
time stamp. If two nodes need to be inserted after the same id, the time stamp
is used to decide which operation happened before the other and is inserted
first. Using these time stamps, a total order on all sites is achieved. For the
case the time stamps are identical the lower id decides which node is inserted
first.

Two operations are declared as concurrent if they are inserted after the same
node. Therefore every node keeps a list of all nodes which initially were inserted
after that node. If this list is empty a new node is inserted directly after that
node. The history list sorted according the time stamps of the nodes. The new
node is then inserted into this list according its time stamp. The history list is
needed because messages carrying operations might be delayed so they arrive
later even if they were invoked earlier than another one. So every node has
3 pointers showing to other nodes. The first one, the list pointer, is the one
for the linked list itself, the second one, the history start pointed, denotes the
starting point of that nodes history list and the last one, the history forwarder
pointer, is for keeping track of a history list of another node. Figure 2.6 gives
an example of such a linked list.

T(ID4) < T(ID5)

ID1
Time
List
Start

Forward
Pos:

ID2
Time
List
Start

Forward
Pos:

ID3
Time
List
Start

Forward
Pos:

ID5
Time
List
Start

Forward
Pos: 2

ID4
Time
List
Start

Forward
Pos: 2

Figure 2.5: This figure shows a simple insertion of two nodes with different time
stamps. The upper three white nodes were the initial list and the two grey lower
nodes were inserted after node 2. Node 4 is inserted before node 5 because of the
lower time stamp of node 4.

16

2.2 Concurrency Control

ID1

Time

List

Start

Forward

List

ID2

Time

Start

Forward

List

ID3

Time

Start

Forward

ID4

Time

List

Start

Forward

ID5

Time

List

Start

Forward

Figure 2.6: This figure shows how the linked list looks like. Each color defines a
history list, the green one is from a node not in the list, the red one from node 4
and the blue list is from node 1. The start pointers of the nodes 2, 3 and 5 point
nowhere meaning that no other node was inserted after them.

Examples

A simple insertion is illustrated and explained in Figure 2.5. A more complex
insertion is shown in Figures 2.7 and 2.8 to explain how the history list is used:

• At the beginning, the list consists of three elements with the ids 1, 2 and
3. The nodes with id 4, 5, 6 and 7 need to be inserted, Node 4, 5, 7 after
node 2 and Node 6 after 5 (Figure 2.7a). The insertions are done in the
order, 4, 5, 6, 7. This is the reception order of the messages containing
these insert operations on the node executing the insertions.

• Node 4 is inserted after Node 2, the start and the list pointer of Node 2
are set to Node 4. The list pointer of Node 4 is set to Node 3 (Figure
2.7b).

• Node 5 is the next node to insert. Since the start pointer of Node 2 is
not empty, the history list of Node 2 need to be traversed. And Node
5 is inserted before Node 4 because of the lower time stamp of Node 5
compared to the one from Node 4. The start and the list pointer from
Node 2 are set to Node 5. The forward and the list pointer of Node 5 are
set to Node 4 (Figure 2.7c).

• Next, Node 6 is inserted after node 5 since the start pointer of Node 5 is
empty. Node 6 is directly inserted after Node 5. The start and the list
pointer of Node 5 are set to Node 6. The list pointer of Node 6 is set to
Node 4 (Figure 2.8a).

• Finally, Node 7 is inserted after Node 2 whose start point references Node
5. For Node 7, the history list of Node 2 needs to be traversed. Assuming
that Node 7 has the highest time stamp of all nodes in that list it is
inserted after Node 4. So the forward and the list pointer of Node 4 is set
to Node 7 and the list pointer of Node 7 is set to Node 3 (Figure 2.8b).

• The resulting state of the linked list is illustrated in Figure 2.8c.

17

2 Computer Supported Cooperative Work

Without a history list the linked list would look different, 1, 2, 7, 4, 5, 6, 3.
This order depends on the order of how the messages, containing the operations,
were received. This order might differ from host to host. Since some messages
sent over network might be delayed and others not.

2.2.3 Discussion

1. Real-time time stamps
This approach relies on the quality of the time stamps. If the clock of a
host loses, then on concurrent insertions the nodes from this host might
always have a smaller time stamp. As a consequence the user’s intention
is not always hold. Also, the problem of deleted nodes has to be resolved.
One idea is to use some kind of checkpoints on which all hosts agree to
remove unnecessary nodes.

2. Operational Transformation
The OT approach achieves a high user responsiveness due to the reason
of executing local operations as fast as possible. The problem is the need
of a history of all executed operations which is very space expensive and
slows down the algorithm that transforms all operations. To reduce this
problem checkpoints could be used to agree on a set of executed operations
and remove them from the history.

The decision for the concurrency control mechanism falls to OT. Because of the
better possibility to integrate this approach into Eclipse, the internal document
can be used. With the real time approach the linked list need to be implemented
and integrated into Eclipse. The linked list is put off as future work.

18

2.2 Concurrency Control

ID1

Time

List

Start

Forward

ID2

Time

List

Start

Forward

ID3

Time

List

Start

Forward

ID4

Time

List

Start

Forward

ID5

Time

List

Start

Forward

ID6

Time

List

Start

Forward

ID7

Time

List

Start

Forward

Initial List Nodes to Insert

Pos: 2 Pos: 2Pos: 2 Pos: 5

(a) Initial List

ID1

Time

List

Start

Forward

ID2

Time

List

Start

Forward

ID3

Time

List

Start

Forward

ID4

Time

List

Start

Forward

(b) Insertion of Node 4

ID1

Time

List

Start

Forward

ID2

Time

List

Start

Forward

ID3

Time

List

Start

Forward

ID4

Time

List

Start

Forward

ID5

Time

List

Start

Forward

(c) Insertion of Node 5

Figure 2.7: This figure shows the insertion of node 4 and 5 into the initial list
containing node 1, 2 and 3.

19

2 Computer Supported Cooperative Work

ID1

Time

List

Start

Forward

ID2

Time

List

Start

Forward

ID3

Time

List

Start

Forward

ID4

Time

List

Start

Forward

ID5

Time

List

Start

Forward

ID6

Time

List

Start

Forward

(a) Insertion of Node 6

ID1

Time

List

Start

Forward

ID2

Time

List

Start

Forward

ID3

Time

List

Start

Forward

ID4

Time

List

Start

Forward

ID5

Time

List

Start

Forward

ID6

Time

List

Start

Forward

ID7

Time

List

Start

Forward

(b) Insertion of Node 7

ID1

Time

List

Start

Forward

ID2

Time

List

Start

Forward

ID3

Time

List

Start

Forward

ID4

Time

List

Start

Forward

ID5

Time

List

Start

Forward

ID6

Time

List

Start

Forward

ID7

Time

List

Start

Forward

(c) List after all insertsions

Figure 2.8: This figure shows the insertion of node 6 and 7 and the final list
structure after all insertions.

20

3 Eclipse

This chapter introduces Eclipse [2]. Most people think that Eclipse is a Java
development environment, but it is much more than that. This understanding
comes from its early releases. At the beginning, Eclipse was meant as a Java
development environment. It will be shown what else can be done with Eclipse
beside development of Java, even though Java development is an important
part of Eclipse.

3.1 Introduction

The Eclipse company was founded in November 2001. It was formed by a board
of industrial companies. Until February 2004 other companies joined the board.
From then on Eclipse was reorganized into a non-profit corporation, which is
now an independent body which will drive the platform’s evolution to provide
an open-source framework to the end user.

The Eclipse project is divided into different subprojects, which group common
tasks.

• Eclipse Project
In this project, the basic Eclipse resources are developed, like the core
platform, the Java development tools (JDT) and the Plug-in development
environment (PDE).

• Eclipse Tools Project
In this project, tools for the Eclipse platform are developed which in-
troduces completely new features to the Eclipse platform. The C/C++
development tools (CDT) or the visual editor (VE) for creating graphical
user interfaces are two examples, which give new abilities to the Eclipse
platform.

• Eclipse Technology Project
In this project, new technologies are developed. These projects are used
by others to implement new features or tools. This project is meant to
be something like a library or framework.

• Eclipse Web Tools Platform Project
In this project, tools for development of web-centric and J2EE appliac-
tions are developed.

• Eclipse Test and Performance Tools Platform Project
In this project, a standard base platform test and performance tools are
developed.

21

3 Eclipse

• Business Intelligence and Reporting Tools (BIRD) Project
In this project, a base framework for reporting in Java is developed.

3.2 Eclipse - An Overview

As mentioned before, Eclipse is not just a Java development environment. With
the release of version 3.0 it is more than that. Before this version it was intended
to be a Java development tool. There was already the possibility to extend
and/or improve the platform but not in such a generic way like it is now.

In Figure 3.1 the different parts of the Eclipse platform are shown. The run-
time platform is responsible for dynamically discovering and loading plug-ins.
It maintains information about each plug-in and the extension points offered
by the plug-in, which are explained in Section 3.2.1. The Runtime Platform
itself is not a plug-in. The Workspace is responsible for resource handling, cre-
ating and managing all kind of resources (projects, files and folders). The Help
plug-in offers extension points to provide help facilities. The Debug plug-in
defines a debug model and user interface to for building debuggers. The Work-
bench plug-in offers user interface facilities, for navigating the platform. This
plug-in also offers additional toolkits, SWT and JFace, to build user interfaces.
The Team plug-in offers support for team developing facilities. The platform
runtime and the plug-ins together build the Eclipse platform.

Eclipse Platform

Platform Runtime

Workspace

Team

Help

Workbench

JFace

SWT

Debug

Figure 3.1: This figure shows the Eclipse components. At the bottom is the
Platform Runtime as the core element of Eclipse. It handles the loading mechanism
of plug-ins. The other parts are plug-ins. The Team and Help plug-ins offer team
an help functionality. The Workspace handles the resources which all plug-ins
might access. The Debug part offers debugging facilities for other tools. SWT,
JFace and Workbench are responsible for the graphical user interface. They offer
basic widgets but also more sophisticated GUI elements.

22

3.2 Eclipse - An Overview

1 <extens ion
2 id=”org . e c l i p s e . j d t . debug . u i . SnippetDocumentFactory”
3 name=”%snippetDocumentFactory . name”>
4 point=”org . e c l i p s e . core . f i l e b u f f e r s . documentCreation”>
5 <f a c t o ry
6 ex t en s i on s=” jpage ”
7 c l a s s=”org . e c l i p s e . j d t . i n t e r n a l . debug . u i . s n i pp e t ed i t o r . SnippetDocumentFactory

”>
8 </ f a c t o ry>
9 </ extens ion>

Listing 3.1: DocumentCration extension point

3.2.1 Extension Points

In Eclipse, the concept of so called Extension Points is very important. When-
ever a plug-in is defined it might use and/or offer extension points. These
points describe well defined interfaces to facilities a plug-in offers. First of all a
plug-in must define an extension point before another plug-in can use it. The
extension point is defined according to an XML schema, it defines attributes
and expected values. A very basic extension point would define a unique ID
and its name. With the help of an XML schema the points are well defined and
other plug-ins might access these points. To access such an extension point it
is defined in the plugin.xml file. This file is part of every plug-in and describes
the accessed and defined exteions points.

Example

Listing 3.1 shows how a plug-in has to plug itself to an extension point. Lines
2-4 define the id, the name and the used extension point. This has to be done
for every extension point. In line 7 the class is defined which is called by the
extension point. And in line 6 the file extension for which this point is used
is defined. Whenever the platform creates an internal document, the extension
point registry is searched for plug-ins which plug into this extension point. If
the document which will be created has the extension jpage, as in listing, the
SnippetDocumentFactory is called. The factory class in this case implements
the IFactory interface which defines the callable methods.

3.2.2 Rich Client Platform

Eclipse is not just a development environment (see 3.2). The extension points
were introduced so that implemented features can be used and/or modified.
Eclipse offers also the possibility to create Rich Client Platforms (RCP). This
platform is a set of minimal plug-ins to develop a rich client application. For
example, if an application does not need any debug facilities then the debug
plug-in is not necessary and therefore should not be integrated into the appli-
cation. So every plug-in not needed can be omitted. The minimal platform
application with a user interface would contain the following plug-ins:

• org.Eclipse.core.runtime

• org.Eclipse.ui

23

3 Eclipse

Every desired application can be build on top of these two plug-ins.
Now, what could that be used for? Today, a lot of applications have to be

small, fast, platform independent and should also have a nice look and feel.
The main thing is the platform independency. Therefore, a lot of applications
are developed inside browsers. But browsers offer not that much possibility to
implement an application. For example, the user interface is very basic, as long
as the application should run and behave in the same way in different browsers
and on different platforms. But wherever Java runs, an application can be
implemented using Eclipse and the Rich Client Platform. So the developer
has the same possibilities like developing an application for just one platform.
Actually, there is not much difference between an RCP developed with Eclipse
compared to a Java application. First when using Eclipse RCP to develop a
new application all the mentioned plug-ins and much more from the community
could be used. Another reason to use RCP, is the huge community behind
Eclipse which does a lot of testing. Then, the plug-in system used in Eclipse
can be used to improve and extend the application.

Basically, there is no difference, but when using Eclispe a lot of work is
already done. For example the plug-in mechanisms can be used, also all existing
plug-ins can be used. Otherwise all this components need to be implemented
additionally.

3.2.3 Java Development Tools

The Java development tools can be compared to professional tools like JBuilder
from Borland or NetBeans from Sun. Of course it is open source, like the most
Eclipse plug-ins. Figure 3.2shows where and how the JDT plugs into the Eclipse
platform. It is only a shallow figure. But JDT and also the PDE use many
plug-ins inside the Eclipse Platform. The Plug-in Development Environment is
important for the development for plug-ins. It can be used to develop and to
debug plug-ins.

24

3.2 Eclipse - An Overview

Eclipse Platform

Platform Runtime

Workspace

Team

Help

Workbench

JFace

SWT

Debug

Java Development
Tools

Plug-in
Development
Environment

Figure 3.2: This figure shows how the Java Development Tools and the plug-in
development environment are connected. It is a very abstract view. JTD plugs
into several plug-ins of the Eclipse Platform and the PDE plugs into the Eclipse
Platform and the JDT.

25

26

4 Group Editor in Eclipse

In this chapter, the process of implementing and integrating a group editor
into Eclipse is described. The information from the previous chapters like the
plug-in mechanism of Eclipse and the theory of concurrency control is used to
implement the group editor. The different parts of the development process are
discussed separately. The group editor design is layered and an Eclipse plug-in
integrates the editor into Eclipse. Some basic information are needed to under-
stand what and how it was done. First of all, the group editor is implemented
in Java and represents a plug-in, which can be installed into Eclipse. The idea
was to integrate the shared editor feature into the Java Development Tools,
so that the features from JDT can be used. To do so, some steps are needed.
First, when a document is not shared it shouldn’t make a difference to the user.
Therefore, a mechanism has to be implemented which checks if a document is
shared or not. Second, the user input has to be taken and redirected to the
concurrency control and then sent to the other group members. Also the pos-
sibility for insertion of text changes from other hosts has to be provided. That
aims to interrupt the existing cycle of user inputs.

4.1 Software Design

Figure 4.1 illustrates the general software design approach. Five different parts
are shown. The reason for this layered and component oriented approach is that
all the parts can be developed independently. To guarantee this independence
interfaces are designed which handle the cooperation between these parts. This
way the implementation can differ as long as the interfaces remain. The different
parts are discussed now.

Network and P2P Layer First it was planned to implement a network layer
based on the new Java non-blocking input/output library (Java NIO). But af-
ter some reviews of already existing frameworks the choice falls to JGroups
[1]. JGroups is mainly a group communication framework for multicast group
communication. It also offers some more high level protocols like group mem-
bership handling, which represents the P2P layer. How JGroups is used in
detail is explained in Section 4.2.1. This layer is responsible for sending and
receiving messages and also for group membership handling, when new users
join or leave the group.

The topology of the P2P network created by the group editor is document
oriented. That means for every shared document a new P2P network is created
(see Figure 4.2). Inside a group, which represents a P2P network, every host
is connected to every other host, that is mainly for latency reasons and the

27

4 Group Editor in Eclipse

Eclipse Plug-in

Application Layer

P2P Layer

Concurrency Control

Call Event

Network

send/receive

Input

send

insert

Figure 4.1: This figure shows in general how the software is built, and how the
different parts are connected together.

fact that usually not that many users join a document. From the document
point of view it looks like all the networks are disjoint, because they don’t know
anything of other documents. When a message is created on one host it is then
sent to all members of that group. Therefor no messages are sent and received
which don’t concern that group.

In Figure 4.3, the same network is shown from the host point of view. The
difference between the two views is that a host can have more than one con-
nections to another host, because they might share two documents. Although
this is not very efficient, reusing connections has been put off as future task.

Application Layer This layer is responsible for the main application logic. It
connects the lower layers to the Eclipse plug-in and the concurrency control
logic. This layer receives the user input from Eclipse, handles it locally and
sends it through the p2p layer to another group editor on another computer.
Upon receiving an event from the p2p layer it dispatches the event to the
concurrency control.

Concurrency Control This component is responsible for the concurrency con-
trol of the user inputs from the different users. Whenever two users on two
different machines make some input, then this component has to guarantee
that all users see the same result. It uses the approach of operational transfor-
mation discussed in Chapter 2. After the user input has been transformed it
inserts it into the text document inside Eclipse.

28

4.1 Software Design

1

1

3

3

2

1

2

1

1

1

2

3

3

Figure 4.2: This figure shows the P2P topology used in the group editor. Three
documents are shared, the circles represent a shared document on a host, they
might also be on the same physical host. This figure shows the network from the
document point of view.

Host B
doc 1
doc 2

Host D
doc 2
doc 3

Host A
doc 1
doc 2
doc 3

Host C
doc 1
doc 3

Host E
doc 1

Host F
doc 1
doc 3

Host G
doc 1

Figure 4.3: This figure shows the p2p topology from the host view. It is the same
topology as in Figure 4.2.

29

4 Group Editor in Eclipse

Eclipse Plug-in This component integrates the group editor into Eclipse. It
takes the user inputs and passes them to the application layer. This component
is also responsible for the generation of the user interface of the group editor.

4.2 P2P Layer

In this section, the tasks of the p2p layer are explained in detail and JGroups
is introduced.

4.2.1 JGroups

JGroups is a toolkit for reliable multicast communication. This framework
offers network features for the group editor. Sending messages to other users
are needed and also joining and leaving a group. Some features of JGroups are
the ones listed below.

• Group creation and deletion. Group members can be spread across LANs
or WANs

• Joining and leaving of groups

• Membership detection and notification about joined/left/crashed mem-
bers

• Detection and removal of crashed members

• Sending and receiving of member-to-group messages (point-to-multipoint)

• Sending and receiving of member-to-member messages (point-to-point)

JGroups consists mainly of three different parts, a protocol, a network ab-
straction and building blocks. All of them are now introduced.

Protocol In JGroups a protocol, can be defined by an XML file. Listing 4.1
shows such a possible xml file. The config is the outermost tag. Inside this
tag, the different protocol layers are defined. The first one, in this case TCP1 4
defines the bottom most protocol in the protocol stack on top of it comes the
next one and so on until to the topmost one, the pbcast.GMS protocol. The
protocol tags correspond to Java classes in JGroups. For every tag there has
to exist an instanciable Java class. A short description of the different protocol
layers is given below.

• TCP1 4
This class defines the network protocol used to send and receive messages.
It starts the local listening port and then waits for incoming requests or
for sending request from the upper protocol layer.

• TCPPING
This layer is responsible for finding other hosts running JGroups and for
connecting to them. A list of possible remote hosts can be given to which
this protocol tries to connect to.

30

4.2 P2P Layer

1 <c on f i g>
2 <TCP1 4 s t a r t p o r t=”7800” loopback=” f a l s e ” bind addr=” t e s t s e r v e r ” />
3 <TCPPING timeout=”3000” i n i t i a l h o s t s=” l o c a l h o s t [1 2000] ” por t range=”1”

num init ia l members=”1” />
4 <FD timeout=”2000” max tr i e s=”4”/>
5 <VERIFY SUSPECT timeout=”1500” down thread=” f a l s e ” up thread=” f a l s e ”/>
6 <pbcast .NAKACK gc l a g=”100” re t ransmi t t imeout=” 600 ,1200 ,2400 ,4800 ”/>
7 <pbcast .STABLE s t a b i l i t y d e l a y=”1000” d e s i r e d avg go s s i p=”20000” down thread=”

f a l s e ” max bytes=”0” up thread=” f a l s e ”/>
8 <pbcast .GMS p r i n t l o c a l a d d r=” true ” j o in t imeout=”5000” j o i n r e t r y t imeou t=”2000”

shun=” true ”/>
9 </ con f i g>

Listing 4.1: This listing shows the protocol definition in xml used in the group
editor.

• FD
This layers is responsible for failure detection by sending ping messages.
If a response is not received within a timeout interval the pinged host is
suspected as unreachable and FD sends a suspect event up the protocol
stack.

• VERIFY SUSPECT
This layer counter checks the suspected members by the FD layer. If they
are still considered as suspected it forwards the suspect information up
the stack. Otherwise, the suspect event is discarded. This layer tries to
minimize false suspicious.

• pbcast.NAKACK
This layer is responsible for lossless FIFO delivery of multicast messages,
using negative acknowledgements. Whenever messages are missing the
receiver ask for retransmission of the messages.

• pbcast.STABLE
This layers drops messages seen by all members of the group. Because of
possible retransmission of messages, each member stores all messages. If
it is sure, that all members have received a certain message the message
is dropped by this protocol layer. It sends the lowest message id to all
members. According to this received message id the minimum of all this
ids is calculated and all lower messages are dropped.

• pbcast.GMS
This layer is responsible for the group membership service. It handles
joins and leaves of members. It also handles suspect events from the
FD layer by excluding the suspected member. Whenever the topology
changes this layer sends a new group view to all members of the group.

JGroups offers a lot more protocols to build a protocol stack and also the
possibility to implement own protocols. But for the group editor the presented
protocol stack suffices to accomplish the task of communication.

Network Abstraction As in Java there is also in JGroups a network abstrac-
tion layer.Java sockets are commonly used to implement network applications.

31

4 Group Editor in Eclipse

In JGroups on top of these sockets the protocols are implemented and form
a protocol stack. This protocol stack is used by the JChannel to provide a
high level network abstraction. In Figure 4.4 the life cycle of such a channel is
presented containing four different states in which the channel may be.

In the open state the channel is initialized and the corresponding protocol
stack is set up. Whenever a connect is executed the channel changes into
the connected state, within that state the channel may perform sending and
receiving operations. It then can return to the open state. When the channel is
disconnected it can be reconnected and again switches to the connected state.
Whenever the channel goes to the closed state it is not usable anymore the
channel has to be dropped. And the fourth state is the shunned state, in
which the channel is excluded from the group, but if reconnect is set to true
the channel can reconnect. Otherwise, it changes to the closed state and the
channel gets unusable.

Open

Closed

Connected Shunned

Figure 4.4: This figure shows the states a JChannel in JGroups can have.

Building blocks The building blocks are high level components which offer
additional features on top of JChannel and the protocol stack. In Figure 4.5 the
PullPushAdapter is used for non-blocking receive on top of a JChannel. Usually,
this has to be implemented by the software developer by using multiple threads.
This adapter offers this feature to the application. Most of the blocks provide
high level communication features, for example distributed data structures like
queues, lists, hash maps and trees. There are a lot of other building blocks like:
Distributed Hashtable, Distributed Tree, Distributed Queue, Notification Bus
and Transactional Hashtable.

32

4.2 P2P Layer

ProtocolStack

JChannel

Send

PullPushAdapter

View Receive

JGroupsDocument

View Receive

Figure 4.5: This figure shows how JGroups is used for the group editor. There
are 4 different kinds of components in this figure. JGroupsDocument is part of the
group editor implementation and the others, PullPushAdapter, JChannel and the
ProtocolStack, are part of JGroups.

4.2.2 JGroups in the group editor

JGroupsAdapter JGroupsConfigurator

JGroupsDocument

1

*

Figure 4.6: This figure shows the main p2p layer design.

Figure 4.6 shows the integration of JGroups and the P2P layer. The P2P
layer is responsible for creating P2P networks or groups. As mentioned before
the idea was to create a group for every shared document, represented by the
JGroupsDocument class. Inside this class all needed information for group
communication is stored and maintained. A user is removed if it leaves the
group or crashes, and when a new user connects to the group it is added to the
user list. Mainly, there are three different actions the P2P layer has to offer to
the application layer, share a document, join a document and leave a document.
In Listing 4.2 the service provided by the P2P layer to the application layer is

33

4 Group Editor in Eclipse

public interface IP2PService {
public boolean s t a r t () ;
public void j o i n (St r ing f i l ename , St r ing hostname , int l o c a l po r t , int remoteport ,

MessageContainer joinMsgCont , MembershipListener l i s t e n e r) ;
public void l e ave () ;
public void l e ave (St r ing f i l ename , MessageContainer leaveMsgCont) ;
public void pub l i sh (St r ing f i l ename , int l o c a l po r t , MembershipListener l i s t e n e r) ;
public void send (MessageContainer msgcont , S t r ing docname) ;
public void send (MessageContainer msgCont , S t r ing docname , St r ing username) ;

}

Listing 4.2: The listing of the IP2PService interface

listed. All these methods are implemented by the JGroupsAdapter class, which
represents the P2P layer.

Start By calling this method the JGroupsAdapter is being initialized and the
message handling is started. But no network connections are opened.

Send There are two different send methods, one is for sending a message to
a whole group and the other is for sending messages to another specific host.
But it is only possible to send a message to a single host if it is also in the same
group.

Publish The first user who wants to publish a document calls this method.
The adapter creates a JGroupsDocument which represents a group. It opens
the ports, registers all listeners for messages and membership changes. After
that it waits for incoming messages or user input.

Join This method is called when a user wants to join a document group. How
the join exactly works is explained later. This action does also all the initializing
stuff as the publish operation. But after initiating the document group the join
protocol is started. When the protocol has finished the user has joined the
document group and the p2p layer waits for incoming messages and user input.

Leave There are also two different leave methods. One is for leaving a doc-
ument group by sending a leave message and removing all information corre-
sponding to this document group. The other leave method is for leaving all
document groups by calling the single leave for all documents.

4.3 Application Layer

This component is the glue of the whole application. It is responsible for han-
dling incoming messages and events from the p2p layer, dispatching input infor-
mation from the user to the different documents and also handling user input
from the GUI. The application layer is mainly represented by the CoreApp
class which contains several data structures to store user and document infor-
mation. Figure 4.7 illustrates the design of the application layer. As part of the
application layer there are two components, the CoreApp class and the Con-
currenyControl class. The latter one will be explained in a separate section,

34

4.3 Application Layer

but it is needed here for better understanding. At the beginning, when the
application is started, the CoreApp is initialized by setting local information,
like the user name, the local network information, the port and the ip address.
After that CoreApp is ready for actions triggered by a user. The important
actions are share, join and leave. All of them correspond to documents which
can be published, joined or left.

CoreApp

join publish leave

Eclipse User Interface User Text Input

Concurrency Control

input

P2P Layer

send

notify
remote

local

update

Figure 4.7: This figure shows how the different components of the application
layer are connected.

Publish When the publish operation is called, JGroups is started and a local
server is set up so that other clients can join the published document. The
other important modification is the change of the user input insertion flow.
Usually when a user inputs text into a document, the change is immediately
executed. Figure 4.8 shows the original input from a user. The GUI receives
events from the system triggered by a user. These events are translated into
user input, handled, inserted into the intern document representation. This
change is then reported to the GUI. There is no interruption in the input
flow. To distribute the changes this flow has to be broken up, as shown in
Figure 4.9. The input has to be redirected to the network layer and also to
the transformation component, after the transformation the input is inserted
into the intern document representation. These figures present how the thread
model looks like. Because of the usage of more than one thread to handle
user input and network input, it was not easy to ensure, that the input is still
correct. This will be discussed in detail later.

Join The join operation is similar to the publish operation in that the user
input cycle has to be broken up and replaced by the new input cycle. Addi-

35

4 Group Editor in Eclipse

tionally the join protocol is started which connects to a given host and requests
the initial document. How this protocol works is explained later.

Leave The leave operation reverts the modifications necessary for the join and
publish operations. It reinstalls the original user input cycle and initiates the
leave operation on the p2p layer.

GUI Thread

User InputGUI Handle Input GUI

Figure 4.8: This figure shows the original user input process.

Network Thread

Transformer Thread

GUI Thread

User InputGUI Insert Input GUI

Handle Input Transform

Network

Figure 4.9: This figure shows the user input process after the publish operation
is done. Here the input is redirected to the different components.

4.4 Concurrency Control

This section describes the implementation issues of the OT approach discussed
in Chapter 2. It handles concurrent user input on different peers. To achieve
document consistency a vector time stamp is needed which is provided by the
VectorTime class from JGroups, where it is used for the causal communication
protocol. Because of a dynamic P2P system the vector time stamps need to
support changing of hosts. When a host joins or leaves, the number of elements
in the time stamp change. As the VectorTime class supports this it is also used
in the group editor. Whenever a peer leaves or joins the network the vector
time stamps have to be updated and since the VectorTime class supports this
it is used. In the Transformer component the algorithm, which transforms local
and remote operations against the state of the document, is implemented.

36

4.5 JGroups Protocols

Operations

In Section 2.2.1 operations on a text document are defined. These operations,
Insert and Delete, are represented by the Operation Java class. This class
carries all information about an operation: the position, the character, the
pword and the state in which the operation was created.

4.4.1 adOPTed

The implementation has to guarantee the causal order of all the operations.
Additionally, it is also responsible for the editor responsiveness. Local opera-
tions are given a higher priority then remote operations. The Java class Adopted
implements this algorithm. This class also handles joining or leaving hosts by
updating the VectorTime and deleting the history of all executed operations.
The history is dropped because of two reasons. First, the time stamps change
and cannot be compared anymore. A new time stamp might have a different
number of elements. Second, all hosts have to agree on the set of hosts within
the group and on the state of the document.

4.5 JGroups Protocols

There are mainly two protocols, one for joining and one for leaving.

4.5.1 Join Protocol

The join protocol is for joining an existing P2P network which represents a
document group. When a host wants to connect to a P2P network, it first
executes a connect on JGroups which results in a new P2P network that includes
the joiner. From that point on the joiner is able to send messages to the whole
group or to a specific host in the joined group. Then the join protocol starts.
Figure 4.10 shows the protocol flow.

Join-Request This is the initial message sent in the join protocol. The joiner
sends information about itself to all members of the P2P group, to make
itself known to all other peers.

Join-Reply This message is the response to the Join-Request message. The
sender of the reply message makes itself public to the joiner.

After these two steps, all members of the P2P group know each other and have
all information needed to communicate. After that the document distribution
starts. Depending on the joiners information the joiner requests a whole project
or only the document. These requests are sent to only one peer, not to all peers.
The joiner sends the request to the peer from which the joiner got the first Join-
Reply, which is now called the replier.

Project-Request The joiner sends the document and project name to the replier.
The replier then stores the document and serializes the whole project and
sends it to the joiner.

37

4 Group Editor in Eclipse

Project-Reply The joiner deserializes the project and initializes it. Then the
document is opened and the joiner is now part of the document group.

Document-Request The joiner sends the document name to the replier which
serializes the document and sends it back to the joiner.

Document-Reply The joiner deserializes the document and integrates it into
the project and the document will be opened and the joiner is part of the
document group.

This join protocol does not support concurrent joins and writing. While a
new host is joining the group and other hosts are still writing some of these
operations might be lost. A smarter protocol which supports joins at any time
is put off as future work.

if project exists

if project does not exist

Joiner P2P Network

join request

join reply

project request

project reply

document request

document reply

Figure 4.10: This figure shows the join protocol. After the join messages the
joiner only communicates with one other peer, the replier.

4.5.2 Leave Protocol

The leave protocol is even simpler than the join protocol. The leaving host
sends a messages to all peers notifying that he is leaving the document group.
Then it closes all the network and P2P components on the leaver side and
restores the initial state in the application as if no shared writing took place.
All peers receiving a leave message remove the leaver from the local information
store, and the leave protocol is finished.

38

4.6 Integration into Eclipse

4.6 Integration into Eclipse

This section describes how the group editor was integrated into the Eclipse
framework. Specifically, the editor was integrated in JDT.

4.6.1 GUI

First of all, a user interface was developed and integrated into Eclipse. This
was done by using extension points. The following extension points were used.

org.Eclipse.ui.views This point is used to register a view. The view maintains
the shared documents.

org.Eclipse.ui.viewActions This point is used to register actions. Actions are
menus which the user can select and execute. The registered actions
correspond to the actions which the application layer offer namely publish,
join and leave.

org.Eclipse.ui.preferencePages This point is for registering a preference page
within the Eclipse preference window. In the preference page the user
name, the local network address and also the remote network address are
defined.

The user interface was kept simple, because the focus of this work lies in cor-
rectness of the group editor.

4.6.2 Eclipse

In Eclipse two other extension points were used.

org.Eclipse.core.runtime.preferences This extension point is for storing the
preferences. When Eclipse is closed the settings are stored permanently
and when started the next time to old settings are reloaded.

org.Eclipse.core.filebuffers.documentCreation This extension point is used for
defining a new document factory. The reason for that is to interrupt the
already described user input cycle and then to get the user input for fur-
ther processing. By defining this extension point also a type of file has to
be added. This type is a Java file, defined with the file name extension.
But also JDT uses this extension point to introduce his own document fac-
tory and there is no deterministic way which factory is chosen. Therefore,
a small hack to ensure that the group editors document factory is chosen
needs to be done. More details about it and how to do it is discussed in
the Appendix.

4.6.3 Redirect User Input

This was the hardest part, because a single threaded user input has to be
transformed into a multi threaded user input scenario. Some odd consistency
problems had to be solved and the operational transformation approach had to

39

4 Group Editor in Eclipse

be integrated. The scenario can be divided into two parts operational trans-
formation and the synchronization of the multi threaded local user input. In
Figure 4.11, the whole design of the user input redirection is shown which is
discussed now.

Network Thread

GUI Thread

Network Thread

User Operation

Remote Operation

Operation Queue Transformer Thread

Transformer

User Input

Operation creation

New Time

GUI Thread

Document

Insert
Update

TimeStamper

Sync

Dirty Flag

Sync

Update

New Flag

Corrector

Network

Sync Dirty Map

search/remove

Insert

Sync

Figure 4.11: This figure shows the user input redirection and the correction
facilities to solve the multi threaded input synchronization.

User Input Correction

Since the user input cycle is split up, some problems appear. Figure 4.12 shows
what happens when the user input thread is divided into more threads. The
user types a new string into the document. First, the input is received by the
GUI thread where the operations are created. This operations are put into
the Operations Queue. Let’s assume that the Queue Consumer Thread blocks.
The user interface is still responsive which means the user might go on with
modifying the text. The operations created before are still in the queue and the
new operations don’t take account of them. This results in a different document
state than desired by the user.

Therefore some correction mechanisms needs to take care of this situation.
There would be an easy one: block the user interface. But this decreases the
editor responsiveness which is not desired.

The idea of how to solve this problem is shown in Figure 4.13. A Dirty Flag
and a Dirty Hashtable are introduced. The Dirty Flag represents the state of the
document. When a new operation is created the dirty flag from the document
is attached to it and whenever a operation is inserted into the document the

40

4.6 Integration into Eclipse

dirty flag is incremented. Then the operation is put into the operation queue.
The corrector component consumes the operations from the queue. If the state
of the document is newer, the dirty flag has a higher value, the document was
changed while the operation was in the queue. The information to insert the
operation are from the past. Therefore, the operation is checked against all
operations happened in the meantime. The operations can be read from the
hashtable and the original operation has to be adjusted. If an operation in the
Hashtable has a smaller flag than the one from a new operation this flag can
be removed from the hashtable. After the correction the operation is sent to
all members of the group and is locally processed.

GUI Thread

Document

Insert

GUI Thread

User Operation

User Input

Operation creation

Operation Queue

block

Figure 4.12: This figure shows what happens if the user input cycle is broken up
and inconsistencies might appear.

GUI Thread

Document

Insert

GUI Thread

User Operation

User Input

Operation Creation

Operation Queue

Dirty Map

search/remove

Insert

Corrector

New Flag
update

Dirty Flag

Sync

Figure 4.13: This figure shows the approach to correct the user input inconsis-
tency.

41

42

5 Summary

This thesis implements a group editor in Java. The editor is designed as a
Eclipse plug-in which is integrated into the Java Development Tools. The thesis
addresses the issues of concurrency, responsiveness and implementation.

To solve the concurrency problems which appear in distributed systems two
approaches are discussed. To guarantee consistency the operations executed
by the users must be ordered in some way. The sorting should be the same
on every host. It should also be meaningful, sorting according to the IP ad-
dress would be completely senseless. The first and chosen technique uses the
approach of Operational Transformation (OT). This approach is commonly
used for group editors because it achieves consistent documents and a high re-
sponsiveness. The OT approach guarantees document consistency and high re-
sponsiveness.Transformation functions transform operations received on a host
according to the document state it has at the moment. The operations are
transformed so that the effect on all documents is the same, regardless of what
operations have already been processed. Thats how consistency is achieved. Lo-
cal operations are executed immediately so a high responsiveness is achieved.
Remote operations are delayed and executed when there is time. The second
technique uses real-time timestamps to guarantee that the order of the oper-
ations is the same on every host. This approach uses a special linked list to
keep track of the insertion history. Both approaches have in common that they
keep a history of past insertions. This comes from the fact that in a distributed
system messages might be delayed and lost. The OT approach was favored over
the time stamps approach because of lower implementation complexity.

to handle the consistency issues. The other one was dropped because of
higher implementation complexity.

The implementation was done in Java. The editor is plugged into the JDT
of Eclipse. This way all the features provided by JDT like code completion,
syntax highlighting and code formatter can be used. The editor plug-in plugs
itself into the input cycle of the user. First of all, the user input is received and
operations are created. Next these operations are sent over the network to other
users. Then the operations are transformed using OT and, finally, executed.
Executing an operation means inserting it into the internal document repre-
sentation. Remote operations are also received and after the transformation
executed. They are only executed when there is time to do so, local operation
are given a higher execution priority.

For communication the JGroups framework is used. JGroups is a group com-
munication toolkit for Java. It offers membership handling like joining, leaving
and creating groups. In terms of the editor, these groups define a document
group. These groups define a P2P network. The choice of employing JGroups
was because it is a widely used and well tested communication framework.

43

5 Summary

5.1 Discussion

Gclipse is a prototype. Of course a lot of GUI and usability improvements need
to be done. But the implementation shows that the technique of OT is usable
for handling document consistency and high responsiveness. The subjective
impression of the responsiveness is very good, as if working in a single user
editor. Although more testing and benchmarking need to be done, to find out
how Gclipse behaves with high user load. The approach of integrating Gclipse
into JDT is probably not the best one. Another idea is to design an editor from
scratch with collaborative editing in mind. The integration into JDT was the
most difficult part. The reason is to get all the user input. The input comes
through different ways in the internal document representation. To find all
these ways and handle them correctly and synchronized is difficult and error-
prone. Also some of the JDT features do not work as expected. For example
in some cases to many strings are inserted which of course is done on all hosts.

Because of the early state of Gclipse a lot of improvements need to done.
Some are described in Chapter 6.

44

6 Future Work

In the process of designing and developing the group editor described in this
thesis, some problems and improvements emerged. Some of them could be
solved or were integrated into the group editor, but due to lack of time not all
issues could be integrated. Here is a list of possible future works to extend and
improve the group editor.

6.1 Concurrency Control

In Chapter 2 two approaches to gain consistent documents were discussed. One
with time stamps and the other with transformation functions.

6.1.1 Time Stamps

This approach was discussed but not yet implemented. This approach could be
integrated into the editor so the two concurrency control mechanisms could be
compared.

6.1.2 Operational Transformation

The transformation functions work on operations that always handle one char-
acter. It would be interesting to find out if there is a possibility for blocks and
not only single characters. That might decrease the number of sent messages
and might also improve the responsiveness. It would also be interesting if the
algorithm which transforms the operations could be improved.

6.1.3 Checkpoints

In the discussion of the two approaches the term of checkpoints was mentioned
several times. Checkpoints are an idea to improve the concurrency control. For
the time stamps to keep the linked list small and for the OT approach to reduce
the stored data. A consensus algorithm could be used to implement and realize
checkpoints.

An approach for integrating checkpoints would be to use a consensus algo-
rithm.

6.2 Group Editor

In Chapter 4 the implementation of the editor is described. Here are several
improvements or new features which might be added.

45

6 Future Work

6.2.1 Implement a new Editor

The actual implementation of the group editor is an integration into JDT.
Eclipse now offers an easy way to implement a completely new editor. Into this
new editor the collaborative working features could be integrated better than
into JDT. For example, the changes done by other users could be colored and
the cursors of other users could be shown. This way the input cycle has not
to be broken up. Another improvement could be that all text documents could
be shared not only Java documents. There is only one disadvantage the syntax
coloring, and the features provided by JDT cannot be used directly.

6.2.2 Improve the Group Editor

The editor is integrated into JDT therefore most of the features like command
completion, syntax highlighting and code formatter are supported. But the
support is not for all that good. Sometimes to much characters are inserted
like the closing braces. This would be an important part to improve.

6.2.3 GUI

The GUI should be improved, especially the view showing the shared docu-
ments. It could be improved with additional buttons for the actions. Also a
list of users which are connected to a specific document would be a nice fea-
ture. The context menu when clicking on a java document should contain the
publish, join and leave actions.

6.3 P2P and Network

In Section 4.2 the P2P layer and the Network layer are discussed.

6.3.1 Reuse of Network Connections

A host can have more than one connection, when sharing more than one doc-
ument, to the same host. This should be improved and the connections should
be reused. JGroups need to be checked if there is a way to achieve this. Other-
wise a new Network layer should be implemented or other network frameworks
should be analyzed.

6.3.2 P2P Protocols

The join protocol was introduced. It was kept very simple. Therefore the lack
of concurrent joining and writing. This should really be improved, otherwise at
least a mechanism to block the group when a user is joining need to be provided
which is not the desired solution.

46

1 Bibliography

[1] Bela Ban. Jgroups - a toolkit for reliable multicast communication.
URL: http://www.jgroups.org/.

[2] Eclipse Community. Eclipse - a application development framework.
URL: http://www.eclipse.org/.

[3] Wikipadia Community. Wikipadia, the free encyclopedia.
URL: http://www.wikipedia.org/.

[4] Jim D’Anjou, Scott Fairbrother, Dan Kehn, John Kellerman, and Pat
McCarthy. The Java Developers Guide to Eclipse. Addison-Wesley, 2004.

[5] Berthold Daum. Java-Entwicklung mit Eclipse 3. dpunkt.verlag, 2004.

[6] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems.
In SIGMOD ’89: Proceedings of the 1989 ACM SIGMOD international
conference on Management of data, pages 399–407. ACM Press, 1989.

[7] Abdessamad Imine, Pascal Molli, Gérald Oser, and Michaël Rusinowitch.
Achieving convergence with operational transformation in distributed
groupware systems. Technical report, INSTITUT NATIONAL DE
RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE, 2004.

[8] Guido Krüger. Handbuch der Java-Programmierung. Addison-Wesley,
2002.

[9] Brad Lushman and Gordon V. Cormack. Proof of correctness of ressel’s
adopted algorithm. Inf. Process. Lett., 86(6):303–310, 2003.

[10] Matthias Ressel, Doris Nitsche-Ruhland, and Rul Gunzenhäuser. An
integrating, transformation-oriented approach to concurrency control and
undo in group editors. In CSCW ’96: Proceedings of the 1996 ACM
conference on Computer supported cooperative work, pages 288–297. ACM
Press, 1996.

[11] Chengzheng Sun and Clarence A. Ellis. Operational transformation in
real-time group editors: Issues, algorithms, and achievements. In
Computer Supported Cooperative Work, pages 59–68, 1998.

[12] Paul Wilson. Computer Supported Cooperative Work. Cromland,
Incorporated, 1991.

47

http://www.jgroups.org/
http://www.eclipse.org/
http://www.wikipedia.org/

	Contents
	Introduction
	Computer Supported Cooperative Work
	Introduction
	Concurrency Control
	Operational Transformation
	Time Stamp Ordering
	Discussion

	Eclipse
	Introduction
	Eclipse - An Overview
	Extension Points
	Rich Client Platform
	Java Development Tools

	Group Editor in Eclipse
	Software Design
	P2P Layer
	JGroups
	JGroups in the group editor

	Application Layer
	Concurrency Control
	adOPTed

	JGroups Protocols
	Join Protocol
	Leave Protocol

	Integration into Eclipse
	GUI
	Eclipse
	Redirect User Input

	Summary
	Discussion

	Future Work
	Concurrency Control
	Time Stamps
	Operational Transformation
	Checkpoints

	Group Editor
	Implement a new Editor
	Improve the Group Editor
	GUI

	P2P and Network
	Reuse of Network Connections
	P2P Protocols

	Bibliography

