ETH Distributed
Eidgendssische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich ComPUt’ng Gro

Topology Information Gathering

with Scatterweb Sensor Boards

Frank Lyner
Term Project; December 14, 2004

Supervising Professor: Prof. Dr. Roger Wattenhofer
Supervising Assistant: ~ Aaron Zollinger

Introduction

This is the documentation of the term project I carried out at ETH Zurich in the
summer of 2004. The project consists of two parts. The goal of the first part is
to document the installation procedure of the software needed to work with the
Embedded Sensor Boards. This documentation is tailored to the IBM ThinkPads
used by the institute.

In order to gain more practical experience with the ESBs, I implemented a
program that extensively uses the radio transmission capability of the ESBs. This
program collects neighborhood information in a distributed multi-hop way to dis-
play the network structure on a computer. Furthermore, it is possible to send
commands to a specific node using source routing. The documentation of this
program is the content of part two.

Part I
Embedded Sensor Boards

The installation instructions mentioned above can be found in the installation
package available in the distributed computing group. This is a short description
of the Embedded Sensor Boards and a documentation of the experiences gained
through the work with the ESBs.

1 Introduction

The Embedded Sensor Boards (ESB) have been developed by Freie Universitaet
Berlin. They are a part of the broader project Scatterweb [1] . This project wants
to give students hands-on experience in the fields of embedded sensor networks,
embedded systems and wireless networking. It is also used as test-bed for dis-
tributed computing algorithms and commercial applications are being developed,
too.

Several components emerged from this project including the Embedded Web
Server, the Embedded Sensor Board, the Scatterflasher (USB stick with the same
controller as the ESBs) and the Embedded Chip Radio (an ESB without the
Sensors).

2 Hardware

The ESBs combine a multitude of sensors with radio transmission and very low
power consumption.

At the heart lies the MSP430F149 controller. It has 60kb of flash memory and
2kb of RAM. It can be set to sleep mode with interrupt waking, to power saving
mode with a frequency of 4kHz or to normal operating mode with a frequency

of IMHz. There is a JTAG interface to flash the controller. The JTAG interface
allows to step through a program directly on the controller.

Of greatest importance for this work is the radio transceiver TR-1001. The
transmission power is scalable from 0 to 99, which can be interpreted as percent-
age of its maximum send power. The Scatterweb documentation claims that the
maximum range is 300m in open space. The receive power can be monitored and
the data rate (bandwidth) is 19%. The greatest advantage of this transceiver is
its very low power consumption.

Here is a short summary of the installed sensors:

Movement There is a Passive Infrared Sensor (PIR) that can detect movement
in a range up to 8m. The signal can be measured in an analog or a digital
way.

Light The Infrared Light Sensor allows to measure the light intensity. The light
intensity is translated into a proportional frequency. Additionally, this sen-
sor is capable of distinguishing natural from artificial light coming from 50Hz
or 60Hz sources.

Temperature There is an module that measures the temperature and has a built
in clock.

Tilt/Vibration There is also a sensor to measure tilt and vibration. This sensor
is capable of sending an interrupt to the controller, even if it is in sleep mode.

Sound There is a microphone with adjustable thresholds (loudness).
Date and Time The integrated clock provides date and time information.

Buttons There are two buttons available. One is reserved to trigger a reset; the
other can be used by an application.

The ESB comes with three different ways to produce output. First, there are
three LEDs: red, green and yellow. Second, there is a beeper that can produce
several tones that are quite loud. Third, there is a RS232 interface. This is the
main means to communicate with a node. The FU Berlin developed a number of
terminal commands that can be used to change every possible setting and to read
all sensor and configuration values.

3 Software Architecture and Programming

The software is divided into two parts: the firmware and the user program. In the
code and in the documentation the user program is called userapp, so I will use
this term, too.

The firmware manages basic functions of the ESB and provides a simple API.
Usually, the firmware is not overwritten during the flashing process.

The interaction between the firmware and the userapp is done through callback
functions. The userapp has to provide a function called userapp_init(). This
function is called when the ESB is initialized and registers the callback functions
of the userapp with the firmware. The userapp_init() is always linked to the same
address, so the firmware does not need to be re-linked with the userapp. The
main function of the firmware defines an event loop that checks if an appropriate
callback function needs to be called and calls it if necessary.

There are four possible callbacks:

Periodic Callback This callback function is called in each iteration of the event
loop.

Serial Callback This callback function is called when a complete line was re-
ceived through the RS232 interface. The line has to be terminated with

\r\n.

Radio Callback The firmware defines a packet format to use with radio commu-
nication. When such a packet is received, then the radio callback function
is called with a pointer to the packet as parameter.

Sensor Callback In each iteration the sensor values are read and if any sensor
delivers some data, then this callback is called.

3.1 Terminal Commands

As mentioned above, the main way to communicate with an ESB node is through
its RS232 serial interface. In order to configure the node and read different val-
ues from it, the FU Berlin developed a series of terminal commands. There are
commands to read each possible sensor value, to set or read the send power and
so on. Unfortunately, these commands are not part of the firmware. In order to
be used they need to be included in the userapp.

To do this, the terminal.c and terminal.h files need to be included in the
current project. Then either the term_execute() function is directly registered
as a callback in the userapp_init() function or another callback function that
calls term_execute () is defined.

4 Problems and Solutions

In this section I give some hints and report on my experience concerning software
development for the ESBs. In several cases the system did not work as I expected
and I hope that this information will help others to avoid these problems.

The Clock

The clock is very powerful. It does not only return the current time, but also the
current date. This makes it very useful for creating timestamps for logging. The

problem I encountered was that when the clock is read very frequently, it returns
inconsistent values. Tests showed that the value of the field of the time record—
returned by the createTimeRecord() function of the firmware—that indicates
the seconds did not increase continuously and/or was over 60(!).

I realized later, when I had already implemented a workaround, that the cur-
rent time is being written at each event loop cycle into sensorData.timeStamp. I
did not check, but maybe reading this value instead of creating a new timeRecord
could lead to more reliable time information.

Dynamic Memory

The use of dynamic memory is very problematic. There is a malloc() function
available that works only under very specific but not defined circumstances. The
pointers returned by this function are not valid, from time to time. The people
at FU Berlin are aware of this problem but have no solution but a work-around.
The solution is to define a global variable that is certainly big enough to hold
the dynamic data. This is not very elegant. However, we implemented a function
myalloc() based on this solution. We globally defined three two-dimensional ar-
rays. Their sizes are defined by the constants BIG-ARRAY-NUM, BIG-ARRAY-LEN,
MIDDLE-ARRAY-NUM, MIDDLE-ARRAY-LEN, SMALL-ARRAY-NUM, SMALL-ARRAY-LEN.
The myalloc() function returns an array of the smallest size that is larger than
the requested amount of memory passed as an argument. It keeps track of the
reserved arrays. Of course, we also implemented a myfree () function that allows
to free a no longer needed array.

Data Types

When programming an embedded system, it is important to keep in mind that
memory is a scarce resource. Therefore, the choice of the correct data type is very
important. Since the smallest amount of memory that can be used is a byte and
most numbers that occur in a program are positive and below 255, it is common
to use unsigned char as standard type. Another reason is that unsigned char
can be used as a universal type, holding numbers, characters or booleans. The
type u_int8_t is internally mapped to unsigned char but it is much shorter to
write. This also increases the readability of the code.

Using Terminal Commands from within a program

There are several cases where it is handy to directly access the terminal commands.
One case would be to send the commands over radio. Most functions that handle
the commands use a pointer, called command, that normally points to the line
received through the serial interface. In order to use these functions, even when
no line was received, I implemented a function set_command () that allows to first
set the command and then execute it with exec_command(). exec_command () is
also used by term_execute (), so the behavior will be exactly the same.

Deployment

The result of a compilation is a hexadecimal file called out.hex. This file contains
every byte that needs to be flashed to the ESB, including the firmware. There are
two different ways to do this:

JTAG is a well-known hardware interface to flash embedded systems. It addition-
ally allows to debug the code that runs directly on the device. It is important
to remember that when an ESB is flashed with JTAG, the firmware is also
overwritten.

JTAG is faster than using the Scatterflasher. However, I frequently experi-
enced write errors and had to retry several times before succeeding.

Scatterflasher The Scatterflasher is a USB-stick. It has exactly the same con-

troller and transceiver as the ESBs. The drivers, that are packed in the
installation package, simulate a new COM port. So, it is possible to commu-
nicate with the Scatterflasher through the normal terminal. However, the
main use of this device is to flash the ESBs without cable connection. This
is done with the Scatterflasher software. The Scatterflasher only updates
the userapp and leaves the firmware unchanged.
The Scatterflasher is quite reliable and much more convenient than the
JTAG-interface when working with several nodes. In order for program
flashing to work properly, the transmission power of the node to be flashed
should be at 99.

Part 11
Multi-hop

1 Goal

The goal of the second part of the project was to gain practical experiences with the
ESBs by developing an application. This application should use radio transmission
and be of help for future projects if possible.

With these requirements in mind we decided to implement a distributed algo-
rithm that collects the topology of the network. This application could then be
used to help set up a network for other applications. The topology information
could also be used to find routes with corresponding algorithms.

The user interface to this application is a Java client that displays the network
topology and gives access to all features of the application.

The experiences gained were already discussed in Section 4 of Part 1. What
follows is the description and documentation of the developed application and the
Java client.

2 Distributed Collection of Information - Echo

To collect information from every node in a network in a distributed way it is best
to implement an echo algorithm. This algorithm consists of two phases. In the first
phase a request message is flooded through the whole network. This establishes
a tree structure on the network nodes with the originator as root. The leafs of
the tree start the second phase by sending back a reply message to their parent
nodes. Such an inner node collects all messages from its children, appends its own
message and sends its reply to its own parent node. The algorithm terminates
when the root receives a reply from all of its children.

How do we define the root? There are two different possibilities to interact
with a network of ESBs. First, one can trigger an event through the sensors or
buttons on an ESB. Second, one can choose one node, connect a computer to its
serial interface and use the terminal commands. Since the second possibility is the
only way to receive information from the nodes, this possibility will preferably be
chosen. This automatically defines the root node.

In our case the information that we want to collect is commonly known as
neighborhood information. A neighbor of a node is another node with which it
can directly communicate.

2.1 First Try

At first, we tried to generate the neighborhood information at the same time as
the echo algorithm is flooding the network. Since every node in the network is
broadcasting the request message during the flooding, it is possible for a node

to detect its neighbors. Since both phases of the flooding can overlap, it was
necessary to delay the start of the second phase at the leafs.

This approach assumes that the links are bidirectional and more or less con-
stant. These assumptions made sense in the beginning since there is no node
movement. But unfortunately, they do not hold. Tests showed that the links are
neither bidirectional nor constant. It is common that a node can send several
packets to another node over a short time and for a long time after that this is
not possible anymore. And if a node receives the request packet from its parent
node during the first phase of the flooding, there is a high probability that it will
not be able to send its reply back in just one try.

In short one can say that the transmission capability of the ESBs is too unre-
liable to be used without error handling.

2.2 Solution: Make Transmission Reliable

In order to make the transmission capability of the ESBs more reliable we had to
implement a low level communication layer. The basic idea is that the communi-
cation layer retries to send a packet to a known neighbor as long as it does not
succeed. If the packet could not be transmitted after 30 retries, the send is aborted
without any notification. The successful reception of the packet is confirmed by
the receiver with an acknowledgment packet.

Since the send operation should not be blocking, it was necessary to implement
a send buffer. The send operation places the packet to be sent in that buffer. The
ESB periodically retries to send the packets that are in the buffer. This is done
one packet at a time in order to allow for reception of other packets. In order to
prevent several nodes to send simultaneously and therefore constantly interfering
with each other, the time between two retries is varied. When an acknowledgment
packet is received, the corresponding packet is deleted from the send buffer.

2.3 Neighborhood Detection

The send operation of a packet now relies upon a bidirectional link. To avoid
long retries that do not succeed, it is important that only these links are used
for communication that have already proved to be bidirectional with reasonable
quality. This can be achieved by separating the neighbor detection from the
collection of this information.

We changed the neighborhood detection as follows. The central node of the
network floods the start command through the network. When a node receives
the start command, it starts broadcasting a search packet. The start command
contains the number of search packets that each node has to send. When a node
receives a search packet, it sends back an answer packet. Each node counts the
number of answers it receives. If the number is higher than a given threshold,
the link is considered to be reliable. The threshold is also included in the start

command. Of course, at this point in time the whole communication does not use
the reliable communication layer.

Several searches can be done consecutively. If an already known neighbor
answers in a new search then the link quality is recounted. But if a known neighbor
does not answer in a new search the link information is not deleted. We used this
to build an artificial topology during development, to observe the behavior of the
algorithm. To get the physical topology at hand it is necessary to perform a
multihop reset or a global reset.

2.4 Echo Algorithm

The echo algorithm can now take full advantage of the reliable communication
layer. Each node sends a request packet to all of its neighbors except its parent.
When a node receives a request packet for the first time, it sends back a confir-
mation that it is the senders child and that the sender should wait for its reply.
When it hears a request a second or further time it sends back a packet indicating
that it is a neighbor but not a child of the sending node.

The rest of the algorithm works the same way as the normal flooding described
above. The only exception is that the more extended neighborhood detection
allows to gather more information about the link quality. This information is also
included in the reply.

The reliable transmission layer and the need to store the replies of the children
of a node were the reason why we implemented the myalloc() and myfree()
functions (see section 4 of Part 1). Of course, the numbers and the sizes of
the globally defined arrays used by these functions represent a limitation on the
number and size of replies that can be stored. The total memory reserved for the
the global arrays is also very limited because there are only two kilobytes of RAM.
Because of these limitations it will be necessary to check and possibly adapt the
structure of the reserved memory for each concrete network setting.

2.5 Sending Commands with Flooding

It is often important to change the configuration of every node in the network.
Examples are: resetting all nodes to the start state, changing the transmission
power to reflash the nodes with the scatterflasher et cetera. We implemented a
new terminal command which takes another terminal command as an argument
and sends it through the whole network with flooding. A flooding algorithm relies
upon message identifiers to check if the message was already received or not. For
this reason a command counter was used that is included in the flood message.
If a node receives a flood message with a command counter that is below its own
command counter, then the message is ignored. If the command counter is higher
than its own counter, then the node sets its command counter to the value received
in the message. The node then rebroadcasts the message and executes the terminal
command. This flooding does not use the reliable communication layer. This is

done deliberately because it is often necessary to broadcast a command before the
reliable communication layer is ready to be used.

2.6 Sending Commands with Multi-hop

Additionally, to broadcast a command through the whole network we need the
possibility to send a command to a specific node even if this node is out of range
of the node that is connected to the computer. We decided to use a simple multi-
hop source routing algorithm. We implemented a terminal command that takes
as arguments the command to send and the route to use. It then sends a packet
that includes the command and the route. Upon reception of such a packet a
node checks if it is the destination or a part of the route. If it is the destination,
it executes the terminal command and sends back a confirmation message using
the inverted route. If it is a part of the route, it forwards the whole packet toward
the next node in the route. All communication is going through the reliable
communication layer. At the moment no check is done if the next hop is a neighbor
of the current node. It is assumed that the topology of the network is known to
the entity that defined the route.

2.7 Further Improvements
Link Quality

As described above, the link quality is determined with the number of answers a
node receives from a neighbor. This means that only these times are counted in
which the link worked in both directions. Since every node does the same, each
link is checked twice for its bidirectional quality. It would be an improvement to
determine the unidirectional quality for both directions of a link.

Next Hop Check

As mentioned above our source routing algorithm does not check if the next node
in the route can be reached from the current node. This check should be imple-
mented. Otherwise, a node will retry very long to send a packet.

Retry Threshold

A retry threshold is already implemented. But in the current version when a node
is not able to forward a packet, it does not notify the original sender. Some kind
of error reporting and error handling should be implemented.

Store Replies in EEPROM

In section 2.4 we described that the number and size of replies is limited because
of the small memory. A solution could be to store the replies in the EEPROM.

This may be slow and power consuming, but the size of sixty kilobytes should
resolve the problem.

3 Java Client

The user interface to the ESB application is a Java Client. It is thought to run
on a laptop or desktop computer that is connected to an ESB with a serial cable.
The client enables to use all functionalities and algorithms described above in a
user-friendly way. The most important feature is the translation of the topology
information into a graphic representation.

The following is a more detailed description of the features and how to use
them. Subsequently we give a short documentation of the program which is fol-
lowed by some thoughts on further development of the client.

3.1 Usage
3.1.1 Selecting COM Port

First, it is necessary to build the connection between the client and a selected
node with a serial cable. After the client is started go to ESB—COM port.... The
system prompts to select the appropriate COM port.

3.1.2 Reset the Nodes

With the current firmware a node is reset when the button located on the same
side as the antenna is pressed. This only resets the firmware and has no influence
on the values of global variables used in the userapp. Since our application uses
a number of global variables—such as the command counter described in section
2.5—it can be necessary to reset them separately. We implemented three different
levels of resetting:

Global Reset The global reset is the most thorough one. All global variables
used are reset. This also includes the send buffer, the command counter,
the echo counter (used as identifier for the echo flooding), the stored link
information, et cetera. It is recommended to do a global reset when new
nodes are added to the network. This will ensure that no node will ignore a
broadcasted command.

Multi-hop Reset Here nearly all global variables are reset. The command counter
will not be reset but all link information is destroyed.

Echo Reset The echo reset only removes the tree structure that is built by the
echo algorithm. The link information remains intact.

Every reset level is implemented as a terminal command. When they are triggered
from the Java client with ESB—reset. .. the appropriate command will be flooded

10

through the whole network using the command broadcast described in section 2.5.
The global reset command cannot be ignored by any node even if its command
counter is higher than the one in the command message.

3.1.3 Start Neighborhood Search

The neighborhood search can be started with ESB—Start neighbor search...
. The client first prompts for the number of search tries and then for the minimal
number of successful tries that determine the link threshold. The root node then
floods the start-search packet through the network. All nodes of the network react
by the procedure described in section 2.3. The root node resets its transmission
power to the old value and starts the same procedure as all other nodes.

3.1.4 Collecting Neighborhood/Topology Information

With the menu item Network—Collect neighborhood infos the echo algorithm
is started that collects the topology information. If no neighborhood search has
been done before, this will not work. The root node sends the topology information
to the client which translates it into the graphical representation.

3.1.5 Work with Graphical Representation

Once the topology is collected, it is displayed. The nodes are arranged in a circle
and their order is random. They can be moved with drag and drop. A right-click
context menu allows to delete or rename them. A node is selected by clicking on
it. It is possible to draw a new connection between two nodes. If one node is
selected, then the connection can be dragged to the other node.

3.1.6 Broadcast a Command

The menu item ESB—Broadcast command... leads to this feature. The user is
prompted to enter the terminal command. After clicking 0K the client sends the
command to the root node which floods it through the whole network and then
executes it itself.

3.1.7 Send a Command through Multi-Hop

To send a command to a specific node with multi-hop, not only the command
must be supplied but also the route to take. This is started with the menu item
ESB—Multihop command. .. . If no topology information was collected, the client
aborts the operation with an error message. Then the client prompts for the
command to send. After that the route has to be specified. This is done by
clicking on each node that needs to be added in the desired order. The first node
to add always has to be the root node. When the route is completed, the command
is sent with a double-click.

11

3.1.8 Send a Command to the Root Node

As described above, the root node is defined as being the ESB connected directly
to the Computer on which the Java client is running. When the Enter key is
pressed, a dialog opens. It allows to enter the command to send. This command
is then sent to the root ESB and the output can be viewed in the lower part of
the window.

3.2 Further Improvements

e The only automatic arrangement available now is a circle layout. This is
good for small networks. For large networks it would be better to implement
a spring system.

e When sending a command with multi-hop no check is done concerning the
validity of the route. Only neighbors of the node that was last added to the
route should be enabled to be added to. The other nodes should be disabled.

e Each time the Java client is started it is necessary to select the COM port.
This information could be saved and automatically applied for more conve-
nience.

4 Conclusions

In this paper we described the Embedded Sensor Boards and an application that
collects topology information and displays it in a Java client. All parts are working.
Tests showed that the small memory limits the size of the network. With ten
nodes the application still worked well although not every time. Depending on
the structure of the tree that is built with the echo algorithm it can happen that
the number of reserved arrays for the dynamic memory allocation is not sufficient.
On several occasions the application behaved unexpectedly because a node ran
out of memory and some parts of its RAM were overwritten.

The ESBs have a very low power consumption and very good sensor capabilities
but they have limitations to run elaborate distributed algorithms.

References

[1] Freie Universitaet Berlin. Homepage scatterweb. http://www.scatterweb.de.

12

