Swiss Federal Institute of Technology Zurich ComPUt'ng Gro

ETH Distributed
Eidgendssische Technische Hochschule Ziirich

Spamato Plug-in Architecture

Remo Meier

Semester Project

October 18, 2004 — April 30, 2005

Supervising Professor: Prof. Dr. Roger Wattenhofer
Supervising Assistant: ~ Keno Albrecht

Abstract

SPAMATO is an extendable, collaborative spam filter system written in Java that
combines different filter technologies to provide more accurate results. This
thesis takes SPAMATO a big step further by introducing a plug-in architecture.
Users and developers can now customize their system by adding, updating, and
removing plug-ins.

The underlying plug-in architecture is completely independent of SPAMATO
and can be reused in other applications. Compared to other projects, it is
extremely small and easy-to-use and still provides advanced features such as
security, dependencies, and updates at runtime. The plug-in container, respon-
sible for managing the plug-ins, is itself implemented as a plug-in and thus can
be updated and extended like every other part of the system.

Contents
1 Introduction
2 Related Work

3 Spamato Plug-in Container

3.1 Dependencies
3.2 Configuration Lo
3.3 Dependency Injection (IoC-Pattern)
3.4 Extension Points and Extensions
3.5 Updates
3.6 Security
3.7 Plug-in Handlers
3.8 Runtime Plug-in oo

4 Conclusion & Future Work

1 Introduction

The goal of this thesis is to design and implement a plug-in architecture to
manage filters, especially a possibility to update and install filters at runtime
and a simple way to configure them. Since other parts of the system could also
benefit from such features, the complete system has been refactored and is now
based on a plug-in architecture.

The initial SPAMATO design was based on one large library containing all
the classes. Most of the important components were implemented as singleton
and thus everything could basically use everything else. This approach was
simple and sufficient for a first version, but lacked a clear structure. For ex-
ample, dependencies between different parts of the system were hard to track.
Seemingly negligible changes could render the system unusable because of de-
pendency problems (e.g. cycles). Simple tasks like starting the system became
difficult because it was not known where to start.

The new plug-in architecture subdivides the system into smaller, easier man-
ageable pieces. Except of a few bootstrap classes, everything is implemented
as a plug-in and can be installed, updated, and deleted at runtime. The main
component of SPAMATO is the Base plug-in. It features methods to check,
report, and revoke messages. These methods are used by the mail client add-
ons. Besides the Base, there is a plug-in for each filter. Five filters are cur-
rently implemented: Domainator [1], Razor [2], Ruleminator, Farl Grey [3],
and Bayesianato. The Base combines the results from these filters into a global
decision whether or not a message is spam. Moreover, there are additional
plug-ins for the sound, the user interface, and the statistics, among others. By
adding and removing plug-ins, the system can now be customized depending on
the needs. For example, a server version of SPAMATO does not need the sound
plug-in beeping in the server room.

2 Related Work

SPAMATO is not the first application using a plug-in architecture and therefore,
there was the choice between using an existing plug-in framework or creating an
own one. Since it provides the foundation for the complete application, there
are some important prerequisites. First of all, the framework has to provide
the possibility to allow a reasonable application design. It has to be stable,
small, and easy-to-use and should not cause any substantial runtime overhead.
An install, update, and delete mechanism is required to manage the SPAMATO
filters, the main goal of this thesis. And last but not least, a security mechanism
is needed to restrict potential dangerous third-party plug-ins.

It follows a brief overview over some plug-in frameworks:

1. Apache containers:

Apache offers several projects in this area ([4], [5], [6], among others).
The history and relations between the different projects are rather com-
plex. For the moment, the long-term future of the different projects is
not certain. Some of the projects already failed and new projects have
been founded based on their source code. If SPAMATO would choose one
of the projects, there is a good chance that it has to migrate to another
one in the future. The projects are also more component than plug-in
oriented, meaning that they do not provide an install and update mech-
anism, an essential requirement for SPAMATO. Moreover, most projects
are to large for SPAMATO, which targets a download size of only one or
two megabytes.

2. PicoContainer:
The PicoContainer [7] consists of a container that automatically wires
all the application components together. A component is a normal Java
object. In the component’s constructor, the component can list other,
needed components. The developer only has to pass all component classes
to the container. The container analyzes the dependencies by inspecting
their constructors and accordingly instantiates the classes. This approach
is one variant of the so called Dependency Injection pattern [8]. The
downside of the PicoContainer is the lack of advanced features, needed by
SPAMATO, such as class loading, security, install, and update mechanisms.

3. Eclipse:
The Eclipse development environment is based on a flexible plug-in archi-
tecture [9] that enables dozens of third-party companies and open-source
projects to contribute new plug-ins. Especially the concepts of Exten-
sions and Extension Points offers an easy way for plug-ins to extend and
use each other. On the downside, Eclipse lacks a security mechanism
and the update user interface can not be used because it is based on the
platform-dependent SWT library [10]. SPAMATO uses a web-based user
interface that can also be used with mail and proxy servers. In recent
versions, Eclipse has migrated to OSGi [11]. OSGi has been introduced
as a service platform for all types of networked devices in home, vehicle,

mobile, and other environment. Over time, OSGi has evolved to a more
plug-in-based architecture, similar to Eclipse. But, especially with OSGi,
writing plug-ins in Eclipse is not as easy as with other frameworks.

There are other implementations, mostly similar to one of the approaches
above. Currently, none of the above frameworks fulfils all the mentioned pre-
requisites. And it seems that SPAMATO is not the only project that has come
to this conclusion. For example, Nutch [12], JNode [13], and iMeMex [14] are
all applications in a similar situation as SPAMATO and implemented their own
simple solutions. But these implementation are tailored to their specific needs
and not generally available without the remaining application. SPAMATO also
follows this approach, however, the plug-in framework is completely indepen-
dent of SPAMATO and powerful enough that it can be used in other applications.
It also tries to fulfil all the requirements stated at the beginning of this chapter.
The next chapter will give a more detailed overview of the SPAMATO container.

3 Spamato Plug-in Container

The plug-in architecture of SPAMATO uses a central container to manage the
plug-ins. The container is completely independent of SPAMATO and can easily
be reused in other projects. It is less than fifty kilobytes in size. To contribute a
plug-in, developers have to know only a few classes and the plug-in configuration
file.

Plug-ins are loaded from the file system. Each one has its own directory,
containing the classes (in the bin directory), configuration files, and child plug-
ins. In SPAMATO it looks like:

=) spamato =) eatlgrey
=I |2 Filkers = rsa.kﬂy.tmp
+ |) bayesianato = url,cnnfig
+ [2) bin =1 |2 bin
|2) domainakar =1 | classes
+ () razaor =l | ch
+ () ruleminator = |2 ethz
+ |7 earlgrey 1 13) Filker
+ | sound + |2 krust
+ | spamako = plugin.xml
* |) staks
+) update
+) web_config

The bin directory contains all Java classes, libraries, resources (like images),
and the plugin.zml. The plugin.xml provides all necessary information about
a plug-in, like the version number, main class, dependencies, needed security
permissions, and update information:

<plugin>

<name>Earl Grey Filter</name>
<class>ch.ethz.filter.earlgrey.client.EarlGreyFilter</class>
<version>l.0</version>
<update—url>http://spamato.ethz.ch/update</update—url>
<description>

A collaborative filter working on the domains in the messages.
</description>
<requires>

<permission type="socket" host="«" actions="resolve,connect"/>

<plugin key="spamato_base">

<extension point="filters" class="ch.ethz...EarlGreyFilter"/>

</plugin>
<plugin key="config" optional="true">
<extension point="config.pages" handler="..." menu="Earl._Grey.Filter"/>
<extension point="config.pages" handler="..." menu="Whitelist"/>
</plugin>
</requires>
</plugin>

It follows an overview over some of the most important features:

3.1 Dependencies

A simple plug-in has its own classloader and is completely independent from
other plug-ins. It can be installed, updated, and deleted without disturbing
the remaining system. To build a more sophisticated system where plug-ins
interact with each other, the container enables plug-ins to declare dependencies.
For this purpose, each plug-in can share classes and object instances. Shares
and dependencies are usually defined in the plugin.zml. For example, the Base
plug-in of SPAMATO shares the SpamFilter interface that is implemented by all
filters.

The dependencies are internally represented as an acyclic, directed graph.
The graph is used, for example, to determine a start-up and a shutdown order,
something that was not possible with the old system because of the unknown
dependencies. To isolate the plug-ins from each other, each plug-in has three
class loaders: the FileClassLoader, the SharedClassLoader, and the Dependen-
cyClassLoader. The FileClassLoader loads the class files from the classes and
the libraries from the lib directory. The SharedClassLoader uses the FileClass-
Loader as its parent, but it only allows access to shared classes as declared in
the plug-in descriptor. And the last class loader, the DependencyClassLoader,
enables plug-ins to access shared classes of other plug-ins by using their Shared-
ClassLoaders (given that a plug-in dependency is declared). The Dependency-
ClassLoader is the parent of the FileClassLoader in order that plug-in classes
can access shared classes. Additionally, there is a single ContextClassLoader
that is used as the parent of all DependencyClassLoaders:

Java ContextClassLoader Plug-in name
- Java classes (java.lang, java.util,...)
- Plug-in container interfaces { DependencyClasslLoader }
- Bootstrap classes to load the plug-in container T

- Other libraries in the classpath [

FileClassLoader }
v
[SharedClassLoader J

Runtime

Spamato Base

v
no dependencies
v

{ loads base classes

v

shares SpampFilter interface
(among others)

[no dependencies
v

loads plug-in container
implementation

v

{ shares some interfaces]

]

Earl Grey Filter 53
< h |
[uses spamato base }
¥

loads Earl Grey classes

v

i Razor Filter
v
[uses spamato base

¥

{ loads Razor classes

¥

[no shares [no shares

More information about the class loaders is available in the JavaDoc of the
Runtime plug-in (the Runtime is explained further below).

3.2 Configuration

An interface unifies the access to configuration settings from various sources.
Currently, text, properties, and xml files are supported, and additional formats
are feasible. For instance, a database implementation would be more appropri-
ate for a SPAMATO instance running on a mail or a proxy server. With thou-
sands of user accounts and personal settings, the database could better handle
the resulting load and could also offer advanced features like replication.

3.3 Dependency Injection (IoC-Pattern)

Plug-ins usually depend on several other objects. They do not only use other
plug-ins, but, for example, also configuration objects. The question arises how
to get these instances. Common solutions are to let the plug-in create the ob-
jects, to access them via singletons, or to use a service locator [15]. To create
an object, the plug-in has to know the implementation, and thus, switching
to another one becomes more difficult. A server version of SPAMATO might
use a SQL-based configuration, whereas normal versions still use the property
files. Singletons should not be used because they complicate maintaining a clear
structure. More sophisticated is the service locator pattern. However, a simpler
and more transparent solution offers the dependency injection pattern [8], pro-
moted by containers like PicoContainer [7] and Spring [16]. There are several
variants, one of them using constructors to pass the objects. In doing so, the
container and not the plug-in is responsible for creating and passing the appro-
priate objects. The SPAMATO container supports both the service locator and
the constructor-based dependency injection. Therefore, a plug-in class looks as
simple as:

package ch.ethz.filter.earlgrey.client;
import ch.ethz.common.SpamFilter;
public class EarlGreyFilter implements SpamFilter, Disposable {

public EarlGreyFilter (Spamato spamato, Configuration config) {

}

public void dispose () {

.

Consequently, plug-ins are plain Java objects that can also be used without
the container. They do not have to extend or implement special container
classes. For example, this is an important prerequisite for unit tests where each
class is separately tested. Unit tests do not have to use the container. Instead,
they can manually instantiate the plug-in classes and pass mock objects as
arguments to test all possible cases [17].

3.4 Extension Points and Extensions

Ezxtension Points and Extensions are concepts borrowed from Eclipse. They are
used between plug-ins to extend each other and are one of the keys for Eclipse’s
flexibility. For example, the SPAMATO Base plug-in offers an extension point
“filters” that is used by filters to register themselves to the Base:
<plugin>
<name>Spamato Base</name>
<share>
<extension—point id="filters"/>
</share>
</plugin>
<plugin>
<name>Earl Grey Filter</name>
<requires>
<plugin key="spamato_base">
<extension point="filters" class="ch.ethz...EarlGreyFilter"/>
</plugin>
</requires>
</plugin>
To check, report, and revoke messages, the Base plug-in accesses these ex-
tensions to obtain the filter instances. More information is available in the
JavaDoc (Eztension and EztensionPoint interfaces).

3.5 Updates

As already mentioned, the container is able to install, update, and delete plug-
ins at runtime without restarting the system. Only the plug-in itself and depen-
dent plug-ins are restarted, the remaining system is left untouched. Updates
are currently downloaded from the Internet or from the local file system. Every
common web server can be used, they only have to obey a simple directory
structure. Other methods, like Bittorrent-based downloads, are also feasible.

The container distinguishes between install and update servers. The first
ones are used to find new plug-ins and the latter to update them. A Plug-in
declares its update server in the plugin.zml. Users can add additional update
and install servers in the container configuration.

Additionally, it is possible to select a profile server. A profile server is a
regular install server, but the container automatically installs all hosted plug-
ins. SPAMATO uses this mechanism to install plug-ins into the user’s empty
profile directory during the first start-up. The initial plug-ins are bundled with
the mail client add-on and saved in the application directory. Using the profile
mechanism, these plug-ins are copied into the user’s profile directory, where the
user can install, update, and delete them without interfering with other users. If
new plug-ins are available in the application directory (by updating the add-on),
they are also updated in each profile. Besides SPAMATO, the profile mechanism
could be applied in larger companies to distribute, install, and update plug-ins.

More information is available in the JavaDoc (PluginContainer and Update-
Handler interfaces).

3.6 Security

The container provides the means to restrict the security permissions of indi-
vidual plug-ins, like the file system or the network access. The implementation
is based on the Java security mechanisms. FEach plug-in has to list required
permissions in the plugin.zml. A Java CodeSource is created for each plug-in
to tag all its classes. The Java Security Manager can recognize the different
CodeSources, checks their permissions, and permits or prohibits the current
statements.

So far, all containers lack a similar feature or at least it is not directly
included. The vast majority of Java projects usually disables the security man-
ager. During the development phase, it seems to be a restriction and enabling
it afterwards can cause problems if it is not sufficiently tested. But applications
could greatly benefit from such a mechanism. Not only are server side applica-
tion better protected against intruders and clients against malicious plug-ins,
it also prevents programming errors like working with the wrong files or con-
necting to the wrong servers.

Another approach, not relying on the Java security mechanisms, would be
to use a trust system to rate the plug-ins. Such a trust system is already
implemented as part of the Farl Grey filter. The two approaches could also be
combined.

3.7 Plug-in Handlers

Each plug-in has a handler to manage its life cycle. The handler decides, among
others, how to load a plug-in, which class loader to use, granted dependencies,
and available constructor parameters. Basically, the container is only respon-
sible for finding plug-ins and instantiating their handlers, everything else is
controlled by the handlers. It is possible to add new handlers and thus alter
the behavior of plug-ins. For example, it would be possible to write a modified
handler that could also load Eclipse plug-ins. Or another handler could gener-
ate a proxy for each plug-in, implementing the same interfaces and dispatching
method calls to the currently active plug-in version. This way it is possible to
update a plug-in without restarting dependent ones.

3.8 Runtime Plug-in

An interesting aspect is that the plug-in container itself is implemented as
plug-in, called the Runtime plug-in. This has several benefits. Like any other
plug-in, it is possible to update the container at runtime and to restrict its
security permissions. The container provides Fzxtension Points to enable other
plug-in to add new features, like new update protocols (e.g. P2P) or other
file structures (e.g. support FEclipse plug-ins). Thus additional features can
be added as plug-ins instead of including them directly and developers can
choose what to use. This design prevents a bloated architecture where most of
the functionality is never used. It is maybe possible to slim down and remove
unwanted features from other containers, like the Apache ones, but it is certainly
not the responsibility of the user to do so.

10

The implementation uses, besides the Runtime plug-in, a few bootstrap
classes to initialize the system. Some interfaces are defined to access the plug-in
system (PluginContainer, Extension, Configuration, and PluginContexrt, among
others). A factory is used to instantiate the container. The factory loads
the Runtime classes and instantiates the Runtime Plug-in Handler, a slightly
modified version of the default handler, with the Java Reflection API. This
handler creates the container as if it is a normal plug-in. The container finally
loads all the other plug-ins. To mask container updates, a proxy is used. The
proxy also implements the container interface and dispatches all method calls
to the currently active container.

11

4 Conclusion & Future Work

By introducing a plug-in architecture, this thesis substantially improves SPAM-
ATO. The plug-in container facilitates a simple design and provides the means
for future extensions such as new filter and statistic plug-ins.

The project itself was interesting. Once the first plug-ins were implemented,
plenty of new ideas for potential improvements emerged. Breaking the system
into smaller pieces allowed a much clearer design. Because dependencies have
explicitly to be declared, more time was generally spent designing the system
and reducing dependencies.

While most of the important features have been implemented, there is a lot
of space for potential improvements. Currently, only the client applications are
based on the plug-in architecture, although, the statistic and Farl Grey servers
could similarly benefit from it. It would also be possible to further subdivide
the client plug-ins. The trust system and the white list, currently part of the
Earl Grey filter, could be implemented as independent plug-ins, enabling other
plug-ins to use their functionality. By doing so, the trust system could be used
to rate third-party plug-ins and the Domainator filter could access the white
list. The Runtime plug-in currently offers only a limited number of Eztension
Points and a lot more could be implemented.

12

References

1]

Christan Wassmers. Spamato statistics, a statistical approach towards
spam filtering. Dimploma thesis, Swiss Federal Institute of Technology
Zurich, 2005.

Simon Schlachter. Spamato reloaded: Trust, authentication and more in a
collaborative spam filter system. Master thesis, Swiss Federal Institute of
Technology Zurich, 2004.

Nicolas Burri. Spamato: A collaborative spam filter system. Diploma
thesis, Swiss Federal Institute of Technology Zurich, 2004.

Apache Avalon. http://avalon.apache.org.
Apache Excalibur. http://excalibur.apache.org.

DPML Metro - Composite Component Management. http://www.dpml.
net/metro/latest/index.html.

Picocontainer. http://www.picocontainer.org, 2004.

Martin Fowler. Inversion of control containers and the dependency in-
jection pattern. http://martinfowler.com/articles/injection.html,
2004.

Eclipse Platform Project. http://www.eclipse.org/platform/index.
html.

Eclipse SWT Project. http://www.eclipse.org/swt/.

The OSGi Service Platform - Dynamic services for networked devices.
http://www.osgi.org.

Nutch search engine. http://www.nutch.org.

JNode - Java New Operating System Design Effort. http://www. jnode.
org.

iMeMex: Personal Information Management. http://www.imemex.org.

Sun Microsystems. Service locator pattern. http://java.sun.com/
blueprints/patterns/ServiceLocator.html, 2004.

Spring’s inversion of control. http://www.springframework.org/docs/
reference/beans.html, 2004.

Mock object. http://www.picocontainer.org/Mock+0Objects, 2004.

13

http://avalon.apache.org
http://excalibur.apache.org
http://www.dpml.net/metro/latest/index.html
http://www.dpml.net/metro/latest/index.html
http://www.picocontainer.org
http://martinfowler.com/articles/injection.html
http://www.eclipse.org/platform/index.html
http://www.eclipse.org/platform/index.html
http://www.eclipse.org/swt/
http://www.osgi.org
http://www.nutch.org
http://www.jnode.org
http://www.jnode.org
http://www.imemex.org
http://java.sun.com/blueprints/patterns/ServiceLocator.html
http://java.sun.com/blueprints/patterns/ServiceLocator.html
http://www.springframework.org/docs/reference/beans.html
http://www.springframework.org/docs/reference/beans.html
http://www.picocontainer.org/Mock+Objects

	Introduction
	Related Work
	Spamato Plug-in Container
	Dependencies
	Configuration
	Dependency Injection (IoC-Pattern)
	Extension Points and Extensions
	Updates
	Security
	Plug-in Handlers
	Runtime Plug-in

	Conclusion & Future Work

