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Abstract

Until now, the analysis of fault tolerance of peer-to-peer (p2p) systems usually only
covers random faults of some kind. Contrary to traditional algorithmic research, faults
as well as joins and leaves occurring in a worst-case manner in p2p systems are hardly
considered. Most fault tolerance analyzes are static in the sense that it is shown that
a system tolerates a certain number of simultaneous faults. The much more realistic
dynamic case where faults steadily occur has not found much attention. The goal of
this thesis is to work towards a general understanding of fault tolerance especially for
the case of dynamic and worst-case failures.

The thesis introduces a simple dynamic model where a malicious adversary — con-
trolling the arrivals and departures of the peers — and a repairing algorithm take turns.
The insights gained from this model are then used to study the more realistic scenario
where a repairing algorithm maintains certain properties of the topology agaiost a
currentadversary.

Besides the comparison of different fault-tolerance models, the thesis presents a
distributed hash table which maintains an efficient search structure as well as a low
peer degree in spite of the worst-case failures. By a dynamic analysis we prove that no
data item is lost by the system.






Contents

1 Introduction 3
2 Model 7
3 k-Ring 9
3.1 Introduction . . . . . .. ... 9
3.2 RepairingirD(1) QuietRounds . . . .. ... ... ... .. .... 10
3.3 \MoluntaryLeaves . . . . .. . . . . . ... 13
3.4 AConcurrentModel . . ... ... ... ... .. ... .. . ... 14
4 Aggregation of Distributed State 17
5 Hypercube 21
5.1 Introduction . . . . . . . ... 21
5.2 Token Distribution . . . . .. ... ... 22
5.2.1 Static Token Distribution . . . . . .. .. ... ... ..... 22

5.2.2 Dynamic Token Distribution . . . . .. ... ... ...... 31

5.2.3 Weighted Token Distribution . . . . . .. ... ........ 33

524 RelatedWork . . ... ... ... .. ... 35

5.3 Simulated Hypercube Topology . . . ... ... ... ....... 35
5.3.1 Scalability . .. .. ... ... ... .. ... 35

5.3.2 Repairing in Tim&(d) with a Hamiltonian Cycle . . . . .. 36

5.3.3 Repairingin TmM& (1) withDASIS . . . . . ... ... ... 38

5.3.4 Worst-Case Fault-Tolerance vs. Scalability . . . ... ... 41

5.4 DHT and Concurrent Adversary . . . . . . ... ... ....... 41
5.4.1 DistributedHashTable . . . .. ... ............. 41

5.4.2 Concurrent Adversary . . . ... .. .. ... 42

5.4.3 Resilienceto LogarithmicChurn. . . ... ... ... ... 42

5.4.4 The 6-Round Maintenance Algorithm . . . . .. ... ... 43

545 Analysis . . .. ... 46

6 Skip Graph 49
6.1 Introduction . . . . . . . ... 49
6.2 Simulated Perfect SkipGraph . . . .. ... ... ... ...... 50
6.2.1 Token Distribution . . . . .. ... ... ... ... 50

6.22 DASIS . . .. .. 50

6.2.3 Repairing Algorithm . . . . . . ... o oo 51

6.3 Load Balancing and Range Queries . . .. ... ... ....... 51



Conclusions

Mean Deviation 57

A.1 Approximation with Chernoff . . . ... ... ... ......... 57

A.2 Approximationwith Stirling . . . . . . ... ... .. L. 58
59

Acknowledgments



Chapter 1

Introduction

Peer-to-peer (p2p) systems and applications are distributed systems without any cen-
tralized control — both a bottleneck for scalability and a single point of failure —
where the software running at each node is equivalent in functionality. These systems
emerged as a new distributed computing paradigm because of their potential to harness
the computing power of the hosts composing the network.

p2p systems may consist of thousands of peers and are characterized by a high
dynamics in the sense that peers may join the system, leave the system voluntarily or
simply crash at any moment of time. For example, the median session duration in the
multimedia file sharing system Napster [1] was approximately one hour [13]. Besides
the composition of the system, also ttog¢al numberof participating peers can vary
significantly over time, and it is therefore crucial to control the evolution of the system
in order to guarantee desirable properties such as a low peer degree or a low network
diameter.

Following the seminal work of Plaxton et al. [10], an assortment of variants of p2p
systems have been proposed in literature, such as CAN [12], Chord [15], and Tapestry
[18]. However, most fault-tolerance analyzes of these systems are either static or cover
only random faults. For example, experimental evidence is supplied that Tapestry is
robust against random faults, while Chorgbrevablyresilient to a constant fraction of
random node failures.

This document focuses amynamic worst-case failuresWe introduce a simple
dynamic model where a malicioaslversary which — having complete visibility of
the entire state of the system — controls the joins and leaves in the system, alternates
with a repairing algorithm The goal of the repairing algorithm is to re-establish cer-
tain properties of the system, for example a high connectivity such that the topology
remains one connected component in the next adversarial round. Armed with the in-
sights we get from this simple model, the more realistic scenario where the adversary
actsconcurrentlyto the repairing algorithm is considered. We will see that it is some-
times possible to transform a repairing algorithm running in tidé) to work also in
the concurrent model.

The thesis is organized as follows: Chapter 2 introduces the models that will be
used throughout this document. In particular, it describes the adversarial operations
and formally defines the objective of the repairing algorithm. In Chapter 3 we start
our analysis with a very simple topology based on the ring. After the comparison of
different models for the case where a repairing algorithm runs in a phase of quiescence,
a concurrent model is studied. Chapter 4 presents an algorithm which allows peers to



aggregate information in a p2p system in a distributed fashion. The properties of this
algorithm are useful for the maintenance of the topologies introduced in later chapters.
A main emphasis in laid on Chapter 5, where a simulatetimensional hypercube
topology is introduced. First, we will present a repairing algorithm which maintains

a low peer degree and a low network diameter against a concurrent adversary which
inserts and remove3(d) peers per time interval of constant length. We will then show
that this system can also be deployed as an efficient distributed hash table which never
loses data. Chapter 6 extends these results to the skip graph topology. We conclude our
work in Chapter 7, where we also give some directions for future research projects.



Chapter 2

Model

We consider a grapty = (V, E), whereV represents the set of peers afidlescribes

the adjacency relations of these peers. If not stated otherwise, the classic synchronous
message passingodel is studied, where in every round, a node can send a message to
each of its adjacent nodes; local computations are assumed to take no time.

The dynamics of the system is given by a non-oblivious adversary which may insert
at mostJ and remove at most nodes. We assume that new nodes always arrive at
nodes which already belong to the system. Algorithm 1 gives a formal description of
the adversarial operations; an example is depicted in Figure 2.1.

Algorithm 1 Adversary
1: INPUT: GraphG = (V, E), J, L
: choosel C V where|L| < L;
. choose” := {jo, ..., jx } wherek < J;
V=V \LUJT;
LB o= {{v,u} | ({v,u} € B) A({v.u} N L # ¢)};
: (* assumeyj; joins at nodey; *)
D BN = (BN Eg) U (U{di vid);
: OUTPUT: Graph’ = (V', E')

0 N O OB W N

Figure 2.1: Operations of the Adversary

Usually, we start our analysis with a simple dynamic model where the repairing al-
gorithm and the adversary take turns, see Figure 2.2. The goal of a repairing algorithm



is to re-establish — in phase of quiescenee- certain properties of the topology after
the adversarial round.

repairing adversary repairing adversary
algorithm algorithm

Figure 2.2: Repairing and Adversarial Rounds

More formally, we consider a predicalf€G) which is true if and only if the topol-
ogy G fulfills certain properties, for example “graph G is isomorphic to a hypercube”.
Let A4, (J, L) denote an adversary which may insert at mband remove at mosit
peers per adversarial phase. We say #al, is a repairing algorithm with respect to
an adversary, ., (J, L) if it re-establisheg" after each adversary round, that is

I(G) = T(Arep(Aaan (], L)(G)))- (2.1)

An interesting question in this context is: Given an adverséyy, (J, L), how many
rounds of quiescence are minimally needed by dny, that fulfills statement (2.1)?
Mostly, we will focus on algorithms running in constant time.

After having studied this simple dynamic model, we analyze the more realistic
model where the adversary acts concurrently to the repairing algorithm. In this context,
we consider an adversad,q,(J, L, §) which can join at most and remove at most
L peersduring any time perioaf ¢ rounds. The repairing algorithti,..,, is required
to maintain certain propertiesdl the time or, alternatively, to establish the properties
whenever the adversary has been inactive for a certain time period. In the latter case,
A,.p, may neveractually achievd'(G). However, note that the fact that a repairing
algorithm establisheB(G) after a certain phase with no adversarial changes normally
implies the existence of weaker predicates whichednaystrue: For example the fact
that certain variants of a ring are perfectly repaireddy, after a constant number of
rounds of adversarial inactivity implies that the graph contains a ring as a sulajraph
any moment of time- if the ring had been disconnected, repairing would take longer.

Finally, we assume peers to act always in perfect accordanceAyith that is,
Byzantine behavior of any kind is not considered here.



Chapter 3

k-Ring

3.1 Introduction

We begin our studies with a very simple topology which is based on the ring, the
drosophila melanogastexf distributed computing. Note that a ring has some properties
that are undesirable in a p2p system, for example it has a network diameter which is
linear in the total number of nodes. However, our objective is to get insights to the
nature of fault-tolerancger se that is, independently of other criteria, and in this
respect we consider the ring as a good starting point. Moreover, many current systems
use aring as a sub-component, for example also Chord [15].

The topology we will analyze is a special instance of\artirculant graph (Defi-
nition 3.1) called the-ring (Definition 3.2).

Definition 3.1 (\V-Circulant Graph). An A/ -circulant graphof order n is a graph
G = (V,E)whereV = {0,...,n— 1} andE = {{i,i + j (modn)} | j € N}. N'is
called theconnection setFor example N := {1, ..., [n/2|} gives the complete graph
K,.

Definition 3.2 (k-Ring). We call anA/-circulant graph with connection seV" :=
{1,2,...,k} ak-ring. Figure 3.1 shows an example fbr3.

Figure 3.1: 3-Ring



3.2 Repairing in O(1) Quiet Rounds

First, we consider the simple dynamic model introduced in Chapter 2 where the repair-
ing algorithm and the adversary take turns. That is, after the adversary has inserted at
mostJ and removed at mogt peers, the repairing algorithm runs in a phase of quies-
cence. We concentrate on repairing algorithms which re-establish a perfiactin a
constantnumber of quiet rounds. In the following, if not stated otherwise, we always
mean modh.

Theorem 3.1.1f L > k, there is no algorithm which rebuilds thering in O(1) rounds
of quiescence.

Proof. Consider the case whefe > k and wherek nodes in a row fall, i.e., nodes
{i,i+1,...,i + k — 1} for somei. Since node — 1 is not adjacent to node+ &, the
ring is broken. To construct the ed@e— 1,: + k}, a message has to be routed in the
opposite direction along the broken ring, requiring tifig:). O

Consider the repairing algorithm presented in Algorithm 2. In the first round, every
node sends a pack@(list of joiners, hop-count) to all of its former neighbdrsThe
message sent to th&" former neighbor is initialized with hop-count In the next
rounds, every node sorts the received packets by the hop-count in order to handle
packets from closer nodes earlier. If it is not the first packet from the corresponding
sender, the packet is simply ignored.then updates its neighbors and forwards the
packet if it is the furthest surviving neighbor of the sender and if the information is
interesting for other nodes as well. We assume that a forwarded packet keeps the the
original sender’s address. Finally, wherhas collected its new neighbors on both
sides, it assigns the correct neighbors to its joiners. The joiners of aunaealways
inserted on the left side af.> We now prove some properties of this algorithm.

Lemma 3.2. Algorithm 2 assigns each nodeneighbors on each side after finitely
many steps il < k.

Proof. We prove that no packé® can get lost because of a missing link and that it will
always be forwarded if it contains information needed by other nodes.

If less thark nodes crash, it holds that each node has at least one surviving neighbor
on both sides. Moreover, a node forwards a padRef, before receivingP, k —
oldsize — 1—sizeof(joiners[])>0. Note thaty needst — oldsize new neighbors on the
side on which it received the packet, hence its neighbors on the opposite side need at
mostk — oldsize — 1—sizeof(joiners[]) new neighbors, because they additionally have
v andv’s joiners as neighbors. O

Lemma 3.3. Algorithm 2 preserves the global order of the surviving nodes on the ring
and inserts the joiners of a node directly to its left.

Proof. A packet from the rightis appended hypend [pjoiners|u], a packet from

the left byappend [ulpjoiners]; therefore, every node on the ring sees the same
order with respect to a single node It remains to prove that the packets itself are
always well ordered. All packets that arrive in the same round are sorted by the hop-
count, and closer nodes are inserted first. Moreover, it is not possible that a packet from

10f course, because of the leaves, not all recipients are still alive. We assume that a message to a peer
which has left the system is simply lost.
2See theappend function.



Algorithm 2 k-Ring
1: (* nodew *)
. given: oldleftf], oldright[k], joiners[];
: newleft[k], newrightfk]; (* empty *)
: STEP 1:
. for all neighborsi do
SENDP(joiners][],7) TO oldleft[;]; SEND P(joiners][], ) TO oldright[];
end for
: STEP>1:
: RECV all packetsP(pjoiners[],pcount) FROM u;
. (* wis theoriginal sender ofP *)
. for all packets in order of increasingount do
if packet from right neighbahen
oldrsize := sizeof(newright[]);
append [pjoinelis] to newright[];
if w is furthest surviving neighbdhen
if (k — oldrsize — 1—sizeof(joiners[]))> 0 then
for i :=1tok do
SENDP(pjoinersl[],pcount + i) TO oldleft[:];
end for
end if
end if
end if
if packet from left neighbathen
analogously, appending|pjoiners] to newleft[];
end if
: end for
- if —((sizeof(newright[]}> k) A (sizeof(newleft[]>> k)) then
goto STEP>1;
. end if
: LAST STEP:
. oldright[] := newright[];
. for all elements of joinerslglo
send joinerg] its right neighbors [joinerg[— 1], ..., joiners[1],v, newright[1],
newright[2], ...];
34: end for
35: oldleft[] := [joiners[1], joiners[2], ..., newleft[1], newleft[2], ...];
36: for all elements of joinerslilo
37:  send joinerg] its left neighbors [joiners[+ 1], joinersfi + 2], ..., newleft[1],
newleft[2], ...];
38: end for
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a closer nodev; arrives in a later round than a packet from a nadevhich is further
away. O

Lemma 3.4. If L < k andJ = any, Algorithm 2 terminates after at mossteps.

Proof. If there are only leaves and no joins, in the worst-case, a noaést get packets
from nodev + 2k — 1, which will bev’s newk!” neighbor. In a perfedt-ring, a packet
can travelk hops in one step, i.es,- £ hops ins steps. Moreover, a crashed node can
delay a packet by at most 1 step, given that £ — 1. Since there are at mokt— 1
failures, a packet can get at leastto nede s - k — (k — 1) in s steps. Fog = 3 we
getv + 2k +1 > v+ 2k — 1, whiles = 2is notenoughy + k + 1 < v 4+ 2k — 1 for

k > 3. In the last step, a node integrates its joiners. O

Corollary 3.5. If L < kandJ = any, there exists an algorithm which reconstructs the
k-ring in time O(1).

Theorem 3.6. If there are no joins, it is possible to repailr < k& — 1 leaves in 2 steps.
This is optimal fork > 3.

Proof. At least 2 steps: Consider the case where- k, k > 3 andk — 1 nodes in a
row fail, i.e., noded, i + 1, ...,4 + k — 2} for somei. {i — 1,7+ k — 1} is the only
edge that bridges the gap. It is impossible to establish étlge2, i + k} in only one
step.
At most 2 steps: Consider an algorithm which distributes information optimally:
It sends all its neighbors (and not just itself, as was the case in Algorithm 2) to all its
neighbors. This saves exactly one step compared to Algorithm 2. Moreover, it is not
necessary to integrate the joiners, which saves another step compared to Lemma 3.4.
O

Theorem 3.7. It is possible to repaitl < 1 leaves in 1 step if = 2. This is optimal.

Proof. For the special case wheke= 2, one step is sufficient. Consider the con-
secutive nodes (s — 2)(¢ — 1)i(¢ + 1)(¢ + 2)..., where node leaves. All nodes

< (i —2) or > (i + 2) can keep their neighbors, and hence this takes no time at all.
Edge{(i — 2), (i + 1)} can be established in one stép= 1) sends the corresponding
information to(i — 2) and(i + 1). By symmetry, this holds also for the other sidé.]

Theorem 3.8. It is possible to repaill. < k£ — 1 leaves and/ joins in 3 steps. This is
optimal fork > 3.

Proof. At least 3 steps: In the worst case, a nedeust know a joiner of node +
2k — 1, sincek — 1 leaves took place in-between. Sending a packet 2ker 1 hops
whenk — 1 consecutive nodes have left may take up to three steps: One to the gap,
one across the gap and one to the destination nodé.=®2, either the sender or the
destination node must be adjacent to the gap, therefore two steps are enough.) Figure
3.2 shows an example: It takes 3 steps to send the joiner ofinedeto node: + k
and vice versa.

At most 3 steps: Consider again Algorithm 2 where every node sends all its joiners
in the first step. It takes 3 steps until every former node knows its ne&ighbors
on both sides. With a little change of our algorithm, it is also possible thatiakrs
know theirk + k neighbors: In the first step, a node informs its joiners about the other
joiners. Moreover, in the second step, a node saves all joiners about which it has heard
by the received packets. Thus, it can send the packets in the third round not only to a
neighboring node, but also tov's joiners directly. O



k-1 leaves

Figure 3.2: Figure for Theorem 3.8

Note that Theorems 3.6, 3.7 and 3.8 even hold if nodes store all senders from the
packets they have seen and forward future packets directly to them. However, we won't
consider this routing optimization further here.

3.3 \oluntary Leaves

So far, we have assumed that the peers leave the network quietly. This model has the
advantage that it covers also the case where peers crash. However, it is possible to show
that the system can tolerate more leaves in a scenario where peers never fail but always
leave the network voluntarily. We call such a scenanimadbye modekee Definition

3.3.

Definition 3.3 (Goodbye Model). We call a setting where nodes call a functiprto
finalize before leavingoodbye modelin this function, it is possible to send a message
to all neighbors, but the departure of the node can not be delayed.

Theorem 3.9. Under the goodbye model, thkering can be re-established in tinge(1)
ifand only if L < 2k — 1.

Proof. = In the worst case, a nodeloses2k — 1 neighbors. We show that a link to
nodeu := v + 2k can be established in constant time. It can then be used to distribute
neighbor information, similarly to Algorithm 2. Consider a finalize functjorwhich
simply sends all neighbor information to all neighbors. Node k& knows bothv and
u — they are itsk'" neighbors. Calling” informsv aboutu and vice versa; the ring
remains closed.

<: On the other hand, if. > 2k nodes in a row fail, there is no node which
could inform the nodes adjacent to the gap. O

However, observe that there is a form of equivalence between the goodbye model
and the model where peers may crash.

Theorem 3.10. It is possible to simulate the goodbye model at the cost of one addi-
tional step in the repairing algorithm.

Proof. The idea is to execute the commands in functioms a last step of the quiet
phase. If a node really leaves, all information it would send in the goodbye model
already exists at its neighbors. On the other hand,rémains alive, this information
can simply be ignored. O



3.4 A Concurrent Model

The two models presented so far are both rather theoretical: In real networks, there is
no time of quiescence during which an algorithm can repairkthi@g; rather, nodes

may join or failconcurrentlyto the ring’s maintenance. We refer to this setting as the
concurrent modelsee Definition 3.4.

Definition 3.4 (Concurrent Model). In the concurrent modelan adversary can re-
move up tad. and insert up ta/ nodesin every round Hence, there are no quiet rounds
and the repairing process runs concurrently to the adversary.

There are many crucial differences between the concurrent model and the models
with a phase of quiescence:

¢ If nodesv andu send a packet to each other at timét is not guaranteed that
these packets also arrive at the same timsee Example 3.1.

e It is not possible anymore to send a packet to a nodetimet such that can
forward it at timet + 1, because it may have left the network by then. Thus, we
have to use an algorithm in whigverynode forwards packets.

e When a packet arrives, the enclosed information may not be true anymore; for
example, the sender may already have left in the meantime.

e In Algorithm 2, a nodev integrates its joiners only by the end of the phase
of quiescence. In this more dynamic model, it is crucial to makeoiners
independent of as soon as possible to handle the casedhatremoved from
the network.

Example 3.1. Consider Figure 3.3 and assume that naddeaves at the beginning
of timet = 2, i.e., beforesending its messages of that round. Hencean send its
packet via nodev (arrival time atu: ¢ = 2), whileu’s packet has to take another path
(arrival time atv: t = 3).

Figure 3.3: Figure for Example 3.1

Yet, under the assumption that all nodes are strongly synchronized modulo a certain
number itis possible to prove a relation between the model with a phase of quiescence
and the concurrent model.

3|f the network starts with a single node, every node can simply assign its joiners the current state.



Theorem 3.11. Under the assumption of strongly synchronized nodes, and if there are
no joins, it holds that: If, in a instantaneous model, an edggpears at time, and if
there is an algorithmA, which reconstructs a perfeétring in s steps of quiescence
given at most. leaves per adversary round, then there exists a concurrent algorithm
A. which creates attimet + s 4 1 or earlier, if there are at moskt leaves during any
time interval of lengths + 1.

Proof. Consider a concurrent algorithm where every node sends all its neighbor in-
formation to all its neighbors at timesiff ¢ = 0 (mod s 4+ 1). These packets have
a time-to-live ofs + 1 rounds. In all other roundgverynode simply forwards the
incoming packets. (Broadcast is used to ensure that no packet will get lost because of
node failures.) Further, assume that every node stores the information abéut the
closest nodes on each side. For the ordering, a hop-count is used with respect to the
situation whent = 0 (mod s + 1) for the last time. First, we show that this algorithm
would yield a perfeck-ring at timest = 0 (mods + 1) with respect to theurrentstate
of the system if a ping took no time.

Assume that at time O, thiering is perfect. IfL nodes leave at once{, recon-
structs all edges=(u, v) in s steps. But if it is possible to send information franto
v in s steps if allL nodes leave at once, it is also possible forto send this infor-
mation fromu to v if the L leaves are distributed over the time interval of sizé-or
a reason that will become clear later in the text, consider a concurrent algodithm
where every node sends only information about itself in the first round, and not about
its neighbors. This costs at most one additional step comparel).tarhus, at time
s+ 1, A. has provided any node with at least as many neighbors.ds. However,w
does not know which of these neighbors are still alive, and hence a ping is performed,
from which it is possible to derive th& current neighbors.

Of course, in a real system a ping takes two rounds. We can chantehandle
also this more realistic scenario: As a simple solutiortreats allk + L neighbors
as if they were alive. At the cost of some extra storagé —+ 2L neighbors have to
be stored instead df + L — this ensures that an edge is always used with a delay of
at mosts + 1 steps. A ping is therefore not necessary anymore. It remains to prove
that. A, is still able to order the neighbors correctly. For this, we use again a hop-count
which is now incremented with respect to ptitentialneighbors at the last time when
t = 0 (mods + 1); this facilitates a consistent ordering, as these potential neighbors
have been the correct nearest nodes at timés + 1). O

It seems not possible to prove something similarly strong for the case of joins with-
out changing the semantics. Hence, we use a weaker relation for the two models.

Theorem 3.12. If there is an algorithmA,, with a time of quiescence efsteps toler-
ating J joins and L leaves per adversary round, there is also a concurrent repairing
algorithm 4. which tolerates/ joins andL leaves distributed over any time interval of
sizes, with the following property: If4, establishes a perfeétring after each phase

of quiescenced. constructs also a perfeédt-ring if there have been no changes for
the last2s rounds.

Proof. We adapt algorithmd,. as described in the proof of Theorem 3.11 to handle
also joins. As a simple solution, assume that every nodielays its joiners untit = 0
(mods): If v leaves the network earlier, its joiners have to try again at some other node.
At timest = 0 (mod s), every node broadcasts itself plus the identifiers of its joiners;
this information is then forwarded in the remaining rounds. A node which has heard



about the joiners of a neighboring nodén the first round sends all packets foalso
to v's joiners in the remaining rounds for the case thatashes. For the ordering we
use hop-counts together with the rule to integrate joiners always on a predefined side.
Analogously to the proof of Theorem 3.11 it follows that at times 0 (mod s)
every node knows about itscurrent neighbors on each side, except for the joiners that
have arrived during the laststeps which have not been taken into account yet. Note
that here we do not lose a step compared!jdbecause of not sending the neighbors
in the first round, s& steps are indeed sufficient. If aftei= 0 (mod s) there are no
changes during the nextconsecutive rounds4. establishes a perfegtring. On the
other hand, it takes at mostrounds untilt = 0 (mod s) for the next time, and the
claim holds. O



Chapter 4

Aggregation of Distributed State

DASIS [2], thedistributed approximative system information seryaéows to aggre-

gate information in a p2p system. Similar ideas can be found in Astrolabe [16] and
Willow [17]. After a short introduction to DASIS, we show that DASIS has some in-
teresting properties which will be used by the dynamic and fault-tolerant systems based
on the hypercube and on the skip graph presented in Chapters 5 and 6.

DASIS is built on top of the regular p2p structure. The basic idea is as follows:
Every nodev with bit string b...b; is considered to be an “expert” on all the sub-
domains of all the prefixes of its bit string (that is, fer..b;,7 € [—1, k]). The expert
knowledge is constructed inductively through information exchange with the neighbor
peers. The node is by definition an expert about its own sub-dobmaity,. Also, the
nodev can deduce the state in sub-dom@ajn.b; by aggregating its own knowledge on
sub-domairbg...b;+1 (which is available by induction) with the knowledge provided
by neighbor node: about sub-domainy...b;; 1. In the end, node can deduce the
state of the whole system — the sub-domain of the empty prefixgure 4.1 gives an
example: Node 001 knows about the state of the sub-domain 000 by its prefix buddy
000, about the sub-domain 01 by its buddy 011 and finally about the sub-domain 1 by
its buddy 1100.

000 jo01i 010 o011

S, 1100 1101 1110 1111

Figure 4.1: DASIS

Assume that the information or the state of each node is of fypgeor aggregation,

17



we use a commutative functiop : TxXT — T. Further, letinitval € T denote a
default value which depends on the aggregation function and assunie that— 7'
locally computes the new state of a node.

Example 4.1. Consider a graph where every node stores a certain number of coins,
and the goal is to compute the total number of coins in the system. In thisZfage,
returns the current number of coins at nodethe typeT is integer (" := N), we use

the sum functiond := +) and the default value i&itval := 0.

Algorithm 3 gives a complete description of our synchronous information aggre-
gation system based on DASIS. Note tthatan be different for every node, but we
assume that the bit string of a node is never a prefix of the bit string of another node.

Algorithm 3 DASIS Aggregation
1: (* algorithm running on nodéy...by *)
2: prefixaggpo...bk, bo-.-bg—1, ..., bo, €] = initval;
3: prefixagdbo...bx] := Z(bg...bx) ;
4: while truedo

5. (* new round *)

6

7

8

9

for j:=0tok do
SEND prefixaggpy...b;] TO buddy of domairby...b;;

$,,...5; = RECV FROM buddy of domaify...b;;
:end for
10 forall j € [0, k]: prefixagd([bo...b;—1] :=prefixagdbo...b;] © s, 5
11:  prefixagd|[bo...bi] := Z(by...bx);
12:  prefix.agg:=prefixagd;
13: end while

Theorem 4.1. Assuming a synchronous model where the nodes’ states change at the
beginning of every round, Algorithm 3 ensures that all nodes always store the same
value prefixagg[e], wheree is the empty prefix.

Proof. We prove by induction over the prefix length that all nodes sharing the same
prefix by...b; have the same value prefaggpo...b;].

j = k: Since there is only one node with prefix..by, this is trivially true.

Jj — (j—1): We assume that all nodes sharing the prifixb; propagate the same
value prefixaggpo...b;], say z, in every round. Analogously, all nodes with prefix
bo...b; always have the same value preéiggpo...b;], sayy. Therefore, according to
Algorithm 3, all nodes with prefik,...b;_; will have prefixagd[bo...b;_1]= 2Oy =
YO . [

Of course, the aggregated value for the empty prefix does not reflect the currently
correct state of the network, and prefiggk] may not even correspond to any real
state the system has been in. However, it is easy to see that for the special case of a
d-dimensional hypercube (see Chapter 5) or a perfect skip graph (see Chapter 6), where
the nodes’ identifiers all have the same length, the value of the empty prefix at time
is the correct state of the system of time d.

It is expensive to send all information to all neighbors in every step. However, it is
also possible to run Algorithm 3 in an event-driven way: A node sends new information
only if one of the aggregated prefix values changes. For obvious reasons, consistent



prefix values can also be achieved in this more efficient model (sending no information
is simply interpreted as “no state change”).

Finally, we analyze an asynchronous event-driven system, where it takes an arbi-
trary but finite amount of time to send a message over a link. In a distributed system
without synchronized clocks, it is impossible to ensure that all nodes change a prefix
value at the same moment of time. However, some crucial properties remain valid.
Assume that each node stores for every prifixb; the aggregated values for the do-
mainsby...b; andby...b; and the valuéy...b; ® by...b;. If the state of a node = by...by
changes fronE(v) to Z(v)’, v updatesall its prefix values, b, ..., by...b. as follows:
prefixagd|bo...bx] := Z(v)’ and prefixagd|[bo...b;_1] :=prefix.agd[bo...b;] @ pre-
fix_agdbo...b;] for i € [0, k], where prefixagdby...b;] stores the old value of the alter-
native prefix which hasn’'t changed. Then the neighbors are informed. Similarly, when
anode hears about a change of an alternative prgfik;, it updates prefixagdby...b;]
and calculates the new values of the smaller prefixes, i.e., pgtbo...b;,_1] := pre-
fix_agdbo...b;]® prefix agg’[bo...b;] and prefixagd[bo...b;_1] := prefix agd[bo...b;]®
prefix agg[bo...b;] for j € [0,i — 1] and immediately afterwards sends a message to
the corresponding prefix buddies.

Theorem 4.2. In an asynchronous event-driven system, where it takes an arbitrary
time to send a message over a link, and if the links are FIFO, it holds that the algorithm
presented above provides the same aggregated value for the empty prefix to every node
when there is no message on its way. Moreover, this value describes the correct state
of the system at that moment of time.

Proof. Every nodeu hears about a changgv) — =Z(v)’ of a nodev exactly once,
namely by the prefix buddy representing the sub-tree in which the change has hap-
pened. Moreover, since the edges are FIFO, a later chafigé — =(v)” at nodev

also arrives later at node because there is a unique path on which changes are prop-
agated fromv to u. Finally, under the assumption that local computations take no time
and that messages are triggered immediately after a change, it holds that when there is
no message on its way, then all changes have been accounted for. Thus, all nodes store

the correct state of the system at that time. O

Consider the case where edges are not FIFO. Assume a system consisting of only
two nodesv := by andu := by. Further, assume thatchanges its state at timesind
t', sending its new values(v) and=(v)’ to u. These are the only two changes that
will ever happen. Without the FIFO properE(v)’ may arrivebeforeZ(v), causingu
to store a different value for the empty prefix tharirhus, it is impossible to guarantee
consistent values with our algorithm if the edges are not FIFO. However, under the as-
sumption that the aggregation functierhas the additional property that it is invertible,
we can achieve consistency by senddifferencednstead of absolute values. So as-
sume that all elementsc T have an inverse element ! such thatr© 7! = initval
— for example,® := + has this propertyr—! € N := —1 - 7, where- denotes the
multiplication inZ. If v sends=(v))~! ® Z(v)’ to u instead of£(v)’, u finally stores
the aggregated valli&v) ® (2(v)) 1 © Z(v) = (E(v)) " ©Z(v)’ © E(v) = E(v)/,
the same value as

Assume that in the beginning, it holds for every nade= b,...b, € V: Z(v) :=
initval. If there is a chang&(v) — Z(v)’, v sends(Z(v))~! ® Z(v)’ to all prefix
buddies, and updates prefigd [bo...b;] := prefix agdbo...b;] © (Z(v))~ ©Z(v)’ for

€ [—1,k]. Similarly, receiving a chang€E(w))~! ® Z(w)’ from a prefix buddyu

with prefix by...b;, v updates prefixagg(bo...b;]’ := prefix aggbo...b;] © (E(w))~t ©



E(w)’ for j € [-1,i— 1] and propagate&E(w)) ' ® Z(w)’ to the remaining (smaller)
prefix buddies.

Theorem 4.3. In an asynchronous event-driven system without the FIFO property, this
algorithm guarantees that every node stores the same value for the empty prefix if there
iS N0 message on its way. Moreover, this value describes the correct state of the system
at that moment of time.

Proof. Obviously, every chang& (v)) " ©Z(v)’ is sent exactly once to every node —
hence, it is droadcast— by the buddy-structure of DASIS. Sinceis commutative,
every node stores the same and correct value in a time of quiescence. O

On the other hand, FIFO can also be achieved in a non-FIFO system by using
a time-stamp per link: The sender simply tags each message with a number which
is incremented for each message, and hence the receiver can sort the messages and
handle them in a FIFO order. This solution has the advantagetidaies not have to
be invertible.



Chapter 5

Hypercube

5.1 Introduction

The hypercube topology — see Definition 5.1 — is characterized by a logarithmic node
degree and a logarithmic network diameter (in the number of nodes).

Definition 5.1 (d-Dimensional Hypercube). A d-dimensional hypercubis a graph

G = (V,E), whereV = {0,1}* and E = {(ug...ug_1, vo..va_1) | S0 " | u; — v |

= 1}, i.e., two nodes are adjacent if and only if their Hamming distance is 1. If
two nodesu and v differ in their i*" bit, we saynodesu andv are neighbors across
dimensioni. Figure 5.1 gives an example fdr= 3.

Figure 5.1: 3-Dimensional Hypercube

In this chapter, aimulated hypercubis studied, where the hypercube’s nodes are
represented bgeveralpeers. One goal of a repairing algorithm maintaining such a
simulated hypercube is to guarantee that every node has at least one peer at every
moment of time. A way to achieve this is to distribute the peers evenly among all
nodes, equalizing potentially biased adversarial churn. Different questions concerning
the uniform distribution of peers on a hypercube will be addressed in Chapter 5.2.
Chapter 5.3 then presents two repairing algorithms for the simulated hypercube, one
running in©(d) and the other one i@(1) quiet rounds. Finally, Chapter 5.4 introduces
a distributed hash table based on the simulated hypercube. The corresponding repairing
algorithm maintains an efficient search structure agairsireurrentadversary and
ensures that no data is lost.
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5.2 Token Distribution

Distributing peers evenly among the nodes of a simulated hypercube is a special in-
stance of doken distribution problera— a fundamental problem to solve on a parallel
computer or distributed network, first posed by Peleg and Upfal [8]. This problem has
its origins in the area of load balancing, where the workload is modelled by a number
of tokensor jobs of unit size; the main objective is to distribute the total load equally
amongst the processors. Such load balancing problems arise in a number of paral-
lel and distributed applications including job scheduling in operating systems, packet
routing, large-scale differential equations and parallel finite element methods. More
applications can be found in [14]. In this section, we will study different algorithms for
the token distribution on d-dimensional hypercube.

Basically, the goal of every token distribution algorithm is to minimize the max-
imum difference of the number of tokens at any two nodes in the graph, called the
discrepancy(see Definition 5.2).

Definition 5.2 (Discrepancy). Leta be the minimum number of tokens andlee the
maximum number of tokens at any node in a hyperdiib&Ve say that hypercubd
has adiscrepancyfb — a.

Token distribution problems can be classified into two categos&atic and dy-
namic In the static variant, an initial token distribution is given and the main objective
is to re-distribute these tokens evenly amongst all nodes of the graph “in a phase of qui-
escence”. In the dynamic variant on the other hand, the load is dynamic, that is, there
are new tokens arriving and old tokens leaving all the times. We will consider the two
variants in turn. Finally, an algorithm for theeightedtoken distribution problem on
the hypercube is presented. Here, each node is characterized by a fixed weight and the
goal is to distribute the tokens in a way that nodes with more weight get more tokens
than nodes with little weight.

5.2.1 Static Token Distribution

First, we assume that the tokens &ctional, that is, infinitely divisible. Of course,
in our case where tokens represent peers, this assumption is not realistic. However, it
allows a first comparison of different token distribution algorithms, and, as we will see,
simplifies also the analysis of the integer token distribution.

Consider the following algorithm: Every no@ehavinga tokens, sends/(d + 1)
tokens to each of itd neighbors. Unfortunately, although the algorithm converges, it
may run forever.

Theorem 5.1. This algorithm may never terminate with a perfect distribution.

Proof. Consider a 2-dimensional hypercube where node 0:h@4 hasb, 10 hasc
and 11 hasl tokens at the beginning. After the first stép= 0), node 00 haé‘%,
01 has®tt+d, 10 has?tet? and 11 has*<t4 tokens.

Note that after stepand if i is even, a node 00 has a numerator of the fem-
xb+xc+(x—1)d, 01 of the formea+xb+(x—1)c+xd, 10 of the formra+ (x—1)b+
xzc+xd and 11 of the forn{z — 1)a+xb+zc+d. If i is odd, 00 has a numerator of the
form (y+1)a+yb+yc+yd, 01 hagja+(y+1)b+yc+yd, 10 hagja+yb+(y+1)c+yd
and 11 hasgja + yb + yc + (y + 1)d. Therefore, before the balancing of stephe
discrepancy isnax{|a —b|/3%, |a—c|/3%, |a—d|/3%, |b—c|/3, |b—d|/3%, |c—d]|/3}.




Therefore, even if the convergence is — at least for the 2-dimensional case — very
fast, there is no guarantee about the absolute discrepancy after a certain number of
steps. [

The next algorithm we will study is shown in Algorithm 4: In steffor < from O to
d—1), every node := by...b;...bs_1 havinga tokens balances its tokens with only one
adjacent node, namely its neighbor in dimensian:= by...b;...b4_1, havingb tokens,
such that both nodes end up wi%lg—b tokens. Figure 5.2 illustrates the execution of

Algorithm 4 ford = 3. This algorithm has some nice properties.

Algorithm 4 Hypercube Token Distribution

: (* algorithm running on nodéy...b;_1 *)
my_d = bg...bg_1;

Tmy.id =tokens at this node;
:fori:=0tod —1do

. buddy_id == bg...b;..bg_1;

SEND| 7,y i4|/2 tokens to nodéuddy_id,
update7,,, ;q accordingly;

Touddyid *=REVC tokens from nodéuddy_id;
. Tmy,id = Tmy,id U 7E)uddy,id;

10: end for

CLIRDDLT

d.

=

© o NGO

Figure 5.2: Token Distribution on Hypercube (Algorithm 4)

Theorem 5.2. In case of fractional tokens, Algorithm 4 results in a perfect distribution
after d steps.

Proof. We prove by induction that after th& iteration, all nodes with the same postfix
of lengthd — 1 — i have the same number of tokens.

i = 0: Letv be nod&)«a havinga tokens and: its neighborla havingb tokens, for
an arbitraryd — 1 bit vectora. After balancing, both nodes ha\?gbb tokens.

1 — i + 1. Consider twoi-dimensional sub-cubel, and H; consisting of all
nodes with postfixeBa and1a respectively, where is an arbitrary bit string of length
d—1—-(i+1). By the induction hypothesis, all nodes/ify have the same number of
tokens, say:, and all nodes irf{; have the same number of tokens, say\fter step
i+1, all nodes iV (H,) UV (H; ) — sharing the postfix — will have 21 tokens. To
see this, consider the nodes= (0«, v; = n0a € V(Hy), andug = (la, up = nla
€ V(H1), where¢ andn are arbitrary bit vectors of lengtht- 1. During the exchange
of roundi + 1, vg balances withi,y andv; with u;. Obviously, all four nodes end up
with 2£ tokens. O



Algorithm 4 is optimal in the following sense: There is no algorithm which can
guarantee an upper bound on the absolute discrepancy in less shes, and aftef
steps, Algorithm 4 reaches the optimal discrepancy 0.

Theorem 5.3. Every algorithm which, for every initial distribution, can balance the
tokens with a discrepancy less thé@meeds at lest steps, for some arbitrarg'.

Proof. Consider ai-dimensional hypercub® with 2¢ nodes and the following initial
distribution: Nodel? hasC - 2¢ tokens, and all other nodes have no tokens at all.
Having C tokens per node on average, there is always a maate H with at leastC
tokens. On the other hand, no algorithm can move any tokens tomnede? in less
thand steps. The discrepancy betweeandw is at least tokens. O

Hence, Algorithm 4 has some desirable properties if the tokens are fractional.
Moreover, with a little modification, the same algorithm works also for integer tokens:
If two nodesv (a tokens) and: (b tokens) are balanced, one node will end up with
[(a+b)/2] tokens and the other one witl + b) /2] tokens. In the following, we will
assume that this balancing is performed in two sub-steps: In the first sub-stepunodes
andv inform each other about the number of tokens they store, so in the second step
the larger node can send (the arbitrarily rounded) difference to the smaller node.

Theorem 5.4. This integer variant of Algorithm 4 yields a discrepancy of at mbst
after d steps.

Proof. We show that after round the discrepancy among the nodes sharing the same
postfix of lengthd — 1 — 4 is at most + 1.

i = 0: Balancing a node havinga tokens with a node havingb tokens results in
one node having(a + b)/2] and the other one havirida + b) /2| tokens, and it holds
that([(a +b)/2] — [(a+1)/2]) < 1.

t — 1 + 1: Consider two sub-cubeH, and H; that will be balanced in round
i + 1. By the induction hypothesis, the discrepancy witliilp and H; is < i + 1.

Let ayin, resp. amq, be the minimal, resp. maximal number of tokens in a node in
Hy. b,,n andb,,.. are defined analogously fd,. In the worst case, a maximum
node inHj is balanced with a maximum node H;, which results in a node having
[(@maz + bmaz)/2] tokens. Similarly, balancing the minimum nodes yields a node
With | (@min +bmin ) /2] tokens. The difference is at mast 2: [(amaz + bmaz) /2] <

Unfortunately, this bound is tight. Consider the following initial token distribution:
Assigna + f(v) tokens to node, wheref : v € V +— (number of 1-bits of node
v). Since neighboring nodes have a discrepancy of exactly 1, the token distribution
algorithm may leave the distribution unchanged. Moreover, the integer version of Al-
gorithm 4 does not even guarantee thdjacentnodes have a discrepancy of at mbst
in the final distribution.

Theorem 5.5. Even adjacent nodes may have a discrepancy after running the
integer version of Algorithm 4.

Proof. We recursively construct such a worst case, where Aaéte! hasd tokens and
its adjacent nodé? has none.

d = 2: Consider the initial distribution where nodes 00, 10, 01, 11 have 2,1, 1,0
tokens respectively. In the first step, the pair (00, 10) is rounded up in favor of 00, and



(01, 11) in favor of 01; in the second step, (00, 01) to 01 and (10, 11) to 10. The claim
holds.

d — 1 — d: Consider ad — 1)-dimensional sub-cub&,. By the induction hy-
pothesis, nodé1¢-20 hasd — 1 tokens and =10 has none. With the same rounding
strategy, it must be possible to construdtda— 1)-dimensional sub-cub&l/; where
every node has exactly one token more than its corresponding néfig ire.,01%-21
hasd tokens and.~'1 has 1. In the next step, we balance the sub-cubes as follows:
The pair 014720, 014721) is rounded up in favor 091¢-21, so01¢~! hasd tokens,
and the pair(¢=10, 19-11) in favor of 19710, yielding no tokens at all at nod¢. All
other pairs are rounded arbitrarily. O

So far, we have not specified which node gets the additional token if two nodes
with an odd sum of tokens are balanced. We will show that if the additional token is
assigned in a smart way to one of the two nodes, the final worst-case discrepancy is
smaller. We will call an algorithm which decides for each edge which node gets the
additional token aounding strategyl’ : £ +— V.

First, we present a rounding strategy which yields a discrepancy of at[a)dst
If a nodev = by...b;...by—1 is balanced with anode = by...b;...by_1, the potential
rounding token is assigned taf ; @ (@ 0 b, ;) is even, otherwise it is assigneddo
Here,® and@p are functions for addition modulo 2.

Theorem 5.6. For this rounding strategy it holds that the final discrepancy never ex-
ceedsd/2].

Proof. Consider al-dimensional hypercube, a node= by...b;...by_1 and its neighbor

= bg...b;...bq—1. Obviously,v andu have different parity sums, and hence the
strategy is well-defined. Note that wh@?;é b; is constant; changes parity in every
step, sav is rounded up at most every second time. We prove by induction thasif
even, the discrepancy is at mast. The correctness of the claim for the case where
is odd is a simple consequence.

d = 0: Trivial.

d — d 4+ 2: Consider fourd-dimensional sub-cubeH, having a maximum of

A0 tokens, Hip (maximum Al ), Ho; (maximum A%l ) and Hy; (maximum
ALL ). By the induction hypothesis we know that the mlnlmum numbers of tokens are
at leasa?rgzn = A?r?ax, >\711?1n )\'}r(z)cu_7 )\91117,71 A?V:}H/J ) and/\rln%zn = A}r}auL_7

First, Hyg is balanced agamsHlO andH,; againstH, thenHoo againstHy;, andHg
againstH.
By our construction the new minimum node has at least
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Aozt Aii’w A?ﬁa,ﬂi:m Aozt A;?M Aoz tAmaz
- H( 1+1 ﬂ P | + [y 1“

2 2

It is easy to verify that the discrepancy grows at most by 1:
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Is there a rounding strategy that defiraline, i.e., independently of the initial
distribution, for each edge = {u, v} on the hypercube whetheror v gets the over-
flow token and that guarantees an optimal discrepancy of at most onelafteps
of our algorithm? Consider tw¢ — 1)-dimensional sub-cube&, and H; with
Yv € V(Hp) = v has eithem or a + 1 tokens andvu € V(H;) = u has either
b or b + 1 tokens. We require thal distributes the tokens i, and H; such that
“a-nodes” are never balanced withrfiodes” (resulting in a node With%bj) when at
the same tim€a + 1)-nodes are balanced agairist+ 1)-nodes (resulting in a node
with [2£2] + 1), which would yield a discrepancy of two {f + b) = 1 (mod 2).
Assume thatd, hasA tokens in total andd; hasB. Moreover, letd mod2i—! = o
and B mod 2! = g, i.e., Hy hasa nodes witha + 1 tokens andd; hasg nodes
with b + 1 tokens. A possible strategy far would be to placdiy’s additional tokens
at nodes 0, ..q — 1 and H,'s additional tokens at nod&s — 1, ...,2¢ — 3, given an
arbitrary order on hypercubes.

Lemma 5.7. There is no off-line rounding strate@y which places tokens with respect

to such an order for every initial distribution. More generally, it is impossible to avoid
balancing maximum against maximum and minimum against minimum at the same
time, yielding a final discrepancy greater than one.

Proof. Let |H| := (number of tokens /) mod2¢. Consider two 2-dimensional sub-
cubesH, and H; with |H;| = 2 for i € {0,1}. There are two possible configurations

to avoid a discrepancy of two in the 3-dimensional hypercube: Piag¢e rounding
tokens on the top at 01 and 11 (and heiit€s rounding tokens at the bottom), see
Figure 5.3.a on the left, or place them along one of the diagonals, e.g. 01 aif 10 (
uses the other diagonal), see 5.3.a on the right. In the upcoming section, we will discuss
both possibilities in turn.

Tokens at 01 and 11We use only the left half of Figure 5.3. Consider the initial
distribution of Figure 5.3.b. Note that there is no rounding strategy to achieve the
desired configuration if we first balance dimension 1 and then dimension O.

Hence, we can concentrate on the case where we balance dimension O first. There
are only two possible rounding strategies, depicted in 5.3.c and 5.3.d, where the arrow
points to the node which gets the rounding token if there is any. We consider these
cases in turn.

For |Hy| = 2, we always achieve configuration 5.3.a.|Hy| = 3, there are two
possible configurations to place all three rounding tokens, see 5.3.e and 5.3.f. However,
it is not possible for every initial distribution to place the rounding tokens this way:
5.3.g gives a counter example for 5.3.e, 5.3.h is a counter example for 5.3.f.

The same holds for 5.3.d: Here, 5.3.i gives a counter example for 5.3.e and 5.3.j is
a counter example for 5.3.1.

Tokens at 01 and 10For this section, we use the right half of Figure 5.3. For
symmetry reasons, we can concentrate on balancing dimension 0 first and then dimen-
sion 1. Consider the initial distribution of Figure 5.3.b. Again, there are two possible



rounding strategies, shown 5.3.c in and 5.3.d. For the case \Wgre- 3, the counter
examples for 5.3.e and 5.3.f are shown in 5.3.g, 5.3.h, 5.3.i and 5.3,j.

Hence, no rounding strategy that prevents balancing maximum against maximum
and minimum against minimum for the cadé,| = 2 and|H;| = 2 can ensure the
position of the third additional token iH, if |Hy| = 3, which — as a consequence —
may collide with the additional token df; given|H;| = 1. O
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Figure 5.3: Rounding Stratedg for H,,

It is even possible to show that for every off-line rounding strategy the discrepancy
growslinearlyin d.

Theorem 5.8. For every off-line rounding stratedy, the worst-case discrepancy is in
Q(d).

Proof. We show that for any rounding strategy instance, it is possible to construct
an initial distribution which yields a discrepancy of at leaét2]. Two (i — 1)-
dimensional sub-cube®, and H; are balanced oR‘~! edges,k pointing to H,
(rounding up in favor ofH,), for k € {0,...,2¢"!} and 2! — k pointing to H;.
Without loss of generality assume thiat> 2¢=2. Further, letS be the set of edges
pointing to H, and letSy, be the endpoints of these edges which belong to the sub-
cubeH, for b € {0,1}. In our initial distribution,a + 6. tokens are assigned to nodes
in Sg,, a + 8. — 1 to the nodes ISy, anda + 6. to all other nodes, wherg, is a
constant defined for each edgsuch that the largest node has exaatlpkens. Fig-

ure 5.4 shows such a distribution whefe= a + 6.: Sub-cubeH, has at leasp?—2
incoming edges, hence, according to our initial distribution, it gets at2¢asttokens
more thanf; .

More formally, consider the series of sub-cutiés®), ..., H(?) recursively de-
fined as follows: H(@ is the wholed-dimensional hypercube; far € {1,...,d},
H(=1) is the(i — 1)-dimensional sub-cube (across dimensienl — i) of H(*) which
has more incoming edges. Consider a node by...bg_1_;...bg—1 and its neighbor



u = bg...bq_1_i...ba_1 Where it holds thatv € V(H®)) A (u € V(H~Y)) (this
implies thatv ¢ V(H(=1)) andi > 0. In the initial token distribution,

tokensatuminus 1 ,if = Y(v,u)

tokens aw = )
tokens atu ,ifv =T (v, u)

If i = 0, v is assigned tokens. Hence, balancing the two sub-cube&/6f requires

no token transfer at all. Given this description of the initial token distribution, the total
number of tokens in the graph can be computed. We will show that the result implies
the existence of a node having at mast [ +2] tokens after the distribution; together
with the fact that there exists a node havintpkens, the claim follows.

We do a bottom-up analysis, always counting the number of tokens in the biggest
i-dimensional componerdi ). H(®) hasa tokens. Adding a node with — 1 tokens
gives2a—1 tokens inH"). H(!) has at least one incoming edge, and hence it is merged
with a hypercube having at mo&t — 2 tokens, yieldingta — 3 tokens inH (), H®)
has at least two incoming edges, therefore it has at (dast 3) + (4a — 5) = 8a — 8
tokens. And so forth.

Let §; be a2! minus the total number of tokens i, that is,d, = 0, §;=1,

§2=3, 63=8 etc. So there are at mag2? — ¢, tokens in the whole hypercube by our
constructiong29=! — 6,_; in the larger half anda2? — 6,4) — (a29~' — 64_1) in the
smaller half of the last step (across dimension 0). We have

0 = 20p_1+ k=2 = | =
2j5k_j +j2k72 =..=
K15 + (b — 1)2°72 = (k4 1)27 2

(a2¢—(d+1)2972)—(a2¢7 1 —d2¢—3%)
< 2d—1 -

Since there ar a— % tokens on average in the
smaller halfl’ (H (@) \ V(H(@=1)), there must be a node having at mpst- 42 | =
a — [%+2] tokens.

Alternatively, it is possible to calculate the total number of tokens in the smaller
half of the last step directlyi, = 1, §; = 2, 2 = 5, etc. and

O = 251%1 + k=2 = | =
= 25 j+j2F ==
2151 + (k —1)2572 = (k 4 3)2"2.

Fork = d — 1, we get agairf @22 "] — [d+2), =

Remark 5.1. The technique of the proof of Theorem 5.8 can be used to show that
the bound of Theorem 5.4 is tight. For this, we consider a hypercube veltiengo
i-dimensional sub-cubeH, and H, which are balanced havg’ edges in thesame
direction. The discrepancy per edge is exactly 1 and the initial distributionfig-a
point for this rounding instance, that is, the distribution is never changed during the
execution of our token distribution algorithm. Starting with a nedsavinga tokens,

the biggest 1-dimensional hypercube as— 1 tokens, the biggest 2-dimensional
hypercube haga — 4, i.e.,00 = 0,6, = 1, §o = 4, /3 = 12 and so on. We have

6 = 20k_1+ k=1 — pok—1

Hence there arer — g tokens in the whole hypercube on average. Because of the
symmetric structure of the initial distribution, the minimal node has d tokens.



1, 1,11

Figure 5.4: Initial Distribution for Discrepancy(d)

Next, we will study aronlinerounding strategy which depends on the initial distri-
bution. A simple idea is to assign the additional token to the node which had less tokens
before balancing. Unfortunately, given an initial distribution where every nodas
a+ f(v) tokens, wherg : v € V — (number of 1-bits of node), the final discrepancy
is as large ad. To see this, note that after balancing across dimeristbie distribution
is isomorphic to the distribution before balancing with..b;...bq—1 — bg...b;...bq_1.

There may smarter online rounding strategies which achieve smaller discrepancies.
However, it seems that these strategies require more information on the initial distribu-
tion than the one that can be obtained locally by the neighboring nodes. We will not

consider this approach further here.

Last but not leasfl” could be computed randomly, assigning the potential rounding
token to one of the endpoints of the edge according to the outcome of a perfect coin
flip. First, we show that that the probability thatdadimensional hypercube has a
discrepancy ofl with a randomized rounding strategy is very small. We need some
helper lemmas.

Lemma 5.9. If during the execution of the integer version of Algorithm 4 on hyper-
cube H there is ani-dimensional sub-cube with a discrepancy less thathe final
discrepancy is less thah

Proof. First, we show that combining two sub-cubBg and H; with discrepancies
Apy, and Ay, respectively results in a discrepancy of at most {a&y,, Ay, } if
Ap, # Ap,. Without loss of generality, assume th&g;,, > Ag, . Let ), be the min-
imum and), the maximum node it,, for b € {0,1}. In the worst case, we compare
the minimums and the maximums and have one rounding error, hence the new mini-
mum node has22+21 | and the maximum node hageits] — [Aotlmtutam |
[/\0+AH0+;1+AH071—| _ AHU + [AO+§1711 _ AHU + L%J

It follows that the discrepancy may only grow if we balance two sub-cubes of the
same discrepancy. On the other hand, balancing two sub-cubes of the same discrepancy
can increase the discrepancy at most by one. O

Lemma 5.10. If the final discrepancy after the integer token distribution ori-a
dimensional hypercube i§ there is exactly one maximum and one minimum node.

Proof. Proof by induction.
d = 1: The claim holds trivially.



d —1 — d: From Lemma 5.9 we know thaf may only have a discrepancy of
d if the two (d — 1)-dimensional sub-cubel, and H; have a discrepancy of — 1.
Moreover, by our induction hypothesi&, and H; both have exactly one node with
A tokens and one with,, + (d — 1), for b € {0, 1} and some arbitrary, € N. The
resultingd-dimensional hypercube has a discrepancy dfand only if parity(A\o +
(d—1)) # parity(\ + (d — 1)), and if the two maximum nodes are balanced against
each other, resulting in exactly one node wit#2+ | + d tokens. Similarly, the new
minimal node can only be either the minimal nodetf or the minimal node of{; in
order thatd := Hy U H; has a discrepancy af O

We can now calculate the probability that the random rounding strategy yields a
discrepancy ofl tokens.

Theorem 5.11. Lete denote the event that&dimensional hypercube has a final dis-

crepancyd under a randomized rounding strategy. It holds tRafs] < (%)2d+2d71—d—1.

Proof. Let p(i) be the probability that afrdimensional hypercube has a discrepancy
of i. It holds thatp(i) = % 5=p(i — 1)p(i — 1) for i € {1...d}: The probability that
ani-dimensional hypercube has a discrepancyisfthe probability that both its sub-
cubes have a discrepancyiof 1 times the probability that the parity of the maximum
nodes is different and rounding takes place, times the probability that both maxima
are balanced against each other. Since we do not consider the minima at all, we may
overestimate. As a recursion basis, we know tita} = 1, sop(1) = 1 andp(2) =
etc.

We have

p(d) =

N |

11\ 1 1\*"

= 5 (2 2(1—71 <2di) (p(d—z))2 = =
2d—1 2:1—1

1 1 1 1 d
B dl:[1 1 2t d—1 1 2t~ ! B
B 2) Ll d— B

=0 i=1

d—1 2i 2(1—1

Il
N
N |
N———

™

Of course, a statement about the expected discrepancy is of greater interest.

Theorem 5.12.Let X be the random variable for the final discrepancy id-dimensional
hypercube. It holds thaB[X] < 3.

Proof. It is possible to apply our technique of the proof for Theorem 5.8 also here.
However, the difference of the number of tokens in two sub-cubes is now given by a
random variable.

In our randomized rounding scheme, the rounding direction of each edge it deter-
mined by a perfect coin flip. LeX; be the random variable denoting the number of
incoming edges of & — 1 — i)-dimensional sub-cube. Since there afe!~* edges



connecting twad — 1 — 4)-dimensional sub-cubed, and H;, X; has the binomial
distribution X; ~ B(2¢-1~% 1/2). If rounding happens on every edge, the sub-cubes
H, and H, differ by ¢, tokens after balancing, whebe := 2 - | X; — E[X;]|, and the
random variables; are mutually independent.

Assume that the in the final distribution the maximum nmdeaasazitlolfens. We
show that the average number of tokens in the system is atdeas?%w, by
counting the average number of tokens in the biggeiimensional sub-cubes which
containv for ¢ € [0,d]. Obviously, the O-dimensional sub-cube consists only of
and has: tokens in total. In the next step, this sub-cube is combined with another O-
dimensional sub-cube havinag- §,_1 tokens. The resulting 2-dimensional hypercube
having2a — 641 tokens is combined with a hypercube having , tokens less, so
there arela — 204_1 — d4_o tokens in total, and so forth. Obviously, aftésteps, we

havea2¢ — Zf;ol 27§, tokens in the whold-dimensional hypercube,— izg 20
average.

It remains to calculatéZ[d;], which is twice the mean deviation of the binomial
distributed random variabl&;. We have

on

1 2 ygd-1-i gd—1—i | (1) ‘
E[5] =2 —— . Z( . )‘j_ —| L avmr=

" ogd—1—i
2 =0~/

Inequality (1) is due to Chernoff, see Appendix A.

Hence
d—1 -1 =
Y 2B = 2wy 2272 =2y/m27 Y 22
=0 =0 =0
NS df(ﬂ)i omatrt (V211
= i = i -_
i=0 V2-1
< VT od
V2 -1

Thus, having a node with tokens, the average number of tokens is at least

fﬁr By symmetry, the expected final discrepancy is twice as much. Moreover,

according to Stirling’s approximation, see also Appendix A, we overestimated by a

factor of at leastr, and therefore the total discrepancyeis% . \/‘5/1 = 2.73. O

5.2.2 Dynamic Token Distribution

We turn our attention now to the more interestahgamictoken distribution problem
and assume that at the beginning of each step, a “token adversary” inserts dtandst
removes at mosk tokens at arbitrary nodes. We consider again our token distribution
algorithm (Algorithm 4), which in the dynamic case cycles forever over the dimensions,
that is, after balancing dimensiah- 1 it will again start with dimension 0. It can be
shown that for any initial distribution and in the case of non-fractional tokens, after the
first d steps of Algorithm 4, the discrepancy will forever be bounded by2.J + 2L.

Lemma 5.13. In the dynamidractionaltoken distribution, the number of tokens at a
node depends only on the adversarial token insertions and deletions of tlieskagts

and on the total number of tokens in the system. It does not depend on the history of
changes that lie more in the past!



Proof. Assume that a total amount @f tokens are distributed in two different ways

on thed-dimensional hypercube. According to Theorem 5.2, each node has exactly
2% tokens after steps in the absence of an adversary. On the other hand, the token
insertions and removals of the adversary that happen in-between can be treated as an
independent superposition, as the corresponding operations are all linear. [

Based on Lemma 5.13, we prove that the discrepancy of the dynamic integer token
distribution is at mosti tokens larger than the discrepancy in the fractional case at
every moment of time.

Lemma 5.14. Consider an arbitrary node € V(H) in the d-dimensional hyper-
cubeH. Let|v|i** denote the number of tokensafor the (dynamic) integer token
distribution at timet and analogouslyv|/™* for the (dynamic) fractional token dis-
tribution. Moreover, an arbitrary adversaryl, ., (J, L, d) is assumed. It holds that
vt |(Joli™ = ol ™) < 1.

Proof. Assume that initially, i.e., fot = 0, the integer and the fractional distribution
are the same. For symmetry reasons, it is sufficient to show the upper hafid<
lvu[{7*¢ + 4. First, we prove by induction that|i"* < |v|{"* + £ for the firstt steps.

t = 1: If v hasa tokens and is balanced with nodehavingb tokens, we have
lw[i*t < [222] and|v|{™*° = 2£* and it holds thaju| " — |v|{"*® < 1. Note that this
remains true when the adversary now changes the number of tokety at tokens:
(Jolf™ + ) = (ol + ) = ol — [ol{™ < 3.

t — t + 1: Consider two nodes andv which are balanced. It holds that

‘ int int Uv| e 4 iJ + Uu|tmc + iJ
‘vﬁitl S ‘vlt + |u|t S t 2 2
2 2
“U‘tv‘ac + %J + Uultrac + %J + 1
- 2 2
ol "+ )T+ i+ 1 rae 1+ 1
< vl |ul; _ |’U|{+1 + )

2 2

The second inequality is due to the induction hypothesis and the facutiidtand
lu|i"t are integers. Again, the difference betwéefy*® and|v|; "¢ is not affected by
the activity of the adversary.

Thus, a node can deviate at most g)yrom its fractional value ind steps if the
initial integer and fractional distributions are the same. However, this also holds for
all later steps. To see this, consider the state of the system at timel + i for
i = 1,2,.... Let's define a fractional distribution which is the same as the integer

distribution at time — d: |v|{jf := [v]i" . As we have already shown, at timeit

holds thafv|!* e [|u|§f”’c —-4 |v|{’““C + £]. However, by Lemma 5.13, it also holds

that|v|/" = [v] /7. O

Let ¢ ¢roc ande;y: be the discrepancy at any time of the fractional and the integer
token distribution algorithm respectively.

Corollary 5.15. It holds thatg;,; — ¢frec < d given an arbitrary token adversary.



Theorem 5.16. Given an adversaryd,q,(J, L, 1), in a d-dimensional hypercube it
always holds thap;,,; < 2J + 2L + d, if the initial distribution is perfect (discrepancy
0).

Proof. We show that thé&ractionaldiscrepancyp ¢, is bounded by.J+2L. Together
with Corollary 5.15, the claim follows. Lef; < J andL; < L be the insertions and
deletions that happen at the beginning of stdfirst, we consider the case of joins only,
i.e., L; = 0. Assume that all/; tokens are inserted at node= by...b;...b4—1 Where

i :== t modd. In the upcoming paragraph, all indices are implicitly moddldn step

t, according to the token distribution algorithmkeepsJ; /2 tokens and send$; /2

to nodeu = bg...b;...bg_1. In stept + 1, J; /4 are sent to nodes)...b;b; 1 1...bs_1 and
bo...b;b;11...bq—1, @and so on. Thus, after step-d— 1, every node in the-dimensional
hypercube has the same share‘Z—]g)ftokens from that insertion. We conclude that a
node can have at most all insertions of this step, half of the insertions of the last step, a
quarter of all insertions two steps ago and so on:

Ji—1 | Jio Ji—(a-1)y | Ji—a  Ji—(ar1)  Ji—(a+2)
J,
t + 5 + 1 +...+ 5d 1 + od + 5d + 5d +
<2J shared by all nodes

SinceJ;—; < Jfori =0,1,2,..., we havep ... < 2J. For the case of only token
deletions, the same argument can be applied, yielding a discrepancy of a2 most
Finally, if there are both insertions and deletions which do not cancel out each other,
we havep frq. < 2J + 2L. O

5.2.3 Weighted Token Distribution

Assume a heterogenous system where some peers are more powerful than others and
assume that a token represents a job of unit size. In such a scenario, instead of dis-
tributing the tokens uniformly among all nodes, it may make sense that powerful peers
are assigned more tokens than weak peers. We call a setting where tokens have to be
distributed with respect to such a criterisvaighted token distribution problerm the
following, only the static problem is studied.

More formally, letw; be the weight of a nodé € V. Furthermore, lef? be the
number of tokens the initial distribution assignsito\; the final number of tokens at
i, and \; the number of tokens at some moment of time during the execution of the
weighted token distribution algorithm. We require that for every nodeV it holds
that\] = ¢«—<=— - 3. |, A,

Yiev Wi

For simpleicity, we consider arbitrary divisible tokens only here (fractional case).
Note that the equal distribution problem is a special instance of this problem for1.
How can Algorithm 4 be adapted for this more general problem? One idea might be to
balance two nodes andu over a dimension as follows: sendsﬁ - )\, tokens to
u andu sendsw“j:wv - Ay tow. It can quickly be verified that this yields only a very
bad approximation of the desired distribution.

The correct solution needs the aggregated weights of both sub-cubes which are bal-
anced — a typical application for DASIS (see Chapter 4)! &gt ,, denote the sum
of weights in the component consisting of all nodes with praﬁxbj. Our weighted
token distribution algorithm is shown in Algorithm 5 and rungii) rounds.




Algorithm 5 Weighted Token Distribution
. (* algorithm running on node := by...bg_1 *)

[

2: run DASIS (® := +, initval := 0, valuesw; € R); (* ©(d) rounds *)
3: for j:=0tod — 1do
4 SEND 2% .\, tokens TO nod@y...b;...by1;
bg---bj bo.--bj
5 RECV tokens and update,;
6: end for

Theorem 5.17. Given ad-dimensional hypercubg, Algorithm 5 assigns each node

Wy )\0

?

A=

ZiEV(H) Wi i€V (H)

tokens.

Proof. Consider a node := bg...bg—1. In the following, Hy,.. ,, denotes the set of all
nodesv € V(H) with prefixby...b;. By induction after step, there are

ZiGV(HbO_..bj)wi )\0

Z’LEV(H) wi i€V (H)

tokens in the sub-cube of nodes with prefix..b;. Hence, wherj = d — 1, nodev
alone has
Wy 20
(3
Z’LGV(H) Wi ’LEV(H)
tokens.
j = —1: For the empty prefix, the claim holds trivially.
j — j + 1: By our hypothesis, there are

ZiEV(HbO...bj)wi Z )\0

EieV(H) Wi eV (H)

tokens in the sub-cube with prefis...b;. In stepj + 1, everyu € V(H) with prefix
bo...bj+1 sends
Who...bj 41

wbo.“bj+1 + wbo... i1

u

tokens to a node with prefik...b; 1, and vice versa. Thus, summing over all nodes
with prefix bg...bj41:

ZiGV(HhO...h

ZiGV(HbO___bj)wi j+1)w

A
ZieV(H)wi eV (H) ZiEV(HbO_,_b_7.+l)wi+ZieV(H

E——
bo-. By

:ZiGV(HbO.,.bj+1)wi Z 0
ZiEV(H) Wi i€V (H)




5.2.4 Related Work

The basic idea of our token distribution algorithm (Algorithm 4) has independently
been invented by Cybenko [5] where it is called the “dimension-exchange method”.
Cybenko shows also that this algorithm yields a perfect discrepancydafieps of
guiescence in the fractional case. Moreover, Plaxton [9] has shown that this algorithm
yields a discrepancy af tokens in the worst case if the tokens are integer.

5.3 Simulated Hypercube Topology

After studying some issues concerning scalability, we present two different kinds of
fault-tolerant simulated hypercubes in this chapter. The repairing algorithms run both
in a time of quiescence and tolerate a constant number of joins and leaves per adver-
sarial round.

5.3.1 Scalability

The nodes of a simulated hypercube are represented by several peers. In the fol-
lowing, we assume that the peers of the same node are completely conriettéed (
connectiony while the peers of two adjacent nodes are connected completely bipartite
(inter-connections Now consider such a simulated hypercube of a fixed dimension
d, where an adversary sporadically inserts and removes arbitrary peers. Obviously,
there are two problems to be addressed: First, if the adversary inserts all peers at the
same node, the peer degree grows linearly with these insertions. The solution here is
to distribute the peers among the nodes all the times, for example based on the ideas
presented in Chapter 5.2, or based on a Hamiltonian cycle (see later in this chapter).
However, even with a perfectly uniform distribution, the peer degree still depends lin-
early on the total number of peers in the system. Hence, the second problem to be ad-
dressed is the change of the dimension of the simulated hypercube: If more and more
peers join thel-dimensional system, the nodes should expand to the next dimension,
and vice versa if there are many leaves.

As a first approach, assume that a nede- by...b;_1 whose number of peers
reaches a certain threshold splits into two nodes by...by_10 andv’ := bg...bg_11,
where both new nodes get half of the peers. The problem of this approach is that
different nodes expand at different times because they have a different amount of peers.
We have to make sure that the hypercube does not degenerate, that is, we would like
that the simulated topology always looks “similar to a hypercube”. For example, we
might postulate that a node can expand to dimendien2 only if all other nodes
have been expanded to dimensib# 1, and vice versa for the shrinking hypercube. A
simple idea to achieve this is to run the peer distribution algorithm presented in Chapter
5.2 with the difference that if a node— which has already expanded — is balanced
with a non-expanded neighbaer it represents alse’. While this trick works fine if
peers were fractional, see Example 5.1, it does not work in reality as the discrepancy is
a function ind (see Chapter 5.2).

Example 5.1. Figure 5.5 shows an example where only node 01 is not expanded to
dimension 2. Balancing dimension 0, node 110 represents both the peers of itself and
those of its expanded node 111, and for dimension 1 node 000 represents the peers
at 000 and those at 001. Thus, in the final distribution, node 01 will have double the



number of peers of all other nodes and will be the first to exceed a given threshold and
expand, yielding a perfect 3-dimensional hypercube.

Dim 1
Dim 2

Dim 0

Figure 5.5: Figure for Example 5.1

In Chapter 5.3.2 we present a repairing algorithm which ensures that an expanded
node will never expand again before all other nodes have been expanded as well, and
vice versa for the reductions. This is achieved by distributing the peers with respect
to a Hamiltonian cycle. An alternative approach is presented in Chapter 5.3.3: Based
on the state aggregation algorithm presented in Chapter 4, the nodes will expand or
reduce simultaneously, that is, in the same round, although they have not exactly the
same number of peers.

5.3.2 Repairing in Time©(d) with a Hamiltonian Cycle

In order to prevent that an expanded node is expanded again before all other nodes have
been expanded, or analogously, to prevent that a reduced node is reduced again before
all other nodes have been reduced, a special form of peer distribution is used, based on
a Hamiltonian cycle, see Definition 5.3.

Definition 5.3 (Hamiltonian Path, Hamiltonian Cycle). A directed path passing
through all verticesv € V of a graph is calledHamiltonian path A Hamiltonian
cycleis a cycle containing all vertices € V.

While the decision problem whether a general graph has a Hamiltonian cycle is
NP-complete [4], there is always a Hamiltonian cycle on a hypercube. We show how
such a cycle can efficiently be computed.

Theorem 5.18. Algorithm 6 defines a correct Hamiltonian cycle orl-aimensional
hypercube.

Proof. Except for the last step, Algorithm 6 always visits the neighbor in the highest
possible dimension which is still unvisited. We show by induction that this strategy
produces a Hamiltonian path. Let~~ v denote a path from a nodeto a nodev.
It holds that, starting at nod&b;...bs_1, this strategy produces a Hamiltonian path
b0b1~-~bd—l ~ bObl---bd—l- o

d = 1: The path has only one edd®, by ), and the claim holds.

d — d + 1: Let Hy be thed-dimensional sub-cube of all nod&s{0, 1}¢ and H;
be thed-dimensional sub-cube of all nodég{0,1}¢. By the induction hypothesis,
our algorithm first visits all nodes aff, on the pathu := bgb;...bg_1bg ~ v/ =
bob1bs...bg_1bs. The highest dimensional neighbor of which is still unvisited is
nodeu’ := byb1bs...by_1b4. From there, according to the induction hypothesis, our



Algorithm 6 Hamiltonian Cycle
1: (* start at nodéy...b;_1 *)
2: visited29]:=empty;

3: for i :=1t02? —1do

4. for j:=0tod—1do

5: if — visited[bg...bg—1—;...ba—1] then
6: visited[bg...bg—1—;...bq—1]:=true;
7 visit bOmbd—l—j---bd—l;

8: break;

9: end if

10: end for

11: end for

12: Visit bg...bg_1;

algorithm produces the Hamiltonian patb,bs...by_1bg ~> v := bob1bs...bg_1bg ON
H,. The resulting path on all nodés, 1}+! of the (d + 1)-dimensional hypercube is
u ~ v (v, u)u’ ~ v. Obviously, this path is also Hamiltonian.

Hence, Algorithm 6 produces the correct Hamiltonian gath...bg_1 ~ bob;...bg_1
and then returns to nodgb; ...bg_1. Since{bgb;...bg_1,bob;...bq_1} € E, the claim
holds. Figure 5.6 shows an example fioe 4. O

Figure 5.6: Hamilton Cycle on a 4-Dimensional Hypercube

Our repairing algorithm runs in a phase of quiescenc®@f) steps and works
as follows: Assume that in d-dimensional hypercube, every node is simulated by
betweenC and4C peers for some arbitrary constafit If the number of peers at
a node exceed$C, the node sends the superfluous peers to a special node given by
a distributed pointer HCP; on the other hand, if the number of peers falls b&ypnd
new peers are requested from the same special node, see Algorithm 7. Like this, we
ensure that changes happen only at that special node. The idea is that the distributed
pointer HCP always points to the last hode that has been expanded. We will describe
a repairing algorithm that tolerates at mdst= C' — 1 leaves and/ := C joins per
adversarial round.

First consider the case where in the adversarial round, there have only been at most
C — 1 leaves and no joins. The HCP node receives all superfluous peerd aftér



Algorithm 7 Scalable Hypercube in Repairing Tirddd)
1: if number of peers- (C' — x) wherez > 0 then
2:  SEND "requesting: peers” TO HCP;
3: end if

4: if number of peers- (4C + z) wherex > 0 then

5

6

SENDx peers TO HCP;
- end if

steps — notl, as some nodes are already expanded. We know that before the adversary
round, HCP had an extension node with at I€agteers. Therefore, the HCP node can
satisfy all L leaves, but maybe has to reduce its extension node and send HCP back
to its predecessor, that is, the last node that has been expanded. On the other hand,
if there are onlyC' joins and no leaves, the HCP node checks whether its extension
node or itself has still enough space for the received peers. If not, the HCP forwards
all peers to its successor node on the Hamiltonian cycle defined airdimensional
hypercube. If this successor node has to expand to accommodate the new peers, it
becomes the new HCP. The case where leavesoins happen is straight-forward:
The HCP node uses overflow peers to satisfy the leaves and the remaining leaves if any
are handled as described above. At the end of each phase of quiescence, all nodes are
informed about the new position of the distributed pointer HCP by a broadcast.

Thus, the nodes expand well ordered with respect to a Hamiltonian cycle. When
the expansion is complete for a dimensibat nodev, the HCP returns to the starting
point, where the expansion for dimensién 1 starts. Figure 5.7 shows the growth
of the hypercube and the position of the HCP pointer. We conclude that this algorithm

Figure 5.7: Growth of Hypercube and HCP Position

works in a phase of quiescence®fiog V) steps, wheréV is the current number of
peers in the system. The presented algorithm is a very simple version and could be
optimized in several respects.

5.3.3 Repairing in TimeO(1) with DASIS

The simulated hypercube system presented in the previous section has several draw-
backs, for example it is maintained by a repairing algorithm which needs a logarithmic
period (in the total number of peers in the system) of quiescence. We now introduce a



repairing algorithm which runs in a constant number of rounds. Again, the hypercube’s
nodes are simulated by a clique of peers, and peers of adjacent nodes are connected
completely bipartite. The repairing algorithm makes use of two components which
have already been presented:

e To distribute the peers evenly across the network nodes, we use the integer, con-
current version of our token distribution algorithm (Algorithm 4).

e The information aggregation system DASIS, see Chapter 4, is used to estimate
the total number of peers in the system. It allows all nodes to expand or reduce
at the same time. Like this, the topology is always a perfect hypercube.

First, note that for the special case of hypercubes, DASIS has another important
property.

Theorem 5.19. For the special case of d-dimensional hypercube, at timie DASIS
provides each node with an aggregated value which describes the correct state of the
system at time — d.

Proof. As has been pointed out already, DASIS guarantees that two nodes with the
same prefidy...h; always store the same value for this prefix. Since all nodes in a hy-
percube have the same number of bits, the information is propagated on a perfect binary
tree, that is, the prefik...b; stores the aggregated state of the nddesh; {0, 1}4-1¢
attimet — (d — 1 —1). O

The basic idea of our repairing algorithm is simple: In the phase of quiescence,
each node exchanges the new estimations of the total number of peers in the system
with its prefix buddies (one round of DASIS). Moreover, it balances the peers with its
adjacent node in dimensiaraccording to our token distribution algorithm (Algorithm
4), wherei is incremented moduld for every execution of the repairing algorithm.

If the estimated average number of peers per node the estimated total number of
peers in the system divided B — falls beyond a given thresholilT’, the hypercube
shrinks ¢ := d — 1), and analogously, if the average exceeds a given threghb|dhe
hypercube growsd(:= d + 1). The repairing algorithm is summarized in Algorithm

8. Note that these steps can indeed be executed in a constant number of rounds. In the
following, we will refer to a complete execution of the repairing algorithm phase

Algorithm 8 Repairing Algorithm in TimeD(1)
1: (* nodeby...bg_1 *)
: DASIS round: exchange estimated total number of peers with prefix buddies;
: update estimation vector prefagg[] accordingly;
: balance peers across dimensipn
i:=1+ 1 modd,;
. if (prefixagde]/2¢) < LT then
merge nodesy...bg_1 andby...bg_1 t0 by...bg_o;
d:=d-—1,
end if
if (prefix agge]/2¢) > UT then
split nodeby...bg_1 t0 by...bg_10 andbyg...bg_11;
d:=d+1,
end if

I




Consider the thresholdsT” := 9C + d andUT := 36C + 2d for some arbitrary
constantC' > 0. We claim that, given an adversad,,,(C, C') which may insert at
mostC and remove at most' peers per adversarial round,

1. anode is represented by more th@mpeers at any moment of time,
2. no node will ever have more thadC' + 3d peers,

3. the network diameter is bounded B)log N), whereN is the total number of
peers in the system, and

4. the peer degree is bounded Bylog® N).
Note that the criteria 1 and 2 imply the criteria 3 and 4.

Theorem 5.20. Let ¢y, c2, c3 and ¢y be constants greater than zero. In a simulated
hypercube with betweenC' + cad andcsC + c4d peers per node, where peers within
a node form a clique (completetra-connections and where peers between adjacent
nodes are connected completely bipartitegr-connections the network diameter is
in ©(log N) and the peer degree is bounded BYlog®> N), where N is the total
number of peers in the system.

Proof. There are2? nodes with©(d) peers each, yielding(d2¢) peers in total. Note
that2? < d2¢ < 227 for d > 1, and hencel = ©(log N). The network diameter is
d, so the first claim holds. Moreover, note that a peer®@s) intra-node connections
andd - ©(d) inter-node connections, yielding a peer degre®@bg? N). O

It remains to prove the first two criteria.

Theorem 5.21. A node will always have betweéh+ 1 and40C +3d peers. Moreover,
it holds that after a dimension change frai); to d,,e, 1t € [9C+d e, 36C+2d 1]
for at leastd,,.., + 1 phases.

Proof. We consider the cases where the average number of peers pen faltiebe-
yond the lower thresholfiC' + d,,;4 or exceeds the upper thresh8&tC + 2d,,;4 in turn.
Note that such an event will lead to a dimension change with a deldy;pfphases
only, see Theorem 5.19. We prove that after the change[9C + d,,cw, 36C'+2d 6]
for at leastd,,.,, + 1 phases, so the dimension remains stable for at zhst, + 1
phases. Moreover, this implies — together with Theorem 5.16 — that the discrepancy
before the next change is limited BY + 2L + d,,ep = 2C +2C + dpew = 4C +dper-
We consider phase where the nodes learn that¢ [9C + dy4, 36C + 2d14)-

Caseu < 9C + dyiq: Attime t — dyq, it held thaty < 9C + d,;q While at time
t — doiq — 1 we hadu > 9C + dyig- In dyig + 1 phases, there are at m@sgt;q + 1)C
leaves, squ > 9C +dyqg — (dotg+1)C > 8C +d,q before merging. Clearly, there must

do L
have been a node with at Ie?a%ﬁdjt do1q PEErs, so, given the discrepancyl6f + d,;q
(see Theorem 5.16), every node has at léaspeers before merging.

What about the maximum? At time— dyq, 1 < 9C + dyq, and there have
been at Mostly4C jOINS in dorq Steps, squ < 9C + doig + 944 < 10C + doa
before merging, ang < 20C + 2d,;4 afterwards. The maximum node has less than
24C + 3do1q = 24C + 3dpew + 3 peers.

Next, we show thats > 9C + d,,,, for the nextd,,.., + 1 phases after a reduction.
Attimet —dyg — 1, p > 9C + dyig = 9C + dpew + 1. The reduction doubles

the average number of peers per nodeuse 18C + 2d,.., + 2. Further, there




are at most{dyig + 1 + dpew + 1)C = (2dpew + 3)C leaves in the meantime, so
10> 18C + 2dpey + 2 — ClpsetBC > 180 4 2d,, — 1.

Finally, 1 < 36C+2d,eq fOr dpeyy +1 phases. Attime—dyig, i < 9C+dpew+1,
sou < 18C + 2d,¢., + 2 after the reduction. There are at m&f;q + dpew +1)C =
(2dew + 2)C j0INS, SOp < 18C + 2dy ey + 2 + Clnce DT <180 1 24, + 4.

Caseu > 36C + 2dyq: Attimet — dyg, > 36C + 2do1g = 36C + 2dpew — 2,
sou > 18C + d,ey — 1 after splitting; there are at mogt;;C = (dnew — 1)C leaves
in doiq Steps, Qi > 18C + dpeyy — 1 — 2= 5 180 4 d,,..,, — 2. According
to Theorem 5.16, the minimum node has more th&fi — 2 peers after splitting. At
timet —dyq — 1, 1 < 36C + 2d,14, and there are at mogi,;; + 1)C joins. So before
splitting, 1 < 36C + 2dy1q + (d";f}%)c < 36C + 2d,q4 + 1, and the maximum node
has at most0C + 3d,;q + 1 peers.

Next, we show thatt > 9C'+d,, ., for the nextd,,.., +1 phases after the expansion.
Attimet — dgiq, 1 > 36C + 2d g = 36C + 2d e, — 2, SO > 18C + dypeyy — 1 after
the expansion. Moreover, there are at m@sty + dpew + 1)C = 2d,,,C leaves, and
> 18C + dpew — 1 — 2pe2C > 17C + dype, — 1. Finally, p < 36C + 2diye,, for

the nextd,,¢., + 1 steps: Attime — dyjq — 1, 1 < 36C + 2dy1q = 36C + 2d ey — 2,
sopu < 18C + dnew — 1 after the expansion; moreover, there are at nidst; +

14 dpew + 1)C = (2dnew + 1)C joins, sop < 18C + dpeyy — 1 4 GdzentDC

2dnew

20C + dpew — 1. O

5.3.4 Worst-Case Fault-Tolerance vs. Scalability

The simulated hypercube topologies presented so far tolerate a constant number of
leaves, no matter how many peers the system actually contains. Of course, in a real
network, peers leave independently, and it would be nice if twice as many leaves are
tolerable as the number of peers in the system is doubled. Of course, this goal stands
in direct tension to the scalability goal.

Theorem 5.22. In the worst case, a grap@¥ can tolerate at most

minyev(a)dega(v) — 1
leaves wheréegq (v) denotes the degree of a nodes V(G).

Proof. Consider a node with degc (u) = min,cv(a)dega(v). If min,cv(aydega(v)
leaves happen, nodemay lose all its neighbors in the worst case and hence gets dis-
connected from the network. O

Thus, in the best case the fault-tolerance correlates linearly with the minimum de-
gree of any node in the graph.

5.4 DHT and Concurrent Adversary
5.4.1 Distributed Hash Table

A fundamental problem that confronts p2p systems is to efficiently locate the peer
that stores a particular data item. This operation is related to hashing and is there-
fore sometimes also known as distributed hashing in conjunction with distributed hash
tables (DHTs). While so far we have concentrated on the repairing of the simulated
hypercube topology, we must now also ensure that no data is lost during the churn.



There are several possibilities how data items can be stored on a simdiated
dimensional hypercube. Here, we assume that a data item is redundantly stored by
the peers of the node to which the data item hashes. That is, a data item (for exam-
ple a song) with a identifieid (for example the title of the song) is stored at the node
whose identifier matches the figbits of hash(id), wherehash(-) is a hash function
mapping the identifier space {0, 1}°>°. Of course, for all what matters in practice, a
hash function like SHAhaving 160-bit output is sufficient. Note that this solution has
the disadvantage that the data items and the nodes are glued together. That is, in the
worst-case, some nodes get much more data items than others, and a load balancing
which would equalize these differences is not possible.

We have not specified yet on which peers of the node a data item is replicated. As
arule, of course, we'd like to store copies at as little peers as necessary, while always
guaranteeing that the adversary can not remove all replicas of a given data item.

5.4.2 Concurrent Adversary

We will show that our distributed hash table based on the simulated hypercube is re-
silient toconcurrentadversarial churn, which is more realistic than our simple dynamic
model with phases of quiescence. This has major implications om#itenance al-
gorithm as has already been pointed out in the chapter aboungs. We assume here

that the adversary always acts at the beginning of a round. Again, the changes that an
adversary can do are specified with respetin@ intervals

5.4.3 Resilience to Logarithmic Churn

We give now a complete description of the new simulated hypercube system, which
tolerates/ := d + 1 joins andL := d + 1 leaves in any time period of 6 rounds, hence
— according to the formalism presented in Chapter 2 — an adversary afitypéd +

1,d 4+ 1,6). Note that this implies that the fault-tolerance is no longer constant, but
grows logarithmical with the total number of peers in the system.

One idea would be to store the data itemsabinpeers of the data item’s node.
However, we will show that this is not necessary to toletdtg,(d + 1,d + 1,6).
Moreover, this approach would have the disadvantage that each time a peer has to
change the node during the peer distribution algorithm, it has to delete all data items of
the old node an insert all data items of the new node.

This motivates the division of the peers of a nadato two categories: aore(C,
of at most2d + 3 peers and aeripheryP, consisting of the remaining peers. The data
items of nodev will only be stored by the core peers, while the peripheral peers are
used for the peer distribution algorithm.

In order to save some links, we assume that all peers within the same node are sill
completely connectedntra-connections Additionally, every peer is connected to all
corepeers of the neighboring nodéstér-connections Figure 5.8 shows an example
of this new simulated hypercube topology tbe 2.

In the next section we will present a maintenance algorithm which maintains this
simulated hypercube topology. In particular, it guarantees that (1) there is always at
least one core peer per node, hence no data items will ever get lost, and that (2) each
node has betweedi + 10 and45d + 86 peers at every moment of time. Note that, by a

1“secure Hash Algorithm”, National Institute of Standards and Technology, NIST FIPS PUB 186, U.S.
Department of Commerce, 1994.
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Figure 5.8: 2-Dimensional Simulated Hypercube

similar analysis as in the proof of Theorem 5.20 this implies that the network diameter
is bounded by (log N), whereN is the total number of peers in the system, and the
peer’s out-degree is iB(log? ).

5.4.4 The 6-Round Maintenance Algorithm

The6-round (maintenance) algorithmaintains the simulated hypercube topology de-
scribed in the previous section given an adverségy,(d + 1,d + 1,6). In particular,
it ensures that

1. every node has at least one core peer all the times and hence no data is lost;
2. each node has betwe8d + 10 and45d + 86 peers at every moment of time;

3. only peripheral peers are moved between nodes, thus the unnecessary copying
of data is avoided.

In the following, we will again refer to a complete execution of all six rounds
(RounD 1 - RounD 6) of the maintenance algorithm agphase Basically, the 6-
round algorithm works similar to the repairing algorithm described in Chapter 5.3.3: It
balances the peers across one dimension in every phase and estimates the total number
of peers in the system with DASIS. If the average number of peers pernéalés
beyond the lower threshol8T' := 8d + 16, the hypercube shrinks, and if it exceeds
the upper threshol&@T" := 40d + 80, it grows. After a detailed description of the six
rounds, we prove that the criteria presented above are indeed fulfilled.

In ROUND 1, every peer within each nodesends its ID plus the IDs of its joiners of
the last phase to all former adjacent peers withisuch that each peer withinlearns
the set of the currently active peers:in ROUND 2 to ROUND 6 are then based only
on the ID set of this snap-shot, which may not represent the current state of the system
anymore. In our description, the following convention is used: By $end a packet
to P,” we mean that every peer; in coreC, which is still alivesends that packet
to eachsurvivingpeerr, in the peripheryP,, and analogously for other formulations
involving an ID set.



We describe thé'" phase (modl) and assume that > 0. The case wheré = 0
is straight-forward and not explained further here. The following notation is used: If a
hypercube grows to dimensiaht 1, v denotes a node in the lowétdimensional sub-
cube and’ denoteg’s adjacent node in the high sub-cube. Analogously, if a hypercube
shrinks to dimensiod — 1, v denotes a node in the highi — 1)-dimensional sub-cube
that will be removed and is v's adjacent across dimensidn- 1.

RounD 1

Outline: Each nodev makes a snapshot of the currently active peers, denoted by the
ID setS,. The later rounds will only be based on these sets.

Sent Messages: Each peer of a node sends a packet with its own ID and the (po-
tentially empty) ID set of its joiners to all adjacent pewithin v.

ROUND 2

Outline: Based on the snapshot BOUND 1, the core peers of a hodeknow the

total number of peers in the node€ze(v) := |S,|. This information is needed for the
peer distribution algorithm and for the estimation of the total number of peers in the
system.

Local Computations: The core peers computéze(v) := |S,|.

Sent Messages: Each peer informs its joiners aboft. The core peer§, addi-
tionally send the numbesize(v) to their neighboring cor€,,, where nodeu is v's
neighbor in dimensioih— the node with whichy has to balance its peers in this phase.
The core also exchanges the new estimated total number of peers in its domains with
the corresponding adjacent cores.

RoOuUND 3

Outline:  Atthe beginning of this round, every peer within a nadeowssS,,, and the
transfer for the peer distribution algorithm can be preparedw lagfain be an arbitrary
node and. its adjacent node in dimensian We assume thatize(v) > size(u); the
case whergize(v) < size(u) is analogous and not described further here. The ID set
7T of peers that have to move from nodéo nodeu are thew (arbitrarily
rounded) peers in the peripheRy;, having the smallest identifiers.

Local Computations: The peers in each nodecompute the new periphefy, :=
Sy \ C,. The core remains the same.

Sent Messages: All cores forward the information about the new estimated total
number of peers in the system to their peripheral peers. Moreover, the core of the
larger nodeC,, sends the identifiers of the to be transferred p&er® C,, and the

numberze)=size(v) 1q the new periphersp,.



RouNnD 4

Outline: The transfer for the peer distribution algorithm is continued. Moreover, this
round prepares the dimension reduction if necessary.

Sent Messages: The coreC,, informs the peers i about all neighboring cores, ,
whereu; is the neighbor of: in dimensiony for j € [0, d—1], aboutC,, itself, aboutS,,
and about its peripheral peePs,. Moreover,C, informs its own periphery?, about
the newcomerg .

If the estimated total number of peers in the system is beyond the threshold, the
core peers of a nodewhich will be reduced send their data items plus the identifiers
of all their peripheral peers (with respect to the situatfter the transfer) to the core
of their adjacent node.

ROUND 5

Outline:  This round finishes the peer distribution, establishes the new peripheries,
and prepares the building of a new core. If the hypercube has to grow in this phase, the
nodes start to split, and vice versa if the hypercube is going to shrink.

Local Computations: ~ Given the numbefZ2®)—=z¢() 'the peripheral peef8, can
compute the sef selecting the”ze(”);w smallest elements iR,. From this, the
new periphernyP, := P, \ 7 is computed. Analogously, the peers in nad@ncluding
T) can compute the new peripheRy, := P, U 7.

Then, all peers of each nodecalculate the new cor@'<™: It consists of the peers
of the old core which have still been alive RounD 1, i.e.,C%¢ := C, N S, plus the
2d + 3 —|C, NS, | smallest IDs in the new periphef,,, denoted b)C,UA. Hence, the
new core is given bgr¢v := 94 UC%, and the new periphery By ¢ .= P, \ C2.

If the hypercube has to grow in this phase, the smafldst 3 peers in the new
peripheryP; ¢ become the new core of the expanded ndge Half of the remaining
peripheral peers, the ones with the smaller identifiers, build the new perigheand
the other half becomeB, . All these operations can be computed locally by every peer.

Sent Messages: The old coreC?!? informs all its neighboring nodes (i.e., their old
cores) about the new cof@™. Moreover(%? sends its data items to the peergjn.

If the hypercube is about to gro@?'? sends the necessary data items to the core
peers of the new nod€;. Moreover,Co' informs its neighboring (old) cores about
the IDs of its expanded cor®;. B

If the hypercube is about to shrink, all co@@ inform their periphery about the
peers arriving from the expanded node and the peers in the expanded node about the
new coreC*" and its peripheryC?'¢ copies also the data items @£ to the peers
A,

ROUND 6

Outline: Building the new cores and accomplishing the dimension change if neces-
sary.



Local Computations: If the hypercube has been reduced, every peer can now com-
pute the new periphery,.

Sent Messages: The old core2?'? forwards the information about the new neighbor-
ing cores to the pee&®* U P,.

If the hypercube has growg2!? forwards the expanded cores of its neighboring
nodes taall peers in its expanded node Note that his requires thaf'? remembers
the peripheral peers that have been transferredidROUND 5. a

5.4.5 Analysis

We show that, given an adversady,q, (d + 1,d + 1, 6) which inserts and removes at
mostd + 1 peers per phase, the 6-round algorithm indeed guarantees at least one core
peer per node at every moment of time, and that no core peer ever has to change the
node for the peer balancing. Moreover, we prove that every node has always between
3d + 10 and45d + 86 peers ifd > 0, which implies a logarithmic network diameter.

First, consider a much simpler system without any notion of core and periphery,
where the maintenance algorithm simply runs the peer distribution algorithm and the
information aggregation algorithm to count the total number of peers in the system,
and expands or reduces the hypercube with respect to the thredhibleds 8d + 16
andUT = 40d + 80 presented above. Moreover, assume that these operations are
performed in quiet phases, where the adversary may remove atimostand add at
mostd + 1 peers only in-between.

Lemma 5.23. For this simpler system, it holds that every node in the simuldted
dimensional hypercube has at leakt + 10 and at mostd5d + 86 peers at every
moment of time. Moreover, after the hypercube has changed its dimensiod,frotm
dnew, the dimension will remain stable for at leaxt,,.., + 1 phases.

Proof. We consider the cases where the average number of peers pen faltiebe-
yond the lower threshol8d,;; + 16 or exceeds the upper threshdlati,;; + 80 in turn.
Note that such an event will lead to a dimension change with a delady;pfphases
only, see Theorem 5.19. We prove that after the chgngg8d,,c., + 16, 40d,,¢., + 80]
for atleastd,,.., +1 phases. The dimension remains stable for at [dgst, + 1 phases
which implies — together with Theorem 5.16 — that the discrepancy before the next
change is limited b2 (d,e + 1) + 2(dnew + 1) + dnew = 5dnew + 4.

Casep < 8d + 16: Attime t — d,q4, it held thaty < 8d,;4 + 16 while at time
t—dyqa—1wehadu > 8d,4+16. Ind,q+1 phases, there are at mégt;q+1)(doia+

1) = d2,; + 2d.iq + 1 leaves, s > 8d,1q + 16 — W > 8,14 + 14 before
merging. Clearly, there must be a node with more thédy; + 14 peers, hence, given
the discrepancy did,;q + 4 (see Theorem 5.16), every node has more thgp; + 10
peers before merging.

What about the maximum? At timie- dy;q4, i+ < 8do14+ 16, and there have been at
mMostd,q(doig + 1) joins ind,q Steps, squ < 8dyq + 16 + W < 8dyiqg + 18
before merging, angd < 16d,,4 + 36 afterwards. The maximum node has less than
21dye + 61 peers.

Next, we show that, > 8d,,.,, + 16 for the nextd,..,, + 1 phases after a reduction.
Attimet — dyg — 1, > 8doig + 16 = 8d,e + 24. The reduction doubles the

average number of peers per nodeuse 16d,,.., + 48. Further, there are at most



(dota + 1)(dota + 1) + (dnew + 1)(dnew +1) = 2d?,,, + 6dpew + 5 leaves in the
meantime, S@ > 16d,,¢,, + 48 — M > 16d e + 41 > 8dye + 16.

2dnew

Finally, 1 < 40d,,e. + 80 fOr dypeyy + 1 phases. Attime — dyiq, 1t < 8dnew + 24,

SO < 16d,, + 48 after the reduction. There are at madsty(doig + 1) + (dnew +

1) (dnew + 1) = 2d2,,, + 5dpew + 3 jOINS, S04 < 16d00 + 48 + W <

16d,00 + 54 < 40d,,¢ + 80.
Caseu > 40d + 80: Attimet — dyg, > 40dyq + 80 = 40dm,, + 40, so
1> 20d,¢. + 20 after splitting; there are at mogtq(doig +1) = d2,,, — dnew leavVes

in dy1q Steps, squ > 20d,,¢,, +20— ”Q%T > 20d ¢ +19. According to Theorem

5.16, the minimum node has more thaéhi,,.., + 15 peers after splitting. At time
t—doia—1, it < 40d,14+80, and there are at mo§lyq+1)(dora+1) = d2,;+2doa+1

joins. So before splittingy < 40dy;q + 80 + W < 40dyq + 82, and the
maximum node has at mo$id,;; + 86 peers.

Next, we show that > 8d,,..,+16 for the nexid,,..,+1 phases after the expansion.
Attime t — dyig, it > 40dyg + 80 = 40d,,eq + 40, SO > 20d,,¢. + 20 after the
expansion. Moreover, there are at mdst;(doiq + 1) + (dpew + 1) (dnew + 1) =

2d2 ..+ dnew + 1 leaves, angs > 20d,,0., + 20 — W > 20dye + 17 >
8dpew 1+ 16. Finally, u < 40d,,¢., + 80 for the nextd,,.., + 1 steps: Attime —d ;g —1,
1 < 40dy1q + 80 = 40d,,¢. + 40, SO < 20d,.,, + 20 after the expansion; moreover,

there are at mostl,1q + 1) (dota + 1) + (dnew + 1) (dnew + 1) = 2d2,,, + 2dpew + 1
j0iNS, SOi < 200 + 20 + 2dacut2dnctl o0y 4 94 < 40dyey +80. O

2dnew

In our real system, repairing takes six rounds and morgurrentlyto the adver-
sary. However, as all operations in the whole phase are based upon the Ratenaf
1, a phase can be considered as running uninterruptedly, that is, as if the adversary in-
sertedd + 1 and removed + 1 peers onhbetweerthe phases. Thus, Lemma 5.23 also
holds in our system. However, we additionally have to postulate that there is always
at least onecore peer By Lemma 5.23, it is always possible to sel@dt+ 3 core
peers inROUND 5 with respect to the state ®oUND 1. These peers have to survive
until ROUND 6 of the next phase, so for twelve normal rounds in total; however, as the
adversaryd,q,(d + 1,d + 1,6) may remove at mostd + 2 peers in twelve rounds,
this clearly holds.

Finally, we show that there are indeed enough peripheral pedtsimD 3 such
that core peers do not have to change the node for the peer distribution.

Lemma 5.24. In ROUND 3, it holds thafP, | > #zeli=sizelu)

Proof. By Lemma 5.23, we know thatze(v) > 3d+ 10 andsize(u) > 3d+10. Asv
has at mos2d+3 core peers, we hay®, | > size(v)—(2d+3) > size(v)—size(u) >
size(v)—size(u) ]
TECLSAEEA,

Theorem 5.25. Given an adversary,q,(d + 1,d + 1, 6) which inserts and removes

at mostd + 1 peers per phase, the 6-round algorithm ensures that (1) every node has at
least one core peer all the times and hence no data is lost; (2) each node has between
3d + 10 and45d + 86 peers at every moment of time, yielding a logarithmic network
diameter; (3) only peripheral peers are moved between nodes, thus the unnecessary
copying of data is avoided.

Proof. The three criteria follow directly from Lemmata 5.23 and 5.24. O






Chapter 6

Skip Graph

6.1 Introduction

Skip graphs are a novel randomized distributed data structure based on skip lists [11]
and have independently been proposed in [3] and [7]. There exists also a deterministic
variant of a skip graph [6].

In this chapter, we present a p2p system basedpsrfactskip graph as defined in
Definition 6.1. We will use again our simulation approach, where a skip graph’s node
is represented by a group of peers. We will show that many components we used for
the repairing algorithm of the simulated hypercube can be extended to the skip graph
topology.

Definition 6.1 (Perfect Skip Graph). A perfect skip graplis a networkG = (V. E),
whereV = {0, ...,2" — 1} for someh € N, andE = {{u,v} | u = v + 2¢ (mod 2")
fori = 0...h — 1}. A skip graph consists df levels and we call the rings belonging
to leveli the i-rings moreover we calk’s neighborsy + 2 andv — 2¢ on level; v's
i-neighbors Figure 6.1 gives an example far= 4 (cyclic edges not shown).

Level 3

| L i L i L H
T BRY TRRY R Level 2
AT

SR L
00000080000 00008 [ ool

Figure 6.1: Skip Graph fok = 4

The rest of this chapter is organized as follows: In Chapter 6.2 we show that it
is possible to adapt both the peer distribution algoritmd the algorithm to estimate

49



the total number of peers in the system for the perfect skip graph. Moreover, we will
sketch an algorithm to change “the dimension” of a skip graph, that is, the operations
to be performed when all nodes expahnd+£ i + 1) or reduce f := h — 1). With this
components, it is obviously possible to achieve a p2p system that is robust to the same
adversarial changes as the simulated hypercube presented in Chapter 5.4. Finally, in
Chapter 6.3 we will address some issues concerning the data items that may be stored
by a simulated skip graph.

6.2 Simulated Perfect Skip Graph

6.2.1 Token Distribution

Algorithm 9 is the natural extension of the token distribution algorithm presented for
hypercubes (see Algorithm 4). Because of the similarity of the two algorithms, all
results hold also here. Figure 6.2 shows an examplé fer3.

Algorithm 9 Token Distribution on Perfect Skip Graph
1 my_id == u;
2: Tpny.iq :=tokens at this node;
3 fori:=0toh—1do

4:  if my_id mod2it! < 2¢ then

5 buddy_id := i-neighbor to the right;

6: else

7 buddy_id := i-neighbor to the left;

8 endif

9:  SEND|7,,,.a|/2 tokens to nodéuddy_id;

10:  update7,,, ;¢ accordingly;
11 Typyddy.id *=REVC tokens from nodéuddy_id;
12: 7Tm,y,id = ﬁrl,y,’/’,d U 7?)’11,(1,(13/,7‘,(1;

13: end for
=
il
bebiiistivin
a. b. c. d.
Figure 6.2: Skip Graph Token Distribution
6.2.2 DASIS

DASIS can be used to estimate the total number of peers in the simulated perfect
skip graph system. To see this, consider the binary representation of avnede



(bo...b;...bp—1)2 of the perfect skip graph; obviously, is connected to the neces-

sary prefix-buddies: On levelfor i € [0,h — 1], v uses its righti-neighborv +

2t = (bg...bp_1_4...bn_1)2 if b; = 0, and ifb; = 1 its left i-neighborv — 2! =
(bo--bp—1—s...bn—1)2. Again, as all nodes have the same number of bits, attjrak

nodes store the same estimated value of the total number of peers in the system, and
this value corresponds to the exact state of the network atttime.

6.2.3 Repairing Algorithm

Given the algorithms to distribute peers and to count the total number of peers in the
system, we can apply the repairing algorithms of the hypercube also here. We will
briefly sketch the local operations to be performed when the perfect skip graph in-
creases its height: The description is given in Algorithm 10, and Figure 6.3 shows an
example.

Figure 6.3: Expanding the Perfect Skip Graph

Reducing the dimension is also simple: Every noder whichv = 1 (mod 2) can
just leave the network (maybe after copying its data to the left 0-neighbor). Amnode
with v = 0 (mod 2) has to shift all neighbors one level down: The rewighbors are
the old(i + 1)-neighbors.

6.3 Load Balancing and Range Queries

In the distributed hash table based on #héimensional simulated hypercube, a data
item has been stored at the node whose identifier matches thé fitst of the hash
value of the data item’s identifier. This solution has two disadvantages: First, it glues
the data items and the nodes together, making load balancing impossible. Moreover,
as the hash function scrambles the name space of the identfi@itgrity searches
become inefficient.

For the skip graph, we consider an alternative approach: Instead of mapping a data
item to a fixed node, we require only that the data items are always sorted on the 0-ring
with respect to theireal identifiers. Besides efficient range queries, this allows also
a very limited form of load balancing: If a nodehas much more data items than its
0-neighbors, it can send some of its largest data items (with respect to their identifiers)
to its right neighbor and some of its smallest data items to its left neighbor. This raises
the guestion of how data items can still efficiently be found if they are no longer bound



Algorithm 10 Growth of Perfect Skip Graph
1. (* nodew *)
: create new node’;
: for all levelsi :=0...(h — 1) do
i-neighbors becomg@ + 1)-neighbors;
. end for
. for all levelsi := 1...h do
SEND<’ TO bothi-neighbors;
end for
for all levelsi := 1...h do
(w(), w}) := RECV FROM:i-neighborsw, andw; ;
if i=1 then
v’ has 0-neighbors andwq;
v has 0-neighbors), andv’;
v" has 1-neighborsy, andwy;
else
v" hasi-neighborsw(, andw};
end if
: end for
ch:=h+1;

e e e N o
© Nk wWDNREO

to a fixed node. The solution is that every node stores the identifiers of the minimum
and the maximum element of its adjacent nodes. Of course, there lies some overhead
in updating these values all the times, but on the other hand it allows to make normal
use of the “express lanes” of a skip list for efficient look-ups.



Chapter 7

Conclusions

The dynamics of the p2p systems presently in use is hardly understood. In this the-
sis we have introduced a simple dynamic model where there is a phase of quiescence
between the joins and leaves of the peers. For botlhieg topology and the sim-
ulated hypercube topology it was possible to adapt a repairing algorithm running in
O(1) rounds of quiescence to run alsoencurrentlyto an adversary which can perform

a certain number of changes in a time interval of constant length. However, it is not
obvious whether such a transformation exists for arbitrary topologies.

While the focus of Chapter 3 was on the presentation and comparison of different
fault-tolerance models, Chapter 5 introduced a realistic distributed hash table, which
maintains an efficient search structure and a peer deg(é€) against an adversary
that triggersO(d) changes per time interval of constant length. However, there are
still several possibilities to improve this system. For example it would be nice if the
fault-tolerance is linear in the peer degree. We presume that there are alternative ways
to inter-connect the hypercube’s nodes to achieve this goal. Another desirable im-
provement of our system would be a mechanism for a graceful degradation or self-
stabilization in the case of faults beyond the restrictions of the adversary.

We feel that several ideas presented in this document are directly applicable to other
p2p systems. For example, it is possible to simulate a variety of other topologies, e.g.
Chord. Moreover, some of our contributions such as the simple dynamic model or
the dynamic analysis of the token distribution algorithm on the hypercube and on the
perfect skip graph may be of interest on their own, i.e., beyond the applications for
which we have used them.

Note that our main emphasis was on the maintenance of certaitop@fpgies
The issue of thelata usually stored by these systems has not been addressed for the
k-ring at all, and the other systems lack a reasonable mechanism to distribute the data
items uniformly amongst the peers. For example, as an orthogonal approach, it would
also be possible to consider a “data insertion/deletion adversary”.

Besides the open problems already mentioned, there is a variety of questions to be
addressed in future research projects on the fault-tolerance of dynamic p2p topologies
— not only for worst-case failures. For example

e Asynchronous systems: Real distributed systems are never synchronous. Many
of our algorithms presented for the synchronous model work also in asynchronous
systems, for example by using local synchronizers. However, such solutions usu-
ally come at the cost of an increased message complexity.
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e Byzantine behavior: How can we cope with peers which do not act in perfect
accordance with our protocols?

e Link failures

e Other topologies: E.g., maintenance of a dynamic skip graph which is not simu-
lated?
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Appendix A

Mean Deviation

In this appendix two different approaches to approximate the mean deviation of the
symmetric binomial distribution are presented.

A.1 Approximation with Chernoff

Fact A.1 (Chernoff Lower Tail). Let X, ..., Xy be independent Bernoulli variables
with Pr(X; = 1] = p;. LetX := ). X, denote the sum of th&, and lety :=
E[X] := )", p; be the expected value fof. For e € (0,1],

676

PT[X<(1_€)M]<((1_6)(1—5)

) < e he/2,

Fact A.2.
/ e~ de = ﬁ
O 2

Theorem A.3. Let X ~ B(n,1/2) be binomially distributed with parametersand
p = 1/2. The expectation of the deviation from the meg# is upper bounded by

E[|X —n/2|] < V/mn.
Proof. Letps denote the probability that the deviation from the mean is at lgdkat

is, ps = Pr[|X —n/2|] > 6. By symmetry, we havg; = 2 - Pr[X < n/2 — d]. For
the expected deviation of the mean, we have

n/2 n/2
EX —n/2]=> 6-PrX —n/2| =0 =) ps (A.1)
6=1 6=1

We can boungbs using Chernoff:
ps=2-Pr[X <n/2-¢] < 20" /m. (A.2)
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Combining (A.1) and (A.2), we can bound the mean deviation by

n/2 n/2

EIX —nj2] = Yps<2-d e
6=1 6=1

< 2~ie*52/”

6=1

< 2./ e~ /nds
=1
VTN

The integral after the last inequality can be calculated using Fact A.2 and the substitu-
tiont = §/n anddd = /ndt. This concludes the proof. O

Remarks: There are two minor details which are neglected for readability of the
above proof. First, although the Chernoff inequality gives an upper bound only for
PriX < (1 —¢€)u], we use it forPr[X < (1 — e)u]. Second, the first equation in the
proof holds for evem. For oddn, the deviation from the mean is not integral. Both
issues can easily be solved.

A.2 Approximation with Stirling
The mean deviation of the symmetrical binomial distribution is given by:

sty if nodd

mean deviation= 27" ( > ’k — ‘ (n—1)11 .
— 3(n _2),, , if n even

wheren!! is a double factorial, i.e.

n-(n—?)-...-S-B-l:#ﬂ%)! ,if n.> 0is odd
nl=qn.-(n—2) ...6-4-2=2"22) ,if n > 0is even
1 ifn=-1,0

According to Stirling’s approximatidrwe have
mnn+l/26—71+1/(12n+1) <nl < mnn-ﬁ-l/Qe—n—&-l/(lQn) (A3)

After some calculations, the following conjecture emerges, whose correctness can
easily be verified.

i n n n
mean deviation= 27" ’k — 7‘ <4 /—=
Z} (k) 21 = \/;

k=

1The double inequality A.3 is actually an extended version of Stirling’s approximation.
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