
DIPLOMA THESIS

Dynamic & Fault-Tolerant P2P-Topologies

Stefan Schmid

Prof. Dr. Roger Wattenhofer
Fabian Kuhn

Distributed Computing Group

Dept. of Computer Science

ETH Zurich, Switzerland 11th May - 10th September 2004

Abstract

Until now, the analysis of fault tolerance of peer-to-peer (p2p) systems usually only
covers random faults of some kind. Contrary to traditional algorithmic research, faults
as well as joins and leaves occurring in a worst-case manner in p2p systems are hardly
considered. Most fault tolerance analyzes are static in the sense that it is shown that
a system tolerates a certain number of simultaneous faults. The much more realistic
dynamic case where faults steadily occur has not found much attention. The goal of
this thesis is to work towards a general understanding of fault tolerance especially for
the case of dynamic and worst-case failures.

The thesis introduces a simple dynamic model where a malicious adversary — con-
trolling the arrivals and departures of the peers — and a repairing algorithm take turns.
The insights gained from this model are then used to study the more realistic scenario
where a repairing algorithm maintains certain properties of the topology against acon-
currentadversary.

Besides the comparison of different fault-tolerance models, the thesis presents a
distributed hash table which maintains an efficient search structure as well as a low
peer degree in spite of the worst-case failures. By a dynamic analysis we prove that no
data item is lost by the system.

Contents

1 Introduction 5

2 Model 7

3 k-Ring 9
3.1 Introduction . 9
3.2 Repairing inO(1) Quiet Rounds . 10
3.3 Voluntary Leaves .13
3.4 A Concurrent Model . 14

4 Aggregation of Distributed State 17

5 Hypercube 21
5.1 Introduction . 21
5.2 Token Distribution . 22

5.2.1 Static Token Distribution .22
5.2.2 Dynamic Token Distribution 31
5.2.3 Weighted Token Distribution33
5.2.4 Related Work .35

5.3 Simulated Hypercube Topology .35
5.3.1 Scalability . 35
5.3.2 Repairing in TimeΘ(d) with a Hamiltonian Cycle 36
5.3.3 Repairing in TimeO(1) with DASIS 38
5.3.4 Worst-Case Fault-Tolerance vs. Scalability41

5.4 DHT and Concurrent Adversary .41
5.4.1 Distributed Hash Table .41
5.4.2 Concurrent Adversary .42
5.4.3 Resilience to Logarithmic Churn42
5.4.4 The 6-Round Maintenance Algorithm43
5.4.5 Analysis . 46

6 Skip Graph 49
6.1 Introduction . 49
6.2 Simulated Perfect Skip Graph .50

6.2.1 Token Distribution . 50
6.2.2 DASIS . 50
6.2.3 Repairing Algorithm . 51

6.3 Load Balancing and Range Queries51

3

7 Conclusions 53

A Mean Deviation 57
A.1 Approximation with Chernoff . 57
A.2 Approximation with Stirling . 58

B Acknowledgments 59

Chapter 1

Introduction

Peer-to-peer (p2p) systems and applications are distributed systems without any cen-
tralized control — both a bottleneck for scalability and a single point of failure —
where the software running at each node is equivalent in functionality. These systems
emerged as a new distributed computing paradigm because of their potential to harness
the computing power of the hosts composing the network.

p2p systems may consist of thousands of peers and are characterized by a high
dynamics in the sense that peers may join the system, leave the system voluntarily or
simply crash at any moment of time. For example, the median session duration in the
multimedia file sharing system Napster [1] was approximately one hour [13]. Besides
the composition of the system, also thetotal numberof participating peers can vary
significantly over time, and it is therefore crucial to control the evolution of the system
in order to guarantee desirable properties such as a low peer degree or a low network
diameter.

Following the seminal work of Plaxton et al. [10], an assortment of variants of p2p
systems have been proposed in literature, such as CAN [12], Chord [15], and Tapestry
[18]. However, most fault-tolerance analyzes of these systems are either static or cover
only random faults. For example, experimental evidence is supplied that Tapestry is
robust against random faults, while Chord isprovablyresilient to a constant fraction of
random node failures.

This document focuses ondynamic worst-case failures. We introduce a simple
dynamic model where a maliciousadversary, which — having complete visibility of
the entire state of the system — controls the joins and leaves in the system, alternates
with a repairing algorithm. The goal of the repairing algorithm is to re-establish cer-
tain properties of the system, for example a high connectivity such that the topology
remains one connected component in the next adversarial round. Armed with the in-
sights we get from this simple model, the more realistic scenario where the adversary
actsconcurrentlyto the repairing algorithm is considered. We will see that it is some-
times possible to transform a repairing algorithm running in timeO(1) to work also in
the concurrent model.

The thesis is organized as follows: Chapter 2 introduces the models that will be
used throughout this document. In particular, it describes the adversarial operations
and formally defines the objective of the repairing algorithm. In Chapter 3 we start
our analysis with a very simple topology based on the ring. After the comparison of
different models for the case where a repairing algorithm runs in a phase of quiescence,
a concurrent model is studied. Chapter 4 presents an algorithm which allows peers to

5

aggregate information in a p2p system in a distributed fashion. The properties of this
algorithm are useful for the maintenance of the topologies introduced in later chapters.
A main emphasis in laid on Chapter 5, where a simulatedd-dimensional hypercube
topology is introduced. First, we will present a repairing algorithm which maintains
a low peer degree and a low network diameter against a concurrent adversary which
inserts and removesΘ(d) peers per time interval of constant length. We will then show
that this system can also be deployed as an efficient distributed hash table which never
loses data. Chapter 6 extends these results to the skip graph topology. We conclude our
work in Chapter 7, where we also give some directions for future research projects.

Chapter 2

Model

We consider a graphG = (V,E), whereV represents the set of peers andE describes
the adjacency relations of these peers. If not stated otherwise, the classic synchronous
message passingmodel is studied, where in every round, a node can send a message to
each of its adjacent nodes; local computations are assumed to take no time.

The dynamics of the system is given by a non-oblivious adversary which may insert
at mostJ and remove at mostL nodes. We assume that new nodes always arrive at
nodes which already belong to the system. Algorithm 1 gives a formal description of
the adversarial operations; an example is depicted in Figure 2.1.

Algorithm 1 Adversary

1: INPUT: GraphG = (V,E), J, L
2: chooseL ⊆ V where|L| ≤ L;
3: chooseJ := {j0, ..., jk} wherek < J ;
4: V ′ := (V \ L) ∪ J ;
5: EL := {{v, u} | ({v, u} ∈ E) ∧ ({v, u} ∩ L 6= φ)};
6: (* assumeji joins at nodevi *)
7: E′ := (E \ EL) ∪ (

⋃
i{ji, vi});

8: OUTPUT: GraphG′ = (V ′, E′)

Figure 2.1: Operations of the Adversary

Usually, we start our analysis with a simple dynamic model where the repairing al-
gorithm and the adversary take turns, see Figure 2.2. The goal of a repairing algorithm

7

is to re-establish — in aphase of quiescence— certain properties of the topology after
the adversarial round.

Figure 2.2: Repairing and Adversarial Rounds

More formally, we consider a predicateΓ(G) which is true if and only if the topol-
ogyG fulfills certain properties, for example “graph G is isomorphic to a hypercube”.
LetAadv(J, L) denote an adversary which may insert at mostJ and remove at mostL
peers per adversarial phase. We say thatArep is a repairing algorithm with respect to
an adversaryAadv(J, L) if it re-establishesΓ after each adversary round, that is

Γ(G) → Γ(Arep(Aadv(J, L)(G))). (2.1)

An interesting question in this context is: Given an adversaryAadv(J, L), how many
rounds of quiescence are minimally needed by anyArep that fulfills statement (2.1)?
Mostly, we will focus on algorithms running in constant time.

After having studied this simple dynamic model, we analyze the more realistic
model where the adversary acts concurrently to the repairing algorithm. In this context,
we consider an adversaryAadv(J, L, δ) which can join at mostJ and remove at most
L peersduring any time periodof δ rounds. The repairing algorithmArep is required
to maintain certain propertiesall the time, or, alternatively, to establish the properties
whenever the adversary has been inactive for a certain time period. In the latter case,
Arep may neveractually achieveΓ(G). However, note that the fact that a repairing
algorithm establishesΓ(G) after a certain phase with no adversarial changes normally
implies the existence of weaker predicates which arealwaystrue: For example the fact
that certain variants of a ring are perfectly repaired byArep after a constant number of
rounds of adversarial inactivity implies that the graph contains a ring as a subgraphat
any moment of time— if the ring had been disconnected, repairing would take longer.

Finally, we assume peers to act always in perfect accordance withArep, that is,
Byzantine behavior of any kind is not considered here.

Chapter 3

k-Ring

3.1 Introduction

We begin our studies with a very simple topology which is based on the ring, the
drosophila melanogasterof distributed computing. Note that a ring has some properties
that are undesirable in a p2p system, for example it has a network diameter which is
linear in the total number of nodes. However, our objective is to get insights to the
nature of fault-toleranceper se, that is, independently of other criteria, and in this
respect we consider the ring as a good starting point. Moreover, many current systems
use a ring as a sub-component, for example also Chord [15].

The topology we will analyze is a special instance of anN -circulant graph (Defi-
nition 3.1) called thek-ring (Definition 3.2).

Definition 3.1 (N -Circulant Graph). An N -circulant graphof order n is a graph
G = (V,E) whereV = {0, ..., n − 1} andE = {{i, i + j (mod n)} | j ∈ N}. N is
called theconnection set. For example,N := {1, ..., bn/2c} gives the complete graph
Kn.

Definition 3.2 (k-Ring). We call anN -circulant graph with connection setN :=
{1, 2, ..., k} a k-ring. Figure 3.1 shows an example fork=3.

Figure 3.1: 3-Ring

9

3.2 Repairing in O(1) Quiet Rounds

First, we consider the simple dynamic model introduced in Chapter 2 where the repair-
ing algorithm and the adversary take turns. That is, after the adversary has inserted at
mostJ and removed at mostL peers, the repairing algorithm runs in a phase of quies-
cence. We concentrate on repairing algorithms which re-establish a perfectk-ring in a
constantnumber of quiet rounds. In the following, if not stated otherwise, we always
mean modn.

Theorem 3.1. If L ≥ k, there is no algorithm which rebuilds thek-ring in O(1) rounds
of quiescence.

Proof. Consider the case wheren À k and wherek nodes in a row fail, i.e., nodes
{i, i + 1, ..., i + k − 1} for somei. Since nodei− 1 is not adjacent to nodei + k, the
ring is broken. To construct the edge{i− 1, i + k}, a message has to be routed in the
opposite direction along the broken ring, requiring timeΩ(n).

Consider the repairing algorithm presented in Algorithm 2. In the first round, every
node sends a packetP(list of joiners, hop-count) to all of its former neighbors.1 The
message sent to theith former neighbor is initialized with hop-counti. In the next
rounds, every nodev sorts the received packets by the hop-count in order to handle
packets from closer nodes earlier. If it is not the first packet from the corresponding
sender, the packet is simply ignored.v then updates its neighbors and forwards the
packet if it is the furthest surviving neighbor of the sender and if the information is
interesting for other nodes as well. We assume that a forwarded packet keeps the the
original sender’s address. Finally, whenv has collected its newk neighbors on both
sides, it assigns the correct neighbors to its joiners. The joiners of a nodeu are always
inserted on the left side ofu.2 We now prove some properties of this algorithm.

Lemma 3.2. Algorithm 2 assigns each nodek neighbors on each side after finitely
many steps ifL < k.

Proof. We prove that no packetP can get lost because of a missing link and that it will
always be forwarded if it contains information needed by other nodes.

If less thank nodes crash, it holds that each node has at least one surviving neighbor
on both sides. Moreover, a node forwards a packetP if, before receivingP, k −
oldsize− 1−sizeof(joiners[])>0. Note thatv needsk− oldsize new neighbors on the
side on which it received the packet, hence its neighbors on the opposite side need at
mostk− oldsize− 1−sizeof(joiners[]) new neighbors, because they additionally have
v andv’s joiners as neighbors.

Lemma 3.3. Algorithm 2 preserves the global order of the surviving nodes on the ring
and inserts the joiners of a node directly to its left.

Proof. A packet from the right is appended byappend [pjoiners|u], a packet from
the left byappend [u|pjoiners]; therefore, every node on the ring sees the same
order with respect to a single nodeu. It remains to prove that the packets itself are
always well ordered. All packets that arrive in the same round are sorted by the hop-
count, and closer nodes are inserted first. Moreover, it is not possible that a packet from

1Of course, because of the leaves, not all recipients are still alive. We assume that a message to a peer
which has left the system is simply lost.

2See theappend function.

Algorithm 2 k-Ring
1: (* nodev *)
2: given: oldleft[k], oldright[k], joiners[];
3: newleft[k], newright[k]; (* empty *)
4: STEP 1:
5: for all neighborsi do
6: SENDP(joiners[], i) TO oldleft[i]; SENDP(joiners[], i) TO oldright[i];
7: end for
8: STEP>1:
9: RECV all packetsP(pjoiners[],pcount) FROMu;

10: (* u is theoriginal sender ofP *)
11: for all packets in order of increasingpcount do
12: if packet from right neighborthen
13: oldrsize := sizeof(newright[]);
14: append [pjoiners|u] to newright[];
15: if u is furthest surviving neighborthen
16: if (k − oldrsize− 1−sizeof(joiners[]))> 0 then
17: for i := 1 to k do
18: SENDP(pjoiners[],pcount + i) TO oldleft[i];
19: end for
20: end if
21: end if
22: end if
23: if packet from left neighborthen
24: analogously, appending [u|pjoiners] to newleft[];
25: end if
26: end for
27: if ¬((sizeof(newright[])≥ k) ∧ (sizeof(newleft[])≥ k)) then
28: goto STEP>1;
29: end if
30: LAST STEP:
31: oldright[] := newright[];
32: for all elements of joiners[]do
33: send joiners[i] its right neighbors [joiners[i − 1], ..., joiners[1],v, newright[1],

newright[2], ...];
34: end for
35: oldleft[] := [joiners[1], joiners[2], ..., newleft[1], newleft[2], ...];
36: for all elements of joiners[]do
37: send joiners[i] its left neighbors [joiners[i + 1], joiners[i + 2], ..., newleft[1],

newleft[2], ...];
38: end for

a closer nodew1 arrives in a later round than a packet from a nodew2 which is further
away.

Lemma 3.4. If L < k andJ = any, Algorithm 2 terminates after at most4 steps.

Proof. If there are only leaves and no joins, in the worst-case, a nodev must get packets
from nodev +2k−1, which will bev’s newkth neighbor. In a perfectk-ring, a packet
can travelk hops in one step, i.e.,s · k hops ins steps. Moreover, a crashed node can
delay a packet by at most 1 step, given thatL ≤ k − 1. Since there are at mostk − 1
failures, a packet can get at least to nodev + s · k − (k − 1) in s steps. Fors = 3 we
getv + 2k + 1 > v + 2k − 1, while s = 2 is not enough:v + k + 1 < v + 2k − 1 for
k ≥ 3. In the last step, a node integrates its joiners.

Corollary 3.5. If L < k andJ = any, there exists an algorithm which reconstructs the
k-ring in timeO(1).

Theorem 3.6. If there are no joins, it is possible to repairL ≤ k− 1 leaves in 2 steps.
This is optimal fork ≥ 3.

Proof. At least 2 steps: Consider the case wheren À k, k ≥ 3 andk − 1 nodes in a
row fail, i.e., nodes{i, i + 1, ..., i + k − 2} for somei. {i − 1, i + k − 1} is the only
edge that bridges the gap. It is impossible to establish edge{i − 2, i + k} in only one
step.

At most 2 steps: Consider an algorithm which distributes information optimally:
It sends all its neighbors (and not just itself, as was the case in Algorithm 2) to all its
neighbors. This saves exactly one step compared to Algorithm 2. Moreover, it is not
necessary to integrate the joiners, which saves another step compared to Lemma 3.4.
.

Theorem 3.7. It is possible to repairL ≤ 1 leaves in 1 step ifk = 2. This is optimal.

Proof. For the special case wherek = 2, one step is sufficient. Consider the con-
secutive nodes ...(i − 2)(i − 1)i(i + 1)(i + 2)..., where nodei leaves. All nodes
< (i − 2) or > (i + 2) can keep their neighbors, and hence this takes no time at all.
Edge{(i− 2), (i + 1)} can be established in one step:(i− 1) sends the corresponding
information to(i− 2) and(i + 1). By symmetry, this holds also for the other side.

Theorem 3.8. It is possible to repairL ≤ k − 1 leaves andJ joins in 3 steps. This is
optimal fork ≥ 3.

Proof. At least 3 steps: In the worst case, a nodev must know a joiner of nodev +
2k − 1, sincek − 1 leaves took place in-between. Sending a packet over2k − 1 hops
whenk − 1 consecutive nodes have left may take up to three steps: One to the gap,
one across the gap and one to the destination node. (Ifk = 2, either the sender or the
destination node must be adjacent to the gap, therefore two steps are enough.) Figure
3.2 shows an example: It takes 3 steps to send the joiner of nodei − 2 to nodei + k
and vice versa.

At most 3 steps: Consider again Algorithm 2 where every node sends all its joiners
in the first step. It takes 3 steps until every former node knows its newk neighbors
on both sides. With a little change of our algorithm, it is also possible that alljoiners
know theirk + k neighbors: In the first step, a node informs its joiners about the other
joiners. Moreover, in the second step, a node saves all joiners about which it has heard
by the received packets. Thus, it can send the packets in the third round not only to a
neighboring nodev, but also tov’s joiners directly.

Figure 3.2: Figure for Theorem 3.8

Note that Theorems 3.6, 3.7 and 3.8 even hold if nodes store all senders from the
packets they have seen and forward future packets directly to them. However, we won’t
consider this routing optimization further here.

3.3 Voluntary Leaves

So far, we have assumed that the peers leave the network quietly. This model has the
advantage that it covers also the case where peers crash. However, it is possible to show
that the system can tolerate more leaves in a scenario where peers never fail but always
leave the network voluntarily. We call such a scenario agoodbye model, see Definition
3.3.

Definition 3.3 (Goodbye Model). We call a setting where nodes call a functionz to
finalize before leavinggoodbye model. In this function, it is possible to send a message
to all neighbors, but the departure of the node can not be delayed.

Theorem 3.9. Under the goodbye model, thek-ring can be re-established in timeO(1)
if and only ifL ≤ 2k − 1.

Proof. ⇒: In the worst case, a nodev loses2k − 1 neighbors. We show that a link to
nodeu := v + 2k can be established in constant time. It can then be used to distribute
neighbor information, similarly to Algorithm 2. Consider a finalize functionz which
simply sends all neighbor information to all neighbors. Nodev + k knows bothv and
u — they are itskth neighbors. Callingz informsv aboutu and vice versa; the ring
remains closed.

⇐: On the other hand, ifL ≥ 2k nodes in a row fail, there is no nodew which
could inform the nodes adjacent to the gap.

However, observe that there is a form of equivalence between the goodbye model
and the model where peers may crash.

Theorem 3.10. It is possible to simulate the goodbye model at the cost of one addi-
tional step in the repairing algorithm.

Proof. The idea is to execute the commands in functionz as a last step of the quiet
phase. If a nodev really leaves, all information it would send in the goodbye model
already exists at its neighbors. On the other hand, ifv remains alive, this information
can simply be ignored.

3.4 A Concurrent Model

The two models presented so far are both rather theoretical: In real networks, there is
no time of quiescence during which an algorithm can repair thek-ring; rather, nodes
may join or failconcurrentlyto the ring’s maintenance. We refer to this setting as the
concurrent model, see Definition 3.4.

Definition 3.4 (Concurrent Model). In the concurrent model, an adversary can re-
move up toL and insert up toJ nodesin every round. Hence, there are no quiet rounds
and the repairing process runs concurrently to the adversary.

There are many crucial differences between the concurrent model and the models
with a phase of quiescence:

• If nodesv andu send a packet to each other at timet, it is not guaranteed that
these packets also arrive at the same timet′, see Example 3.1.

• It is not possible anymore to send a packet to a nodev at timet such thatv can
forward it at timet + 1, because it may have left the network by then. Thus, we
have to use an algorithm in whicheverynode forwards packets.

• When a packet arrives, the enclosed information may not be true anymore; for
example, the sender may already have left in the meantime.

• In Algorithm 2, a nodev integrates its joiners only by the end of the phase
of quiescence. In this more dynamic model, it is crucial to makev’s joiners
independent ofv as soon as possible to handle the case thatv is removed from
the network.

Example 3.1. Consider Figure 3.3 and assume that nodew leaves at the beginning
of timet = 2, i.e., beforesending its messages of that round. Hence,v can send its
packet via nodew (arrival time atu: t = 2), whileu’s packet has to take another path
(arrival time atv: t = 3).

Figure 3.3: Figure for Example 3.1

Yet, under the assumption that all nodes are strongly synchronized modulo a certain
number,3 it is possible to prove a relation between the model with a phase of quiescence
and the concurrent model.

3If the network starts with a single node, every node can simply assign its joiners the current state.

Theorem 3.11. Under the assumption of strongly synchronized nodes, and if there are
no joins, it holds that: If, in a instantaneous model, an edgee appears at timet, and if
there is an algorithmAq which reconstructs a perfectk-ring in s steps of quiescence
given at mostL leaves per adversary round, then there exists a concurrent algorithm
Ac which createse at timet+ s+1 or earlier, if there are at mostL leaves during any
time interval of lengths + 1.

Proof. Consider a concurrent algorithm where every node sends all its neighbor in-
formation to all its neighbors at timest iff t ≡ 0 (mod s + 1). These packets have
a time-to-live ofs + 1 rounds. In all other rounds,everynode simply forwards the
incoming packets. (Broadcast is used to ensure that no packet will get lost because of
node failures.) Further, assume that every node stores the information about thek + L
closest nodes on each side. For the ordering, a hop-count is used with respect to the
situation whent ≡ 0 (mods + 1) for the last time. First, we show that this algorithm
would yield a perfectk-ring at timest ≡ 0 (mods+1) with respect to thecurrentstate
of the system if a ping took no time.

Assume that at time 0, thek-ring is perfect. IfL nodes leave at once,Aq recon-
structs all edgese=(u, v) in s steps. But if it is possible to send information fromu to
v in s steps if allL nodes leave at once, it is also possible forAc to send this infor-
mation fromu to v if the L leaves are distributed over the time interval of sizes. For
a reason that will become clear later in the text, consider a concurrent algorithmAc

where every node sends only information about itself in the first round, and not about
its neighbors. This costs at most one additional step compared toAq. Thus, at time
s+1,Ac has provided any nodew with at least as many neighbors asAq. However,w
does not know which of these neighbors are still alive, and hence a ping is performed,
from which it is possible to derive the2k current neighbors.

Of course, in a real system a ping takes two rounds. We can changeAc to handle
also this more realistic scenario: As a simple solution,w treats allk + L neighbors
as if they were alive. At the cost of some extra storage —k + 2L neighbors have to
be stored instead ofk + L — this ensures that an edge is always used with a delay of
at mosts + 1 steps. A ping is therefore not necessary anymore. It remains to prove
thatAc is still able to order the neighbors correctly. For this, we use again a hop-count
which is now incremented with respect to allpotentialneighbors at the last time when
t ≡ 0 (mods + 1); this facilitates a consistent ordering, as these potential neighbors
have been the correct nearest nodes at timet− (s + 1).

It seems not possible to prove something similarly strong for the case of joins with-
out changing the semantics. Hence, we use a weaker relation for the two models.

Theorem 3.12. If there is an algorithmAq with a time of quiescence ofs steps toler-
ating J joins andL leaves per adversary round, there is also a concurrent repairing
algorithmAc which toleratesJ joins andL leaves distributed over any time interval of
sizes, with the following property: IfAq establishes a perfectk-ring after each phase
of quiescence,Ac constructs also a perfectk-ring if there have been no changes for
the last2s rounds.

Proof. We adapt algorithmAc as described in the proof of Theorem 3.11 to handle
also joins. As a simple solution, assume that every nodev delays its joiners untilt ≡ 0
(mods): If v leaves the network earlier, its joiners have to try again at some other node.
At times t ≡ 0 (mods), every node broadcasts itself plus the identifiers of its joiners;
this information is then forwarded in the remaining rounds. A node which has heard

about the joiners of a neighboring nodev in the first round sends all packets forv also
to v’s joiners in the remaining rounds for the case thatv crashes. For the ordering we
use hop-counts together with the rule to integrate joiners always on a predefined side.

Analogously to the proof of Theorem 3.11 it follows that at timest ≡ 0 (mods)
every node knows about itsk current neighbors on each side, except for the joiners that
have arrived during the lasts steps which have not been taken into account yet. Note
that here we do not lose a step compared toAq because of not sending the neighbors
in the first round, sos steps are indeed sufficient. If aftert ≡ 0 (mods) there are no
changes during the nexts consecutive rounds,Ac establishes a perfectk-ring. On the
other hand, it takes at mosts rounds untilt ≡ 0 (mod s) for the next time, and the
claim holds.

Chapter 4

Aggregation of Distributed State

DASIS [2], thedistributed approximative system information service, allows to aggre-
gate information in a p2p system. Similar ideas can be found in Astrolabe [16] and
Willow [17]. After a short introduction to DASIS, we show that DASIS has some in-
teresting properties which will be used by the dynamic and fault-tolerant systems based
on the hypercube and on the skip graph presented in Chapters 5 and 6.

DASIS is built on top of the regular p2p structure. The basic idea is as follows:
Every nodev with bit string b0...bk is considered to be an “expert” on all the sub-
domains of all the prefixes of its bit string (that is, forb0...bi, i ∈ [−1, k]). The expert
knowledge is constructed inductively through information exchange with the neighbor
peers. The node is by definition an expert about its own sub-domainb1...bk. Also, the
nodev can deduce the state in sub-domainb0...bi by aggregating its own knowledge on
sub-domainb0...bi+1 (which is available by induction) with the knowledge provided
by neighbor nodeu about sub-domainb0...bi+1. In the end, nodev can deduce the
state of the whole system — the sub-domain of the empty prefixε. Figure 4.1 gives an
example: Node 001 knows about the state of the sub-domain 000 by its prefix buddy
000, about the sub-domain 01 by its buddy 011 and finally about the sub-domain 1 by
its buddy 1100.

Figure 4.1: DASIS

Assume that the information or the state of each node is of typeT . For aggregation,

17

we use a commutative function̄ : TxT 7→ T . Further, letinitval ∈ T denote a
default value which depends on the aggregation function and assume thatΞ : V 7→ T
locally computes the new state of a node.

Example 4.1. Consider a graph where every node stores a certain number of coins,
and the goal is to compute the total number of coins in the system. In this case,Ξ(v)
returns the current number of coins at nodev, the typeT is integer (T := N), we use
the sum function (̄ := +) and the default value isinitval := 0.

Algorithm 3 gives a complete description of our synchronous information aggre-
gation system based on DASIS. Note thatk can be different for every node, but we
assume that the bit string of a node is never a prefix of the bit string of another node.

Algorithm 3 DASIS Aggregation
1: (* algorithm running on nodeb0...bk *)
2: prefix agg[b0...bk, b0...bk−1, ...,b0, ε] = initval;
3: prefix agg[b0...bk] := Ξ(b0...bk) ;
4: while truedo
5: (* new round *)
6: for j := 0 to k do
7: SEND prefixagg[b0...bj] TO buddy of domainb0...bj ;
8: sb0...bj

:= RECV FROM buddy of domainb0...bj ;
9: end for

10: for all j ∈ [0, k]: prefix agg′[b0...bj−1] :=prefix agg[b0...bj]¯ sb0...bj
;

11: prefix agg′[b0...bk] := Ξ(b0...bk);
12: prefix agg:=prefixagg′;
13: end while

Theorem 4.1. Assuming a synchronous model where the nodes’ states change at the
beginning of every round, Algorithm 3 ensures that all nodes always store the same
value prefixagg[ε], whereε is the empty prefix.

Proof. We prove by induction over the prefix length that all nodes sharing the same
prefix b0...bj have the same value prefixagg[b0...bj].

j = k: Since there is only one node with prefixb0...bk, this is trivially true.
j → (j−1): We assume that all nodes sharing the prefixb0...bj propagate the same

value prefixagg[b0...bj], say x, in every round. Analogously, all nodes with prefix
b0...bj always have the same value prefixagg[b0...bj], sayy. Therefore, according to
Algorithm 3, all nodes with prefixb0...bj−1 will have prefixagg′[b0...bj−1]= x¯ y =
y ¯ x.

Of course, the aggregated value for the empty prefix does not reflect the currently
correct state of the network, and prefixagg[ε] may not even correspond to any real
state the system has been in. However, it is easy to see that for the special case of a
d-dimensional hypercube (see Chapter 5) or a perfect skip graph (see Chapter 6), where
the nodes’ identifiers all have the same length, the value of the empty prefix at timet
is the correct state of the system of timet− d.

It is expensive to send all information to all neighbors in every step. However, it is
also possible to run Algorithm 3 in an event-driven way: A node sends new information
only if one of the aggregated prefix values changes. For obvious reasons, consistent

prefix values can also be achieved in this more efficient model (sending no information
is simply interpreted as “no state change”).

Finally, we analyze an asynchronous event-driven system, where it takes an arbi-
trary but finite amount of time to send a message over a link. In a distributed system
without synchronized clocks, it is impossible to ensure that all nodes change a prefix
value at the same moment of time. However, some crucial properties remain valid.
Assume that each node stores for every prefixb0...bi the aggregated values for the do-
mainsb0...bi andb0...bi and the valueb0...bi¯ b0...bi. If the state of a nodev = b0...bk

changes fromΞ(v) to Ξ(v)′, v updatesall its prefix valuesε, b0, ..., b0...bk as follows:
prefix agg′[b0...bk] := Ξ(v)′ and prefixagg′[b0...bi−1] :=prefix agg′[b0...bi] ¯ pre-
fix agg[b0...bi] for i ∈ [0, k], where prefixagg[b0...bi] stores the old value of the alter-
native prefix which hasn’t changed. Then the neighbors are informed. Similarly, when
a node hears about a change of an alternative prefixb0...bi, it updates prefixagg[b0...bi]
and calculates the new values of the smaller prefixes, i.e., prefixagg′[b0...bi−1] := pre-
fix agg[b0...bi]¯ prefix agg′[b0...bi] and prefixagg′[b0...bj−1] := prefix agg′[b0...bj]¯
prefix agg[b0...bj] for j ∈ [0, i − 1] and immediately afterwards sends a message to
the corresponding prefix buddies.

Theorem 4.2. In an asynchronous event-driven system, where it takes an arbitrary
time to send a message over a link, and if the links are FIFO, it holds that the algorithm
presented above provides the same aggregated value for the empty prefix to every node
when there is no message on its way. Moreover, this value describes the correct state
of the system at that moment of time.

Proof. Every nodeu hears about a changeΞ(v) → Ξ(v)′ of a nodev exactly once,
namely by the prefix buddy representing the sub-tree in which the change has hap-
pened. Moreover, since the edges are FIFO, a later changeΞ(v)′ → Ξ(v)′′ at nodev
also arrives later at nodeu, because there is a unique path on which changes are prop-
agated fromv to u. Finally, under the assumption that local computations take no time
and that messages are triggered immediately after a change, it holds that when there is
no message on its way, then all changes have been accounted for. Thus, all nodes store
the correct state of the system at that time.

Consider the case where edges are not FIFO. Assume a system consisting of only
two nodesv := b0 andu := b0. Further, assume thatv changes its state at timest and
t′, sending its new valuesΞ(v) andΞ(v)′ to u. These are the only two changes that
will ever happen. Without the FIFO property,Ξ(v)′ may arrivebeforeΞ(v), causingu
to store a different value for the empty prefix thanv. Thus, it is impossible to guarantee
consistent values with our algorithm if the edges are not FIFO. However, under the as-
sumption that the aggregation function̄has the additional property that it is invertible,
we can achieve consistency by sendingdifferencesinstead of absolute values. So as-
sume that all elementsτ ∈ T have an inverse elementτ−1 such thatτ¯τ−1 = initval
— for example,̄ := + has this property:τ−1 ∈ N := −1 · τ , where· denotes the
multiplication inZ. If v sends(Ξ(v))−1 ¯ Ξ(v)′ to u instead ofΞ(v)′, u finally stores
the aggregated valueΞ(v)¯ (Ξ(v))−1 ¯ Ξ(v)′ = (Ξ(v))−1 ¯ Ξ(v)′ ¯ Ξ(v) = Ξ(v)′,
the same value asv.

Assume that in the beginning, it holds for every nodev := b0...bk ∈ V : Ξ(v) :=
initval. If there is a changeΞ(v) → Ξ(v)′, v sends(Ξ(v))−1 ¯ Ξ(v)′ to all prefix
buddies, and updates prefixagg′[b0...bi] := prefix agg[b0...bi]¯ (Ξ(v))−1¯Ξ(v)′ for
i ∈ [−1, k]. Similarly, receiving a change(Ξ(w))−1 ¯ Ξ(w)′ from a prefix buddyu
with prefix b0...bi, v updates prefixagg[b0...bj]′ := prefix agg[b0...bj] ¯ (Ξ(w))−1 ¯

Ξ(w)′ for j ∈ [−1, i−1] and propagates(Ξ(w))−1¯Ξ(w)′ to the remaining (smaller)
prefix buddies.

Theorem 4.3. In an asynchronous event-driven system without the FIFO property, this
algorithm guarantees that every node stores the same value for the empty prefix if there
is no message on its way. Moreover, this value describes the correct state of the system
at that moment of time.

Proof. Obviously, every change(Ξ(v))−1¯Ξ(v)′ is sent exactly once to every node —
hence, it is abroadcast— by the buddy-structure of DASIS. Sincēis commutative,
every node stores the same and correct value in a time of quiescence.

On the other hand, FIFO can also be achieved in a non-FIFO system by using
a time-stamp per link: The sender simply tags each message with a number which
is incremented for each message, and hence the receiver can sort the messages and
handle them in a FIFO order. This solution has the advantage that¯ does not have to
be invertible.

Chapter 5

Hypercube

5.1 Introduction

The hypercube topology — see Definition 5.1 — is characterized by a logarithmic node
degree and a logarithmic network diameter (in the number of nodes).

Definition 5.1 (d-Dimensional Hypercube). A d-dimensional hypercubeis a graph
G = (V, E), whereV = {0, 1}d andE = {(u0...ud−1, v0...vd−1) |

∑d−1
0 | ui − vi |

= 1}, i.e., two nodes are adjacent if and only if their Hamming distance is 1. If
two nodesu and v differ in their ith bit, we saynodesu andv are neighbors across
dimensioni. Figure 5.1 gives an example ford = 3.

Figure 5.1: 3-Dimensional Hypercube

In this chapter, asimulated hypercubeis studied, where the hypercube’s nodes are
represented byseveralpeers. One goal of a repairing algorithm maintaining such a
simulated hypercube is to guarantee that every node has at least one peer at every
moment of time. A way to achieve this is to distribute the peers evenly among all
nodes, equalizing potentially biased adversarial churn. Different questions concerning
the uniform distribution of peers on a hypercube will be addressed in Chapter 5.2.
Chapter 5.3 then presents two repairing algorithms for the simulated hypercube, one
running inΘ(d) and the other one inO(1) quiet rounds. Finally, Chapter 5.4 introduces
a distributed hash table based on the simulated hypercube. The corresponding repairing
algorithm maintains an efficient search structure against aconcurrentadversary and
ensures that no data is lost.

21

5.2 Token Distribution

Distributing peers evenly among the nodes of a simulated hypercube is a special in-
stance of atoken distribution problem— a fundamental problem to solve on a parallel
computer or distributed network, first posed by Peleg and Upfal [8]. This problem has
its origins in the area of load balancing, where the workload is modelled by a number
of tokensor jobs of unit size; the main objective is to distribute the total load equally
amongst the processors. Such load balancing problems arise in a number of paral-
lel and distributed applications including job scheduling in operating systems, packet
routing, large-scale differential equations and parallel finite element methods. More
applications can be found in [14]. In this section, we will study different algorithms for
the token distribution on ad-dimensional hypercube.

Basically, the goal of every token distribution algorithm is to minimize the max-
imum difference of the number of tokens at any two nodes in the graph, called the
discrepancy(see Definition 5.2).

Definition 5.2 (Discrepancy).Leta be the minimum number of tokens and letb be the
maximum number of tokens at any node in a hypercubeH. We say that hypercubeH
has adiscrepancyof b− a.

Token distribution problems can be classified into two categories:static anddy-
namic. In the static variant, an initial token distribution is given and the main objective
is to re-distribute these tokens evenly amongst all nodes of the graph “in a phase of qui-
escence”. In the dynamic variant on the other hand, the load is dynamic, that is, there
are new tokens arriving and old tokens leaving all the times. We will consider the two
variants in turn. Finally, an algorithm for theweightedtoken distribution problem on
the hypercube is presented. Here, each node is characterized by a fixed weight and the
goal is to distribute the tokens in a way that nodes with more weight get more tokens
than nodes with little weight.

5.2.1 Static Token Distribution

First, we assume that the tokens arefractional, that is, infinitely divisible. Of course,
in our case where tokens represent peers, this assumption is not realistic. However, it
allows a first comparison of different token distribution algorithms, and, as we will see,
simplifies also the analysis of the integer token distribution.

Consider the following algorithm: Every nodev, havinga tokens, sendsa/(d + 1)
tokens to each of itsd neighbors. Unfortunately, although the algorithm converges, it
may run forever.

Theorem 5.1. This algorithm may never terminate with a perfect distribution.

Proof. Consider a 2-dimensional hypercube where node 00 hasa, 01 hasb, 10 hasc
and 11 hasd tokens at the beginning. After the first step (i = 0), node 00 hasa+b+c

3 ,
01 hasa+b+d

3 , 10 hasa+c+d
3 and 11 hasb+c+d

3 tokens.
Note that after stepi and if i is even, a node 00 has a numerator of the formxa +

xb+xc+(x−1)d, 01 of the formxa+xb+(x−1)c+xd, 10 of the formxa+(x−1)b+
xc+xd and 11 of the form(x−1)a+xb+xc+d. If i is odd, 00 has a numerator of the
form (y+1)a+yb+yc+yd, 01 hasya+(y+1)b+yc+yd, 10 hasya+yb+(y+1)c+yd
and 11 hasya + yb + yc + (y + 1)d. Therefore, before the balancing of stepi, the
discrepancy ismax{|a−b|/3i, |a−c|/3i, |a−d|/3i, |b−c|/3i, |b−d|/3i, |c−d|/3i}.

Therefore, even if the convergence is — at least for the 2-dimensional case — very
fast, there is no guarantee about the absolute discrepancy after a certain number of
steps.

The next algorithm we will study is shown in Algorithm 4: In stepi (for i from 0 to
d−1), every nodev := b0...bi...bd−1 havinga tokens balances its tokens with only one
adjacent node, namely its neighbor in dimensioni, u := b0...bi...bd−1, havingb tokens,
such that both nodes end up witha+b

2 tokens. Figure 5.2 illustrates the execution of
Algorithm 4 ford = 3. This algorithm has some nice properties.

Algorithm 4 Hypercube Token Distribution
1: (* algorithm running on nodeb0...bd−1 *)
2: my id := b0...bd−1;
3: Tmy id :=tokens at this node;
4: for i := 0 to d− 1 do
5: buddy id := b0...bi...bd−1;
6: SEND|Tmy id|/2 tokens to nodebuddy id;
7: updateTmy id accordingly;
8: Tbuddy id :=REVC tokens from nodebuddy id;
9: Tmy id := Tmy id ∪ Tbuddy id;

10: end for

Figure 5.2: Token Distribution on Hypercube (Algorithm 4)

Theorem 5.2. In case of fractional tokens, Algorithm 4 results in a perfect distribution
afterd steps.

Proof. We prove by induction that after theith iteration, all nodes with the same postfix
of lengthd− 1− i have the same number of tokens.

i = 0: Let v be node0α havinga tokens andu its neighbor1α havingb tokens, for
an arbitraryd− 1 bit vectorα. After balancing, both nodes havea+b

2 tokens.
i → i + 1: Consider twoi-dimensional sub-cubesH0 andH1 consisting of all

nodes with postfixes0α and1α respectively, whereα is an arbitrary bit string of length
d− 1− (i + 1). By the induction hypothesis, all nodes inH0 have the same number of
tokens, saya, and all nodes inH1 have the same number of tokens, sayb. After step
i+1, all nodes inV (H0)∪V (H1) — sharing the postfixα — will have a+b

2 tokens. To
see this, consider the nodesv0 = ζ0α, v1 = η0α ∈ V (H0), andu0 = ζ1α, u1 = η1α
∈ V (H1), whereζ andη are arbitrary bit vectors of lengthi + 1. During the exchange
of roundi + 1, v0 balances withu0 andv1 with u1. Obviously, all four nodes end up
with a+b

2 tokens.

Algorithm 4 is optimal in the following sense: There is no algorithm which can
guarantee an upper bound on the absolute discrepancy in less thand steps, and afterd
steps, Algorithm 4 reaches the optimal discrepancy 0.

Theorem 5.3. Every algorithm which, for every initial distribution, can balance the
tokens with a discrepancy less thanC needs at lestd steps, for some arbitraryC.

Proof. Consider ad-dimensional hypercubeH with 2d nodes and the following initial
distribution: Node1d hasC · 2d tokens, and all other nodes have no tokens at all.
HavingC tokens per node on average, there is always a nodev on H with at leastC
tokens. On the other hand, no algorithm can move any tokens to nodeu := 0d in less
thand steps. The discrepancy betweenv andu is at leastC tokens.

Hence, Algorithm 4 has some desirable properties if the tokens are fractional.
Moreover, with a little modification, the same algorithm works also for integer tokens:
If two nodesv (a tokens) andu (b tokens) are balanced, one node will end up with
d(a+b)/2e tokens and the other one withb(a+b)/2c tokens. In the following, we will
assume that this balancing is performed in two sub-steps: In the first sub-step, nodesu
andv inform each other about the number of tokens they store, so in the second step
the larger node can send (the arbitrarily rounded) difference to the smaller node.

Theorem 5.4. This integer variant of Algorithm 4 yields a discrepancy of at mostd
afterd steps.

Proof. We show that after roundi, the discrepancy among the nodes sharing the same
postfix of lengthd− 1− i is at mosti + 1.

i = 0: Balancing a nodev havinga tokens with a nodeu havingb tokens results in
one node havingd(a+ b)/2e and the other one havingb(a+ b)/2c tokens, and it holds
that(d(a + b)/2e − b(a + b)/2c) ≤ 1.

i → i + 1: Consider two sub-cubesH0 andH1 that will be balanced in round
i + 1. By the induction hypothesis, the discrepancy withinH0 andH1 is ≤ i + 1.
Let amin, resp. amax be the minimal, resp. maximal number of tokens in a node in
H0. bmin andbmax are defined analogously forH1. In the worst case, a maximum
node inH0 is balanced with a maximum node inH1, which results in a node having
d(amax + bmax)/2e tokens. Similarly, balancing the minimum nodes yields a node
with b(amin +bmin)/2c tokens. The difference is at mosti+2: d(amax +bmax)/2e ≤
d(amin + i + 1 + bmin + i + 1)/2e = d(amin + bmin)/2e + (i + 1) ≤ b(amin +
bmin)/2c+ (i + 2).

Unfortunately, this bound is tight. Consider the following initial token distribution:
Assigna + f(v) tokens to nodev, wheref : v ∈ V 7→ (number of 1-bits of node
v). Since neighboring nodes have a discrepancy of exactly 1, the token distribution
algorithm may leave the distribution unchanged. Moreover, the integer version of Al-
gorithm 4 does not even guarantee thatadjacentnodes have a discrepancy of at most1
in the final distribution.

Theorem 5.5. Even adjacent nodes may have a discrepancy ofd after running the
integer version of Algorithm 4.

Proof. We recursively construct such a worst case, where node01d−1 hasd tokens and
its adjacent node1d has none.

d = 2: Consider the initial distribution where nodes 00, 10, 01, 11 have 2, 1, 1, 0
tokens respectively. In the first step, the pair (00, 10) is rounded up in favor of 00, and

(01, 11) in favor of 01; in the second step, (00, 01) to 01 and (10, 11) to 10. The claim
holds.

d − 1 → d: Consider a(d − 1)-dimensional sub-cubeH0. By the induction hy-
pothesis, node01d−20 hasd− 1 tokens and1d−10 has none. With the same rounding
strategy, it must be possible to construct a(d − 1)-dimensional sub-cubeH1 where
every node has exactly one token more than its corresponding node inH0, i.e.,01d−21
hasd tokens and1d−11 has 1. In the next step, we balance the sub-cubes as follows:
The pair (01d−20, 01d−21) is rounded up in favor of01d−21, so01d−1 hasd tokens,
and the pair (1d−10, 1d−11) in favor of1d−10, yielding no tokens at all at node1d. All
other pairs are rounded arbitrarily.

So far, we have not specified which node gets the additional token if two nodes
with an odd sum of tokens are balanced. We will show that if the additional token is
assigned in a smart way to one of the two nodes, the final worst-case discrepancy is
smaller. We will call an algorithm which decides for each edge which node gets the
additional token arounding strategyΥ : E 7→ V .

First, we present a rounding strategy which yields a discrepancy of at mostdd/2e:
If a nodev = b0...bi...bd−1 is balanced with a nodeu = b0...bi...bd−1, the potential
rounding token is assigned tov if i⊕ (

⊕d−1
j=0 bj) is even, otherwise it is assigned tou.

Here,⊕ and
⊕

are functions for addition modulo 2.

Theorem 5.6. For this rounding strategy it holds that the final discrepancy never ex-
ceedsdd/2e.
Proof. Consider ad-dimensional hypercube, a nodev = b0...bi...bd−1 and its neighbor
u = b0...bi...bd−1. Obviously, v and u have different parity sums, and hence the
strategy is well-defined. Note that while

⊕d−1
j=0 bj is constant,i changes parity in every

step, sov is rounded up at most every second time. We prove by induction that ifd is
even, the discrepancy is at mostd/2. The correctness of the claim for the case whered
is odd is a simple consequence.

d = 0: Trivial.
d → d + 2: Consider fourd-dimensional sub-cubesH00 having a maximum of

λ00
max tokens,H10 (maximum λ10

max), H01 (maximum λ01
max) and H11 (maximum

λ11
max). By the induction hypothesis we know that the minimum numbers of tokens are

at leastλ00
min = λ00

max− d
2 , λ10

min = λ10
max− d

2 , λ01
min = λ01

max− d
2 andλ11

min = λ11
max− d

2 .
First,H00 is balanced againstH10 andH01 againstH11, thenH00 againstH01 andH10

againstH11.
By our construction the new minimum node has at least

min

{⌊
dλ00

max+λ10
max

2 e+ bλ01
max+λ11

max

2 c
2

⌋
− d

2
,

⌊
bλ00

max+λ10
max

2 c+ dλ01
max+λ11

max

2 e
2

⌋
− d

2

}

tokens, the new maximum node has at most

max

{⌈
dλ00

max+λ10
max

2 e+ bλ01
max+λ11

max

2 c
2

⌉
,

⌈
bλ00

max+λ10
max

2 c+ dλ01
max+λ11

max

2 e
2

⌉}

It is easy to verify that the discrepancy grows at most by 1:
⌈
dλ00

max+λ10
max

2 e+ bλ01
max+λ11

max

2 c
2

⌉
≤

⌊
dλ00

max+λ10
max

2 e+ bλ01
max+λ11

max

2 c
2

⌋
+ 1

and
⌈
dλ00

max+λ10
max

2 e+ bλ01
max+λ11

max

2 c
2

⌉
≤

⌊
bλ00

max+λ10
max

2 c+ dλ01
max+λ11

max

2 e
2

⌋
+ 1

Is there a rounding strategy that definesoff-line, i.e., independently of the initial
distribution, for each edgee = {u, v} on the hypercube whetheru or v gets the over-
flow token and that guarantees an optimal discrepancy of at most one afterd steps
of our algorithm? Consider two(i − 1)-dimensional sub-cubesH0 and H1 with
∀v ∈ V (H0) ⇒ v has eithera or a + 1 tokens and∀u ∈ V (H1) ⇒ u has either
b or b + 1 tokens. We require thatΥ distributes the tokens inH0 andH1 such that
“a-nodes” are never balanced with “b-nodes” (resulting in a node withba+b

2 c) when at
the same time(a + 1)-nodes are balanced against(b + 1)-nodes (resulting in a node
with da+b

2 e + 1), which would yield a discrepancy of two if(a + b) ≡ 1 (mod 2).
Assume thatH0 hasA tokens in total andH1 hasB. Moreover, letA mod2i−1 = α
andB mod 2i−1 = β, i.e., H0 hasα nodes witha + 1 tokens andH1 hasβ nodes
with b + 1 tokens. A possible strategy forΥ would be to placeH0’s additional tokens
at nodes 0, ...,α − 1 andH1’s additional tokens at nodes2i − 1, ..., 2i − β, given an
arbitrary order on hypercubes.

Lemma 5.7. There is no off-line rounding strategyΥ which places tokens with respect
to such an order for every initial distribution. More generally, it is impossible to avoid
balancing maximum against maximum and minimum against minimum at the same
time, yielding a final discrepancy greater than one.

Proof. Let |H| := (number of tokens inH) mod2d. Consider two 2-dimensional sub-
cubesH0 andH1 with |Hi| = 2 for i ∈ {0, 1}. There are two possible configurations
to avoid a discrepancy of two in the 3-dimensional hypercube: PlaceH0’s rounding
tokens on the top at 01 and 11 (and henceH1’s rounding tokens at the bottom), see
Figure 5.3.a on the left, or place them along one of the diagonals, e.g. 01 and 10 (H1

uses the other diagonal), see 5.3.a on the right. In the upcoming section, we will discuss
both possibilities in turn.

Tokens at 01 and 11:We use only the left half of Figure 5.3. Consider the initial
distribution of Figure 5.3.b. Note that there is no rounding strategy to achieve the
desired configuration if we first balance dimension 1 and then dimension 0.

Hence, we can concentrate on the case where we balance dimension 0 first. There
are only two possible rounding strategies, depicted in 5.3.c and 5.3.d, where the arrow
points to the node which gets the rounding token if there is any. We consider these
cases in turn.

For |H0| = 2, we always achieve configuration 5.3.a. If|H0| = 3, there are two
possible configurations to place all three rounding tokens, see 5.3.e and 5.3.f. However,
it is not possible for every initial distribution to place the rounding tokens this way:
5.3.g gives a counter example for 5.3.e, 5.3.h is a counter example for 5.3.f.

The same holds for 5.3.d: Here, 5.3.i gives a counter example for 5.3.e and 5.3.j is
a counter example for 5.3.f.

Tokens at 01 and 10:For this section, we use the right half of Figure 5.3. For
symmetry reasons, we can concentrate on balancing dimension 0 first and then dimen-
sion 1. Consider the initial distribution of Figure 5.3.b. Again, there are two possible

rounding strategies, shown 5.3.c in and 5.3.d. For the case where|H0| = 3, the counter
examples for 5.3.e and 5.3.f are shown in 5.3.g, 5.3.h, 5.3.i and 5.3.j.

Hence, no rounding strategy that prevents balancing maximum against maximum
and minimum against minimum for the case|H0| = 2 and |H1| = 2 can ensure the
position of the third additional token inH0 if |H0| = 3, which — as a consequence —
may collide with the additional token ofH1 given|H1| = 1.

Figure 5.3: Rounding StrategyΥ for H0

It is even possible to show that for every off-line rounding strategy the discrepancy
growslinearly in d.

Theorem 5.8. For every off-line rounding strategyΥ, the worst-case discrepancy is in
Ω(d).

Proof. We show that for any rounding strategy instance, it is possible to construct
an initial distribution which yields a discrepancy of at leastdd+2

4 e. Two (i − 1)-
dimensional sub-cubesH0 and H1 are balanced on2i−1 edges,k pointing to H0

(rounding up in favor ofH0), for k ∈ {0, ..., 2i−1} and 2i−1 − k pointing to H1.
Without loss of generality assume thatk ≥ 2i−2. Further, letS be the set of edges
pointing toH0 and letSHb

be the endpoints of these edges which belong to the sub-
cubeHb for b ∈ {0, 1}. In our initial distribution,a + θe tokens are assigned to nodes
in SH0 , a + θe − 1 to the nodes inSH1 anda + θe to all other nodes, whereθe is a
constant defined for each edgee such that the largest node has exactlya tokens. Fig-
ure 5.4 shows such a distribution whereti := a + θe: Sub-cubeH0 has at least2d−2

incoming edges, hence, according to our initial distribution, it gets at least2d−2 tokens
more thanH1.

More formally, consider the series of sub-cubes(H(0), ..., H(d)) recursively de-
fined as follows: H(d) is the wholed-dimensional hypercube; fori ∈ {1, ..., d},
H(i−1) is the(i−1)-dimensional sub-cube (across dimensiond−1− i) of H(i) which
has more incoming edges. Consider a nodev = b0...bd−1−i...bd−1 and its neighbor

u = b0...bd−1−i...bd−1 where it holds that(v ∈ V (H(i))) ∧ (u ∈ V (H(i−1))) (this
implies thatv /∈ V (H(i−1))) andi > 0. In the initial token distribution,

tokens atv :=

{
tokens at u minus 1 , ifu = Υ(v, u)
tokens at u , ifv = Υ(v, u)

If i = 0, v is assigneda tokens. Hence, balancing the two sub-cubes ofH(i) requires
no token transfer at all. Given this description of the initial token distribution, the total
number of tokens in the graph can be computed. We will show that the result implies
the existence of a node having at mosta−dd+2

4 e tokens after the distribution; together
with the fact that there exists a node havinga tokens, the claim follows.

We do a bottom-up analysis, always counting the number of tokens in the biggest
i-dimensional componentH(i). H(0) hasa tokens. Adding a node witha − 1 tokens
gives2a−1 tokens inH(1). H(1) has at least one incoming edge, and hence it is merged
with a hypercube having at most2a− 2 tokens, yielding4a− 3 tokens inH(2). H(3)

has at least two incoming edges, therefore it has at most(4a− 3) + (4a− 5) = 8a− 8
tokens. And so forth.

Let δi be a2i minus the total number of tokens inH(i), that is,δ0 = 0, δ1=1,
δ2=3, δ3=8 etc. So there are at mosta2d − δd tokens in the whole hypercube by our
construction,a2d−1 − δd−1 in the larger half and(a2d − δd)− (a2d−1 − δd−1) in the
smaller half of the last step (across dimension 0). We have

δk = 2δk−1 + 2k−2 = ... =
= 2jδk−j + j2k−2 = ... =
= 2k−1δ1 + (k − 1)2k−2 = (k + 1)2k−2.

Since there are(a2d−(d+1)2d−2)−(a2d−1−d2d−3)
2d−1 = a − d+2

4 tokens on average in the
smaller halfV (H(d)) \ V (H(d−1)), there must be a node having at mostba− d+2

4 c =
a− dd+2

4 e tokens.
Alternatively, it is possible to calculate the total number of tokens in the smaller

half of the last step directly:̃δ0 = 1, δ̃1 = 2, δ̃2 = 5, etc. and

δ̃k = 2δ̃k−1 + 2k−2 = ... =

= 2j δ̃k−j + j2k−2 = ... =

= 2k−1δ̃1 + (k − 1)2k−2 = (k + 3)2k−2.

Fork = d− 1, we get againd (d+2)2d−3

2d−1 e = dd+2
4 e.

Remark 5.1. The technique of the proof of Theorem 5.8 can be used to show that
the bound of Theorem 5.4 is tight. For this, we consider a hypercube whereall two
i-dimensional sub-cubesH0 and H1 which are balanced have2i edges in thesame
direction. The discrepancy per edge is exactly 1 and the initial distribution is afix-
point for this rounding instance, that is, the distribution is never changed during the
execution of our token distribution algorithm. Starting with a nodev havinga tokens,
the biggest 1-dimensional hypercube has2a − 1 tokens, the biggest 2-dimensional
hypercube has4a− 4, i.e.,δ0 = 0, δ1 = 1, δ2 = 4, δ3 = 12 and so on. We have

δk = 2δk−1 + 2k−1 = k2k−1

Hence there area − d
2 tokens in the whole hypercube on average. Because of the

symmetric structure of the initial distribution, the minimal node hasa− d tokens.

Figure 5.4: Initial Distribution for DiscrepancyΩ(d)

Next, we will study anonlinerounding strategy which depends on the initial distri-
bution. A simple idea is to assign the additional token to the node which had less tokens
before balancing. Unfortunately, given an initial distribution where every nodev has
a+f(v) tokens, wheref : v ∈ V 7→ (number of 1-bits of nodev), the final discrepancy
is as large asd. To see this, note that after balancing across dimensioni, the distribution
is isomorphic to the distribution before balancing withb0...bi...bd−1 7→ b0...bi...bd−1.
There may smarter online rounding strategies which achieve smaller discrepancies.
However, it seems that these strategies require more information on the initial distribu-
tion than the one that can be obtained locally by the neighboring nodes. We will not
consider this approach further here.

Last but not least,Υ could be computed randomly, assigning the potential rounding
token to one of the endpoints of the edge according to the outcome of a perfect coin
flip. First, we show that that the probability that ad-dimensional hypercube has a
discrepancy ofd with a randomized rounding strategy is very small. We need some
helper lemmas.

Lemma 5.9. If during the execution of the integer version of Algorithm 4 on hyper-
cubeH there is ani-dimensional sub-cube with a discrepancy less thani, the final
discrepancy is less thand.

Proof. First, we show that combining two sub-cubesH0 andH1 with discrepancies
∆H0 and ∆H1 respectively results in a discrepancy of at most max{∆H0 , ∆H1} if
∆H0 6= ∆H1 . Without loss of generality, assume that∆H0 > ∆H1 . Letλb be the min-
imum andλ̂b the maximum node inHb, for b ∈ {0, 1}. In the worst case, we compare
the minimums and the maximums and have one rounding error, hence the new mini-

mum node hasbλ0+λ1
2 c and the maximum node hasd λ̂0+λ̂1

2 e = dλ0+∆H0+λ1+∆H1
2 e ≤

dλ0+∆H0+λ1+∆H0−1

2 e = ∆H0 + dλ0+λ1−1
2 e = ∆H0 + bλ0+λ1

2 c.
It follows that the discrepancy may only grow if we balance two sub-cubes of the

same discrepancy. On the other hand, balancing two sub-cubes of the same discrepancy
can increase the discrepancy at most by one.

Lemma 5.10. If the final discrepancy after the integer token distribution on ad-
dimensional hypercube isd, there is exactly one maximum and one minimum node.

Proof. Proof by induction.
d = 1: The claim holds trivially.

d − 1 → d: From Lemma 5.9 we know thatH may only have a discrepancy of
d if the two (d − 1)-dimensional sub-cubesH0 andH1 have a discrepancy ofd − 1.
Moreover, by our induction hypothesis,H0 andH1 both have exactly one node with
λb tokens and one withλb + (d − 1), for b ∈ {0, 1} and some arbitraryλb ∈ N. The
resultingd-dimensional hypercube has a discrepancy ofd if and only if parity(λ0 +
(d− 1)) 6= parity(λ1 + (d− 1)), and if the two maximum nodes are balanced against
each other, resulting in exactly one node withbλ0+λ1

2 c+ d tokens. Similarly, the new
minimal node can only be either the minimal node ofH0 or the minimal node ofH1 in
order thatH := H0 ∪H1 has a discrepancy ofd.

We can now calculate the probability that the random rounding strategy yields a
discrepancy ofd tokens.

Theorem 5.11. Let ε denote the event that ad-dimensional hypercube has a final dis-
crepancyd under a randomized rounding strategy. It holds thatPr[ε] ≤ (1

2)2
d+2d−1−d−1.

Proof. Let p(i) be the probability that ani-dimensional hypercube has a discrepancy
of i. It holds thatp(i) = 1

2
1

2i−1 p(i − 1)p(i − 1) for i ∈ {1...d}: The probability that
an i-dimensional hypercube has a discrepancy ofi is the probability that both its sub-
cubes have a discrepancy ofi− 1 times the probability that the parity of the maximum
nodes is different and rounding takes place, times the probability that both maxima
are balanced against each other. Since we do not consider the minima at all, we may
overestimate. As a recursion basis, we know thatp(0) = 1, sop(1) = 1

2 andp(2) = 1
16

etc.
We have

p(d) =
1
2

1
2d−1

p(d− 1)p(d− 1) = ... =

=
1
2
...

(
1
2

)2i−1

1
2d−1

...

(
1

2d−i

)2i−1

(p(d− i))2
i

= ... =

=
1
2
...

(
1
2

)2d−1

1
2d−1

...

(
1
20

)2d−1

(p(0))2
d

=

=
d−1∏

i=0

(
1
2

)2i d−1∏

i=1

(
1

2d−i

)2i−1

=

=
(

1
2

)∑d−1
i=0 2i (

1
2

)2d−d−1

≤
(

1
2

)2d−1 (
1
2

)2d−d−1

.

Of course, a statement about the expected discrepancy is of greater interest.

Theorem 5.12.LetX be the random variable for the final discrepancy in ad-dimensional
hypercube. It holds thatE[X] < 3.

Proof. It is possible to apply our technique of the proof for Theorem 5.8 also here.
However, the difference of the number of tokens in two sub-cubes is now given by a
random variable.

In our randomized rounding scheme, the rounding direction of each edge it deter-
mined by a perfect coin flip. LetXi be the random variable denoting the number of
incoming edges of a(d − 1 − i)-dimensional sub-cube. Since there are2d−1−i edges

connecting two(d − 1 − i)-dimensional sub-cubesH0 andH1, Xi has the binomial
distributionXi ∼ B(2d−1−i, 1/2). If rounding happens on every edge, the sub-cubes
H0 andH1 differ by δi tokens after balancing, whereδi := 2 · |Xi − E[Xi]|, and the
random variablesδi are mutually independent.

Assume that the in the final distribution the maximum nodev hasa tokens. We
show that the average number of tokens in the system is at leasta −

∑d−1
i=0 2iE[δi]

2d , by
counting the average number of tokens in the biggesti-dimensional sub-cubes which
containv for i ∈ [0, d]. Obviously, the 0-dimensional sub-cube consists only ofv
and hasa tokens in total. In the next step, this sub-cube is combined with another 0-
dimensional sub-cube havinga− δd−1 tokens. The resulting 2-dimensional hypercube
having2a − δd−1 tokens is combined with a hypercube havingδd−2 tokens less, so
there are4a− 2δd−1 − δd−2 tokens in total, and so forth. Obviously, afterd steps, we

havea2d−∑d−1
i=0 2iδi tokens in the wholed-dimensional hypercube,a−

∑d−1
i=0 2iδi

2d on
average.

It remains to calculateE[δi], which is twice the mean deviation of the binomial
distributed random variableXi. We have

E[δi] = 2 · 1
22d−1−i ·

2d−1−i∑

j=0

(
2d−1−i

j

) ∣∣∣∣j −
2d−1−i

2

∣∣∣∣
(1)

≤ 2
√

π2d−1−i

Inequality (1) is due to Chernoff, see Appendix A.
Hence

d−1∑

i=0

2iE[δi] = 2
√

π

d−1∑

i=0

2i2
d−1−i

2 = 2
√

π2
d−1
2

d−1∑

i=0

2
i
2

= 2
√

π2
d−1
2

d−1∑

i=0

(
√

2)i = 2
√

π2
d−1
2

(
√

2)d − 1√
2− 1

≤
√

π√
2− 1

2d

Thus, having a node witha tokens, the average number of tokens is at leasta −√
π√

2−1
. By symmetry, the expected final discrepancy is twice as much. Moreover,

according to Stirling’s approximation, see also Appendix A, we overestimated by a
factor of at leastπ, and therefore the total discrepancy is2 · 1

π ·
√

π√
2−1

.= 2.73.

5.2.2 Dynamic Token Distribution

We turn our attention now to the more interestingdynamictoken distribution problem
and assume that at the beginning of each step, a “token adversary” inserts at mostJ and
removes at mostL tokens at arbitrary nodes. We consider again our token distribution
algorithm (Algorithm 4), which in the dynamic case cycles forever over the dimensions,
that is, after balancing dimensiond − 1 it will again start with dimension 0. It can be
shown that for any initial distribution and in the case of non-fractional tokens, after the
first d steps of Algorithm 4, the discrepancy will forever be bounded byd + 2J + 2L.

Lemma 5.13. In the dynamicfractionaltoken distribution, the number of tokens at a
node depends only on the adversarial token insertions and deletions of the lastd steps
and on the total number of tokens in the system. It does not depend on the history of
changes that lie more in the past!

Proof. Assume that a total amount ofT tokens are distributed in two different ways
on thed-dimensional hypercube. According to Theorem 5.2, each node has exactly
T
2d tokens afterd steps in the absence of an adversary. On the other hand, the token
insertions and removals of the adversary that happen in-between can be treated as an
independent superposition, as the corresponding operations are all linear.

Based on Lemma 5.13, we prove that the discrepancy of the dynamic integer token
distribution is at mostd tokens larger than the discrepancy in the fractional case at
every moment of time.

Lemma 5.14. Consider an arbitrary nodev ∈ V (H) in the d-dimensional hyper-
cubeH. Let |v|int

t denote the number of tokens atv for the (dynamic) integer token
distribution at timet and analogously|v|frac

t for the (dynamic) fractional token dis-
tribution. Moreover, an arbitrary adversaryAadv(J, L, δ) is assumed. It holds that
∀t : |(|v|int

t − |v|frac
t)| ≤ d

2 .

Proof. Assume that initially, i.e., fort = 0, the integer and the fractional distribution
are the same. For symmetry reasons, it is sufficient to show the upper bound|v|int

t ≤
|v|frac

t + d
2 . First, we prove by induction that|v|int

t ≤ |v|frac
t + t

2 for the firstt steps.
t = 1: If v hasa tokens and is balanced with nodeu havingb tokens, we have

|v|int
1 ≤ da+b

2 e and|v|frac
1 = a+b

2 and it holds that|v|int
1 −|v|frac

1 ≤ 1
2 . Note that this

remains true when the adversary now changes the number of tokens atv by ψ tokens:
(|v|int

1 + ψ)− (|v|frac
1 + ψ) = |v|int

1 − |v|frac
1 ≤ 1

2 .
t → t + 1: Consider two nodesu andv which are balanced. It holds that

|v|int
t+1 ≤

⌈ |v|int
t + |u|int

t

2

⌉
≤




⌊
|v|frac

t + i
2

⌋
+

⌊
|u|frac

t + i
2

⌋

2




≤

⌊
|v|frac

t + i
2

⌋
+

⌊
|u|frac

t + i
2

⌋

2
+

1
2

≤ |v|frac
t + |u|frac

t + i + 1
2

= |v|frac
t+1 +

i + 1
2

.

The second inequality is due to the induction hypothesis and the fact that|v|int
t and

|u|int
t are integers. Again, the difference between|v|int

t and|v|frac
t is not affected by

the activity of the adversary.
Thus, a node can deviate at most byd

2 from its fractional value ind steps if the
initial integer and fractional distributions are the same. However, this also holds for
all later steps. To see this, consider the state of the system at timet̂ = d + i for
i = 1, 2, Let’s define a fractional distribution which is the same as the integer

distribution at timêt − d: |v|f̃rac

t̂−d
:= |v|int

t̂−d
. As we have already shown, at timet̂, it

holds that|v|int
t̂

∈ [|v|f̃rac

t̂
− d

2 , |v|f̃rac

t̂
+ d

2]. However, by Lemma 5.13, it also holds

that|v|frac

t̂
= |v|f̃rac

t̂
.

Let φfrac andφint be the discrepancy at any time of the fractional and the integer
token distribution algorithm respectively.

Corollary 5.15. It holds thatφint − φfrac ≤ d given an arbitrary token adversary.

Theorem 5.16. Given an adversaryAadv(J, L, 1), in a d-dimensional hypercube it
always holds thatφint ≤ 2J +2L+d, if the initial distribution is perfect (discrepancy
0).

Proof. We show that thefractionaldiscrepancyφfrac is bounded by2J+2L. Together
with Corollary 5.15, the claim follows. LetJt ≤ J andLt ≤ L be the insertions and
deletions that happen at the beginning of stept. First, we consider the case of joins only,
i.e., Lt = 0. Assume that allJt tokens are inserted at nodev = b0...bi...bd−1 where
i := t modd. In the upcoming paragraph, all indices are implicitly modulod. In step
t, according to the token distribution algorithm,v keepsJt/2 tokens and sendsJt/2
to nodeu = b0...bi...bd−1. In stept + 1, Jt/4 are sent to nodesb0...bibi+1...bd−1 and
b0...bibi+1...bd−1, and so on. Thus, after stept+d−1, every node in thed-dimensional
hypercube has the same share ofJt

2d tokens from that insertion. We conclude that a
node can have at most all insertions of this step, half of the insertions of the last step, a
quarter of all insertions two steps ago and so on:

Jt +
Jt−1

2
+

Jt−2

4
+ ... +

Jt−(d−1)

2d−1︸ ︷︷ ︸
< 2J

+
Jt−d

2d
+

Jt−(d+1)

2d
+

Jt−(d+2)

2d
+ ...

︸ ︷︷ ︸
shared by all nodes

SinceJt−i ≤ J for i = 0, 1, 2, . . ., we haveφfrac ≤ 2J . For the case of only token
deletions, the same argument can be applied, yielding a discrepancy of at most2L.
Finally, if there are both insertions and deletions which do not cancel out each other,
we haveφfrac ≤ 2J + 2L.

5.2.3 Weighted Token Distribution

Assume a heterogenous system where some peers are more powerful than others and
assume that a token represents a job of unit size. In such a scenario, instead of dis-
tributing the tokens uniformly among all nodes, it may make sense that powerful peers
are assigned more tokens than weak peers. We call a setting where tokens have to be
distributed with respect to such a criteria aweighted token distribution problem. In the
following, only the static problem is studied.

More formally, letωi be the weight of a nodei ∈ V . Furthermore, letλ0
i be the

number of tokens the initial distribution assigns toi, λ′i the final number of tokens at
i, andλi the number of tokens at some moment of time during the execution of the
weighted token distribution algorithm. We require that for every nodev ∈ V it holds
thatλ′v = ωv∑

i∈V ωi
·∑i∈V λ0

i .

For simplicity, we consider arbitrary divisible tokens only here (fractional case).
Note that the equal distribution problem is a special instance of this problem forωi ≡ 1.
How can Algorithm 4 be adapted for this more general problem? One idea might be to
balance two nodesv andu over a dimension as follows:v sends ωu

ωu+ωv
· λv tokens to

u andu sends ωv

ωu+ωv
· λv to v. It can quickly be verified that this yields only a very

bad approximation of the desired distribution.
The correct solution needs the aggregated weights of both sub-cubes which are bal-

anced — a typical application for DASIS (see Chapter 4)! Letωb0...bj denote the sum
of weights in the component consisting of all nodes with prefixb0...bj . Our weighted
token distribution algorithm is shown in Algorithm 5 and runs inΘ(d) rounds.

Algorithm 5 Weighted Token Distribution
1: (* algorithm running on nodev := b0...bd−1 *)
2: run DASIS (̄ := +, initval := 0, valuesωi ∈ R); (* Θ(d) rounds *)
3: for j := 0 to d− 1 do
4: SEND

ωb0...bj

ωb0...bj
+ωb0...bj

· λv tokens TO nodeb0...bj ...bd−1;

5: RECV tokens and updateλv;
6: end for

Theorem 5.17. Given ad-dimensional hypercubeH, Algorithm 5 assigns each node

λ′v =
ωv∑

i∈V (H) ωi
·

∑

i∈V (H)

λ0
i

tokens.

Proof. Consider a nodev := b0...bd−1. In the following,Hb0...bj
denotes the set of all

nodesv ∈ V (H) with prefix b0...bj . By induction after stepj, there are

∑
i∈V (Hb0...bj

) ωi∑
i∈V (H) ωi

∑

i∈V (H)

λ0
i

tokens in the sub-cube of nodes with prefixb0...bj . Hence, whenj = d − 1, nodev
alone has

ωv∑
i∈V (H) ωi

∑

i∈V (H)

λ0
i

tokens.
j = −1: For the empty prefix, the claim holds trivially.
j → j + 1: By our hypothesis, there are

∑
i∈V (Hb0...bj

) ωi∑
i∈V (H) ωi

·
∑

i∈V (H)

λ0
i

tokens in the sub-cube with prefixb0...bj . In stepj + 1, everyu ∈ V (H) with prefix
b0...bj+1 sends

ωb0...bj+1

ωb0...bj+1 + ωb0...bj+1

λu

tokens to a node with prefixb0...bj+1, and vice versa. Thus, summing over all nodes
with prefix b0...bj+1:

∑
i∈V (Hb0...bj

) ωi∑
i∈V (H) ωi

∑

i∈V (H)

λ0
i

∑
i∈V (Hb0...bj+1) ωi∑

i∈V (Hb0...bj+1) ωi +
∑

i∈V (Hb0...bj+1
) ωi

=

∑
i∈V (Hb0...bj+1) ωi∑

i∈V (H) ωi

∑

i∈V (H)

λ0
i

.

5.2.4 Related Work

The basic idea of our token distribution algorithm (Algorithm 4) has independently
been invented by Cybenko [5] where it is called the “dimension-exchange method”.
Cybenko shows also that this algorithm yields a perfect discrepancy afterd steps of
quiescence in the fractional case. Moreover, Plaxton [9] has shown that this algorithm
yields a discrepancy ofd tokens in the worst case if the tokens are integer.

5.3 Simulated Hypercube Topology

After studying some issues concerning scalability, we present two different kinds of
fault-tolerant simulated hypercubes in this chapter. The repairing algorithms run both
in a time of quiescence and tolerate a constant number of joins and leaves per adver-
sarial round.

5.3.1 Scalability

The nodes of a simulated hypercube are represented by several peers. In the fol-
lowing, we assume that the peers of the same node are completely connected (intra-
connections), while the peers of two adjacent nodes are connected completely bipartite
(inter-connections). Now consider such a simulated hypercube of a fixed dimension
d, where an adversary sporadically inserts and removes arbitrary peers. Obviously,
there are two problems to be addressed: First, if the adversary inserts all peers at the
same node, the peer degree grows linearly with these insertions. The solution here is
to distribute the peers among the nodes all the times, for example based on the ideas
presented in Chapter 5.2, or based on a Hamiltonian cycle (see later in this chapter).
However, even with a perfectly uniform distribution, the peer degree still depends lin-
early on the total number of peers in the system. Hence, the second problem to be ad-
dressed is the change of the dimension of the simulated hypercube: If more and more
peers join thed-dimensional system, the nodes should expand to the next dimension,
and vice versa if there are many leaves.

As a first approach, assume that a nodev = b0...bd−1 whose number of peers
reaches a certain threshold splits into two nodesv := b0...bd−10 andv′ := b0...bd−11,
where both new nodes get half of the peers. The problem of this approach is that
different nodes expand at different times because they have a different amount of peers.
We have to make sure that the hypercube does not degenerate, that is, we would like
that the simulated topology always looks “similar to a hypercube”. For example, we
might postulate that a node can expand to dimensiond + 2 only if all other nodes
have been expanded to dimensiond+1, and vice versa for the shrinking hypercube. A
simple idea to achieve this is to run the peer distribution algorithm presented in Chapter
5.2 with the difference that if a nodev — which has already expanded — is balanced
with a non-expanded neighboru, it represents alsov′. While this trick works fine if
peers were fractional, see Example 5.1, it does not work in reality as the discrepancy is
a function ind (see Chapter 5.2).

Example 5.1. Figure 5.5 shows an example where only node 01 is not expanded to
dimension 2. Balancing dimension 0, node 110 represents both the peers of itself and
those of its expanded node 111, and for dimension 1 node 000 represents the peers
at 000 and those at 001. Thus, in the final distribution, node 01 will have double the

number of peers of all other nodes and will be the first to exceed a given threshold and
expand, yielding a perfect 3-dimensional hypercube.

Figure 5.5: Figure for Example 5.1

In Chapter 5.3.2 we present a repairing algorithm which ensures that an expanded
node will never expand again before all other nodes have been expanded as well, and
vice versa for the reductions. This is achieved by distributing the peers with respect
to a Hamiltonian cycle. An alternative approach is presented in Chapter 5.3.3: Based
on the state aggregation algorithm presented in Chapter 4, the nodes will expand or
reduce simultaneously, that is, in the same round, although they have not exactly the
same number of peers.

5.3.2 Repairing in TimeΘ(d) with a Hamiltonian Cycle

In order to prevent that an expanded node is expanded again before all other nodes have
been expanded, or analogously, to prevent that a reduced node is reduced again before
all other nodes have been reduced, a special form of peer distribution is used, based on
a Hamiltonian cycle, see Definition 5.3.

Definition 5.3 (Hamiltonian Path, Hamiltonian Cycle). A directed path passing
through all verticesv ∈ V of a graph is calledHamiltonian path. A Hamiltonian
cycle is a cycle containing all verticesv ∈ V .

While the decision problem whether a general graph has a Hamiltonian cycle is
NP-complete [4], there is always a Hamiltonian cycle on a hypercube. We show how
such a cycle can efficiently be computed.

Theorem 5.18. Algorithm 6 defines a correct Hamiltonian cycle on ad-dimensional
hypercube.

Proof. Except for the last step, Algorithm 6 always visits the neighbor in the highest
possible dimension which is still unvisited. We show by induction that this strategy
produces a Hamiltonian path. Letu Ã v denote a path from a nodeu to a nodev.
It holds that, starting at nodeb0b1...bd−1, this strategy produces a Hamiltonian path
b0b1...bd−1 Ã b0b1...bd−1.

d = 1: The path has only one edge(b0, b0), and the claim holds.
d → d + 1: Let H0 be thed-dimensional sub-cube of all nodesb0{0, 1}d andH1

be thed-dimensional sub-cube of all nodesb0{0, 1}d. By the induction hypothesis,
our algorithm first visits all nodes ofH0 on the pathu := b0b1...bd−1bd Ã v′ :=
b0b1b2...bd−1bd. The highest dimensional neighbor ofv′ which is still unvisited is
nodeu′ := b0b1b2...bd−1bd. From there, according to the induction hypothesis, our

Algorithm 6 Hamiltonian Cycle
1: (* start at nodeb0...bd−1 *)
2: visited[2d]:=empty;
3: for i :=1 to2d − 1 do
4: for j :=0 tod− 1 do
5: if ¬ visited[b0...bd−1−j ...bd−1] then
6: visited[b0...bd−1−j ...bd−1]:=true;
7: visit b0...bd−1−j ...bd−1;
8: break;
9: end if

10: end for
11: end for
12: visit b0...bd−1;

algorithm produces the Hamiltonian pathb0b1b2...bd−1bd Ã v := b0b1b2...bd−1bd on
H1. The resulting path on all nodes{0, 1}d+1 of the(d + 1)-dimensional hypercube is
u Ã v′(v′, u′)u′ Ã v. Obviously, this path is also Hamiltonian.

Hence, Algorithm 6 produces the correct Hamiltonian pathb0b1...bd−1 Ã b0b1...bd−1

and then returns to nodeb0b1...bd−1. Since{b0b1...bd−1, b0b1...bd−1} ∈ E, the claim
holds. Figure 5.6 shows an example ford = 4.

Figure 5.6: Hamilton Cycle on a 4-Dimensional Hypercube

Our repairing algorithm runs in a phase of quiescence ofΘ(d) steps and works
as follows: Assume that in ad-dimensional hypercube, every node is simulated by
betweenC and4C peers for some arbitrary constantC. If the number of peers at
a node exceeds4C, the node sends the superfluous peers to a special node given by
a distributed pointer HCP; on the other hand, if the number of peers falls beyondC,
new peers are requested from the same special node, see Algorithm 7. Like this, we
ensure that changes happen only at that special node. The idea is that the distributed
pointer HCP always points to the last node that has been expanded. We will describe
a repairing algorithm that tolerates at mostL := C − 1 leaves andJ := C joins per
adversarial round.

First consider the case where in the adversarial round, there have only been at most
C − 1 leaves and no joins. The HCP node receives all superfluous peers afterd + 1

Algorithm 7 Scalable Hypercube in Repairing TimeΘ(d)
1: if number of peers= (C − x) wherex > 0 then
2: SEND ”requestingx peers” TO HCP;
3: end if
4: if number of peers= (4C + x) wherex > 0 then
5: SENDx peers TO HCP;
6: end if

steps — notd, as some nodes are already expanded. We know that before the adversary
round, HCP had an extension node with at leastC peers. Therefore, the HCP node can
satisfy allL leaves, but maybe has to reduce its extension node and send HCP back
to its predecessor, that is, the last node that has been expanded. On the other hand,
if there are onlyC joins and no leaves, the HCP node checks whether its extension
node or itself has still enough space for the received peers. If not, the HCP forwards
all peers to its successor node on the Hamiltonian cycle defined on thed-dimensional
hypercube. If this successor node has to expand to accommodate the new peers, it
becomes the new HCP. The case where leavesand joins happen is straight-forward:
The HCP node uses overflow peers to satisfy the leaves and the remaining leaves if any
are handled as described above. At the end of each phase of quiescence, all nodes are
informed about the new position of the distributed pointer HCP by a broadcast.

Thus, the nodes expand well ordered with respect to a Hamiltonian cycle. When
the expansion is complete for a dimensiond at nodev, the HCP returns to the starting
point, where the expansion for dimensiond + 1 starts. Figure 5.7 shows the growth
of the hypercube and the position of the HCP pointer. We conclude that this algorithm

Figure 5.7: Growth of Hypercube and HCP Position

works in a phase of quiescence ofΘ(log N) steps, whereN is the current number of
peers in the system. The presented algorithm is a very simple version and could be
optimized in several respects.

5.3.3 Repairing in TimeO(1) with DASIS

The simulated hypercube system presented in the previous section has several draw-
backs, for example it is maintained by a repairing algorithm which needs a logarithmic
period (in the total number of peers in the system) of quiescence. We now introduce a

repairing algorithm which runs in a constant number of rounds. Again, the hypercube’s
nodes are simulated by a clique of peers, and peers of adjacent nodes are connected
completely bipartite. The repairing algorithm makes use of two components which
have already been presented:

• To distribute the peers evenly across the network nodes, we use the integer, con-
current version of our token distribution algorithm (Algorithm 4).

• The information aggregation system DASIS, see Chapter 4, is used to estimate
the total number of peers in the system. It allows all nodes to expand or reduce
at the same time. Like this, the topology is always a perfect hypercube.

First, note that for the special case of hypercubes, DASIS has another important
property.

Theorem 5.19. For the special case of ad-dimensional hypercube, at timet, DASIS
provides each node with an aggregated value which describes the correct state of the
system at timet− d.

Proof. As has been pointed out already, DASIS guarantees that two nodes with the
same prefixb0...bi always store the same value for this prefix. Since all nodes in a hy-
percube have the same number of bits, the information is propagated on a perfect binary
tree, that is, the prefixb0...bi stores the aggregated state of the nodesb0...bi{0, 1}d−1−i

at timet− (d− 1− i).

The basic idea of our repairing algorithm is simple: In the phase of quiescence,
each node exchanges the new estimations of the total number of peers in the system
with its prefix buddies (one round of DASIS). Moreover, it balances the peers with its
adjacent node in dimensioni according to our token distribution algorithm (Algorithm
4), wherei is incremented modulod for every execution of the repairing algorithm.
If the estimated average number of peers per nodeµ — the estimated total number of
peers in the system divided by2d — falls beyond a given thresholdLT , the hypercube
shrinks (d := d−1), and analogously, if the average exceeds a given thresholdUT , the
hypercube grows (d := d + 1). The repairing algorithm is summarized in Algorithm
8. Note that these steps can indeed be executed in a constant number of rounds. In the
following, we will refer to a complete execution of the repairing algorithm as aphase.

Algorithm 8 Repairing Algorithm in TimeO(1)
1: (* nodeb0...bd−1 *)
2: DASIS round: exchange estimated total number of peers with prefix buddies;
3: update estimation vector prefixagg[] accordingly;
4: balance peers across dimensioni;
5: i := i + 1 modd;
6: if (prefix agg[ε]/2d) < LT then
7: merge nodesb0...bd−1 andb0...bd−1 to b0...bd−2;
8: d := d− 1;
9: end if

10: if (prefix agg[ε]/2d) > UT then
11: split nodeb0...bd−1 to b0...bd−10 andb0...bd−11;
12: d := d + 1;
13: end if

Consider the thresholdsLT := 9C + d andUT := 36C + 2d for some arbitrary
constantC > 0. We claim that, given an adversaryAadv(C, C) which may insert at
mostC and remove at mostC peers per adversarial round,

1. a node is represented by more thanC peers at any moment of time,

2. no node will ever have more than40C + 3d peers,

3. the network diameter is bounded byO(log N), whereN is the total number of
peers in the system, and

4. the peer degree is bounded byO(log2 N).

Note that the criteria 1 and 2 imply the criteria 3 and 4.

Theorem 5.20. Let c1, c2, c3 and c4 be constants greater than zero. In a simulated
hypercube with betweenc1C + c2d andc3C + c4d peers per node, where peers within
a node form a clique (completeintra-connections), and where peers between adjacent
nodes are connected completely bipartite (inter-connections), the network diameter is
in Θ(log N) and the peer degree is bounded byΘ(log2 N), whereN is the total
number of peers in the system.

Proof. There are2d nodes withΘ(d) peers each, yieldingΘ(d2d) peers in total. Note
that2d < d2d < 22d for d > 1, and henced = Θ(log N). The network diameter is
d, so the first claim holds. Moreover, note that a peer hasΘ(d) intra-node connections
andd ·Θ(d) inter-node connections, yielding a peer degree ofΘ(log2 N).

It remains to prove the first two criteria.

Theorem 5.21.A node will always have betweenC+1 and40C+3d peers. Moreover,
it holds that after a dimension change fromdold todnew, µ ∈ [9C+dnew, 36C+2dnew]
for at leastdnew + 1 phases.

Proof. We consider the cases where the average number of peers per nodeµ falls be-
yond the lower threshold9C +dold or exceeds the upper threshold36C +2dold in turn.
Note that such an event will lead to a dimension change with a delay ofdold phases
only, see Theorem 5.19. We prove that after the change,µ ∈ [9C+dnew, 36C+2dnew]
for at leastdnew + 1 phases, so the dimension remains stable for at least2dnew + 1
phases. Moreover, this implies — together with Theorem 5.16 — that the discrepancy
before the next change is limited by2J +2L+dnew = 2C +2C +dnew = 4C +dnew.
We consider phaset, where the nodes learn thatµ /∈ [9C + dold, 36C + 2dold].

Caseµ < 9C + dold: At time t − dold, it held thatµ < 9C + dold while at time
t− dold − 1 we hadµ ≥ 9C + dold. In dold + 1 phases, there are at most(dold + 1)C
leaves, soµ ≥ 9C +dold− (dold+1)C

2dold
≥ 8C +dold before merging. Clearly, there must

have been a node with at least8C + dold peers, so, given the discrepancy of4C + dold

(see Theorem 5.16), every node has at least4C peers before merging.
What about the maximum? At timet − dold, µ < 9C + dold, and there have

been at mostdoldC joins in dold steps, soµ < 9C + dold + doldC
2dold

< 10C + dold

before merging, andµ < 20C + 2dold afterwards. The maximum node has less than
24C + 3dold = 24C + 3dnew + 3 peers.

Next, we show thatµ ≥ 9C + dnew for the nextdnew + 1 phases after a reduction.
At time t − dold − 1, µ ≥ 9C + dold = 9C + dnew + 1. The reduction doubles
the average number of peers per node, soµ ≥ 18C + 2dnew + 2. Further, there

are at most(dold + 1 + dnew + 1)C = (2dnew + 3)C leaves in the meantime, so
µ ≥ 18C + 2dnew + 2− (2dnew+3)C

2dnew
≥ 18C + 2dnew − 1.

Finally,µ ≤ 36C+2dnew for dnew+1 phases. At timet−dold, µ < 9C+dnew+1,
soµ < 18C + 2dnew + 2 after the reduction. There are at most(dold + dnew + 1)C =
(2dnew + 2)C joins, soµ < 18C + 2dnew + 2 + (2dnew+2)C

2dnew
≤ 18C + 2dnew + 4.

Caseµ > 36C + 2dold: At time t− dold, µ > 36C + 2dold = 36C + 2dnew − 2,
soµ > 18C + dnew − 1 after splitting; there are at mostdoldC = (dnew − 1)C leaves
in dold steps, soµ > 18C + dnew − 1 − (dnew−1)C

2dnew
> 18C + dnew − 2. According

to Theorem 5.16, the minimum node has more than14C − 2 peers after splitting. At
time t− dold− 1, µ ≤ 36C +2dold, and there are at most(dold +1)C joins. So before
splitting,µ ≤ 36C + 2dold + (dold+1)C

2dold
≤ 36C + 2dold + 1, and the maximum node

has at most40C + 3dold + 1 peers.
Next, we show thatµ ≥ 9C+dnew for the nextdnew+1 phases after the expansion.

At time t− dold, µ > 36C + 2dold = 36C + 2dnew − 2, soµ > 18C + dnew − 1 after
the expansion. Moreover, there are at most(dold + dnew +1)C = 2dnewC leaves, and
µ > 18C + dnew − 1 − 2dnewC

2dnew
≥ 17C + dnew − 1. Finally, µ ≤ 36C + 2dnew for

the nextdnew + 1 steps: At timet− dold − 1, µ ≤ 36C + 2dold = 36C + 2dnew − 2,
so µ ≤ 18C + dnew − 1 after the expansion; moreover, there are at most(dold +
1 + dnew + 1)C = (2dnew + 1)C joins, soµ ≤ 18C + dnew − 1 + (2dnew+1)C

2dnew
<

20C + dnew − 1.

5.3.4 Worst-Case Fault-Tolerance vs. Scalability

The simulated hypercube topologies presented so far tolerate a constant number of
leaves, no matter how many peers the system actually contains. Of course, in a real
network, peers leave independently, and it would be nice if twice as many leaves are
tolerable as the number of peers in the system is doubled. Of course, this goal stands
in direct tension to the scalability goal.

Theorem 5.22. In the worst case, a graphG can tolerate at most

minv∈V (G)degG(v)− 1

leaves wheredegG(v) denotes the degree of a nodev ∈ V (G).

Proof. Consider a nodeu with degG(u) = minv∈V (G)degG(v). If minv∈V (G)degG(v)
leaves happen, nodeu may lose all its neighbors in the worst case and hence gets dis-
connected from the network.

Thus, in the best case the fault-tolerance correlates linearly with the minimum de-
gree of any node in the graph.

5.4 DHT and Concurrent Adversary

5.4.1 Distributed Hash Table

A fundamental problem that confronts p2p systems is to efficiently locate the peer
that stores a particular data item. This operation is related to hashing and is there-
fore sometimes also known as distributed hashing in conjunction with distributed hash
tables (DHTs). While so far we have concentrated on the repairing of the simulated
hypercube topology, we must now also ensure that no data is lost during the churn.

There are several possibilities how data items can be stored on a simulatedd-
dimensional hypercube. Here, we assume that a data item is redundantly stored by
the peers of the node to which the data item hashes. That is, a data item (for exam-
ple a song) with a identifierid (for example the title of the song) is stored at the node
whose identifier matches the firstd bits ofhash(id), wherehash(·) is a hash function
mapping the identifier space to{0, 1}∞. Of course, for all what matters in practice, a
hash function like SHA1 having 160-bit output is sufficient. Note that this solution has
the disadvantage that the data items and the nodes are glued together. That is, in the
worst-case, some nodes get much more data items than others, and a load balancing
which would equalize these differences is not possible.

We have not specified yet on which peers of the node a data item is replicated. As
a rule, of course, we’d like to store copies at as little peers as necessary, while always
guaranteeing that the adversary can not remove all replicas of a given data item.

5.4.2 Concurrent Adversary

We will show that our distributed hash table based on the simulated hypercube is re-
silient toconcurrentadversarial churn, which is more realistic than our simple dynamic
model with phases of quiescence. This has major implications on themaintenance al-
gorithm, as has already been pointed out in the chapter aboutk-rings. We assume here
that the adversary always acts at the beginning of a round. Again, the changes that an
adversary can do are specified with respect totime intervals.

5.4.3 Resilience to Logarithmic Churn

We give now a complete description of the new simulated hypercube system, which
toleratesJ := d + 1 joins andL := d + 1 leaves in any time period of 6 rounds, hence
— according to the formalism presented in Chapter 2 — an adversary of typeAadv(d+
1, d + 1, 6). Note that this implies that the fault-tolerance is no longer constant, but
grows logarithmical with the total number of peers in the system.

One idea would be to store the data items onall peers of the data item’s node.
However, we will show that this is not necessary to tolerateAadv(d + 1, d + 1, 6).
Moreover, this approach would have the disadvantage that each time a peer has to
change the node during the peer distribution algorithm, it has to delete all data items of
the old node an insert all data items of the new node.

This motivates the division of the peers of a nodev into two categories: acoreCv

of at most2d+3 peers and aperipheryPv consisting of the remaining peers. The data
items of nodev will only be stored by the core peers, while the peripheral peers are
used for the peer distribution algorithm.

In order to save some links, we assume that all peers within the same node are sill
completely connected (intra-connections). Additionally, every peer is connected to all
corepeers of the neighboring nodes (inter-connections). Figure 5.8 shows an example
of this new simulated hypercube topology ford = 2.

In the next section we will present a maintenance algorithm which maintains this
simulated hypercube topology. In particular, it guarantees that (1) there is always at
least one core peer per node, hence no data items will ever get lost, and that (2) each
node has between3d+10 and45d+86 peers at every moment of time. Note that, by a

1“Secure Hash Algorithm”, National Institute of Standards and Technology, NIST FIPS PUB 186, U.S.
Department of Commerce, 1994.

Figure 5.8: 2-Dimensional Simulated Hypercube

similar analysis as in the proof of Theorem 5.20 this implies that the network diameter
is bounded byΘ(log N), whereN is the total number of peers in the system, and the
peer’s out-degree is inΘ(log2 N).

5.4.4 The 6-Round Maintenance Algorithm

The6-round (maintenance) algorithmmaintains the simulated hypercube topology de-
scribed in the previous section given an adversaryAadv(d + 1, d + 1, 6). In particular,
it ensures that

1. every node has at least one core peer all the times and hence no data is lost;

2. each node has between3d + 10 and45d + 86 peers at every moment of time;

3. only peripheral peers are moved between nodes, thus the unnecessary copying
of data is avoided.

In the following, we will again refer to a complete execution of all six rounds
(ROUND 1 - ROUND 6) of the maintenance algorithm as aphase. Basically, the 6-
round algorithm works similar to the repairing algorithm described in Chapter 5.3.3: It
balances the peers across one dimension in every phase and estimates the total number
of peers in the system with DASIS. If the average number of peers per nodeµ falls
beyond the lower thresholdLT := 8d + 16, the hypercube shrinks, and if it exceeds
the upper thresholdUT := 40d + 80, it grows. After a detailed description of the six
rounds, we prove that the criteria presented above are indeed fulfilled.

In ROUND 1, every peer within each nodev sends its ID plus the IDs of its joiners of
the last phase to all former adjacent peers withinv, such that each peer withinv learns
the set of the currently active peers inv. ROUND 2 to ROUND 6 are then based only
on the ID set of this snap-shot, which may not represent the current state of the system
anymore. In our description, the following convention is used: By “Cv send a packet
to Pv” we mean that every peerπ1 in coreCv which is still alivesends that packet
to eachsurvivingpeerπ2 in the peripheryPv, and analogously for other formulations
involving an ID set.

We describe theith phase (modd) and assume thatd > 0. The case whered = 0
is straight-forward and not explained further here. The following notation is used: If a
hypercube grows to dimensiond+1, v denotes a node in the lowerd-dimensional sub-
cube andv denotesv’s adjacent node in the high sub-cube. Analogously, if a hypercube
shrinks to dimensiond− 1, v denotes a node in the high(d− 1)-dimensional sub-cube
that will be removed andv is v’s adjacent across dimensiond− 1.

ROUND 1

Outline: Each nodev makes a snapshot of the currently active peers, denoted by the
ID setSv. The later rounds will only be based on these sets.

Sent Messages: Each peer of a nodev sends a packet with its own ID and the (po-
tentially empty) ID set of its joiners to all adjacent peerswithin v.

ROUND 2

Outline: Based on the snapshot ofROUND 1, the core peers of a nodev know the
total number of peers in the node,size(v) := |Sv|. This information is needed for the
peer distribution algorithm and for the estimation of the total number of peers in the
system.

Local Computations: The core peers computesize(v) := |Sv|.

Sent Messages: Each peer informs its joiners aboutSv. The core peersCv addi-
tionally send the numbersize(v) to their neighboring coreCu, where nodeu is v’s
neighbor in dimensioni — the node with whichv has to balance its peers in this phase.
The core also exchanges the new estimated total number of peers in its domains with
the corresponding adjacent cores.

ROUND 3

Outline: At the beginning of this round, every peer within a nodev knowsSv, and the
transfer for the peer distribution algorithm can be prepared. Letv again be an arbitrary
node andu its adjacent node in dimensioni. We assume thatsize(v) > size(u); the
case wheresize(v) ≤ size(u) is analogous and not described further here. The ID set
T of peers that have to move from nodev to nodeu are thesize(v)−size(u)

2 (arbitrarily
rounded) peers in the peripheryPv having the smallest identifiers.

Local Computations: The peers in each nodev compute the new peripheryPv :=
Sv \ Cv. The core remains the same.

Sent Messages: All cores forward the information about the new estimated total
number of peers in the system to their peripheral peers. Moreover, the core of the
larger nodeCv sends the identifiers of the to be transferred peersT to Cu, and the
numbersize(v)−size(u)

2 to the new peripheryPv.

ROUND 4

Outline: The transfer for the peer distribution algorithm is continued. Moreover, this
round prepares the dimension reduction if necessary.

Sent Messages: The coreCu informs the peers inT about all neighboring coresCuj
,

whereuj is the neighbor ofu in dimensionj for j ∈ [0, d−1], aboutCu itself, aboutSu

and about its peripheral peersPu. Moreover,Cu informs its own peripheryPu about
the newcomersT .

If the estimated total number of peers in the system is beyond the threshold, the
core peers of a nodev which will be reduced send their data items plus the identifiers
of all their peripheral peers (with respect to the situationafter the transfer) to the core
of their adjacent nodev.

ROUND 5

Outline: This round finishes the peer distribution, establishes the new peripheries,
and prepares the building of a new core. If the hypercube has to grow in this phase, the
nodes start to split, and vice versa if the hypercube is going to shrink.

Local Computations: Given the numbersize(v)−size(u)
2 , the peripheral peersPv can

compute the setT selecting thesize(v)−size(u)
2 smallest elements inPv. From this, the

new peripheryPv := Pv \T is computed. Analogously, the peers in nodeu (including
T) can compute the new peripheryPu := Pu ∪ T .

Then, all peers of each nodev calculate the new coreCnew
v : It consists of the peers

of the old core which have still been alive inROUND 1, i.e.,Cold
v := Cv ∩ Sv, plus the

2d + 3 − |Cv ∩ Sv| smallest IDs in the new peripheryPv, denoted byC4v . Hence, the
new core is given byCnew

v := Cold
v ∪C4v , and the new periphery byPnew

v := Pv \ C4v .
If the hypercube has to grow in this phase, the smallest2d + 3 peers in the new

peripheryPnew
v become the new core of the expanded node,Cv. Half of the remaining

peripheral peers, the ones with the smaller identifiers, build the new peripheryPv, and
the other half becomesPv. All these operations can be computed locally by every peer.

Sent Messages: The old coreCold
v informs all its neighboring nodes (i.e., their old

cores) about the new coreCnew
v . Moreover,Cold

v sends its data items to the peers inC4v .
If the hypercube is about to grow,Cold

v sends the necessary data items to the core
peers of the new node,Cv. Moreover,Cold

v informs its neighboring (old) cores about
the IDs of its expanded coreCv.

If the hypercube is about to shrink, all coresCold
v inform their periphery about the

peers arriving from the expanded node and the peers in the expanded node about the
new coreCnew

v and its periphery.Cold
v copies also the data items ofCold

v to the peers
C∆

v .

ROUND 6

Outline: Building the new cores and accomplishing the dimension change if neces-
sary.

Local Computations: If the hypercube has been reduced, every peer can now com-
pute the new peripheryPv.

Sent Messages: The old coreCold
v forwards the information about the new neighbor-

ing cores to the peersC∆
v ∪ Pv.

If the hypercube has grown,Cold
v forwards the expanded cores of its neighboring

nodes toall peers in its expanded nodev. Note that his requires thatCold
v remembers

the peripheral peers that have been transferred tov in ROUND 5.

5.4.5 Analysis

We show that, given an adversaryAadv(d + 1, d + 1, 6) which inserts and removes at
mostd + 1 peers per phase, the 6-round algorithm indeed guarantees at least one core
peer per node at every moment of time, and that no core peer ever has to change the
node for the peer balancing. Moreover, we prove that every node has always between
3d + 10 and45d + 86 peers ifd > 0, which implies a logarithmic network diameter.

First, consider a much simpler system without any notion of core and periphery,
where the maintenance algorithm simply runs the peer distribution algorithm and the
information aggregation algorithm to count the total number of peers in the system,
and expands or reduces the hypercube with respect to the thresholdsLT = 8d + 16
andUT = 40d + 80 presented above. Moreover, assume that these operations are
performed in quiet phases, where the adversary may remove at mostd + 1 and add at
mostd + 1 peers only in-between.

Lemma 5.23. For this simpler system, it holds that every node in the simulatedd-
dimensional hypercube has at least3d + 10 and at most45d + 86 peers at every
moment of time. Moreover, after the hypercube has changed its dimension fromdold to
dnew, the dimension will remain stable for at least2dnew + 1 phases.

Proof. We consider the cases where the average number of peers per nodeµ falls be-
yond the lower threshold8dold +16 or exceeds the upper threshold40dold +80 in turn.
Note that such an event will lead to a dimension change with a delay ofdold phases
only, see Theorem 5.19. We prove that after the change,µ ∈[8dnew +16, 40dnew +80]
for at leastdnew +1 phases. The dimension remains stable for at least2dnew +1 phases
which implies — together with Theorem 5.16 — that the discrepancy before the next
change is limited by2(dnew + 1) + 2(dnew + 1) + dnew = 5dnew + 4.

Caseµ < 8d + 16: At time t − dold, it held thatµ < 8dold + 16 while at time
t−dold−1 we hadµ ≥ 8dold+16. In dold+1 phases, there are at most(dold+1)(dold+
1) = d2

old + 2dold + 1 leaves, soµ ≥ 8dold + 16− d2
old+2dold+1

2dold
> 8dold + 14 before

merging. Clearly, there must be a node with more than8dold + 14 peers, hence, given
the discrepancy of5dold + 4 (see Theorem 5.16), every node has more than3dold + 10
peers before merging.

What about the maximum? At timet−dold, µ < 8dold +16, and there have been at
mostdold(dold + 1) joins indold steps, soµ < 8dold + 16 + dold(dold+1)

2dold
< 8dold + 18

before merging, andµ < 16dold + 36 afterwards. The maximum node has less than
21dnew + 61 peers.

Next, we show thatµ ≥ 8dnew +16 for the nextdnew +1 phases after a reduction.
At time t − dold − 1, µ ≥ 8dold + 16 = 8dnew + 24. The reduction doubles the
average number of peers per node, soµ ≥ 16dnew + 48. Further, there are at most

(dold + 1)(dold + 1) + (dnew + 1)(dnew + 1) = 2d2
new + 6dnew + 5 leaves in the

meantime, soµ ≥ 16dnew + 48− 2d2
new+6dnew+5

2dnew
> 16dnew + 41 > 8dnew + 16.

Finally, µ ≤ 40dnew + 80 for dnew + 1 phases. At timet− dold, µ < 8dnew + 24,
soµ < 16dnew + 48 after the reduction. There are at mostdold(dold + 1) + (dnew +
1)(dnew + 1) = 2d2

new + 5dnew + 3 joins, soµ < 16dnew + 48 + 2d2
new+5dnew+3

2dnew
<

16dnew + 54 < 40dnew + 80.
Caseµ > 40d + 80: At time t − dold, µ > 40dold + 80 = 40dnew + 40, so

µ > 20dnew +20 after splitting; there are at mostdold(dold +1) = d2
new−dnew leaves

in dold steps, soµ > 20dnew +20− d2
new−dnew

2dnew
> 20dnew +19. According to Theorem

5.16, the minimum node has more than15dnew + 15 peers after splitting. At time
t−dold−1, µ ≤ 40dold+80, and there are at most(dold+1)(dold+1) = d2

old+2dold+1
joins. So before splitting,µ ≤ 40dold + 80 + d2

old+2dold+1

2dold
< 40dold + 82, and the

maximum node has at most45dold + 86 peers.
Next, we show thatµ ≥ 8dnew+16 for the nextdnew+1 phases after the expansion.

At time t − dold, µ > 40dold + 80 = 40dnew + 40, soµ > 20dnew + 20 after the
expansion. Moreover, there are at mostdold(dold + 1) + (dnew + 1)(dnew + 1) =
2d2

new + dnew + 1 leaves, andµ > 20dnew + 20− 2d2
new+dnew+1

2dnew
> 20dnew + 17 ≥

8dnew +16. Finally,µ ≤ 40dnew +80 for the nextdnew +1 steps: At timet−dold−1,
µ ≤ 40dold + 80 = 40dnew + 40, soµ ≤ 20dnew + 20 after the expansion; moreover,
there are at most(dold + 1)(dold + 1) + (dnew + 1)(dnew + 1) = 2d2

new + 2dnew + 1
joins, soµ ≤ 20dnew + 20 + 2d2

new+2dnew+1
2dnew

< 20dnew + 24 < 40dnew + 80.

In our real system, repairing takes six rounds and runsconcurrentlyto the adver-
sary. However, as all operations in the whole phase are based upon the state ofROUND

1, a phase can be considered as running uninterruptedly, that is, as if the adversary in-
sertedd+1 and removedd+1 peers onlybetweenthe phases. Thus, Lemma 5.23 also
holds in our system. However, we additionally have to postulate that there is always
at least onecore peer. By Lemma 5.23, it is always possible to select2d + 3 core
peers inROUND 5 with respect to the state ofROUND 1. These peers have to survive
until ROUND 6 of the next phase, so for twelve normal rounds in total; however, as the
adversaryAadv(d + 1, d + 1, 6) may remove at most2d + 2 peers in twelve rounds,
this clearly holds.

Finally, we show that there are indeed enough peripheral peers inROUND 3 such
that core peers do not have to change the node for the peer distribution.

Lemma 5.24. In ROUND 3, it holds that|Pv| > size(v)−size(u)
2 .

Proof. By Lemma 5.23, we know thatsize(v) ≥ 3d+10 andsize(u) ≥ 3d+10. Asv
has at most2d+3 core peers, we have|Pv| ≥ size(v)−(2d+3) ≥ size(v)−size(u) >
size(v)−size(u)

2 .

Theorem 5.25. Given an adversaryAadv(d + 1, d + 1, 6) which inserts and removes
at mostd+1 peers per phase, the 6-round algorithm ensures that (1) every node has at
least one core peer all the times and hence no data is lost; (2) each node has between
3d + 10 and45d + 86 peers at every moment of time, yielding a logarithmic network
diameter; (3) only peripheral peers are moved between nodes, thus the unnecessary
copying of data is avoided.

Proof. The three criteria follow directly from Lemmata 5.23 and 5.24.

Chapter 6

Skip Graph

6.1 Introduction

Skip graphs are a novel randomized distributed data structure based on skip lists [11]
and have independently been proposed in [3] and [7]. There exists also a deterministic
variant of a skip graph [6].

In this chapter, we present a p2p system based on aperfectskip graph as defined in
Definition 6.1. We will use again our simulation approach, where a skip graph’s node
is represented by a group of peers. We will show that many components we used for
the repairing algorithm of the simulated hypercube can be extended to the skip graph
topology.

Definition 6.1 (Perfect Skip Graph). A perfect skip graphis a networkG = (V, E),
whereV = {0, ..., 2h − 1} for someh ∈ N, andE = {{u, v} | u ≡ v + 2i (mod 2h)
for i = 0...h − 1}. A skip graph consists ofh levels and we call the rings belonging
to leveli the i-rings; moreover we callu’s neighborsv + 2i andv − 2i on leveli v’s
i-neighbors. Figure 6.1 gives an example forh = 4 (cyclic edges not shown).

Figure 6.1: Skip Graph forh = 4

The rest of this chapter is organized as follows: In Chapter 6.2 we show that it
is possible to adapt both the peer distribution algorithmand the algorithm to estimate

49

the total number of peers in the system for the perfect skip graph. Moreover, we will
sketch an algorithm to change “the dimension” of a skip graph, that is, the operations
to be performed when all nodes expand (h := h + 1) or reduce (h := h− 1). With this
components, it is obviously possible to achieve a p2p system that is robust to the same
adversarial changes as the simulated hypercube presented in Chapter 5.4. Finally, in
Chapter 6.3 we will address some issues concerning the data items that may be stored
by a simulated skip graph.

6.2 Simulated Perfect Skip Graph

6.2.1 Token Distribution

Algorithm 9 is the natural extension of the token distribution algorithm presented for
hypercubes (see Algorithm 4). Because of the similarity of the two algorithms, all
results hold also here. Figure 6.2 shows an example forh = 3.

Algorithm 9 Token Distribution on Perfect Skip Graph
1: my id := u;
2: Tmy id :=tokens at this node;
3: for i := 0 to h− 1 do
4: if my id mod2i+1 < 2i then
5: buddy id := i-neighbor to the right;
6: else
7: buddy id := i-neighbor to the left;
8: end if
9: SEND|Tmy id|/2 tokens to nodebuddy id;

10: updateTmy id accordingly;
11: Tbuddy id :=REVC tokens from nodebuddy id;
12: Tmy id := Tmy id ∪ Tbuddy id;
13: end for

Figure 6.2: Skip Graph Token Distribution

6.2.2 DASIS

DASIS can be used to estimate the total number of peers in the simulated perfect
skip graph system. To see this, consider the binary representation of a nodev =

(b0...bi...bh−1)2 of the perfect skip graph; obviously,v is connected to the neces-
sary prefix-buddies: On leveli for i ∈ [0, h − 1], v uses its righti-neighborv +
2i = (b0...bh−1−i...bh−1)2 if bi = 0, and if bi = 1 its left i-neighborv − 2i =
(b0...bh−1−i...bh−1)2. Again, as all nodes have the same number of bits, at timet, all
nodes store the same estimated value of the total number of peers in the system, and
this value corresponds to the exact state of the network at timet− h.

6.2.3 Repairing Algorithm

Given the algorithms to distribute peers and to count the total number of peers in the
system, we can apply the repairing algorithms of the hypercube also here. We will
briefly sketch the local operations to be performed when the perfect skip graph in-
creases its height: The description is given in Algorithm 10, and Figure 6.3 shows an
example.

Figure 6.3: Expanding the Perfect Skip Graph

Reducing the dimension is also simple: Every nodev for whichv ≡ 1 (mod 2) can
just leave the network (maybe after copying its data to the left 0-neighbor). A nodev
with v ≡ 0 (mod 2) has to shift all neighbors one level down: The newi-neighbors are
the old(i + 1)-neighbors.

6.3 Load Balancing and Range Queries

In the distributed hash table based on thed-dimensional simulated hypercube, a data
item has been stored at the node whose identifier matches the firstd bits of the hash
value of the data item’s identifier. This solution has two disadvantages: First, it glues
the data items and the nodes together, making load balancing impossible. Moreover,
as the hash function scrambles the name space of the identifiers,similarity searches
become inefficient.

For the skip graph, we consider an alternative approach: Instead of mapping a data
item to a fixed node, we require only that the data items are always sorted on the 0-ring
with respect to theirreal identifiers. Besides efficient range queries, this allows also
a very limited form of load balancing: If a nodev has much more data items than its
0-neighbors, it can send some of its largest data items (with respect to their identifiers)
to its right neighbor and some of its smallest data items to its left neighbor. This raises
the question of how data items can still efficiently be found if they are no longer bound

Algorithm 10 Growth of Perfect Skip Graph
1: (* nodev *)
2: create new nodev′;
3: for all levelsi := 0...(h− 1) do
4: i-neighbors become(i + 1)-neighbors;
5: end for
6: for all levelsi := 1...h do
7: SENDv′ TO bothi-neighbors;
8: end for
9: for all levelsi := 1...h do

10: (w′0, w′1) := RECV FROMi-neighborsw0 andw1;
11: if i=1 then
12: v′ has 0-neighborsv andw1;
13: v has 0-neighborsw′0 andv′;
14: v′ has 1-neighborsw′0 andw′1;
15: else
16: v′ hasi-neighborsw′0 andw′1;
17: end if
18: end for
19: h := h + 1;

to a fixed node. The solution is that every node stores the identifiers of the minimum
and the maximum element of its adjacent nodes. Of course, there lies some overhead
in updating these values all the times, but on the other hand it allows to make normal
use of the “express lanes” of a skip list for efficient look-ups.

Chapter 7

Conclusions

The dynamics of the p2p systems presently in use is hardly understood. In this the-
sis we have introduced a simple dynamic model where there is a phase of quiescence
between the joins and leaves of the peers. For both thek-ring topology and the sim-
ulated hypercube topology it was possible to adapt a repairing algorithm running in
O(1) rounds of quiescence to run alsoconcurrentlyto an adversary which can perform
a certain number of changes in a time interval of constant length. However, it is not
obvious whether such a transformation exists for arbitrary topologies.

While the focus of Chapter 3 was on the presentation and comparison of different
fault-tolerance models, Chapter 5 introduced a realistic distributed hash table, which
maintains an efficient search structure and a peer degreeΘ(d2) against an adversary
that triggersΘ(d) changes per time interval of constant length. However, there are
still several possibilities to improve this system. For example it would be nice if the
fault-tolerance is linear in the peer degree. We presume that there are alternative ways
to inter-connect the hypercube’s nodes to achieve this goal. Another desirable im-
provement of our system would be a mechanism for a graceful degradation or self-
stabilization in the case of faults beyond the restrictions of the adversary.

We feel that several ideas presented in this document are directly applicable to other
p2p systems. For example, it is possible to simulate a variety of other topologies, e.g.
Chord. Moreover, some of our contributions such as the simple dynamic model or
the dynamic analysis of the token distribution algorithm on the hypercube and on the
perfect skip graph may be of interest on their own, i.e., beyond the applications for
which we have used them.

Note that our main emphasis was on the maintenance of certain p2ptopologies.
The issue of thedata usually stored by these systems has not been addressed for the
k-ring at all, and the other systems lack a reasonable mechanism to distribute the data
items uniformly amongst the peers. For example, as an orthogonal approach, it would
also be possible to consider a “data insertion/deletion adversary”.

Besides the open problems already mentioned, there is a variety of questions to be
addressed in future research projects on the fault-tolerance of dynamic p2p topologies
— not only for worst-case failures. For example

• Asynchronous systems: Real distributed systems are never synchronous. Many
of our algorithms presented for the synchronous model work also in asynchronous
systems, for example by using local synchronizers. However, such solutions usu-
ally come at the cost of an increased message complexity.

53

• Byzantine behavior: How can we cope with peers which do not act in perfect
accordance with our protocols?

• Link failures

• Other topologies: E.g., maintenance of a dynamic skip graph which is not simu-
lated?

Bibliography

[1] Napster. www.napster.com.

[2] K. Albrecht, R. Arnold, M. G̈ahwiler, and R. Wattenhofer. Aggregating Information in
Peer-to-Peer Systems for Improved Join and Leave. In4th IEEE International Conference
on Peer-to-Peer Computing (P2P), 2004.

[3] J. Aspnes and G. Shah. Skip graphs. InProceedings of the fourteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 384–393. Society for Industrial and Applied
Mathematics, 2003.

[4] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.Introduction to Algorithms (Second
Edition). MIT Press, 2001.

[5] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. InJ. Par-
allel Distrib. Comput., volume 7, pages 279–301, 1989.

[6] N. Harvey and J. Munro. Deterministic skipnet.Inf. Process. Lett., 90(4):205–208, 2004.

[7] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet: A scalable
overlay network with practical locality properties. InProceedings of the Fourth USENIX
Symposium on Internet Technologies and Systems (USITS ’03), 2003.

[8] D. Peleg and E. Upfal. The token distribution problem. InSIAM J. Comput., volume 18,
pages 229–243, 1989.

[9] C. G. Plaxton. Load balancing, selection sorting on the hypercube. InProceedings of the
first annual ACM symposium on Parallel algorithms and architectures, pages 64–73. ACM
Press, 1989.

[10] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of replicated
objects in a distributed environment. InProceedings of the ninth annual ACM symposium
on Parallel algorithms and architectures, pages 311–320. ACM Press, 1997.

[11] W. Pugh. Skip lists: a probabilistic alternative to balanced trees.Commun. ACM,
33(6):668–676, 1990.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content ad-
dressable network. Technical Report TR-00-010, Berkeley, CA, 2000.

[13] S. Saroiu, P. Gummadi, and S. Gribble. A measurement study of peer-to-peer file sharing
systems, 2002.

[14] B. A. Shirazi, K. M. Kavi, and A. R. Hurson.Scheduling and Load Balancing in Parallel
and Distributed Systems. IEEE Computer Society Press, 1995.

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. InProceedings of the ACM SIG-
COMM ’01 Conference, San Diego, California, August 2001.

[16] R. Van Renesse, K. P. Birman, and W. Vogels. Astrolabe: A robust and scalable technology
for distributed system monitoring, management, and data mining.ACM Trans. Comput.
Syst., 21(2):164–206, 2003.

55

[17] R. van Renesse and A. Bozdog. Willow: DHT, Aggregation, and Publish/Subscribe in One
Protocol. InIPTPS, 2004.

[18] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Technical report, 2001.

Appendix A

Mean Deviation

In this appendix two different approaches to approximate the mean deviation of the
symmetric binomial distribution are presented.

A.1 Approximation with Chernoff

Fact A.1 (Chernoff Lower Tail). LetX1, ..., XN be independent Bernoulli variables
with Pr[Xi = 1] = pi. Let X :=

∑
i Xi denote the sum of theXi and letµ :=

E[X] :=
∑

i pi be the expected value forX. For ε ∈ (0, 1],

Pr[X < (1− ε)µ] <

(
e−ε

(1− ε)(1−ε)

)
< e−µε2/2.

Fact A.2. ∫ ∞

0

e−x2
dx =

√
π

2
.

Theorem A.3. Let X ∼ B(n, 1/2) be binomially distributed with parametersn and
p = 1/2. The expectation of the deviation from the meann/2 is upper bounded by

E[|X − n/2|] ≤ √
πn.

Proof. Let pδ denote the probability that the deviation from the mean is at leastδ, that
is, pδ = Pr[|X − n/2|] ≥ δ. By symmetry, we havepδ = 2 · Pr[X ≤ n/2− δ]. For
the expected deviation of the mean, we have

E[|X − n/2|] =
n/2∑

δ=1

δ · Pr[|X − n/2| = δ] =
n/2∑

δ=1

pδ. (A.1)

We can boundpδ using Chernoff:

pδ = 2 · Pr[X ≤ n/2− δ] ≤ 2e−δ2/n. (A.2)

57

Combining (A.1) and (A.2), we can bound the mean deviation by

E[|X − n/2|] =
n/2∑

δ=1

pδ ≤ 2 ·
n/2∑

δ=1

e−δ2/n

< 2 ·
∞∑

δ=1

e−δ2/n

< 2 ·
∫ ∞

δ=1

e−δ2/ndδ

=
√

πn.

The integral after the last inequality can be calculated using Fact A.2 and the substitu-
tion t = δ

√
n anddδ =

√
ndt. This concludes the proof.

Remarks: There are two minor details which are neglected for readability of the
above proof. First, although the Chernoff inequality gives an upper bound only for
Pr[X < (1 − ε)µ], we use it forPr[X ≤ (1 − ε)µ]. Second, the first equation in the
proof holds for evenn. For oddn, the deviation from the mean is not integral. Both
issues can easily be solved.

A.2 Approximation with Stirling

The mean deviation of the symmetrical binomial distribution is given by:

mean deviation= 2−n
n∑

k=0

(
n

k

) ∣∣∣k − n

2

∣∣∣ =

{
n!!

2(n−1)!! , if n odd
(n−1)!!
2(n−2)!! , if n even

wheren!! is a double factorial, i.e.

n!! ≡





n · (n− 2) · ... · 5 · 3 · 1 = (n+1)!

2(n+1)/2(n+1
2)!

, if n > 0 is odd

n · (n− 2) · ... · 6 · 4 · 2 = 2n/2(n
2)! , if n > 0 is even

1 , if n = −1, 0

According to Stirling’s approximation1 we have
√

2πnn+1/2e−n+1/(12n+1) < n! <
√

2πnn+1/2e−n+1/(12n) (A.3)

After some calculations, the following conjecture emerges, whose correctness can
easily be verified.

mean deviation= 2−n
n∑

k=0

(
n

k

) ∣∣∣k − n

2

∣∣∣ ≤
√

n

π

1The double inequality A.3 is actually an extended version of Stirling’s approximation.

Appendix B

Acknowledgments

After a very practical semester thesis in computer science which consisted to a large ex-
tent of programming, and a “classic” literature semester thesis in political economics,
my minor subject, I was looking for something in the area of theoretical computer sci-
ence for my diploma thesis. I decided in favor of this initially rather open thesis offered
by the distributed computing group, because the potentially wide range of research ar-
eas appealed to me.

Four months later, I am very happy with my decision. I think I have got an insight
to many aspects of how research in theoretical computer science works. Beginning
with a general topic, first having to find interesting questions and models, up to the
writing of a conference paper, I experienced the whole procedure.

I want to thank Fabian and Roger for many useful inputs and feedbacks.

59

