
Semester Thesis WS06

Multi-Hop Routing for Wireless
Sensor Networks

David Dominic Landis
dlandis@student.ethz.ch

Prof. Dr. Roger Wattenhofer
Distributed Computing Group

Advisors: Nicolas Burri, Pascal von Rickenbach

AMUHR - Another Multi-Hop Router

2nd April 2006

Contents
1 Introduction 3

1.1 Working Plan . 3
1.2 DSR . 3
1.3 Feature Overview of Optimized Module 3

2 Quick Start 4

3 Routing 7
3.1 Packet Overview . 7
3.2 Packet arrival . 9
3.3 Route Cache . 9
3.4 FAQ . 10

4 A Step by Step Configuration 11

5 Performance 13
5.1 Name -> Send Options . 13
5.2 Meaning of the Fields . 13
5.3 Test 1 . 14
5.4 Test 2 . 17
5.5 Test 3 . 18
5.6 Conclusion of Tests . 20

6 Implementation Details 21
6.1 Intro . 21
6.2 Files . 21
6.3 Queues . 22
6.4 Security . 22
6.5 Extensibility . 22
6.6 Implemented Optimizations . 23
6.7 Tools . 23

7 Limitations 24

8 Pros and Cons 24

9 Outlook 25

10 Conclusion 25

1 Introduction
AMUHR (Another Multi-Hop Router) enables TinyOS motes to exchange mes-
sages among each other even if they are several hops apart. This document
describes how to deploy AMUHR and provides background information on the
implementation.
To get familiar with TinyOS please visit http://www.tinyos.net/

1.1 Working Plan
The goal of this semester thesis is to provide a generic multi-hop routing module
for TinyOS that is tested with TOSSIM and considers hardware limitations of
mica2 motes. First a simple DSR is to be implemented which then is to be
optimized.

1.2 DSR
Probably everybody has heard of DSR. Therefore this section is kept short.
There are to phases: route discovery and route maintenance. During route
discovery the initiator broadcasts its request to find a route. Nodes that receive
this request rebroadcast it after appending themselves to the path that leads
back to the initiator. When the target is found the path is sent back to the
initiator which then stores it in its route cache. During maintenance initiators
have to assure that paths are valid.

1.3 Feature Overview of Optimized Module
To go multi-hop with an existing application and AMUHR, only a few lines of
code have to be written. Many compile time constants are provided to allow fine
tuning of routing parameters such as optimizing for dynamic or static networks
or adjusting the minimum and maximum ttl to decrease path resolution time.
Because the standard packet length is very small (29 bytes) the path often
doesn’t fit into the packet along with the desired payload. Therefore a compile
time maximum packet length has to be chosen and is guaranteed to be available
independently of the path length. This is achieved by letting intermediate nodes
store and complete missing parts of the route.
Some applications may not care if a few packets are lost and others may need
reliable data transfer. Therefore the possibility to request an end-to-end ac-
knowledgment is provided. For lossy networks implicit acknowledgments can be
activated on a per packet basis to improve the chance of successful transmis-
sions.
Since sending packets and resolving paths to distant motes takes an significant
amount of time pipelining is fully supported.
Some mote types and some TinyOS versions support a link-layer ack field in
TOS_Msg structure which indicates whether a message was successfully re-
ceived by at least one receiver. AMUHR can be set to use this field and get a
performance gain out of it.
For more information about optimizations chapter 6.6 Implemented Optimiza-
tions can be consulted.

3 AMUHR

http://www.tinyos.net/

2 Quick Start

Step 1: Installing
Extract AMUHR.tar.gz and read the readme file. It is recommended to to
put the directory AMUHR in a subdirectory of your application because you’ll
modify some parameters during optimization. (→ to get more information about
optimization read chapter 4 A Step by Step Configuration)

Step 2: Wiring
To use the multi-hop protocol following interfaces are to be connected:

• AMUHR.StdControl

• AMUHR.SendMsg (or AMUHR.SendMsgEx)

• AMUHR.ReceiveMsg

The example shows the wiring for an application called MHBlink with module
MHlinkM.

configuration MHBlink {
}
implementation {

components Main , MHBlinkM , AMUHR as Comm;

Main.StdControl -> MHBlinkM.StdControl;
Main.StdControl -> Comm.Control;
MHBlinkM.Send -> Comm.SendMsg[AM_INTMSG];

// MHBlinkM.SendEx -> Comm.SendMsgEx[AM_INTMSG];
MHBlinkM.Rcv -> Comm.ReceiveMsg[AM_INTMSG];

}

Step 3: Sending/Receiving
To send messages use SendMsg.send:

// result_t SendMsg.send(uint16_t address , // destination
uint8_t length , // message length
TOS_MsgPtr msg) //ptr to message

if(!call Send.send(addr , len , &message)) {
// sending failed or some queue is full

}

Note: sendDone is called as soon as the packet is sent if no acknowledgment
was requested otherwise it waits until the packet is acknowledged or a timeout
occurs.

4 AMUHR

There is a second interface AMUHR.SendMsgEx which has an additional
option parameter:

uint8_t options = MH_USER_FIND_IMP_ACK |
MH_USER_IMP_DATA_ACK |
MH_USER_WANT_ACK;

// result_t SendMsg.send(uint16_t address , // destination
uint8_t length , // message length
TOS_MsgPtr msg , //ptr to message
uint8_t options) // options

if(!call Send.send(addr , len , &message , options)) {
// sending failed or some queue is full

}

There are four supported constants for the option parameter that affect the way
packets are sent. (To get an idea of the packet types refered to, take a look at
the picture in chapter 3.1.)

MHSettings.h

• MH_USER_FIND_IMP_ACK: use implicit acknowledgments for find and return
packets

• MH_USER_IMP_DATA_ACK: use implicit acknowledgments for data and re-
sponse packets

• MH_USER_WANT_ACK: the receiver sends an acknowledgment after every
data packet arrival

• NO_IMPL_ACK_FOR_FIND_PACKETS (static, cannot be used as send parame-
ter): only use implicit acks for return packets and not for find packets

MHDefines.h

• #define USE_TOS_ACK 1: (static) use link layer ack field. Please read the
hints in file MHDefines.h before enabling.

Supported combinations are:

• //#define USE_TOS_ACK 1 deactivated

– MH_USER_FIND_IMP_ACK
– MH_USER_FIND_IMP_ACK | MH_USER_WANT_ACK
– MH_USER_FIND_IMP_ACK | MH_USER_IMP_DATA_ACK | MH_USER_WANT_ACK
– MH_USER_WANT_ACK
– 0

• #define USE_TOS_ACK 1 activated

– MH_USER_WANT_ACK must be set! (otherwise the packets lack of an id
and could arrive several times)

5 AMUHR

To receive messages the following event handler is used:

event TOS_MsgPtr Rcv.receive(TOS_MsgPtr msg) {
//do something
return msg;

}

Step 3: Makefile
Add the path of AMUHR to the Makefile (where /YOURLOCATION should
be replaced with the location used in step one).

PFLAGS += -I/YOURLOCATION/AMUHR

Step 4: Tuning
To learn how to adapt MHSettings.h please read chapter A Step by Step Con-
figuration.

6 AMUHR

3 Routing

3.1 Packet Overview

• A find path packet is sent if we don’t know the route.

• A return path packet is the response to a find path packet.

• A data packet is used to wrap the message the user wants to send.

• A resp packet contains an ack or nack. Resp packets are not sent unless
the sender requested an acknowledgment.

Below there is a detailed overview of the different packet types and their pay-
load sizes. An example of a packet with minimum and maximum payload size
based on default TOSH_DATA_LENGTH (=29 bytes) is given. To alter the maxi-
mum payload length the enum MHR_PACKET_MAX_LENGTH_ACK_IMPL_ACK in the
file MHSettings.h can be changed.

7 AMUHR

8 AMUHR

3.2 Packet arrival
Below the arrival of a routing packet (find,return,data,response) is shown.

3.3 Route Cache
Every mote contains a route cache that consists of entries similar to these:

Route Cache Node 0:
===================

Route 0: occupied :1 age: 2 len: 2 shortened: 0 route: {1, 5}
Route 1: occupied :1 age: 6 len: 4 shortened: 1 route: {1, 2,

3, 9}
...

Route 0 contains the path to mote 5: {0, 1, 5}.
Route 1 ought to contain the path to mote 0: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
but since there is not enough space to store the whole route shortened routes
were introduced. A shortened routes contains the beginning of a path and the
destination node and is marked with a flag. In the case above node 3 and node
6 must provide missing parts.

9 AMUHR

3.4 FAQ
• Is it possible that packets arrive multiple times?

If there is enough memory and correct settings were used the answer is no
otherwise following facts apply:

– The enum value DATA_PACKET_HISTORY_SIZE defines how many data
packets with id (8 bit) and sender (16 bit) can be kept for comparison.
The oldest entry is overwritten if too many packets arrive.

– The enum value DATA_PACKET_HISTORY_MAX_AGE defines a maximum
age for an entry in the data packet history. After (DATA_PACKET_-
HISTORY_MAX_AGE * DATA_PACKET_HISTORY_CHECK_INTERVAL_TIME)ms
the entry is deleted.

– If implicit acknowledgments are used and the sender of a packet does
not hear the receiver forwarding the packet it is sent again which
might result in packets arriving twice if DATA_PACKET_HISTORY_SIZE
is too small.

• Although the history size is large enough packets still arrive
twice!
Enabling USE_TOS_ACK without MH_USER_WANT_ACK is not allowed. (Be-
cause packets lack of an id they are indistinguishable and are forwarded
every time they are received.)

• If event sendDone signals SUCCESS can I be sure that the
packet arrived?
If SendMsg or SendMsgEx interface was used with options MH_USER_WANT_ACK
you can be sure. Otherwise SUCCESS means that a route to the destina-
tion was found and the packet was sent to the next hop.

• If event sendDone signals FAIL can I be sure that the packet did
not arrived?
No you can’t. Maybe the route was not found or the data or acknowl-
edgment packet were lost or a timeout occurred when finding the route
or sending the data - all this is indicated by FAIL. IMPL_ACK_TIMEOUT,
TTLX_WAIT and TTLX_SCALE influence waiting times.

• I noticed some find packets being passed forward and back-
wards?!?
This might occur if you set PACKET_HISTORY_SIZE too small and too many
find packets pass through a node at the same time. To prevent this increase
the size of PACKET_HISTORY_SIZE. There is a ttl, so they will eventually
die.

10 AMUHR

4 A Step by Step Configuration
Our goal is to build a 5x5 network grid and run it in TOSSIM. We will use cyg-
win syntax because it seems to be widely used. Please read also the comments
in AMUHR/MHSettings.h - there are a lot of additional hints and explanations
on optimization and the meaning of each constant!

1. Create a network layout for TOSSIM with LossyBuilder. The name should
be 5x5.nss. Then convert the file to assure that only bidirectional and
symmetric routes exist. You can use a tool in developer directory called
lossyConverter*.cpp. The output should be 5x5.nss.bi. The comments in
the c++ source files will provide information on compiling and running.

2. Open MHSettings.h. That’s were the parameters can changed.

3. What is the maximum packet length used? What is the average path
length we expect? Based on the previous two questions the value of
MHR_PACKET_MAX_LENGTH_ACK_IMPL_ACK should be chosen. The bigger
the maximum packet length the smaller is the route that can be stored
in a data packet and the more route cache entries will be occupied along
the path to the receiver. Let’s assume you’ll need 15 bytes per packet:
MHR_PACKET_MAX_LENGTH_ACK_IMPL_ACK=15.

4. Although motes are capable of transmitting 20 packets/s we want to use
less bandwidth to prevent thrashing. Especially if routes are not found or
packets do not arrive it is very likely that too many packets are sent in
too little time. PPS_THRESHOLD=5 prevents messages to be sent if already
5 packets were received within the last second. SEND_INTERVAL = 100
(milliseconds) specifies the mean time between two packet transmissions.

5. Should implicit acknowledgment for find packets and return packets or
only for return packets be sent? (this decision is static)
NO_IMPL_ACK_FOR_FIND_PACKETS = 1
The previous statement means that only implicit acks for return packet will
be sent. (FIND_PACKETS_IMPL_ACK_RESENDS will therefore be ignored)

6. We want to be sure that if a route was found, data and acknowledgment
packets make their way to the destination and back to us. Therefore the
number of sends is set to:
RETURN_PACKETS_IMPL_ACK_RESENDS = 3
RESP_PACKETS_IMPL_ACK_RESENDS = 3
DATA_PACKETS_IMPL_ACK_RESENDS = 3
(Although the variable is called RESEND it contains the maximum times
a packet is sent in total!)

11 AMUHR

7. Now the maximum time to get from one hop to the next has to be esti-
mated:
2*SEND_QUEUE_SIZE*SEND_INTERVAL*number of resends
=2*8*100*3=4800ms
and can be set directly to MAX_RTT=4800 (milliseconds). This is the ab-
solute worst case and using the calculated value results in very slow path
resolution. (ttl 1: 4800ms, ttl2: 4800ms+9600ms ttl4: 4800ms+9600ms+19200ms
...). It is recommended to take it as an upper bound because normally the
queue is not that full and even if we have to resend packets
MAX_RTT = 2*(SEND_INTERVAL*SEND_QUEUE_SIZE) will works fine (→ Per-
formance tests). Nevertheless you’re encouraged to play with this value.

8. Is the network static? If it is we can prevent routes from aging and only
refresh routes if packets fail to arrive. (Attention: if you use packets with-
out acks and a node dies it will never be detected)
ROUTE_CACHE_DO_NOT_AGE=1
ROUTE_CACHE_MAX_FAIL=3 specifies that if the delivery of a packet fails
three times (not necessarily three times in a row!) the route will be inval-
idated.

12 AMUHR

5 Performance
Please note that TOSSIM only models the radio stack and not timing. There-
fore the end time cannot be interpreted.
For all tests PACKET_STORE_SIZE = 8 and ROUTE_CACHE_DO_NOT_AGE = 1 was
chosen, other values are the defaults.
A typical command line call that was used to run was

./main -rf=6x6 -10. nss.bi -b=0 -t=1000 36

The files used for lossy mode (*.nss.bi) can be found the the directory
Developer/Layouts. Please consider these when judging the results.

5.1 Name -> Send Options
In the performance tables below symbolic names for the send-parameters will
be used.

data_ack (MH_USER_WANT_ACK)
data_imp_data_ack: (MH_USER_WANT_ACK|

MH_USER_IMP_ACK)
find_imp (MH_USER_FIND_IMP_ACK)
all_imp_data_ack (MH_USER_WANT_ACK|

MH_USER_IMP_ACK|
MH_USER_FIND_IMP_ACK)

no_ack 0

5.2 Meaning of the Fields
Due to the slow calculation time of TOSSIM and the big number of tests that
were done, a limit of 1000 virtual seconds was set for TOSSIM runs. A test
that did not finish in time is marked with an ’*’. The question that seems to
remain open is whether the test would have succeeded if there had been enough
time. Therefore a field found paths was added. If all nodes were found we can
assume that the settings allow a successful transmission and that the test would
have terminated successfully. If not all paths were found it may have succeeded
eventually, but the settings are definitely not practical.

total sent packets sum of all packets sent by all nodes
CRC fail sum of all failed packet CRCs of all nodes
CRC ok sum of all packet CRCs that were ok of all nodes
sending attempts number of times the application wanted to send a packet
successful arrivals number of packets that arrived at the destination
success finished in time and success = 1 otherwise 0
end time approx. TOSSIM end time
found paths what paths were found

When packets are broadcasted these packets are also received by nodes that are
not on the path, but we still count these receptions to the failed and correct
CRCs. A sending attempt corresponds to a call to SendMsg*.send.

13 AMUHR

5.3 Test 1

8 nodes connected only to their neighbors.

Node 0 transmits value 0 to node 1, 2, 3, 4, 5, 6, 7. As soon as all transmissions
are acknowledged (or sent successfully - see send options) Node 0 continues with
sending value 1 to node 1, 2,3,4,5,6,7, etc. A total of 70 packets was sent (10 to
each node).
The test was done in TOSSIM with three different bit switch probabilities and
five different send settings. If all packets arrived successfully the test was not
necessarily redone with altered parameters.
After 1000 virtual seconds the test was stopped or earlier if nodes weren’t even
found. A stop is marked with an asterisk in the end time.

Estimation:

Note: To find node 5 we start with ttl 1, ttl2, ttl4 finally ttl8

The number of packets to find node 1 is: 1 find packet + 1 return packet
The number of packets to find node 2 is: 1 + 2 find packets + 2 return packets
The number of packets to find node 3 is: 1 + 2 + 3 find packets + 3 return packets
The number of packets to find node 4 is: 1 + 2 + 4 find packets + 4 return packets
The number of packets to find node 5 is: 1 + 2 + 4 + 5 find packets + 5 return packets
The number of packets to find node 6 is: 1 + 2 + 4 + 6 find packets + 6 return packets
The number of packets to find node 7 is: 1 + 2 + 4 + 7 find packets + 7 return packets

Therefore 56 find and 28 return packets = 84 packets routing overhead at least.

There are 70 packets to be delivered:
For destination 1 we will send a total of 10 packets.
For destination 2 we will send a total of 20 packets.
For destination 3 we will send a total of 30 packets.
For destination 4 we will send a total of 40 packets.
For destination 5 we will send a total of 50 packets.
For destination 6 we will send a total of 60 packets.
For destination 7 we will send a total of 70 packets.

A total of 280 packets for the data will be used.

Hence a perfect network with no packet loss will be able to deliver the 70 packets by using 364 packet
transmissions.

Settings Test 1
Test 1.1 Test1.2 Test1.3 Test1.4

FIND_PATH_MIN_TTL_STATE TTL1 TTL4 TTL4 TTL4
FIND_PATH_MAX_TTL_STATE TTL8 TTL8 TTL8 TTL8
RESOLVE_QUEUE_SIZE (ROUTE_CACHE

_NUM_ENTRIES/2
+1)

2 2 2

NO_IMPL_ACK_FOR_FIND_PACKETS 0 0 0 1
FIND_PACKETS_IMPL_ACK_RESENDS 3 4 4 4
RETURN_PACKETS_IMPL_ACK_RESENDS 3 4 4 4
RESP_PACKETS_IMPL_ACK_RESENDS 3 4 4 4
DATA_PACKETS_IMPL_ACK_RESENDS 3 4 4 4
SEND_INTERVAL 200*MILLI_SECOND
PPS_THRESHOLD 5 5 5 2
PPS_SCALING 2 2 2 2
MAX_RTT 2*(SEND_INTERVAL*

SEND_QUEUE_SIZE)
200*SEND_QUEUE_SIZE(=8)

IMPL_ACK_TIMEOUT MAX_RTT MAX_RTT MAX_RTT MAX_RTT
FIND_PATH_NEXT_TTL 1000 1000 400 400
ROUTE_CACHE_MAX_FAIL 3 8 8 8
USE_TOS_ACK undefined

14 AMUHR

Test 1.1
bit switching probability: 0.0

data_ack1 data_imp_data_ack1 find_imp1 all_imp_data_ack1 no_ack2
total sent packets 1051 807 358 868 325
CRC fail 23 18 14 17 7
CRC ok 1790 1367 575 1482 531
sending attempts 92 73 70 73 70
successful arrivals 70 70 58 70 62
success 1 1 0 1 0
end time 336064 202688 102720 207104 99904
found paths 1-7 1-7 1-7 1-7 1-7

bit switching probability: 0.01
data_ack2 data_imp_data_ack2 find_imp2 all_imp_data_ack2 no_ack2

total sent packets 2590 2982 316 4581 854
CRC fail 521 606 63 1208 172
CRC ok 3310 3960 413 6376 1091
sending attempts 11 48 74 197 132
successful arrivals 5 34 33 70 36
success 0 0 0 1 0
end time 1955936* 2180160* 112736 1070336 694304
found paths 1-7 1-7 1-7 1-7 1-7

bit switching probability: 0.02
data_ack3 data_imp_data_ack3 find_imp3 all_imp_data_ack3 no_ack3

total sent packets 1151 1602 798 4334 1489
CRC fail 706 713 530 2818 678
CRC ok 1153 1206 649 3641 1066
sending attempts 7 10 95 186 224
successful arrivals 3 3 13 6 2
success 0 0 0 0 0
end time 1023712* 1023808* 223744 1069984* 1056640*
found paths 1-3 1-3 1-7 1-7 1-3

Test 1.2
bit switching probability: 0.0

data_ack1 data_imp_data_ack1 find_imp1 all_imp_data_ack1 no_ack1
total sent packets 884 779 313 795 313
CRC fail 21 18 7 10 11
CRC ok 1511 1336 514 1375 513
sending attempts 94 72 71 75 70
successful arrivals 70 70 61 70 58
success 1 1 0 1 0
end time 369312 201760 103904 212096 107552
found paths 1-7 1-7 1-7 1-7 1-7

bit switching probability: 0.01
data_ack2 data_imp_data_ack2 find_imp2 all_imp_data_ack2 no_ack2

total sent packets 1007 1789 383 2748 661
CRC fail 230 353 93 701 140
CRC ok 1358 2591 493 3869 945
sending attempts 150 141 76 147 79
successful arrivals 6 63 25 70 2
success 0 0 0 1 0
end time 1023808* 1023808* 169152 888544 1023296*
found paths 1-6 1-7 1-7 1-7 1-7

bit switching probability: 0.02
data_ack3 data_imp_data_ack3 find_imp3 all_imp_data_ack3 no_ack3

total sent packets 608 672 689 3325 542
CRC fail 304 335 456 2194 284
CRC ok 476 515 515 2854 392
sending attempts 154 145 87 151 138
successful arrivals 2 3 11 7 0
success 0 0 0 0 0
end time 1023488* 1022016* 305760 1021184* 1023424*
found paths 1-4 1-3 1-7 1-7 1-3

15 AMUHR

Test 1.3
bit switching probability: 0.00

data_ack1 data_imp_data_ack1 find_imp1 all_imp_data_ack1 no_ack1
total sent packets 906 833 332 836 335
CRC fail 18 21 8 28 8
CRC ok 1563 1423 409 1412 562
sending attempts 90 74 70 73 71
successful arrivals 70 70 59 70 63
success 1 1 0 1 0
end time 323008 185312 96288 176800 102464
found paths 1-7 1-7 1-7 1-7 1-7

bit switching probability: 0.01
data_ack2 data_imp_data_ack2 find_imp2 all_imp_data_ack2 no_ack2

total sent packets 1597 1842 374 1881 846
CRC fail 345 429 87 425 192
CRC ok 2180 2583 489 2556 1168
sending attempts 248 173 74 114 114
successful arrivals 6 70 37 70 5
success 0 1 0 1 0
end time 1023936* 776448 111360 627936 424768*
found paths 1-7 1-7 1-7 1-7 1-6

bit switching probability: 0.02
data_ack3 data_imp_data_ack3 find_imp3 all_imp_data_ack3 no_ack3

total sent packets 1398 1517 512 4849 1398
CRC fail 691 805 283 3480 691
CRC ok 1099 1189 444 4123 1099
sending attempts 343 348 86 162 343
successful arrivals 1 4 12 20 1
success 0 0 0 0 0
end time 1023552* 1023840* 162816 1023744* 1023552*
found paths 1-3 1-3 1-7 1-7 1-3

Test 1.4
bit switching probability: 0.01

data_ack2 data_imp_data_ack2 find_imp1 all_imp_data_ack2 no_ack2
total sent packets 1597 1842 292 1397 1227
sending attempts 248 173 78 105 206
successful arrivals 6 70 33 70 32
success 0 1 0 1 0
end time 1022784* 776448 114432 421248 675072
found paths 1-7 1-7 1-7 1-7 1-7

bit switching probability: 0.02
data_ack3 data_imp_data_ack3 find_imp3 all_imp_data_ack3 no_ack3

total sent packets 930 1517 1061 1353 713
sending attempts 235 348 315 333 343
successful arrivals 1 1 12 1 1
success 0 0 0 0 0
end time 659232 1023840* 827840 1022688* 1023552*
found paths 1-3 1-4 1-7 1-6 1-3

Discussion

You’ve probably noticed the total number of packets sent can be less than our
estimate. This is due to some optimization: if find packets from the same source
with different ttls are inserted into the send queue, the packets are merged to
one containing the bigger ttl value.

Bit switching probability 0.0

If acknowledgments are used all packets arrive otherwise about 80%. The least
packets were sent in Test 1.2 because ttl was set between 4 and 8 and the the
send interval was quite large to prevent collisions and hidden nodes.

Bit switching probability 0.1

Nodes are still successfully found, but with more effort. The main problem
are nodes 6 and 7. The application waits until all nodes reply with an ack
(or the path was found for transmissions with no ack) and continues after. If
data packets never reach a node no other packets are sent. Therefore the field

16 AMUHR

successful arrivals is very low although transmissions close nodes are no problem.
Another setting impairs performance: After ROUTE_CACHE_MAX_FAIL
failed transmissions the route is invalidated and the route finding starts again.

Bit switching probability 0.2

All runs failed to terminate in time with the exception of find_imp. The reason
is that with implicit acks the routes are successfully found and packets are
transmitted from node 0 to 1 (although they do not arrive at their destination
in general). If more time had been given the runs that found all paths would
have been successful. The most promising settings are those of test 1.3 with
implicit acks for find and for data packets.

No implicit acks for find packets

In test 1.4 no implicit acks for find packets (but for return packets if
MH_USER_FIND_IMP_ACK was set) were used. Looking at column find_imp it can
be seen that the number of find packets is higher than in test 1.3. Therefore it is
recommended to set NO_IMPL_ACK_FOR_FIND_PACKETS to 0 if failure probability
is high.

Recommendations
If your TinyOS set up allows it you can also define USE_TOS_ACK. Test 2
shows a performance example.

5.4 Test 2

Node 0 (upper left corner) sends 10 packets to Node 99 (lower right corner)

Settings Test 2
Test 2.1 Test2.2

USE_TOS_ACK undefined defined
FIND_PATH_MIN_TTL_STATE TTL1 TTL4
FIND_PATH_MAX_TTL_STATE TTL32 TTL8
NO_IMPL_ACK_FOR_FIND_PACKETS 1 1 (no influence)
FIND_PACKETS_IMPL_ACK_RESENDS 3 4 (no influence)
RETURN_PACKETS_IMPL_ACK_RESENDS 3 8 (no influence)
RESP_PACKETS_IMPL_ACK_RESENDS 3 8 (no influence)
DATA_PACKETS_IMPL_ACK_RESENDS 3 8 (no influence)
SEND_INTERVAL 200*MILLI_SECOND 400*MILLI_SECOND
PPS_THRESHOLD 5 2
PPS_SCALING 2 2
MAX_RTT 2*(SEND_INTERVAL*SEND _QUEUE_SIZE)
IMPL_ACK_TIMEOUT MAX_RTT MAX_RTT
FIND_PATH_NEXT_TTL MAX_RT T/2 MAX_RTT

17 AMUHR

Test 2.1
LossyBuilder -d 10 10 -s 20 every switching probability replaced with 0.00

data_ack1 data_imp_data_ack1 find_imp1 all_imp_data_ack1 no_ack1
total sent packets 429 450 229 319 332
CRC fail 766 783 346 346 780
CRC ok 5251 6510 2573 3743 3594
sending attempts 10 10 10 10 10
successful arrivals 10 10 10 10 10
success 1 1 1 1 1
end time 72832 78816 30912 57856 44896

LossyBuilder -d 10 10 -s 10 then converted to symmetric routes (=routes with same bit switch probability)
data_ack2 data_imp_data_ack2 find_imp2 all_imp_data_ack2 no_ack2

total sent packets 3106 3106 676 2050 3106
CRC fail 27840 27840 5982 17484 27840
CRC ok 16264 16264 3944 13918 16264
sending attempts 9 9 11 18 9
successful arrivals 0 0 1 5 0
success 0 0 0 0 0
end time 1000000* 1000000* 160896 1000000* 1000000*

Test 2.2
LossyBuilder -d 10 10 -s 20 every switching probability replaced with 0.00

data_ack2 no_ack2**
total sent packets 275 205
CRC fail 201 201
CRC ok 4049 2869
sending attempts 10 10
successful arrivals 10 10
success 1 1
end time 96928 59968
** enabling USE_TOS_ACK without MH_USER_WANT_ACK
is not supported! (Messages arrive an arbitrary number of times!)

LossyBuilder -d 10 10 -s 10 then converted to symmetric routes (=routes with same bit switch probability)
data_ack2 no_ack2**

total sent packets 2332 3086
CRC fail 21383 28323
CRC ok 17870 24425
sending attempts 15 23
successful arrivals 10 70
success 1 1
end time 587808 513824
** enabling USE_TOS_ACK without MH_USER_WANT_ACK
is not supported! (Messages arrive an arbitrary number of times!)

Discussion

Sending less packets per second and activating USE_TOS_ACK improved the
results remarkably for both setups. Other tests without USE_TOS_ACK (not
shown) resulted in bad performance because node 99 was found but no return
packet ever reached node 0.

5.5 Test 3

Node 0 sends to 5
Node 5 sends to 10
Node 10 sends to 15

...
Node 35 sends to 40 (never reached in test 3.1)

The purpose of this test is to show that AMUHR also works if there is more
then one sender in a network.

18 AMUHR

Settings Test 3
Test 3.1 and Test 3.2

USE_TOS_ACK defined
PACKET_STORE_SIZE 8
TOS_ACK_RESENDS 10
FIND_PATH_MIN_TTL_STATE TTL1
FIND_PATH_MAX_TTL_STATE TTL16
SEND_INTERVAL 200*MILLI_SECOND
PPS_THRESHOLD 5
PPS_SCALING 2
MAX_RTT 2 * (SEND_INTERVAL *

SEND_QUEUE_SIZE)
IMPL_ACK_TIMEOUT MAX_RTT
FIND_PATH_NEXT_TTL MAX_RT T/2
ROUTEC_MAX_FIND_IN_CACHE 8

Test 3.1
Following test was done with 40 nodes as described above with 8 senders and 7
available destinations.

LossyBuilder -d 10 10 -s 20 every switching probability replaced with 0.00
data_ack1

total sent packets 1550
CRC fail 2042
CRC ok 16432
sending attempts 76
successful arrivals 70
success 1
end time 133952

LossyBuilder -d 10 10 -s 10 then converted to symmetric routes (=routes with same bit switch probability)
data_ack2

total sent packets 5959
CRC fail 37357
CRC ok 45474
sending attempts 101
successful arrivals 70
success 1
end time 431904

LossyBuilder -d 10 10 -s 20 then converted to symmetric routes (=routes with same bit switch probability)
data_ack3

total sent packets 10780
CRC fail 34024
CRC ok 27593
sending attempts 143
successful arrivals 70
success 1
end time 751872

Test 3.2

Following test was done with 100 nodes in a 10x10 grid with 19 senders
LossyBuilder -d 10 10 -s 20 every switching probability replaced with 0.00

data_ack1
total sent packets 15796
CRC fail 46327
CRC ok 166094
sending attempts 266
successful arrivals 190
success 1
end time 482912

LossyBuilder -d 10 10 -s 10 then converted to symmetric routes (=routes with same bit switch probability)
data_ack2

total sent packets 98180
CRC fail 886185
CRC ok 307889
sending attempts 416
successful arrivals 57
success 0
end time 1000000*

LossyBuilder -d 10 10 -s 20 then converted to symmetric routes (=routes with same bit switch probability)
data_ack3

total sent packets 46516
CRC fail 146819
CRC ok 109785
sending attempts 363
successful arrivals 101
success 0
end time 1000000*

Analysis has shown that in the second and the third test the send interval
was chosen too small and that important route cache entries got overwritten

19 AMUHR

by unimportant find packet paths. Simply increasing SEND_INTERVAL to
300ms turned out to improve the second test in 3.2 (31 more packet arrivals and
15% less sent packets in 1000000* virtual seconds) - the others weren’t tested,
but are assumed to improve as well. To prevent route cache entries to get
overwritten ROUTEC_MAX_FIND_IN_CACHE can be changed. Keeping
SEND_INTERVAL=200ms and setting ROUTEC_MAX_FIND_IN_CACHE=4
resulted in {190, 76, 116} successful packet arrivals with about the same number
of packets sent.

5.6 Conclusion of Tests
If your mote or configuration doesn’t support the ack field in TOS_Msg AMUHR
will work fine if loss is moderate. Otherwise it’s recommended to use im-
plicit acknowledgments. Other settings should be based on your needs. Setting
PPS_THRESHOLD and SEND_INTERVAL to large values is good practice to prevent
CRC errors due to packet collisions (and to save energy as well).

20 AMUHR

6 Implementation Details

6.1 Intro
The task of this semester thesis was to implement a simple DSR and then to
optimize it. When being almost done the tests indicated very bad results if
packets were lost. Therefore the decision to add implicit acknowledgments was
taken, which made the code quite big. Since the tests were still not convincing
the ack field in TOS_Msg was considered more closely as an indicator whether
a message arrived at the next hop or not. This flag was not considered earlier
since it belongs to the link-layer and there was no documentation stating any
guarantee that this field would be set in any TinyOS configuration. Therefore
special care has to be taken by the user to assure that the ack field is set. In
TOSSIM the ack field seems to be supported by the default configuration.

6.2 Files
Following files can be found in AMUHR.

MHSettings.h defines behavior, memory usage etc.
MHConstants.h content should not be changed
MHDerivedConstants.h do not change either
MHPackets.h defines data structures for packets
AMUHR.nc needs to be wired into application instead of

GenericComm
AMUHRM.nc implementation of AMUHR
DataPacketHistoryM.nc stores history of data packets by saving the

sender and packet ids.
PacketHistoryM.nc same as DataPacketHistoryM.nc, but for find-

and return packets
ReceiveQueueM.nc stores received packets until they’re processed
ResolveQueueM.nc stores the addresses we seek and keeps track

of ttl in find packets
RouteCacheM.nc stores routes that we need
SendDoneQueueM.nc stores packets that have been sent and might

need to signal sender
SendMsgEx.nc defines interface of SendMsgEx
SendQueueM.nc stores packets that need to be handed down

to GenericComm
TOSMsgPacketStoreM.nc provides empty TOSMsg packets for tempo-

rary use
WaitAckM.nc stores user packets waiting for acknowledg-

ments
WaitImpAckQueueM.nc stores routing packets waiting for implicit ac-

knowledgments
WaitToBeSentM.nc store user packets waiting for the path
Omitted files: contain interfaces to the described modules

21 AMUHR

6.3 Queues

6.4 Security
Every incoming or outgoing packet passes a security test assuring that the packet
format is valid. However, this test does not prevent attackers from adding invalid
entries to the route cache.

6.5 Extensibility
Some fields in the packets are not yet occupied or provide interesting but not yet
used information. For instance there is an empty field in find packets that could
be used to extend the ttl which would allow controlled routing up approximately
65000 hops. In return packets the distance from the destination node is returned
but not used. Empty fields are also available in response packets. Every return
packet contains the age of the route that is stored in the local cache of the route
requester. Currently the age is just set the the maximum time. This behavior
could be changed to for instance set the age to the lowest age of a route found
in the path.

22 AMUHR

6.6 Implemented Optimizations
This is a selection of optimizations that were implemented. Omitted once are
just not worth mentioning or were discussed in other sections of this document.

• Only the first find path packet from a source (initiator) is forwarded -
because it contains the fastest path.

• If two or more different packets miss the path to the same destination only
one find path packet is sent.

• If there are find packets from the same source, but with different ttls in our
send queue these packets are merged to one packet containing the larger
ttl value.

• If implicit acks are requested and a packet arrives a second time we send a
dummy packet ; that is a packet with a flag (dummy flag). We set this flag
so that the next hop doesn’t think that we didn’t hear its implicit ack.

• If a dummy packet arrives, but we did not already get the packet we
forward the dummy packet after removing the dummy flag if necessary.

• When a return packet passes through we cancel all find packets from the
same sender that are in our send queue.

• If implicit acks are used also nodes that hear the transmission of return
packets will not forward return packets or find packets from the same
source with the same destination.

• Return packets are accepted as implicit acknowledgments for find packets.
The same applies for data packets and response packets.

6.7 Tools
In directory Developer a debug version of AMUHR is located that allows
• to specify from what node a certain node may accept packets

(to simulate a directed graph on real nodes)
• to keep track of the number of packets that were sent/received
• allows you to track the algorithm in TOSSIM with dbg outputs
• to look at the sent/received messages on standard out when run in TOSSIM

The best way is start reading LimitComm module to see how it works.
By the way the sample applications provided are based on a fully connected
debug version.

23 AMUHR

7 Limitations
Data structures: Guaranteed to hold up to to 32765 entries.
Route length: The maximum route length that can be controlled in a network

is 254 hops. There is an option for infinite routes but it contains the risk
that packets are forwarded forever.

Route length to next hop: The route length within data-packet is limited to 13
hops.

Network: All motes in a group are expected to be compiled with the same
routing settings. Packets are dropped if they are not conformant.

Payload length: Even if you increase TOSH_DATA_LENGTH the payload must al-
ways be smaller than 256 bytes.

Network assumption: Routes are assumed to be symmetric and bidirectional.
If bit switching probabilities are not the same in the opposite direction
AMUHR should also work if re-sending packets is enabled.

UART: AMUHR only supports communication with radio and does not forward
to serial port.

8 Pros and Cons
- RAM usage

A simple application with PACKET_STORE_SIZE = 8 uses approximately

– 32994 bytes in ROM
– 1958 bytes in RAM

and if you want to be very sure that packets do not get transmitted twice
even more RAM can be used.

- granularity of timers should be increased: for example it would be nice to
be able to specify that we don’t care if the packet arrives 2 or 3 seconds
later; this would save a couple of lookups while waiting for the path;
currently some of the timers are coupled together

- some tasks are quite big and should be split

- bidirectional symmetric routes are assumed but it should work with just
bidirectional routes also

- route cache saves paths that are not used from find packets and might
overwrite more important paths

+ you can steer RAM usage by just changing parameters in MHSettings.h

+ payload length can be chosen almost freely

+ works on motes that do not support ack field in TOS_Msg

+ the way packets are sent (implicit acks, acks, no acks) can be chosen at
runtime

+ SendMsg interface is fully supported to allow existing applications to be
ported to multi-hop quickly

24 AMUHR

9 Outlook
As a next step following optimizations are suggested:

• adding a packet splitter to simplify the handling with decreased maximum
allowed packet length that was set before compile time

• splitting the huge tasks into smaller ones

• allow unidirectional routes - up to now the same path is used by the sender
and the receiver when answering

• the part that uses the most memory is the implicit ack support: by re-
moving it and using the link-layer ack field a considerable amount of RAM
could be saved.

10 Conclusion
AMUHR is a multi hop router that is easy to deploy and should work from
scratch in small sensor networks. It is possible to optimize memory usage and
performance based on a set of parameters and to adapt to bigger networks.
Tuning is a bit tricky at first until the effects are fully understood – therefore
a lot of performance examples were provided. Its RAM usage depends on pref-
erences chosen, but 2000 bytes should be expected. The application was tested
with TOSSIM with packet loss and a maximum of 100 motes.

25 AMUHR

	Introduction
	Working Plan
	DSR
	Feature Overview of Optimized Module

	Quick Start
	Routing
	Packet Overview
	Packet arrival
	Route Cache
	FAQ

	A Step by Step Configuration
	Performance
	Name -> Send Options
	Meaning of the Fields
	Test 1
	Test 2
	Test 3
	Conclusion of Tests

	Implementation Details
	Intro
	Files
	Queues
	Security
	Extensibility
	Implemented Optimizations
	Tools

	Limitations
	Pros and Cons
	Outlook
	Conclusion

