

SPLIMER
Splitter & Merger for TinyOS

Semester project by Marco De Santis
for

DCG (Distributed Computing Group) at ETH Zurich

Patron: Prof. R. Wattenhofer
Assistants: Pascal von Rickenbach, Yves Weber

 2

Contents
1 Motivation and Goal of the Project... 3
2 Current State & Planned Work ...4
2.1 TinyOS' Current State..4
2.2 Planned Improvements..4
3 Implementing Splimer ... 5
3.1 Basic Concept of the Splimer Module .. 5
3.2 Message Formats..6
3.2.1 Packed Message Format (Splimer_Packed_Msg)... 7
3.2.2 Split Message Format (Splimer_Splitted_Msg) ..8
3.2.3 Normal Message Format (extended TOS_Msg)... 11
3.2.4 Determination of Sending Mode... 11
3.3 The Splimer Configuration ... 12
3.3.1 User Application Requirements .. 12
3.3.1.1 Behavior of the Splimer Interface (unreliable communication)..................................... 13
3.3.2 The Three Queues ... 14
3.3.3 The Splimer Module ... 15
3.3.3.1 Sending.. 15
3.3.3.2 Flushing ... 16
3.3.3.2.1 Explicit Flushing.. 16
3.3.3.2.2 Implicit Flushing... 16
3.3.3.3 Message Order Characteristic (message sending/receiving sequence)................ 17
3.3.3.4 Receiving ... 17
3.3.3.4.1 Reconstructing the Original Data.. 18
3.4 Timers in Splimer.. 18
3.4.1 Timed Resend.. 18
3.4.2 Receive Timeout... 18
4 The ReliableLayer Module ... 19
4.1 How ReliableLayer is Embedded in the Splimer Environment ... 19
4.2 Technical Details .. 20
4.2.1 Message Formats Introduced.. 20
4.2.2 Editable Variables... 20
4.2.2.1 Quick_SendDone... 20
4.2.3 Behavior of ReliableLayer ... 21
4.3 Timer in ReliableLayer...22
4.3.1 Ack Wait Timeout..22
4.3.2 Timer Dependency..23
4.4 Consequences for the User when Employing ReliableLayer ...23
4.4.1 Behavior of the Splimer Interface (reliable communication)... 24
5 Discussion & Conclusion...25
5.1 ROM, RAM and Runtime Analysis ... 26
6 Future Work Proposition .. 28

 3

1 Motivation and Goal of the Project
TinyOS is a widespread operating system for sensor nodes that are able to form
an ad-hoc network. The existent communication layer commonly used for
sending data from one node to another node restricts the payload size per data
packet to a fixed number of bytes. If an application running on a node wants to
transmit data that exceeds the payload size limitation, the application itself must
be equipped with a split/merge feature to be able to split the data, transmit it as
several standard sized packets and reassemble the data on the receiver's side. This
functionality cannot be regarded as a task that should be implemented by every
application that needs to transmit larger amounts of data.
Hence the split/merge task should be fulfilled by an additional layer that is
inserted between the user application and the communication layer. This
additional layer is not only capable of splitting/merging large payloads but it also
stores small payload data and places it in a normal sized message until the no
more small messages can be fitted in it. The layer then sends the packed packet to
the receiver where all the small payload parts are extracted from the incoming
message. This pack/unpack feature enhances the network traffic and improves
the ratio between payload size and message header.

The goal of this semester project is to implement the described layer for TinyOS
extending it's capabilities to support sending of data packets of arbitrary size.

 4

2 Current State & Planned Work
Before knowing what exactly has to be implemented and how it can be
embedded in the existing set of modules, we need to assess the current state of
TinyOS. By examining the system carefully we can a priori rule out some ideas of
how to achieve the given task.

2.1 TinyOS' Current State
The standard communication stack of TinyOS is called AM as an abbreviation for
active message. The active message header file (AM.h), contained in the TinyOS
installation package, declares a variable(TOSH_DATA_LENGTH) defining the
maximum payload that may be used with active messages (see Figure 1). The
default maximum message payload is 29 bytes1.

#ifndef TOSH_DATA_LENGTH
#define TOSH_DATA_LENGTH 29
#endif

Figure 1: how TOSH_DATA_LENGTH is defined

Although it might seem as if TOSH_DATA_LENGTH was chosen arbitrarily, it is not.
The active message format itself would support much larger packets. This value is
accepted as the best tradeoff between faulty transmissions due to bit errors and
having a high data overhead.2
The longer the message is, the higher is the probability of at least one bit getting
flipped during transmission, hence the received faulty message will be discarded
on the receiving side. Another problem arises when changing a fundamental
constant of TinyOS: A node having assigned a higher value to
TOSH_DATA_LENGTH and therefore sending larger messages, is doomed to crash
any other node (having the default value as TOSH_DATA_LENGTH) receiving and
trying to process the messages.
The shorter the payload is chosen, the bigger the message header overhead gets.
Extreme cases can manifest a message containing a header of 7 bytes and a
payload of 1 byte which corresponds to an data overhead of 87.5%.

2.2 Planned Improvements
We conclude from chapter 2.1 that although altering the TOSH_DATA_LENGTH
variable is possible, it directly leads to negative impacts. Therefore an alternative
solution has to be found. Addressing the data overhead problem arising when
sending small amounts of data: the solution to this problem is to pack several
small messages into one standard sized message.
In order not to cause any other node to crash when sending large messages, we
split large amounts of data to fit into several normal sized TOS messages.
Of course should the same split/pack layer be able - upon receipt of split/packed
messages - to automatically reconstruct the original data and hand it to the user
application.

1 29 bytes in TinyOS 1.x, 28 bytes in versions 2.x
2 according to Michael Schippling
 [http://mail.millennium.berkeley.edu/pipermail/tinyos-help/2006-October/020136.html]

 5

3 Implementing Splimer
The implementation of Splimer may be subdivided in a sequence of work steps
that lead up to the final product. The location of the Splimer layer has to be
defined first. What follows is the definition of the used message formats and
finally the coding of the Splimer layer.

3.1 Basic Concept of the Splimer Module
The Splimer module should be wired between the user application and the
GenericComm module. GenericComm is a module that organizes transmissions
(sending and receiving) of packets via radio and UART.

user application

GenericComm
(send/receive)

traditional
arrangement

user application

Splimer
(split-merge)

(pack-unpack)

new
style

GenericComm
(send/receive)

Figure 2: basic wiring concept

Figure 2 illustrates how the Splimer module should be arranged in respect of the
user application and the GenericComm module. Figure 3 shows the transparency
of the Splimer module. The user does not know (and cannot choose) whether a
message is being split, packed or sent as a single message.
Furthermore we aim to provide and use a similar interface a user application has
to use/provide when working directly with the GenericComm module. Doing so
facilitates the use of Splimer.

 6

Splimer

GenericComm

user application

send

receive

splitnormalpack

send

receive

unpack normal merge

Figure 3: transparency of Splimer

3.2 Message Formats
One of the first steps towards the realization of the Splimer module is to
determine what message types will be needed and what the contents (fields) of
these messages will be.
During the development of Splimer it turned out that the initially proposed
message formats lacked some information, therefore the formats had to be
adapted. The final message formats are shown in Figure 4.

 7

Figure 4: message formats

TOS_Msg is the standard AM data format used to transmit a message. As
described earlier it can hold the maximal number of bytes defined by
TOSH_DATA_LENGTH. The custom message format to be used in the Splimer
module therefore has to fit into the data section of the TOS_Msg data structure.

Trying to keep the number of different message formats used in Splimer to a
minimum and the actual payload size as large as possible, three different
message types were defined: one for splitted data messages, one format for
packed data messages, and one for messages that neither need to be split nor
merged.

3.2.1 Packed Message Format (Splimer_Packed_Msg)
If the data the user application wants to send is smaller than
PACKED_MSG_DATA_LENGTH (see Figure 4 and Figure 5) Splimer attempts to
insert it into a packed message. Figure 5 shows the layout of this message type.

Figure 5: message format for packed data

Since the TOS message header format, which is the wrapper for the custom
message formats, does not contain any clue about the sender of the message, this
information (namely the sender's address) is the first field (denoted by 's') of all
custom message formats. The second field ('v') contains the size of the payload.
The third field ('x') denotes the transaction ID (see 3.2.2 for more details). What
follows is the most important information for this type of message, the split mask
(composed of the fields 'mh' and 'ml') which tells us how the payload has to be
split in order to get the original data packets. This mask is a simple bitmask where

 8

a bit set to 1 denotes the start of a new data packet in the payload section. For the
sake of simplicity the last data packet is also terminated by a 1 in the split mask.
The mask's size is 4 byte (32 bits) 3 which limits the payload section to a maximum
of 31 bytes (remember the terminal 1 at the end of the last data packet), which in
turn limits the TOS_DATA_LENGTH variable (see 2.1 on page 4) to 39 bytes (31
bytes payload + header size).

Figure 6: how the bit mask works

Figure 6 shows an example of a packed message. Its payload consists of 7 small
parts. Although the packet can hold 21 bytes as payload, only 19 bytes are used.
When examining the content of the bit mask, we see what was described above:
Each bit in the mask corresponds to one byte of the payload. A bit set to one
means that the corresponding byte in the payload is the start of a new data part.
The final byte of the last data part in the packet is indicated by a bit set to 1 in the
bit of the bit mask representing the byte following the final byte of the last data
part.

3.2.2 Split Message Format (Splimer_Splitted_Msg)
If the length of the data to be sent exceeds the TOSH_DATA_LENGTH, it is split
and sent as several packets to the recipient who upon receipt reconstructs the
data. Figure 7 shows of what fields this message type consists.

Figure 7: message format for split data

The first three fields(s, v and x) correspond to the packed message layout.
Our focus here is on the transaction ID (denoted by 'x', initiated as random
integer) and the 'r' field declaring the number of bytes that are still waiting to be
sent. The transaction ID (in combination with the sender's address) allows to
identify the incoming message as part of the message that is being assembled at

3 Due to problems experienced when bit shift operations are performed on 32bit unsigned integers
on Tinynode, the originally 32bit field was split into two 16bit fields. For clarification: when
referring to 'the mask', the underlying structure (two 16 bit unsigned integers) is ignored and
regarded as one 32bit unsigned integer.

 9

the receiver. The field ('r') containing the amount of data that is still on its way
allows detection of missing/lost data fragments and it also flags the last packet
of the split data (namely if this field is zero). After thoroughly thinking about the
appropriate data type for this field, it was set to an unsigned integer represented
by 16bit (i.e. a uint16_t type), allowing pending data sizes up to 216-1= 65535 bytes
which correspond to approximately 64 kBytes.
A problem is how to know if the first message received really is the first part of
the data (if the first part was not received). The current message layout does not
provide any means for flagging or recognizing it.

7 6 5 4 3 2 01bit#
transactionID

2bit#

Figure 8: the transactionID field

To resolve the issue about recognizing the first data part, the decision was made
to use one bit of the existing transactionID to flag the first data part. The most
significant bit (bit number 7, see Figure 8) is used as flag. The consequences
hereof are that the transactionID itself is reduced to a range of 0 to 127 which -
what the next paragraph will show - is still acceptable.

On the receipient's side a data fragment is only accepted if it's sent by the same
sender, with the same transactionID and the dataLeft fields correspond to what's
expected to arrive next. Consider a setup where a message is split into X parts, the
transactionID can take T different values and the probability that one message is
lost is p. Every X*T packets the conditions mentioned above are met and a packet
may be falsely accepted as missing part on the receivers side. Therefore X*T
consecutive packets have to get lost. The probability of that to happen is
pfalseAccept = pX*T * (1-p). It can be seen (Figure 9 & Figure 10) that even if there are only
2 parts sent (worst case), having a transactionID of cardinality 128, the maximal
pfalseAccept is very small (0.14%). To maximize pfalseAccept , the message loss probability
has to very high (~99%).

Figure 9: probability distribution of pfalseAccept with X=2 and T=128

 10

 maximal pfalseAccept
X T p pfalseAccept
2 1 0.6667 0.1481
2 128 0.9961 0.0014
2 256 0.9981 0.0007

Figure 10: different X,T pairs and their maximal false accept coordinates

Figure 10 demonstrates that by limiting the transactionID to 128 values instead of
256 values (by introducing the described flag bit) does not significantly
deteriorate the probability of false acceptance.

Figure 11: behavior of pfalseAccept in dependence of p and t (t = variable transactionID cardinality)

In Figure 11 we see that with increasing cardinality of the transactionID the
maximal value of pfalseAccept decreases rapidly. In the graph the transactionID
cardinality are assumed between 1 and 64. Also we notice a shift of the peak of
pfalseAccept when the transactionID cardinality is increased.
The "first data fragment"-flag is set by the sending and checked by the receiving
part of Splimer (see Figure 12 and Figure 13).

Figure 12: how to set the "first part" flag

Figure 13: how to check for the "first part" flag

 11

3.2.3 Normal Message Format (extended TOS_Msg)

message type max payload size
TOS_Msg TOSH_DATA_LENGTH = 29 bytes
Splimer_Packed_Msg TOSH_DATA_LENGTH - PACKED_MSG_HEADER_SIZE = 21 bytes
Splimer_Splitted_Msg TOSH_DATA_LENGTH - SPLITTED_MSG_HEADER_SIZE = 23 bytes
Splimer_Normal_Msg TOSH_DATA_LENGTH - NORMAL_MSG_HEADER_SIZE = 25 bytes

Figure 14: message types and their respective maximum payload size

When reducing the newly introduced fields in the previously defined message
formats to the absolute minimum we are left with only three fields (in addition to
the data segment): the sender's address the payload size information and the
transaction ID (see Figure 15). These three fields occupy only 4 bytes of the TOS
message's data section. This "normal message" type allows us sending up to 25
bytes in one packet.

Figure 15 shows the data layout for normal messages.

Figure 15: format for normal sized data

3.2.4 Determination of Sending Mode
Splimer packs data if it's smaller than PACKED_MSG_DATA_LENGTH. In case the
data is between and including PACKED_MSG_DATA_LENGTH and
NORMAL_MSG_DATA_LENGTH in size, the data is sent as normal message. If the
data size is bigger than NORMAL_MSG_DATA_LENGTH it is split and sent as
several packets. See Figure 16 as illustration.

Figure 16: what data size qualifies for what message/transmission type

 12

3.3 The Splimer Configuration

Splimer MsgsToUseQueue

EmptyTOSmsgsQueue

IncomingMsgsQueue

GenericComm

UserApplication

RandomLFSR

TimeC

SimpleTime

Figure 17: Splimer components and wiring

3.3.1 User Application Requirements
The requirements as for what commands may be called and what events have to
implemented in a user application using Splimer are quite similar to what's
needed to use GenericComm. However some changes have to be applied.

interface SplimerSendMsg
{
 command result_t send(uint16_t address,
 uint16_t length,
 uint8_t *msg);

 event result_t sendDone(uint8_t *msg,
 result_t success);

 command result_t flush();
}

Figure 18: interface provided by Splimer

interface SplimerReceiveMsg
{
 event uint8_t *receive(uint8_t *msg,
 uint16_t length);
}

Figure 19: interface that must be provided by the user application

 13

In Figure 18 can be seen that there are still three parameters needed in order to
send data. The first parameter is the receiver's address. Compared to the 'send'
command in GenericComm the parameter 'length' is an 16bit unsigned integer
instead of a unsigned 8bit integer. This allows the user to send data upto 65535
bytes (approx. 64kBytes).
When using GenericComm, the user has to provide a pointer to a TOS message as
third parameter. When using Splimer, the third parameter is a pointer to the data
that the user wishes to transmit. The benefit of this proceeding is that the user
does not have to think about whether the data fits into a given packet format. The
only limit to the size of the data is the type of the length parameter.

If the user application reaches a state where it must be assured that all packets
handed to 'send' were actually sent, the command 'flush' can be called. Flush
sends the yet unsent data currently stored in the send buffer. See chapter 3.3.3.2
(on page 16) for more information on flushing.

The arguments of the sendDone event slightly changed compared to the one of
GenericComm. The event sendDone is signaled not with a TOS message pointer
as first parameter but with a pointer pointing directly to data. The sendDone
event returns the pointer previously handed to Splimer via the send command call.

The user application has to implement the receive event (Figure 19). As the
parameter's types and some of their meaning were changed in 'send', the
parameters of this event have to be adapted accordingly. The pointer to the
message that is received points directly to the data (not-as in GenericComm-to
the TOS message). Finally, a length parameter is introduced as a 16bit unsigned
integer, in order to support the data size that may be sent.
In order for Splimer to return received data it requires the user application to
return a pointer to the allocated incoming message buffer when Splimer signals a
receive event with a null pointer as message pointer parameter. This requirement
demands the user application to allocate the memoy for incoming data. This is
necessary because only the user application knows the maximally expected
incoming data size. The null pointer receive is signaled only once, prior to
returning the first received data.

3.3.1.1 Behavior of the Splimer Interface (unreliable communication)
In Figure 20 we see that the behavior of both send and sendDone are not different
from the analogous function in GenericComm.

command result_t send(addr, len, data)

command result_t flush()

event result_t sendDone(data, succ)

data accepted
(not sent yet)

SUCCESS FAIL
wrong args or

send in progress
successful
handover

sending failed on
sender side

succ. flushed or
no data to flush failed to flush

Figure 20: behavior of the Splimer interface (unreliable communication)

 14

The flush command returns FAIL only if flushing of a packet failed, meaning if a
sending is still in progress.

3.3.2 The Three Queues
Figure 17 shows the configuration of Splimer. As for now, Splimer uses three
different queues. MsgsToUseQueue holds pointers to TOS messages that are
ready to be used; meaning that these messages are not used by any other part of
the program. This queue is used by the sending part of Splimer. It acquires an
unused pointer to wrap around the data to be sent. Upon signaling of Splimer's
sendDone event, the message pointer handed to sendDone is enqueued at the
end of the MsgsToUseQueue.
EmptyTOSmsgsQueue and IncomingMsgsQueue are used by the receiving part of
Splimer. As it is crucial for the receive event to return an unused TOS message
pointer instantly, a queue of unused message pointers is needed in order to be
able to keep the incoming pointer for further processing. The following happens
upon message receipt: the incoming pointer is enqueued in the
IncomingMsgsQueue, an unused message pointer is fetched from the
EmptyTOSmsgsQueue and returned.
MsgsToUseQueue & EmptyTOSmsgsQueue are initialized holding the maximal
number of TOS messages. IncomingMsgsQueue is empty at the start of the
program. The three queues' implementations do not differ much one from
another. In fact, MsgsToUseQueue & EmptyTOSmsgsQueue are identical. Only
their initialization differs from IncomingMsgsQueue.
interface MsgsToUseQueue {
 command result_t init();
 command result_t insert(TOS_Msg *msg);
 command TOS_Msg* getPtr2Msg();
}

interface EmptyTOSmsgsQueue {
 command result_t init();
 command result_t insert(TOS_Msg *msg);
 command TOS_Msg* getPtr2Msg();
}

interface IncomingMsgsQueue {
 command result_t init();
 command result_t insert(TOS_Msg *msg);
 command TOS_Msg* getPtr2Msg();
}

Figure 21: the same interface for all three queues

As shown in Figure 22 the queue sizes may easily be changed. Increasing the
queue size affects the size of the compiled code.
enum {
 // queue settings for Splimer
 NEW_MSGS_QUEUESIZE = 2,
 INCOMING_MSGS_QUEUESIZE = 2,
 EMPTY_TOS_MSGS_QUEUESIZE = 2
};

Figure 22: queue size settings (file Queue_Settings.h)

 15

3.3.3 The Splimer Module
The Splimer module is divided into two major parts, namely the sending and the
receiving part. These two parts themselves are subdivided into three more
components that handle the different message types.

3.3.3.1 Sending

Figure 23 illustrates Splimer's sending process. It shows the connection between
the commands, tasks and events invoked upon a send request.

Splimer

MsgSendReceiveStack

user app
sendDone

(event)
receive
(event)

ProvidedSendMsg.
send

(command)

UsedSendMsg.send
(command)

UsedSendMsg.sendDone
(event)

UsedReceiveMsg.receive
(event)

ProvidedReceiveMsg.
receive
(event)

ProvidedSendMsg.
sendDone

(event)

sendTask
(task)

splitSendTask
(task)

normalSendTask
(task)

packSendTask
(task)

post

MsgsToUseQueue

buffer
& post

post

post

flush
packSend

buffer

if there are still
some unsent parts

getPtr2Msg
(command)
getPtr2Msg
(command)

EmptyTOSmsgsQueue

IncomingMsgsQueue

insert
(command)

Figure 23: how Splimer processes a send request

The 'send' command is called with the proper parameters by the user application.
If there's already a transmission in progress, 'send' returns 'FAIL' because the
current version does not support pipelined transmission of data. If there's no send
in progress, the send mode of the data is determined and a global variable is set
to memorize the mode. 'send' then posts the 'sendTask' task which is responsible
for the flushing of partially used buffers if necessary and posting the correct task
for processing the data. Figure 24 shows all cases that demand flushing of the
buffer. After having successfully flushed the buffer 'sendTask' posts itself to start
the correct task for handling the data to be sent.

 16

'sendTask' may post one of three possible tasks to handle the sending process of
the data, namely 'splitSendTask', 'packSendTask' or normalSendTask'. All of these
tasks check if there's a TOS message available; if not, they try to obtain one (see
the following chapter 3.3.2 'The Three Queues' for details).
-splitSendTask splits the data into parts of the size defined in chapter 3.2.2 'Split
Message Format (Splimer_Splitted_Msg)' and sends one packet and returns. The
sendDone event detects if there are more parts left to be sent and reposts the
splitSendTask as needed, until the last part is sent.
-packSendTask fits the data into the Packed Message Format
(Splimer_Packed_Msg) described in chapter 3.2.1. If there's not enough space
available in the current TOS message (hosting Splimer_Packed_Msg formatted
data), the packed packet is flushed and the data that didn't fit into the now
flushed message is put into a new TOS message wrapping a Splimer_Packed_Msg.
-normalSendTask sends the data in a slightly enhanced TOS message format (see
chapter 3.2.3).

3.3.3.2 Flushing
When sending packets of different sizes it may sometimes be inevitable to flush a
packed message before it actually is full. E.g. we were sending small data packets
which were aggregated in a packed message(but not actually sent yet) and next
we want to send a huge data packet which cannot be fitted in a packed message.
Figure 24 shows a table explaining when a partially filled packed message is
flushed automatically.

re
qu

es
te

d
m

od
e

Figure 24: when to flush the message buffer

Please note that small data exceeding the current space left in a packed message
also results in automatic flushing.

3.3.3.2.1 Explicit Flushing
Splimer provides a command called 'flush' taking no argument. This command, as
described in chapter 3.3.1, enables the user application to flush the current
message buffer to the underlying communication layer. This should be done by
the user application when it wants to be sure that all data has actually been sent.

3.3.3.2.2 Implicit Flushing
It might be of interest to a user application not to use the flush command but the
actual send command in order to flush the sending buffer. This is possible and is
easily done by calling the send command with a null pointer instead of a pointer
to data as parameter. Explicit and implicit flushing are semantically identical.

 17

3.3.3.3 Message Order Characteristic (message sending/receiving sequence)
Splimer does not influence the sequence in which data packets arrive. The
sequence in which the packets are send corresponds to the sequence the packets
are received (sending order = receiving order). This behavior is called FIFO.
The exception to this rule are packets that were not successfully transmitted.

3.3.3.4 Receiving

Splimer

processIncomingTask
(task)

if not running, post it

MsgsToUseQueue

EmptyTOSmsgsQueue

IncomingMsgsQueue

insert
(command)

getPtr2Msg
(command)

insert
(command)

getPtr2Msg
(command)

post if
'IncomingMsgsQueue'

not empty

return reconstructed data

user app
sendDone

(event)
receive
(event)

ProvidedSendMsg.
send

(command)

ProvidedReceiveMsg.
receive
(event)

ProvidedSendMsg.
sendDone

(event)

MsgSendReceiveStack

UsedSendMsg.send
(command)

UsedSendMsg.sendDone
(event)

UsedReceiveMsg.receive
(event)

Figure 25: how Splimer processes a receive event

Once the receive event is signaled, it is checked whether the
'processIncomingTask' task is running; if it's not active, it is posted by the receive
event. The received message is inserted into the 'IncomingMsgsQueue'. If the
enqueuing fails, the message is not further processed and returned. If the
insertion succeeded a free TOS message from the 'EmptyTOSmsgsQueue' is
acquired and returned.
The 'processIncomingTask' task gets messages (pointers to TOS messages) from
the 'IncomingMsgsQueue' and handles it accordingly. It tries to merge or unpack
the messages where needed and returns the reconstructed original data via
receive event to the user application.

 18

3.3.3.4.1 Reconstructing the Original Data
As described in chapter 3.3.1 the user application is responsible for allocating and
providing the memory for incoming data. The first time Splimer signals a receive
event to the user application it is only for obtaining the pointer to the location
where it can write the incoming data. This call can be identified (apart from being
the first signaling of receive) by the message pointer parameter which is null.

Receiving and processing of normal messages is straight forward. The data is
extracted from the TOS message and returned to the user application via receive
event. The case of packed data is treated similarly. The Whole payload is extracted,
split(according to the split mask), and each data packet is then returned to the
user application via multiple receive signals.
Incoming split data is reassembled successively in the memory location provided
by the user program. When the last part of the data is in place, the pointer to the
memory location is handed to the user application using a receive event signal.

3.4 Timers in Splimer
In addition to the described functionalities and behavior, to ensure that no
sending or receiving process can block the application and for enhancing the
comfort of working with Splimer, different timers are used.

3.4.1 Timed Resend
If handing the message to the lower level fails, Splimer retries, after waiting a
certain amount of time, sending the message. The number of retries is limited.

MAX_RETRIES = 3, // how many retries before returning FAIL
WAIT_4_RETRY = 100 // [ms] time to wait before retry
Figure 26: variables defining number of retries and waiting time between tries (SplimerSettings.h)

After failing MAX_RETRIES times a sendDone is signaled containing FAIL as
success parameter.

3.4.2 Receive Timeout
An important question to find an answer to was what happens if a sender starts
sending a split message the last part is never received by the recipient?
This problem was solved by implementing a timer. The timer starts whenever a
split packet (except the final packet) is received and it stops when its successor's
arrival is detected.
On a timeout the whole message is rejected.

RECEIVE_TIMEOUT = 1000 // [ms] max time period of not
 // receiving an expected followup
 // packet of a split message

Figure 27: variable defining reception timeout (located in SplimerSettings.h)

 19

4 The ReliableLayer Module
The Splimer module itself does not provide reliable communication. All that is
guaranteed on a successful sendDone event is that the message was successfully
handed over to the communication layer and that the message was received by
the recipient. The latter can be found out when inspecting the ack field of the TOS
message when the message is returned as a calling parameter of the sendDone
event.
However even if the message is received, it is not guaranteed that it was
successfully inserted into the recipient's queue which corresponds to a guaranty
of being processed at the receiver's.
Hence what we want is a successful sendDone signaling iff the message is
enqueued at the recipient's.

4.1 How ReliableLayer is Embedded in the Splimer Environment

Figure 28: integration of ReliableLayer

As can be seen in Figure 28, the reliable layer is plugged between the Splimer and
the communication layer (usually GenericComm).

 20

4.2 Technical Details

4.2.1 Message Formats Introduced

typedef struct Ack_Msg{
 uint16_t sender; // address of sender
 uint8_t acknack; // ACK or NACK value
 uint8_t transactionID; // transaction ID
} Ack_Msg;

Figure 29: Ack_Msg message format

The Ack_Msg message format is kept to three fields: the sender's address, ACK or
NACK information and the transaction ID of the packet this packet is ack-ing.

4.2.2 Editable Variables

enum {
 ACK_WAIT_TIMEOUT = 1000, // [in millisecs]
 ACK_MSG_SIZE = 3, // [bytes] length of ack pack
 ACK = 255,
 NACK = 0,
 ID_ACKNACK = 68
};

Figure 30: non-editable & editable(bold) variables (in file AckPack.h)

There are two variables that may be edited by the user. The first is the
ACK_WAIT_TIMEOUT variable which holds the maximal time the ReliableLayer at
the sender's waits for an ACK message of the recipient before it automatically
acts as if a NACK message was received. This value can be altered for performance
fine tuning.
The second variable that may be edited is ID_ACKNACK. This value is simply the id
parameter that is used when sending/receiving ack messages. However, altering
this value is not recommended.

4.2.2.1 Quick_SendDone
The QUICK_SENDDONE constant can be found in SplimerSettings.h . Its default
value is 1. The value of this variable affects the behavior of Splimer when sending
data that is packed. This constant does however not affect the behaviour of
Splimer when packet types other than packed packets are sent.
Usually when sending data the sendDone event is signaled short after the send
command is called and the given pointer to data may be reused to send the next
data. When using reliable communication however, a sendDone is signaled when
the transmission of the packet was successful but the packet is not transmitted
every time the user hands a pointer to Splimer. This leads to the consequence that
the user application has to provide 22 pointers in the worst case.
The worst case is when the user application wants to send data of 1 byte in size.
Then 21 bytes are used to fill the packet and the 22nd byte produces an automatic
flushing of the packet.

 21

Splimer features the QUICK_SENDDONE constant to enable quick sendDone
signaling even if ReliableLayer is wired and the packet has not been transmitted
yet.
This has the benefit that the user application does not have to manage a large
number of pointers. The drawback is that the user application cannot assume
successful transmission of a packet upon receiving a sendDone signal. More
detailed information can be found in the SplimerSettings.h file.

4.2.3 Behavior of ReliableLayer
A send request is only accepted if ReliableLayer is not waiting for a sendDone
event and if there's no incoming ack message pending, otherwise the call returns
FAIL. If the call is accepted, the communication layer's send is invoked. When the
call to the communication layer returns, ReliableLayer waits for the sendDone
event to be signaled.
The sendDone event differentiates between ack messages and data messages. If
it's an ack message, nothing is done but if it's a data message a timer is started
giving the maximal time we wait for an ack message to arrive for the just sent
data message.
When a message is received, it is checked if it's a data message or an ack message.
This is done by comparing the incoming id to the ID_ACKNACK, the sender to the
expected sender, by checking the content of the acknack field and its accord with
ACK (see Figure 30) and by comparing the transactionID of the ack packet to the
expected transactionID. In case of a valid ack message the timer started by
sendDone is stopped and sendDone is signaled to Splimer. If a data message is
received, receive is signaled at Splimer.
If Splimer's receive returns the same pointer as was provided to it, the enqueueing
failed and therefore a NACK ack message has to be sent back to the sender of the
message. If the returned pointer is different, an ACK ack message is composed
and sent. Figure 31 illustrates the behavior of ReliableLayer.
ReliableLayer does not influence the sequence in which data packets arrive
(sending order = receiving order).

 22

ReliableLayer

send
- accept if no sendDone
 and no ack msg pending

sendDone(msg, succ)
- if ack msg, do nothing
- if succ and not ack msg

- start timer
- (wait ack)

- if succ == FAIL
- signal sendDone(msg, FAIL)

receive
- if awaiting ack
 and id & sender correct
 and ack msg is ACK

- stop timer
- signal sendDone(msg, SUCCESS)

- if data msg
- signal receive
- depending on result of receive:

- compose ack msg with (N)ACK
- send ack msg

GenericComm

timer.fired
- signal sendDone(msg, FAIL)
- reset to initial status

Splimer

Figure 31: behavior of ReliableLayer

4.3 Timer in ReliableLayer
There is only one timer in use in ReliableLayer. As the timers in the Splimer
module it is responsible to guaranty a continuous operational availability.

4.3.1 Ack Wait Timeout
Timer is used for preventing ReliableLayer from blocking upon non-reception or
potentially extremely delayed reception of an expected acknowledgement packet.

ACK_WAIT_TIMEOUT = 1000 // [ms] how long to wait before we
 // treat not receiving ACK
 // message as NACK

Figure 32: variable defining timeout (located in AckPack.h)

Once the timeout is fired sendDone is signaled with FAIL as one of its parameters.

 23

4.3.2 Timer Dependency
Some restrictions to the choice of ACK_WAIT_TIMEOUT's value apply. For the
Splimer (with wired ReliableLayer) to work correctly the following equation has to
hold:

ACK_WAIT_TIMEOUT ≤ RECEIVE_TIMEOUT - (WAIT_4_RETRY x MAX_RETRIES)

If this requirement is not met, the receiver may terminate the processing of
incoming split data due to the firing of the RECEIVE_TIMEOUT timer. Figure 33
graphically shows the dependency between the different timers.

Sender Receiver

sendDone

SUCCESS

send
send

send

receive

msg
part

ACK
send

receive

receive

send
FAIL

send
FAIL

send
send msg

part
receive

receive
receive

new msg
pointer

send
ACK

receive

SUCCESS
SUCCESS

SUCCESS
SUCCESS

sendDone

sendDone

SUCCESS

SUCCESS

sendDone

sendDone

sendDone

sendDone

Figure 33: timer dependency visualized

4.4 Consequences for the User when Employing ReliableLayer
The user must provide PACKED_MSG_DATA_LENGTH pointers to the data the
application wants to transmit. This is required because packed messages can only
be acked after the message hosting the small packets is filled, transmitted and
successfully enqueued at the recipient's. If the user application wants to transmit
data chunks of 1 byte (worst case) in size, then a pointer for every byte of the
payload of the host message is needed, hence PACKED_MSG_DATA_LENGTH
pointers.

 24

4.4.1 Behavior of the Splimer Interface (reliable communication)

command result_t send(addr, len, data)

command result_t flush()

event result_t sendDone(data, succ)

data accepted
(not sent yet)

SUCCESS FAIL
wrong args or

send in progress
successful

transmission
sending failed or

NACK received
succ. flushed and

ACKed
failed to flush or
NACK received

Figure 34: behavior of the Splimer interface (unreliable communication)

Figure 34 illustrates how the behavior of Splimer with ReliableLayer wired can be
interpreted. Only a successful sendDone signal guarantees that the data has
arrived at the receiver and will be processed.

 25

5 Discussion & Conclusion
The Splimer module enables users to send messages of arbitrary size. Messages
bigger than the regular packet size are possible by automatically splitting and
merging. Packing and unpacking of small messages is implemented also. The
present implementation is optimized for code size; i.e. implementation is kept as
simple as possible in favor of the user's application. Splimer is totally independent
of ReliabileLayer. This means that you can save memory by not including the
reliability layer. (ROM/RAM size discussion chapter …)
Following drawbacks have to be considered when using the reliable layer:

• the response time is noticeably slower
• additional traffic is generated with ACK-packets

Apart from this the reliability layer provides the assurance that when the sender
receives an ACK from the receiver the packet is guaranteed to be processed.

sender receiver

enqueuing succ

data packet

ACK packet

success

1 sender receiver

enqueuing failed

data packet

NACK packet

fail

2

sender receiver

timeout

data packet

fail

3

sender receiver

enqueuing succ
timeout

data packet

ACK packet

fail

4 sender receiver

enqueuing failed
timeout

data packet

NACK packet

fail

5

Figure 35: ReliableLayer protocol behavior diagram

The provided semantic for reliable transfer is at least once(if QUICK_SENDDONE is
set to 0). See Figure 35 for an illustration of the reliable protocol's behavior. If the
packet gets lost or cannot be delivered FAIL is reported(case 3). The only case
implying some uncertainty is when a receiving node dies or gets out of reach
before sending an ack message(cases 4 and 5): in this case the sender times out
and reports FAIL although the message could have been fully processed(case 4).

As availability of memory is limited on wireless nodes, it is important to consider
this issue throughout the whole development process of the application. Splimer
was designed trying to minimize memory usage.

 26

5.1 ROM, RAM and Runtime Analysis
The TinyNode version 1.x have a maximal ROM of 49152 bytes and 10240 bytes of
RAM. TinyOS 1.1 occupies around 30% of the ROM and approximately 5% of the
RAM available.
The Splimer module itself uses 6.3% ROM and 6.9% ROM. Adding ReliableLayer
adds another 0.6% ROM and 0.6% RAM usage. Hence when using TinyOS with
Splimer and ReliableLayer 36.9% of ROM and 12.5% of RAM are used. This leaves
63.1%(27858 bytes) ROM and respectively 87.5%(8872 bytes) RAM space for other
applications. The mentioned percentage values were deduced from Figure 36.

 difference to difference to
[all values in bytes] no Splimer Splimer only
 ROM RAM ROM RAM ROM RAM

TinyNode 1.x 49152 10240

no Splimer 14890 594

Splimer only 17986 1302 3096 708

Splimer + ReliableLayer 18294 1368 3404 774 308 66

Figure 36: ROM and RAM analysis4

 runtime #trans- payload in avg used overhead

send
mode [ms] missions in bytes in % [bytes] [%]

no Splimer

4 x 25 bytes - 128 4 25 of 29 86.21 7 21.88

20 x 5 bytes - 384 20 5 of 29 17.24 7 58.33

Splimer

1 x 100 bytes split 160 5 20 of 23 86.96 13 39.39

4 x 25 bytes normal 128 4 25 of 25 100.00 11 30.56

20 x 5 bytes pack 224 5 20 of 21 95.24 15 42.86

Splimer +
ReliableLayer

1 x 100 bytes split 256 10 20 of 23 86.96 24 54.55

4 x 25 bytes normal 192 8 25 of 25 100.00 22 46.81

20 x 5 bytes pack 512 10 20 of 21 95.24 26 56.52

20 x 5 bytes pack 352 10 20 of 21 95.24 26 56.52

QUICK_SENDDONE = 0

Figure 37: runtime & space analysis

Figure 37 is a table for comparing the runtime and data transmission statistics.
Ideal conditions are assumed, i.e. no failed transmissions, no timed resends.

4 Data collected from release candidate 1 of Splimer.

 27

The packing mode only slightly decreases the runtime but diminishes network
traffic and augments the used payload space per packet.
The overhead size is quite high because of the additional information that has to
be transmitted (header fields of custom message formats). When enabling
reliable communication the overhead percentage increases since the
acknowledgement packets add to the overhead.

Figure 38: overhead per sent payload byte

Assuming only equally sized packets are sent, Figure 38 shows that the packing
mode has a better overhead/payload ratio for data packets that are 7 bytes or less
in size. When using ReliableLayer the ratio is better if data packets smaller than 5
bytes are sent.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

data packs to transfer [b]

ov
er

he
ad

 p
er

 se
nt

 p
ay

lo
ad

 b
yt

e
[b

]

w/o Splimer Splimer ReliableLayer

 28

6 Future Work Proposition
A module able to split outgoing and merge incoming messages is a solid base for
handling data of arbitrary size. It further enables handling of faulty received
packets without the need of resending the whole data again, e.g. one could only
resend the missing/lost part, if we wished to implement a more sophisticated data
transfer protocol.
Further work may include supporting the 'id' parameter (parameterized functions)
as in GenericComm (e.g. send[id](addr, len, msg)).
A handy feature would be pipelined processing of send requests. In the current
version of Splimer a send call only succeeds if there is no other data transfer in
progress. That means send calls fail until the sendDone event to the previous
message is signaled.
Another improvement would be the concurrent receiving and processing of
received data from different senders.
If a bounded delay for data transmissions is required, a repeating timed flush of
the outgoing buffer could solve the task (only needed in pack mode, other modes
flush right away).
A measure to prevent a lot of network traffic (especially when sending large data
packets) are NACK packets containing a field indicating how long a sender should
wait before retransmitting the packet that was refused.

