
Diploma Thesis

Implementing XTC on TinyOS

Yves Weber
webery@student.ethz.ch

Dept. of Computer Science
Swiss Federal Institute of Technology (ETH) Zurich

Summer 2005

Prof. Dr. Roger Wattenhofer
Distributed Computing Group

Advisors: Nicolas Burri & Pascal von Rickenbach

Abstract

The XTC algorithm is a powerful yet easy to understand topology control al-
gorithm for wireless sensor networks. Since it does not require any knowledge
about the nodes’ positions but operates on a general notion of link qualities, it
is very suitable for the use in small embedded sensor architectures.

This thesis provides an implementation of an extended version of the XTC
algorithm for the mica2 sensor nodes running as an application on top of the
TinyOS operating system. The algorithm has been extended to produce correct
results in a dynamic environment as opposed to the original algorithm which is
only suitable in a static scenario.

Besides the implementation of the XTC algorithm, this thesis also includes
the realization of a dynamic source routing algorithm that can be run either
directly on the network or on the topology created by XTC. By juxtaposing the
results of the two options we illustrate the benefit of the XTC algorithm.

Contents

1 Introduction 5

1.1 Topology Control in Sensor Networks 5
1.2 The XTC Algorithm . 6
1.3 mica2 Motes . 7

1.3.1 Hardware . 7
1.3.2 Software . 7

1.4 Assignment Description . 9

2 Preliminary Work 11

2.1 Remote Control Application . 11
2.2 EEPROM Editor . 12
2.3 Topology Displayer . 12

3 Implementing XTC 15

3.1 Static vs. Dynamic XTC . 15
3.2 Architecture . 16

3.2.1 The PrivateOrder Module 16
3.2.2 The NeighborOrder Module 16
3.2.3 The XtcNode Module . 17

3.3 Message Types . 17
3.3.1 NbSearchMsg Message . 17
3.3.2 OrdCalcMsg Message . 18
3.3.3 OrdReqMsg and OrdSendMsg Messages 19
3.3.4 OrdChangedMsg Message 19

3.4 Functionality of the XtcNode Module 19
3.4.1 State Diagram . 19

3.5 XTC Interface . 22
3.6 Link Quality Metrics . 24

4 Dynamic Source Routing 27

4.1 Algorithm Description . 27
4.2 Implementation . 28
4.3 Data Logging . 29

5 Performance Evaluation 31

5.1 XTC in a Building . 31
5.1.1 Test Setup . 31
5.1.2 Results . 31

3

4 CONTENTS

5.2 Dynamic Source Routing Results 32
5.2.1 Test Setup . 32
5.2.2 Results . 33

6 Conclusion 35

6.1 The Program . 35
6.2 Open Problems and Possible Extensions 35

6.2.1 Link Quality Metrics . 35
6.2.2 Packet Loss and High-Degree Networks 36
6.2.3 Miscellaneous . 36

6.3 Personal Experience . 37

A Performance Evaluation Results 39

Chapter 1

Introduction

1.1 Topology Control in Sensor Networks

A sensor network consists of multiple small sensors which are connected by
wireless radio. The sensors are typically rather small and feature — besides the
radio module — a processor, some memory and a power source. If two sensors
are in the transmission range of each other, these two sensors are called linked1.
The sensors and their links form the network graph G.

Topology control algorithms create a topology graph Gtc which is a subgraph
of G that meets several requirements. The goal is that the algorithm comes
up with a subgraph that only contains good links. In general, good links are
supposed to be short and energy efficient, such that all nodes are able to drop
their long-range neighbors. As a result, the nodes can lower their transmission
power and therefore save energy and reduce interference at the same time.

Such a resulting topology should provide the following properties:

• Symmetry: If a node u decides to maintain a connection to its neighbor
v, then v keeps its link to u.

• Connectivity: If there is a connection from a node u to a node v in G

(possibly using multiple nodes as relay stations), there is also a path from
u to v in Gtc.

• Sparseness: Gtc is sparse, that is, the number of links in Gtc is in the
order of the number of nodes.

Depending on the application, other requirements may be added and the
properties above may be strengthened. For example, the sparseness property
imposes a maximal node degree in Gtc instead of an asymptotic limit.

1Asymmetric links (i.e. one node is in the transmission range of another one, but not vice
versa) are often ignored since even sending a simple acknowledgement message may become
unacceptably complicated [6]

5

6 CHAPTER 1. INTRODUCTION

XTC Algorithm

1: Establish order ≺u over u’s neighbors in G

2: Broadcast ≺u to each neighbor in G; receive orders from all neighbors

3: Select topology control neighbors:
4: Nu := {}; Ñu := {}
5: while (≺u contains unprocessed neighbors) {
6: v := least unprocessed neighbor in ≺u

7: if (∃w ∈ Nu ∪ Ñu : w ≺v u)

8: Ñu := Ñu ∪ {v}
9: else

10: Nu := Nu ∪ {v}
11: }

1.2 The XTC Algorithm

The XTC2 algorithm [9] is a topology control algorithm which is very effective
and easy to understand, but nevertheless exhibits impressive results. Depend-
ing on the model under consideration (e.g. the Unit Disk Graph [2]), different
properties of the resulting topology graph Gxtc can be proven. For a theoretical
treatment of the XTC algorithm, we refer to [9].

The XTC algorithm bases on an abstract link quality. The metrics used to
determine the link quality can be chosen depending on the application — there
are no restrictions from the algorithm. Possible metrics include but are not
limited to signal strength, delay, error rate, or a combination of the former.

The box above shows the pseudocode of the XTC algorithm. It consists of
three steps:

1. Line 1
Each node u builds up a list of all its neighbors. This list is sorted accord-
ing to the link quality in descending order. The list is called the order of
u throughout the rest of this work.

2. Line 2
Each node broadcasts its order to all its neighbors. It follows that all
nodes receive the orders of all their neighbors.

3. Lines 3-11
In the last step, a node decides which links it wants to keep active and
which links are dropped. This decision is only based on the orders of the
neighbors and its own order — there is no further communication required
in this step.

This step starts by initializing the two sets Nu and Ñu to be empty. Nu

will be filled with the neighbors of u in Gxtc (i.e. the links which are kept

active by XTC) while Ñu will contain the neighbors of u to which no

2The abbreviation XTC — while the pronounciation is unambiguous — has not a defini-
tive meaning yet. TC stands for topology control. Candidates for the X include ”exotic”,
”extreme”, ”exceptional”, and others.

1.3. MICA2 MOTES 7

direct link will be maintained in Gxtc. After initializing these two sets,
the algorithm traverses all neighbors of u in increasing order and decides
according to the criteria in line 7 whether to add the neighbor to Nu or
Ñu.

1

3

4

5

6

7

8 9

2 1

3

4

5

6

7

8 9

2

Figure 1.1: A sensor network graph G (left) and the result Gxtc of the XTC algorithm
when we use the Euclidian distance as link quality metric (right).

Figure 1.1 shows a possible graph of a sensor network at the left. On the
righthand side, the topology graph is displayed resulting from the application
of the XTC algorithm when using the Euclidian distance as link quality metric
to build up the order at each node.

1.3 mica2 Motes

1.3.1 Hardware

The sensor nodes used in this diploma thesis are the mica2 motes developed
by Crossbow Technology Inc. [3]. These sensors are widely used for research
projects and offer a broad collection of sensor boards. A mica2 mote with two
accessories — a sensor board for data acquisition and an ethernet gateway —
are shown in Figure 1.2.

The mica2 motes feature the following basic data:

Processor: 8 bit ATMega128L processor running at 7.37 MHz
Memory: 128 kB program memory, 4 kB SRAM, 512 kB EEPROM

Radio Interface: ChipCon CC1000 chip sending at a frequency of 433 or
900 MHz respectively, allowing data rates of up to 38.4
kbps

Power Source: 2AA (1.2 V)
Size: 58 x 32 x 7 mm (without batteries)

Weight: 200 g (with batteries)
Misc.: 3 LEDs (green, yellow, and red), 51-pin expansion con-

nector allowing to connect external peripherals

1.3.2 Software

The TinyOS [7] operating system running on the motes was originally developed
at the University of Berkeley. It is an event based operating system designed

8 CHAPTER 1. INTRODUCTION

Figure 1.2: A mica2 sensor (left), a MTS300CA sensor board for measuring light,
temperature and sound (center), and a MIB600 ethernet gateway which is used for
programming the nodes and connecting them to a network (right).

for embedded networked sensors. Since it is released under an open-source
license, it is available for free and it was ported to other embedded platforms.
The TinyOS software package comes with the most important library modules
(network stack, hardware drivers, . . .) and the tools which allow the mote to
communicate with a Java application running on a computer.

Due to the very limited resources available on most embedded sensor devices,
TinyOS has some heavy constraints:

• There is no concurrency in TinyOS, i.e. only one task (this is how threads
are called in TinyOS) can be running at the same time. This task can
not be interrupted by another task. The only exception of this rule are
hardware interrupts which may interrupt the current task at any time3.
Nevertheless, it is possible to handle multiple activities in parallel: The
current task can create new tasks which are placed into the TinyOS task
queue. This queue is processed in FIFO4 order when the current task fin-
ishes. The advantage of the restriction of only one concurrent task is that
the compiler can detect data races5 at compile time. The disadvantage
is that the program structure becomes more complicated because bigger
jobs need to be split up in multiple small tasks, disguising their corre-
lation. This makes TinyOS applications harder to write and difficult to
understand.

• TinyOS does not support dynamic memory allocation. Everything is al-
located on the stack, there is no heap in TinyOS. This restriction greatly
influences the design of TinyOS applications: Data structures must be
initialized to their maximum size at compile time and therefore probably
reserve too much of the limited memory of small sensor nodes. However,
due to this restriction, a TinyOS application may hardly contain memory
leaks.

3Except when using the atomic keyword, see [5].
4First in, first out
5Data races may occur when a variable is accessed by a hardware interrupt handler and

by a task of the module simultaneously.

1.4. ASSIGNMENT DESCRIPTION 9

• The size of radio messages sent using the TinyOS library is limited to 29
bytes of payload. This implies that bigger data packets must be split into
smaller parts. Splitting, transmitting (including possible retransmission
of lost or corrupted packages) and recombining has to be done manually,
there is no library offering this service.

The programming language of TinyOS is a descendant of C called nesC [5]. It
uses the C syntax and adds some new constructs. The most important concept
of nesC is the separation of construction (the implementation) and composition
(the wiring): A nesC application consists of at least one component (also called
module) and one configuration file. The modules contain the actual implemen-
tation while the configuration specifies how the modules are wired together.
Communication between modules is done using interfaces. These interfaces are
— opposed to interfaces in popular languages like Java — bidirectional. For
example, the interface of a timer may offer commands to start and stop the
timer, but it forces the user of the interface to supply an implementation for an
event executed when the timer fires.

Compilation of nesC applications is done in two steps: In the first step, the
nesC compiler takes all required components and generates one big C file. This
file is then used by the gcc compiler to generate the mica2 binary in a second
step. The whole compilation process is transparent to the user: A makefile
included by the default installation of TinyOS handles this process.

1.4 Assignment Description

The task of this diploma thesis is to implement the XTC algorithm on the mica2
motes. This includes the following subtasks:

• Getting familiar with TinyOS and nesC. During this preparation phase,
small applications were created to understand and test the relevant prop-
erties of the mica2 motes.

• Understanding the XTC algorithm described in [9]. The algorithm has to
be extended to work correctly in a dynamic environment.

• Developing reasonable link quality metrics with respect to the limited
hardware resources of the mica2 motes.

• Implementation of the XTC algorithm using the nesC programming lan-
guage and a Java application to display the results.

• Devising a sample application that highlights the benefit when it is run
on the topology established by XTC compared to running it directly on
the initial network.

• Testing and performance evaluation of the implementation in a real envi-
ronment.

Chapter 2

Preliminary Work

To become acquainted with the nesC language and the different concepts of
TinyOS, several small applications were created. Note that these applications
are not directly connected to the XTC algorithm, however they might very well
be used for educational purposes for people starting to work with TinyOS since
the applications show in few lines of code how to use some specific features of
nesC, TinyOS, and the mica2 motes. Additionally, programs like the EEPROM
Editor might turn out to be a useful tool when working with the mica2 sensors.
In the following, we will discuss the application individually in more detail.

2.1 Remote Control Application

Figure 2.1: The Remote Control Application: Currently, two nodes with IDs 0x01
and 0x02 are found.

This application allows to read and change the state of a node, i.e. the state
of the LEDs, the data of the sensors (if a sensor board is connected), and the
state of the beeper (on/off) on the sensor board. For each discovered node, a
new tab is added (see Figure 2.1).

The aim of this application was to familiarize with the data exchange be-
tween a Java application and the mica2 motes. This includes learning to work
with tools the TinyOS software package provided for this task: The mig tool
to create Java classes out of a message declaration in a nesC header file, the

11

12 CHAPTER 2. PRELIMINARY WORK

SerialForwarder to relay messages from a mica2 sensor through the ethernet
gateway to a Java application, and the net.tinyos package to send and receive
messages within a Java application.

2.2 EEPROM Editor

Figure 2.2: The mica2 EEPROM Editor

The EEPROM Editor provides the functionality to read from and write to
the EEPROM of the mica2 motes. The EEPROM is used by the LoggerWrite
and LoggerRead modules to store data in a persistent manner, i.e. the data
is available even after a reboot of the node. The EEPROM consists of 215

lines (0 to 32767), each of size 16 bytes. The first 16 lines are reserved for
the system, that is, they cannot be accessed by using the LoggerRead and
LoggerWrite interfaces. The application therefore uses the lower level interfaces
EEPROMRead and EEPROMWrite which allow reading and editing all lines.

The first 16 lines are used by components like Deluge [4] to store internal
information. Because of that, the EEPROM Editor might prove to be a useful
tool when analyzing such applications.

2.3 Topology Displayer

This tool draws the network topology. Unlike comparable tool like Surge or the
topology display features of TinyDb (Surge and TinyDb are part of the TinyOS
software package), the complete topology is drawn and not only a minimum
spanning tree built on top of the network graph. The Topology Displayer can
be used either as stand-alone application or as a module as part of another
application.

The Java front-end of this application is shown in Figure 2.3. It formes the
basis of the XTC Interface described in Chapter 3.5.

2.3. TOPOLOGY DISPLAYER 13

Figure 2.3: The Topology Displayer application showing the network topology of 6
nodes (IDs 1 to 6) including the gateway node with ID 99 used to inject messages
into the sensor network.

Chapter 3

Implementing XTC

3.1 Static vs. Dynamic XTC

The XTC algorithm as described in [9] does not handle dynamic changes of the
network graph: The topology graph Gxtc is only calculated once. When the
link quality changes, Gxtc is not updated. If a link is disconnected or a node
is removed from the network graph (e.g. when the batteries are empty or by
simply turning it off), Gxtc may even become disconnected. Additionally, it is
not possible to add new nodes once the algorithm is executed.

However, changes to the link quality and adding or removing nodes is very
common in a real environment. For this reason, the XTC algorithm had to be
extended to correctly handle such events. The requirement of the dynamic XTC
algorithm was — besides producing correct topology graphs with the updated
data — to prevent global changes in Gxtc as a reaction to a local modification.

The adapted dynamic version of XTC is basically a loop with the original
XTC algorithm inside: Instead of calculating Gxtc once, it is (re)calculated in
every iteration of the loop. Every iteration is called update cycle. In each update
cycle, the node searches for new neighbors and checks if its known neighbors are
still alive. Then it updates its link quality values and recalculates Gxtc. That
way, adding and removing nodes and changes in the link quality are handled
correctly. But there is one more piece of information required to calculate
Gxtc which might have changed: the order of the neighbors of a node. This is
handled the following way: When a node detects that its own order has changed,
it informs its neighbors about that fact. In doing so, each node already knows
during its update cycle which orders it has to update. It can therefore simply
poll the corresponding neighbors for their updated order.

Using this approach, local changes of the network cannot lead to global
changes in Gxtc:

• A change of the link quality is only recognized by the two endpoints of
the link. The new value is not directly propagated to any other node.

• A node recently added to the network graph G can only be seen by its
direct neighbors. The same is true for the failure of a node. Like above,
this information does not directly spread out in the network.

15

16 CHAPTER 3. IMPLEMENTING XTC

• The information above is only indirectly propagated by a message that the
order has changed. Since this knowledge does not affect the own order,
this information is not transmitted further.

3.2 Architecture

The implementation of the XTC algorithm consists of three main parts: A
data structure that manages the links and their calculated quality values at
each node (the private order of a node), a second data structure to keep track
of the orders of the neighbors, and the actual program logic which contains
the algorithm to calculate the resulting topology Gxtc. These three parts are
capsuled in three modules, namely PrivateOrder, NeighborOrder, and XtcNode
(the program logic). The next sections give a detailed overview of each of these
modules.

3.2.1 The PrivateOrder Module

The PrivateOrder module consists of the files PrivateOrderM.nc (the implemen-
tation), PrivateOrder.nc (the corresponding configuration), and POrder.nc (the
interface provided by PrivateOrderM.nc). The task of the POrder module is to
collect information about all links of a node. This information includes:

• The most recent quality value of each link including a time stamp con-
taining the time when the link quality was evaluated the last time,

• a flag displaying whether the link is currently part of the Gxtc, and

• a flag which is set if the link was already processed in the current algorithm
iteration.

The links are ordered according to their quality, starting with the lowest (i.e.
best) value. Besides this link management, the PrivateOrder module offers a
command called getOrder which writes the ordered list of the neighbor IDs to
a buffer. This command is used by the XtcNode module when exchanging the
order with its neighbors.

3.2.2 The NeighborOrder Module

The NeighborOrder module consists of the files NeighborOrderM.nc, Neigh-
borOrder.nc and NOrder.nc with similar semantics as the files of the Priva-
teOrder module. It is used to manage the orders of all direct neighbors of a
node.

Due to the fact that the size of radio messages is limited to 29 bytes of
payload data, the order of nodes with more than 12 neighbors1 must be split
into multiple parts for transmission. The reconstruction of an order from is
different parts is also done inside the NeighborOrder module.

129 bytes payload minus 4 bytes message overhead (2 bytes containing the sender ID, 1
byte specifying the part number, 1 byte for the total number of neighbors which is required
to calculate the total number of parts) leaves 25 bytes for the actual order data. Since nodes
IDs require 2 bytes, this leaves room for 12 node IDs.

3.3. MESSAGE TYPES 17

Besides the management of the orders, the NeighborOrder module offers the
method compare to compare two node IDs according to their quality using the
order of a neighbor. The result of this method forms the basis for the decision
of the XTC algorithm, that is, whether or not to include a link in Gxtc.

3.2.3 The XtcNode Module

The XtcNode module consists of the files XtcNodeM.nc and XtcNode.nc, i.e. the
module and its configuration. Additionally, there are two header files: XtcMsg.h
specifies the messages that are sent by the algorithm (see Chapter 3.3) and Xtc.h
containing some global constants used by all modules.

Furthermore, this module contains the program logic. This includes the
handling of incoming messages, generation of output messages, and the actual
XTC algorithm, i.e. the decision which links should be kept active. It uses the
POrder and NOrder interfaces provided by the corresponding modules to keep
track of its neighbors and their orders. A detailed description how this module
works is given in Chapter 3.4.

3.3 Message Types

The XTC algorithm uses five different message types to calculate Gxtc. These
messages are — together with the two message types used by the XTC Interface
(see Chapter 3.5) — defined in the XtcMsg.h file. This section describes the
function of these messages and how a node reacts when receiving them.

Some message types contain a field called action. This field is used to specify
the subtype of the message, e.g. request or acknowledgement. The decision was
made to use this approach instead of defining a special message type for each
possible action because a topology control algorithm is most probably only a
small part of a bigger application. Occupying too many message types (only
256 are available in total) could unnecessarily limit the number of message types
for the rest of the application. The disadvantage of using an additional field to
specify the subtype is that the payload size of such messages is reduced by one
byte.

3.3.1 NbSearchMsg Message

This message is sent at the beginning of each update cycle. It is used to search
for new neighbors. The action field of a NbSearchMsg message is either set to
SEARCH ACTION PING or SEARCH ACTION PONG. The first setting is used to start
a search for new neighbors while the latter is utilized by the new neighbors to
inform a node about their presence.

Figure 3.1 shows the process of searching for new neighbors: Node 1 broad-
casts a NbSearchMsg message to search for new nodes in its neighborhood. It
appends the list of all its currently known neighbors (node 3 and 7 in this ex-
ample) to this message and sets the action field to SEARCH ACTION PING. Its
neighbors 3, 7, and 9 receive this message. All of them check whether their
ID is already in the list of known neighbors. Since node 9 does not find its ID
in the list, it replies with a NbSearchMsg message with the action field set to
SEARCH ACTION PONG. Nodes 1 and 9 are now aware of the new link between

18 CHAPTER 3. IMPLEMENTING XTC

Search ID in
Known Neighbor List

Search ID in
Known Neighbor List

NbSearchMsg

Known Neighbor List: 3, 7
Action: SEARCH_ACTION_PING

Add node 1 to list of
known neighbors

Add node 9 to list of
known neighbors

Search ID in
Known Neighbor List

NbSearchMsg

Known Neighbor List: <not used>
Action: SEARCH_ACTION_PONG

Node 3 Node 7 Node 9Node 1

Figure 3.1: Node 1 searching for new neighbors using NbSearchMsg messages.

them. Because node 3 and 7 find their IDs in the list of known neighbors, they
just ignore this message.

3.3.2 OrdCalcMsg Message

To calculate the quality of a link, OrdCalcMsg messages are used. The action
field of this message type can be set to three values: ORD CALC REQ, ORD CALC -

INTER, or ORD CALC ACK.

Measure RSSI of
message (74)

Measure RSSI of
message (70) and

calculate final value

OrdCalcMsg
Action: ORD_CALC_REQ
Value: <not used>

Attach value 72
to link 1−3

Attach value 72
to link 3−1

Node 1 Node 3

OrdCalcMsg
Action: ORD_CALC_ACK
Value: 72

OrdCalcMsg
Action: ORD_CALC_INTER
Value: 74

Figure 3.2: Link quality calculation between the nodes 1 and 3.

The process of calculating the link quality is shown in Figure 3.2: Node 1
initiates the calculation by sending an OrdCalcMsg with the action field set to
ORD CALC REQ. Node 3 measures the RSSI2 value upon receipt and writes this
value to the answers with action set to ORD CALC INTER. When node 1 receives
this message, it measures its RSSI, too. Given the two RSSI values, it calculates
the final link quality value (see Chapter 3.3 for details). This value is sent with
a final OrdCalcMsg message (action=ORD CALC ACK) back to node 3. Both nodes
save this new value.

2Received Signal Strength Indicator: This value is attached to each received packet by
the TinyOS network stack. It contains information about the signal strength of the packet.
The smaller the value, the stronger was the received signal.

3.4. FUNCTIONALITY OF THE XTCNODE MODULE 19

3.3.3 OrdReqMsg and OrdSendMsg Messages

The OrdReqMsg and OrdSendMsg messages are used to exchange the orders be-
tween neighbors. They both do not contain an action field. A node u sends the
request for a part of the order3 of its neighbor v using an OrdReqMsg. Node v

answers to this request with an OrdSendMsg. This message contains — besides
the demanded part of the order — the part number and the total number of
neighbors of the node. This information is required to correctly reassemble the
parts at node u.

3.3.4 OrdChangedMsg Message

Messages of type OrdChangedMsg are broadcasted by nodes after their order has
changed. This informs all neighbors that they need to update the order of the
sender in their next update cycle. Therefore, all nodes delete the corresponding
order in the NeighborOrder module upon receipt an OrdChangedMsg message.

3.4 Functionality of the XtcNode Module

3.4.1 State Diagram

Figure 3.3 shows the state diagram of the XtcNode module. The different states
are described in the following. For the sake of clarity, the diagram does not show
all details and the reactions on most incoming messages — a complete list of
how to react on messages is given in Chapter 3.3.

Basically, the state diagram consists of three steps, each representing one
step of the XTC algorithm:

1. Updating the PrivateOrder module. This includes searching for new neigh-
bors and reevaluation the quality of existing links if the current value is
not up-to-date anymore (i.e. the time stamp is too old).

Corresponding states:
STATE SEARCH NEIGHBORS, STATE UPDATE PORD, and STATE PARALLEL WAIT.

2. Updating the NeighborOrder module. In this step, the order of newly
found neighbors is requested and collected in the data structure. Addi-
tionally, the order of an old neighbor might need to be updated if it was
changed. Since a node has to inform its neighbors if its order changes,
there is no need to poll all nodes for an update of their orders.

Corresponding states:
STATE UPDATE NORD and STATE AWAIT NORD ACK.

3. Recalculate Gxtc with the new data. This step may be skipped if neither
the PrivateOrder nor the NeighborOrder module has changed.

Corresponding state:
STATE CALC TOPOLOGY

In the following, we describe all these states in more details.

3Orders might be split in multiple parts, see Chapter 3.2.2.

20 CHAPTER 3. IMPLEMENTING XTC

Figure 3.3: The state diagram of the XtcNode module

3.4. FUNCTIONALITY OF THE XTCNODE MODULE 21

STATE WAITING

The XtcNode module switches to this state when an algorithm iteration is fin-
ished. The module is waiting for a Timer.fired() event to start the next iter-
ation. Even though there is no action initiated before the timer fires, incoming
messages are processed and an answer is generated, if appropriate.

STATE SEARCH NEIGHBORS

This state represents the first step in each algorithm iteration. Node u broad-
casts a NbSearchMsg message (action = SEARCH ACTION PING) containing a list
of all known neighbors. If another node v receives such a message and does
not find its own node ID in the list, it answers with a NbSearchMsg message
with the action field set to SEARCH ACTION PONG. This informs u that v is a new
neighbor (and vice versa). Node u then waits a certain period of time (defined in
MSEC SEARCH DELAY) for new neighbors to answer. After this delay, it proceeds
to the next state and new neighbors are rejected until the next iteration of the
algorithm.

STATE UPDATE PORD and STATE PARALLEL WAIT

As the name suggests, the goal of the STATE UPDATE PORD state is to update the
link quality values in the PrivateOrder module. This is done by iterating through
all known neighbors. If the value is considered up-to-date4, the current link is
skipped. Otherwise, an OrdCalcMsg message is sent to the neighbor to start the
link quality evaluation. This process is described in Section 3.3.2. If a node fails
to react ORD CALC RETRIES times to such a message, this node is considered out
of reach and is removed from the PrivateOrder and NeighborOrder modules.

OrdCalcMsg
Action: ORD_CALC_REQ
Value: <not used>

OrdCalcMsg
Action: ORD_CALC_REQ
Value: <not used>

Measure RSSI of
message (73)

Measure RSSI of
message (70) and

calculate final value

Measure RSSI of
message (69) and

calculate final value

OrdCalcMsg
Action: ORD_CALC_REQ
Value: <not used>

OrdCalcMsg
Action: ORD_CALC_REQ
Value: <not used>

Parallel calculation detected and 1 < 3
Stop calculation and change state

to STATE_PARALLEL_WAIT

Measure RSSI of
message (69) and

calculate final value

Node 1

OrdCalcMsg
Action: ORD_CALC_INTER
Value: 73

OrdCalcMsg
Action: ORD_CALC_ACK
Value: 72

OrdCalcMsg
Action: ORD_CALC_INTER
Value: 74

OrdCalcMsg
Action: ORD_CALC_ACK
Value: 71

Attach value 71
to link 1−3

Attach value 72
to link 3−1

Node 3

Measure RSSI of
message (74)

Node 1

OrdCalcMsg
Action: ORD_CALC_INTER
Value: 73

OrdCalcMsg
Action: ORD_CALC_ACK
Value: 71

Parallel calculation detected but 3 > 1
Measure RSSI of message (73)

Attach value 71
to link 1−3

Attach value 71
to link 3−1

Node 3

Figure 3.4: Both nodes decide to evaluate a link at the same time. On the left,
this results in two different values. This erroneous scenario is resolved by the
STATE PARALLEL WAIT state. The scenario at the right shows the correct process
when both nodes start the evaluation of the same link at the same time: The re-
quest of the node with the smaller ID is ignored and only the other request leads to
a new link quality value.

The STATE PARALLEL WAIT state is used only to prevent inconsistencies

4This happens about 50% of the time: For two connected nodes u and v, one of them (say
u) starts the quality evaluation. The new value is saved by both nodes with the current time
as time stamp. Node v — most probably in STATE WAITING — will skip the evaluation of this
link in its next update cycle because the time stamp is still up-to-date, i.e. (current time -
time stamp) < UPDATE INTERVAL.

22 CHAPTER 3. IMPLEMENTING XTC

in one special case: When both endpoints of a link decide to evaluate the link
quality exactly at the same time, the link calculation protocol would run twice
in parallel resulting in two (possibly slightly different) values saved at each
node (see Figure 3.4 in the middle). This difference could result in a topology
graph which is not connected, since multiple links might get multiple values (see
Theorem 4.1 in [9]).

This special case is prevented as shown in the scenario on the right in Fig-
ure 3.4: If a node detects such a parallel link evaluation (i.e. if it receives an
initializing OrdCalcMsg message from a node to which it just sent such a message
itself), it stops the calculation and switches its state to STATE PARALLEL WAIT

if its own node ID is smaller than the ID of the other node. Since both nodes
detect the parallel evaluation, it is guaranteed that one of them stops.

While one might think that this scenario will occur very rarely, in practice
it happens quite often. A very simple scenario illustrates one possibility of
a parallel link evaluation: Three nodes u, v, and w, each of them connected
with the other two nodes. Nodes u and v are in state STATE WAITING and w

is performing an update cycle. Because the order of node w changes due to a
new link value, it sends an OrdChangedMsg message. This message causes its
two neighbors to start their update cycle. Since the links u-w and v-w are up
to date (node w just updated them), node u and v start updating the link u-v
at the same time.

STATE UPDATE NORD and STATE AWAIT NORD ACK

Like the STATE UPDATE PORD state, the task of the STATE UPDATE NORD state is
to update the data structures required by the XtcNode module. Therefore, a
loop iterates over all neighbors. If the order of a neighbor is not available in
the NeighborOrder module a request is sent to the corresponding node. Since
the order might be too big for one OrdSendMsg message, it is possible that
multiple requests for different parts are required until the order of one neighbor
is complete.

When the request is sent, the node changes to the STATE AWAIT NORD ACK

state. It switches back to state STATE UPDATE NORD either when a timeout occurs
or when the requested part of the order is received.

STATE CALC TOPOLOGY

This is the last step of the algorithm where the XtcNode module (re)calculates
Gxtc using the most up-to-date data. After the calculation, the node switches
back to STATE WAITING state.

3.5 XTC Interface

Small sensor nodes like the mica2 motes have a big drawback: There is no
possibility to display any information directly on the nodes except turning on
and off the three LEDs. For displaying and studying the results of the XTC
algorithm (and also for debugging during development), three LEDs are not
sufficient. Therefore, a special application had to be created. This application

3.5. XTC INTERFACE 23

called XTC Interface is written in Java since TinyOS provides tools like mig5

and the SerialForwarder6 and because Java offers best compatibility to multiple
operating systems.

Figure 3.5: The XTC Interface application displaying the result of the XTC algorithm
with five nodes running. The topology graph is drawn in red, the dashed gray lines
are deactivated by XTC.

The user interface of XTC Interface is based on the interface of SANS [1], a
network simulator for Java applications. It allows moving the nodes using drag
and drop. That way, the nodes can be placed equivalent to their position in the
real world to allow tracing the XTC algorithm.

XTC Interface automatically searches for nodes running XTC and collects
data from them. This is done with two new message types:

• FLOOD MSG messages used to establish the routes for further data acquisi-
tion are broadcasted by the XTC Interface. They start a data collection
iteration. Each node receiving such a message rebroadcasts it exactly
once per iteration. Additionally, the node saves the source of the first
FLOOD MSG message in the current iteration. In doing so, the FLOOD MSG

messages are used to build a communication tree with the XTC Interface
at its root (or more precisely, the gateway to which XTC Interface is con-
nected). This tree is then used to collect the data. It is rebuilt for each
data collection iteration.

• Additionally to forward the FLOOD MSG messages, each node sends — after
a short random delay to prevent a broadcast storm [8] — a RESULT MSG

5mig is used to create Java classes out of a message declaration in a nesC header file.
6Ethernet gateways like the MIB600 inject packets sent from the connected node into a

network. The SerialForwarder reads such packets and acts as packet distributor for other
applications.

24 CHAPTER 3. IMPLEMENTING XTC

message to the source of the first FLOOD MSG message received in this it-
eration. This message contains the node’s current state of the XTC algo-
rithm: A list of all neighbors and the corresponding link quality values of
them. Moreover, a flag declaring whether or not this link is part of Gxtc is
included. When a node receives such a RESULT MSG message, it forwards
the message to the source of the first FLOOD MSG message. In the end, all
RESULT MSG messages are routed on the tree graph to the XTC Interface.

With the collected RESULT MSG messages, XTC Interface draws the current
state of the complete sensor network. Depending on the settings, either the
whole topology, Gxtc with inactive links dashed, or only Gxtc is drawn. If no
RESULT MSG message is received from a node in the data collection iteration,
the data from the last iteration is used. Since this data might be out of date,
old data is drawn with lighter shade of red in XTC Interface. With each itera-
tion, the shade gets nearer to white. This informs the user that this particular
data is out of date and might be incorrect. After five iterations without receiv-
ing a RESULT MSG message, a node is considered disconnected and is therefore
displayed as a “ghost”-node without any links.

Even if a RESULT MSG message is received from every node there may be
some inconsistencies in the topology graph (e.g. a link with two different quality
values or even a cycle of length three in the topology graph7). This is neither
due to bugs in the implementation nor a general problem of XTC but because
the nodes may send the RESULT MSG message during their update cycle where
temporary inconsistencies are possible8. Such errors disappear in the next data
collection iteration.

The XTC Interface writes a log file containing the messages received. By
default, all messages are logged but this can be changed by deselecting the check-
boxes corresponding to the different message types used by XTC, the Dynamic
Source Routing presented in the next chapter, and the XTC Interface itself.
The log file called logfile.txt is created in the same directory as the application.
At each startup, the log file is cleared by removing old entries.

3.6 Link Quality Metrics

The XTC algorithm is based on a very abstract concept of link quality. It is
up to the implementation to choose what properties of a link are measured and
what metrics are used.

The earliest working version simply used the RSSI value of a message sent
over a link. There was no negotiation between two neighbors about a common
value but each node saved its own value. This resulted in topology graphs that
were not connected. The reason for this lies in the assumption of theorem 4.1
in [9]: Connectivity is only guaranteed on Euclidean Graphs. Therefore, the
agreement protocol described in Section 3.4.1 had to be implemented.

7Cycles of length three are not possible in the topology graph when using symmetric links
(see Theorem 5.2 in [9])

8Delaying the RESULT MSG message until the update cycle is complete does not resolve this
problem: Since the update cycles of the nodes do not occur concurrently, the RESULT MSG

messages received would not represent a common point in time and could therefore contain
inconsistencies, too.

3.6. LINK QUALITY METRICS 25

The current version of the algorithm supports two different metrics. Both of
them are based on the RSSI values of packets sent between two nodes. In both
metrics, the node collects two RSSI values, one from its neighbor and one from
itself. In the first metrics, these two values are averaged. This makes sense if the
assumption is made that the difference between the values arises from the fact
that the radio modules at different nodes are not calibrated equally. The second
metric available in the implementation takes the maximum of the two values.
This approach presumes that the two values differ due to different settings of
the neighbors, e.g. different radio power settings.

There are many more possible metrics. However, due to time constraints only
the two metrics mentioned above were implemented. Some additional ideas for
new metrics are noted in Section 6.2.

Chapter 4

Dynamic Source Routing

To illustrate the benefit of the XTC algorithm, a sample application using the
XTC graph Gxtc as underlying network topology was implemented. The deci-
sion was made to realize a dynamic source routing (DSR) algorithm which is
described in this chapter. The comparison between running DSR on Gxtc versus
running it on the complete network graph G is given in Section 5.2.

4.1 Algorithm Description

The basic principle of the dynamic source routing algorithm is the following: If
a node u wants to send a message to a node v, it appends the route between u

and v to the message. All nodes on this path forward the message according to
the given route. This is called the forwarding phase.

There are multiple possibilities for node u to find a way to v (the route
discovery phase). The implementation realized in this thesis uses a controlled
flooding: Node u broadcasts a route discovery message containing the node ID
of the destination and a TTL1. Each node receiving such a message forwards it
once. Before forwarding the message, nodes attach their own ID to the route
discovery message and decrement the TTL field. Once the TTL reaches 0, the
message is not forwarded anymore. When the destination v receives such a route
discovery message, the message contains the path between u and v because each
node that forwarded the message attached its ID. Node v now replies with a
route found message containing the complete path from u to v.

The TTL is used to prevent the flooding of the whole network even though
the destination might be very close to the source of the message. With a small
TTL only short paths are searched. If no route is found (i.e. no route found
message is received at the source after a certain amount of time) the source
increases the TTL and restarts the route discovery.

There are countless possible tweaks to increase the performance of dynamic
source routing. Approaches include caching of routes for a certain amount of
time (or until the route fails), using local search to repair broken routes and
multiple variations of how acknowledgement messages are used (or even use an
implicit acknowledgement). However, only the basic algorithm described above
is implemented as part of this thesis.

1Time to live

27

28 CHAPTER 4. DYNAMIC SOURCE ROUTING

4.2 Implementation

The DSR implementation uses four types of messages:

• RDiscMsg messages are used during the route discovery phase. Besides
the source and the destination of the inquired route, this message contains
— as mentioned in Section 4.1 — a TTL field. Because each node only
forwards such a RDiscMsg message at most once, it must also contain
a unique identifier. The identifier consists of the ID of the node at the
start of the route together with a counter which is incremented each time
this node starts a new route discovery. That way, a node only forwards
a RDiscMsg message if its counter is bigger than the counter of the last
forwarded message with the same route source. The last field of RDiscMsg
messages contains a list with the current route of the message. Each node
that forwards the message appends its own ID at the end of this list.

• RFoundMsg messages are sent to the source of a route discovery when
a RDiscMsg message arrives at the destination of the route. It contains
the same fields as the RDiscMsg message, except for the missing TTL. On
recept of a RFoundMsg message, it forwards the message according to the
route contained in the message — there is no need to broadcast RFoundMsg
messages.

• PayloadMsg messages contain the payload data the source wants to send
to the destination. Besides the data, it contains the route which was
discovered earlier. It also contains the counter used in the RDiscMsg and
RFoundMsg messages. The counter might seem unnecessary, but it is later
required for the AckMsg message (see below) to specify which transaction
was successfully completed.

• AckMsg messages are sent from the route destination to the source af-
ter the PayloadMsg message was received. Since it is possible that a
route breaks after the RFoundMsg message was sent back to the source,
a PayloadMsg may get lost. Therefore, the source will restart the route
discovery phase if no AckMsg message is received after a certain time. The
AckMsg message contains the same fields as the RFoundMsg message: source
and destination including the route in-between and the counter. This im-
plementation additionally includes two fields called rssiAvg and rssiMax.
These fields are not used for the DSR algorithm but for collecting data as
described in Section 4.3.

Due to the limited size of 29 bytes per packet, two restrictions were made in
the implementation: Only node IDs up to 255 are supported and the maximum
route length is 8 hops (not including the source and destination). Theoreti-
cally, every node ID is 16 bits wide. However since a PayloadMsg message must
contain the whole route and additionally leave some space for the actual pay-
load data, only 8 bits are used per node on the route. With a maximum route
length set to 8 (declared in the MAX ROUTE LENGTH constant in the file SourceR-
outingMsg.h), this allows only 16 bytes of real payload data. Longer routes or
more bits per node ID would reduce this value even more.

4.3. DATA LOGGING 29

4.3 Data Logging

The DSR algorithm was implemented to illustrate the effect of using XTC and
topology control in general. Therefore, logging of data is very important. The
acquired data is written to the EEPROM. That way, the sensor nodes can be
turned off without losing data. Turning off the nodes may be required since the
data collection protocol does not support multi-hop routing: The PC queries
(through a gateway node, see Section 5.2.1) one node after the other for all of its
logger entries. If a node is out of reach of the gateway node, no data is received.

0 7

Hop 2 . . .

13

Hop 8

6

Hop 1

54

max. RSSI

3 14

<empty>

15

Marker

2

Retries

1

DestinationMarker avg. RSSI Route Length

Figure 4.1: The structure of one EEPROM line representing one logger entry, i.e.
one route.

The structure of the collected data inside the EEPROM is straightforward:
Each line (16 bytes) corresponds to one route. Figure 4.1 shows what informa-
tion is stored inside one page. The first and the last byte of each page contain
a marker. These bytes mark the corresponding page as a legal logger entry.
Byte one contains the destination of the route — there is no need to save the
source of the route, since the source corresponds to the node writing the logger
entry. Byte two represents the number of retries before the process was suc-
cessfully completed, i.e. the route was found, a payload packet was transmitted,
and an AckMsg message was received by the source. The average RSSI value on
the route is written to byte three. This value is accumulated inside the data
field of PayloadMsg messages. Since there is no real payload sent during this
experiment, this action is completely acceptable. In the AckMsg message, the
average and maximum RSSI values are sent back to the source. The remaining
bytes of the EEPROM page contain the route: Byte four specifies the length
of the route, bytes five to thirteen the IDs of the nodes between source and
destination. Byte fourteen is not used.

The Java tool which collects the logger entries of all nodes produces output
like the following:

...

Message from 1 to 4:

Route: 1 -> 4 (length=0)

Number of retries: 0

Average RSSI: 24

Maximum RSSI: 24

Message from 1 to 3:

Route: 1 -> 4 -> 3 (length=1)

Number of retries: 1

Average RSSI: 28

Maximum RSSI: 32

Final statistics for node 1:

Total routes: 104

30 CHAPTER 4. DYNAMIC SOURCE ROUTING

Average route length: 1.83

Maximum route length: 5

Average RSSI: 27

Maximum RSSI: 45

...

The information contained in this output is compiled into the table shown in
Chapter 5.2.

Chapter 5

Performance Evaluation

5.1 XTC in a Building

To evaluate the performance of the implementation of the XTC algorithm, it
was tested in a real environment. The setup of this experiment and the re-
sults including their interpretation are presented in this chapter. The detailed
pictures of this test can be found in Appendix A.

5.1.1 Test Setup

The twelve nodes were placed on the floor of an office building according to the
map shown in Figure A.1 in the appendix. Those nodes form the network graph
G. At the border of G — in the upper right corner of the map — a gateway
node was added. This node connects the sensor network to the XTC Interface
which was used to display the results. The gateway node does not appear in the
XTC Interface. It is only used to inject packets into the network and to read
messages from the network.

All nodes were sending at a power level set to 128. As link quality metrics,
the average between the two measured RSSI values was used (see Section 3.6).

5.1.2 Results

During the experiment, node 6 showed strange behavior. This was probably
due to low batteries which resulted in a high packet loss and therefore outdated
data at this node. Because of that, it was turned off and appears greyed out in
the picture. The other eleven nodes did not show such a behavior.

The left image in Figure 5.1 depicts the network topology G of the twelve
nodes. At the right, the topology graph Gxtc produced by the XTC algorithm is
displayed. As it can be seen, XTC was able to drastically reduce the number of
links in G while preserving connectivity. However, when comparing Gxtc to the
map shown in Figure A.1, one might expect that long links like the one between
node 1 and node 8 should be removed. But since the measured RSSI value for
this link was very low (i.e. the message was received with a high power level),
this link was included in Gxtc.

The result of this experiment is — besides the awareness that the imple-
mentation works correctly — that the RSSI basis for the link quality metric is

31

32 CHAPTER 5. PERFORMANCE EVALUATION

Figure 5.1: The network graph G (left) and the new topology created by the XTC
algorithm (right).

not suitable in the way it is currently implemented. Gxtc changed very often by
adding new link and removing other ones. A collection of four different topology
graphs is shown in Figure A.2. The reason for this is that the measured RSSI
value varied strongly. This lead to frequent changes of the orders at the nodes
which resulted in continuous changes in Gxtc.

5.2 Dynamic Source Routing Results

5.2.1 Test Setup

The nodes were placed at the same positions as described in Section 5.1.1.
Likewise, the same parameters were used for the XTC algorithm: A power level
of 128 and the average of the two RSSI values as link quality metric.

Two separate experiments were performed: In the first experiment, the DSR
algorithm was run on top of the XTC algorithm, i.e. it was only allowed to use
the links of Gxtc. In the second experiment, the DSR algorithm was directly
run on the network topology without using XTC.

In both experiments, the DSR algorithm performes equivalently: A node
randomly selects a destination1 and starts the route discovery phase. If a route
is found, a payload message is sent to the source. After the acknowledgement
is received, an EEPROM entry is written. If no acknowledgement is received
within a certain period of time, there are up to two retries to retransmit the
payload package over the known route. When the result is negative, a new
route to the destination is searched. If this process failes three times — a total
of nine failed attempts to reach the destination — the destination is considered
unreachable. Such an unavailable route search was saved in the EEPROM, too.

After one iteration of the DSR algorithm, the node idled a random time be-
tween 0.5 and 4 seconds. After that period, it selected a new random destination
and restarted the route discovery phase.

The setup for both experiments was very similar: The nodes were placed
and turned on. In the first few minutes, the nodes were running only the XTC
algorithm (Experiment 1) or sleeping (Experiment 2). This enabled the XTC

1The total number of nodes — 12 in this experiment — was given at compile time.

5.2. DYNAMIC SOURCE ROUTING RESULTS 33

algorithm to build a (more or less) stable topology. After that, the dynamic
source routing algorithm was started with a flooding message from the gateway
node (see Figure A.1). After five minutes, the DSR algorithm (including XTC
in the first experiment) was stopped using another flooding message. Finally,
the data logged in the EEPROM was collected.

5.2.2 Results

In both experiments, a small number of nodes did not produce useful results and
sometimes not even data at all. In Experiment 1, the results of node 4, 9, and 11
could not be read due to problems with the SerialForwarder. In Experiment 2,
node 4 and 12 did not find any route, i.e. there were about 40 entries reporting
a failed route search. The reason for this remains unknown, especially because
other nodes could successfully route to these nodes and therefore they were able
to communicate with the rest of the network and were not disconnected.

The results of the remaining nodes were very similar within the same exper-
iment. The following table shows the results of node 6. It was one of the nodes
that provided useful results in both experiments and it is therefore suitable for
a direct comparison.

Experiment 1 Experiment 2
Total number of route discoveries: 45 49
Number of failed route discoveries: 11 (24%) 3 (6%)

Average route length: 2.18 hops 1.26 hops
Average RSSI per hop: 82.8 133.1
Maximum route length: 4 hops 3 hops

It is important to note that the amount of data collected is probably not big
enough for significant conclusions. Additionally, due to the fact that the RSSI
is not a reliable metric in the form it is used now (see Section 5.1.2), it will be
difficult if not impossible to reproduce these measurements. However, since all
nodes produced similar data, some interesting observations can be made:

• The number of failed route discoveries increases when using Gxtc as an
underlying network topology. This is most probably due to the fact that
Gxtc is not very stable for a long period of time. When one link is removed
from Gxtc, all routes containing this link are broken in the first experiment.
Since four messages on each link of a route are required for a successful
data transmission, an instable topology graph significantly reduces the
number of succeeded transfers. This effect could be reduced by using
more stable link quality metrics.

• The average route length increases when routing on Gxtc. Since Gxtc is a
subgraph of the complete network topology, this result is no surprise.

• The average RSSI per hop was improved by using XTC. Informally speak-
ing, this means that better links were taken in the routes found in the first
experiment. This is a strength of the approach taken in this experiment:
Links with a high RSSI value (i.e. bad links) are removed from the topol-
ogy. In doing so, the route length increases, but should be more stable.

34 CHAPTER 5. PERFORMANCE EVALUATION

Summing up the results, the two experiments confirmed our expectations
that the average route length increases while the average RSSI per hop decreases.
Unfortunately, the effect of using stable routes was nullified by the instability
of Gxtc. The number of failed route discoveries should reduce by using only a
subset of the network topology containing only “strong” links.

Chapter 6

Conclusion

6.1 The Program

The experiments have shown that the implementation of the XTC algorithm
works correctly in a real environment with random packet loss. The application
is able to dynamically adapt to changes of the underlying network topology.
Additionally, the XTC Interface application displays the results of the algorithm
on a PC.

6.2 Open Problems and Possible Extensions

During the work on this diploma thesis, many ideas for extension were pro-
posed. While a lot of them were directly implemented, some of them had to be
postponed to later projects due to time constraints. Additionally, the experi-
ments have shown that some aspects were not perfectly solved in the current
version of the implementation. These extensions and problems are presented in
the following sections.

6.2.1 Link Quality Metrics

Using RSSI as link quality metric as it is done now is not sufficient as the experi-
ments have shown — at least for indoor scenarios. Since the RSSI measurements
strongly vary without changing the setup of the nodes, further action has to be
taken. Possibilities include:

• Average the RSSI over multiple packets. For example, the RSSI of each
incoming packet could be saved in a circular buffer. Instead of using
OrdCalcMsg messages, an average of these values could be used.

• Create RSSI groups, each covering a range of the specturm of possible
RSSI values. Two values are then considered equivalent if they are in the
same group. Thereby, a variation of the measured RSSI values between
the limits of its group would not affect the final link quality. This approach
could be extended in a way that the RSSI group is only changed if multiple
consequent measurements lie outside of the current group.

35

36 CHAPTER 6. CONCLUSION

• Use of the RSSI value together with other parameters like the error rate or
the delay of a link. That way, variations of the RSSI would be compensated
by the other factors.

• Evaluate the link quality as it is done now, but improve the quality value
for links which are currently part of Gxtc. In doing so, existing links would
be preferred to other links with a similar quality value which are not part
of Gxtc, reducing frequent changes in the result. Using the approach of
artificially adjusting the link quality after the RSSI measurement, other
features could be implemented. For example, a node with a high degree
in Gxtc could lower the measured quality to prevent increasing its degree
even more.

6.2.2 Packet Loss and High-Degree Networks

While the current implementation work flawlessly in networks where the degree
of each node is limited to about ten, there are some issues when a node has a
higher degree:

• When a node with high degree broadcasts an OrdChangedMsg message, it is
possible — depending on the state of its neighbors — that it gets flooded
with requests by its neighborhood. This leads to high packet loss and
delays which probably result in temporary inconsistencies in the resulting
topology graph.

• In the current implementation, OrdChangedMsg messages are only broad-
casted, but not acknowledged. If such a message is lost or not received by
a node, one or more nodes do not request the updated order of the node
that changed. This may result in inconsistencies until this node sends
another OrdChangedMsg. This problem could be solved by attaching a
version number to each order. A node could then ask its neighbors for the
current version number of their order on a regular basis.

• A node with a high degree has to partition its order into multiple parts
due to the limited size of radio messages. In the current implementation,
there are some problems with the retransmission and reconstruction of
fragmented orders if certain packets are lost. In the worst case, these
issues can completely block a node by switching to an illegal state with
no possibility to recover with the exception of a manual reboot. These
scenarios must be considered in more detail and the implementation needs
to be adjusted to correctly handle them. The most elegant solution would
be to create a separate network message layer which allows sending bigger
packets by automatically splitting, transmitting, and reconstructing them.

6.2.3 Miscellaneous

Besides the points already mentioned, there are some smaller features that could
be added:

• When the order of a node changes, this does not necessarily affect all its
neighbors. For example, when the order of node u changes from r < s < t

6.3. PERSONAL EXPERIENCE 37

to r < t < s, this change concerns only the common neighbors of the
three nodes u, s, and t. All other neighbors of node u do not need to
adjust their stored order of u. Because of that, appending a list of nodes
which changed their position in the order of a node to each OrdChangedMsg

message would reduce the number of messages.

• The current implementation of the Dynamic Source Routing does not
cache the routes found for later reuse. In doing so, the performance of the
algorithm could be increased. Besides that, there are countless possibilities
to improve the DSR algorithm, some of which are mentioned in Section 4.1.

• The XTC Interface could be extended with many features. For example,
it would be convenient to have the possibility to add a map like the one
showed in Figure A.1 in Appendix A as background picture of the ap-
plication. The nodes could then be easily placed according to their real
position on the map. Another handy feature would be that the nodes are
automatically placed by the application in a better way than it is done
now. One approach to implement such an attribute could use a spring
model based on measured link quality.

6.3 Personal Experience

During all stages of this diploma thesis — from the first contact with TinyOS
and nesC over the design and implementation phase until the final tests and
measurements — it was very exciting to work on this project. It was interesting
to gain experience with small embedded platforms where the limited resources
impose different approaches to solutions than on architectures like PCs which
are encountered during normal studies. Additionally, I am fascinated by the
concept of distributed units working together with very limited local knowledge
and without having an idea about what is happening overall.

Of course, there were also some less enjoyable parts during this project.
This mainly includes the debugging since it is very hard to understand what
is happening inside a sensor node when the LEDs are flashing in unexpected
combinations or the node does not do anything at all. Unfortunately, there are
almost no tools available to help a developer reproducing the activity of a node.
Besides these software issues, the hardware itself occasionally astonished with
unexpected behavior. While this could be tracked down to weak batteries in
some cases, the reason for most surprises remains unknown, especially because
the motes later switched back to normal operation without any changes.

All together, I do not regret choosing this topic for my diploma thesis and I
will keep it in memory as a very positive experience.

Appendix A

Performance Evaluation
Results

Figure A.1: The position of the twelve nodes for the experiments done in Chapter 5.

39

40 APPENDIX A. PERFORMANCE EVALUATION RESULTS

Figure A.2: Four different topology graphs produced during the experiment. The
dashed grey lines in the two pictures at the bottom show the complete topology.
The delay between two pictures varies between a half and two minutes.

Bibliography

[1] N. Burri, R. Wattenhofer, Y. Weber, and A. Zollinger. SANS: A Simple Ad
hoc Network Simulator. In Proc. of the World Conference on Educational
Multimedia, Hypermedia & Telecommunications (ED-MEDIA), June/July
2005.

[2] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit Disk Graphs. Discrete
Mathematics, 86:165-177, 1990.

[3] Crossbow Technology Inc.

http://www.xbow.com

[4] J. W. Hui and D. Culler. The Dynamic Behavior of a Data Dissemination
Protocol for Network Programming at Scale. In Proc. the 2nd Int. Confer-
ences on Embedded Network Sensor Systems (SenSys), 2004.

[5] nesC 1.1 Language Reference Manual

http://nescc.sourceforge.net/papers/nesc-ref.pdf

[6] R. Prakash. Unidirectional Links Prove Costly in Wireless Ad-Hoc Net-
works. In Proc. of the 3rd Int. Workshop on Discrete Algorithms and Meth-
ods for Mobile Computing and Communications (DIAL-M), 1999.

[7] TinyOS Homepage

http://www.tinyos.net

[8] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu: The Broadcast Storm
Problem in a Mobile Ad Hoc Network. Wireless Networks, 8:153-167, 2002.

[9] R. Wattenhofer and A. Zollinger. XTC: A Practical Topology Control Al-
gorithm for Ad-Hoc Networks. In Proc. of the 4th Int. Workshop on Algo-
rithms for Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN), April
2004.

41

